
1

Penalty Dual Decomposition Method For
Nonsmooth Nonconvex Optimization—Part II:

Applications
Qingjiang Shi, Mingyi Hong, Xiao Fu, Tsung-Hui Chang

Abstract—In Part I of this paper, we proposed and analyzed a
novel algorithmic framework, termed penalty dual decomposition
(PDD), for the minimization of a nonconvex nonsmooth objective
function, subject to difficult coupling constraints. Part II of
this paper is devoted to evaluation of the proposed methods in
the following three applications, ranging from communication
networks to data analytics: i) the max-min rate fair multicast
beamforming problem; ii) the sum-rate maximization problem
in multi-antenna relay broadcast networks; and iii) the volume-
min based structured matrix factorization problem, which is often
used in document topic modeling. By exploiting the structure of
the aforementioned problems, we develop a new class of algo-
rithms based on the PDD framework. Differently from the state-
of-the-art algorithms, they are proven to achieve convergence to
stationary solutions of the aforementioned nonconvex problems.
Numerical results validate the efficacy of the proposed schemes.

Index Terms—Penalty dual decomposition, multicast beam-
forming, sum-rate maximization, matrix factorization.

I. INTRODUCTION

In Part I of this paper, we have proposed a generic algorithm
for optimizing the following nonconvex problem with coupling
constraints:

min
x�X ,y

F (x, y) � f(x, y) +

ny�

j=1

�̃(yj)

s.t. h(x, y) = 0,

gi(xi) � 0, �i

(P)

where x � (x1, x2, . . . , xn) and y � (y1, x2, . . . , xny );
�̃(yj) = �j(sj(yj)) is a composite function, with sj(yj)
being a convex but possibly nondifferentiable function while
�j(x) a nondecreasing and continuously differentiable func-
tion; the feasible set X is the Cartesian product of n simple
closed convex sets Xi’s with xi � Xi, �i; f(x, y) and each
component of the vector functions h(x, y) and gi(xi)’s are
all continuously differentiable functions.

Our proposed algorithm, termed penalty dual decomposition
(PDD), is a combination of primal dual based augmented
Lagrangian method, block-coordinate-descent-type algorithm,
and the penalty method. Under certain constraint qualification
(CQ) named Robinson’s condition, we show that every limit
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point generated by the PDD method is a KKT solution of
problem (P). As will be shown in Part II of the paper, the
main advantage of the PDD method is that, it is capable
of exploiting the problem structure in a way which results
in computationally lightweight algorithms. Particularly, by
introducing appropriate auxiliary variables, the subproblem
involved in the PDD method can be efficiently solved. As
a result, the PDD method could be very efficient in dealing
with nonconvex problems with difficult coupling constraints.

Many engineering problems can be formulated as prob-
lem (P). Some examples include dictionary learning and
compressive sensing [2]–[4], volume-minization based matrix
factorization [5]–[7], joint transceiver optimization of wireless
systems [8]–[14], waveform design for radar systems [15]–
[17], cross-layer design of wireless networks [18]–[21], and
sensor network localization [22]–[24], etc.. Among the po-
tential applications stated above, Part II of this paper focuses
on performing case-studies on the following three important
signal processing applications:

1) Maxi-Min Fair Multicast beamforming. Multicast
beamforming is an important component of the evolved multi-
media broadcast multicast service (eMBMS) in the long-term
evolution (LTE) standard [25]. In multicast beamforming, a
base station (BS) with multi-antennas transmits common infor-
mation to multiple groups of users. For efficient multicasting,
the BS chooses different weights for different streams based
on the channel state information (CSI) to steer the transmit
power in the directions of each group of users while limiting
inter-group interference. To guarantee the rate fairness among
the users, we often design bemforming weights to maximize
the minimum user rate subject to a BS power constraint.
This problem is known to be NP-hard [10] and has received
a lot of attention from the research community [10], [12],
[13]. A well-known approach to dealing with the multicast
beamforming problem is using the celebrated semidefinite
relaxation (SDR) method [10], [12]. However, to recover
a high-quality suboptimal solution, Gaussian randomization
procedure is needed after solving the SDR problem, resulting
in high computational complexity. In this paper, we propose a
PDD-based iterative multicast beamforming algorithm which
achieves a higher max-min user rate but lower complexity than
the SDR method.

2) Sum-rate maximization for relay broadcast channel.
Relay-based cooperative communication has been adopted
in LTE-Advanced standard as a key technology for future
generation wireless communication systems [26]. In a relay-
assisted cellular downlink system, the link quality between the
BS and cell-edge users would benefit from deploying a relay
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as well as joint source (i.e., BS)-relay design. However, the
relay transmission introduces a coupling between the source
precoder and the relay precoder in relay power constraints,
which poses a fundamental challenge in joint source-relay
design. In fact, such a challenge exists in various relay-assisted
communication systems, e.g., multi-hop relay networks [27],
[28], two-way relay networks [29], [30], relay interference
networks [31], [32], etc.. Despite having extensive research
on relay systems, there is still a lack of efficient optimization
method to address the difficulty arising from the intrinsic
coupling between the source precoder and the relay precoder.
A promising way to address the coupling of two precoders
[31], [33]–[35] is using alternating optimization (AO), i.e.,
alternatingly optimizes one precoder while fixing the other.
However, the AO scheme can easily get trapped in some
non-stationary solutions, which can have very low system
throughput. In this paper, by applying PDD, we propose an
efficient optimization framework to deal with the coupling
between the source precoder and the relay precoder in joint
design of relay systems.

3) Volume-min based matrix factorization. Structured
factorization for given data matrices has many applications
in signal processing and machine learning [36], [37]. As
one important criterion for structured matrix factorization,
volume minimization (VolMin) finds the minimum-volume
simplex that embraces all the given data points [36]. This
criterion can guarantee the identifiability of the factor matrices
under mild conditions that are realistic in a wide variety
of applications [7]. Hence, it recently attracted considerable
interest in document clustering [5], blind separation of pow-
er spectral for dynamic spectrum access [38], and remote
sensing [6], etc.. Due to the nature of matrix factorization,
there exists a coupling of two matrix factors in the VolMin
problem, making the VolMin problem quite challenging. In
the literature, the VolMin problem is first transformed into
the dimension-reduced space and then solved using alternating
optimization or penalty method [6]. However, the existing
algorithms cannot guarantee stationary solution to the VolMin
problem. Moreover, in applications with additional constraints
(e.g., nonnegativity of matrix factors), the problem has to be
solved in the original space, rather than in the dimension-
reduced space where the existing algorithms do no work.
In this paper, we propose a PDD-based VolMin algorithm
which works well in the original data space with guaranteed
convergence.

The key to applying the PDD framework to nonconvex
problems is to properly reformulate the problems at hand as
problem (P ), so that the corresponding augmented Lagrange
problems can be easily solved via block-coordinate-desent
(BCD)-type algorithms. In this paper, we present some refor-
mulations of the aforementioned three problems in the form
of problem (P ) and develop a new class of algorithms for the
reformulations by applying the PDD framework. By applying
BCD-type algorithms to these reformulations, we can fully
exploit the problem structures of the aforementioned problems,
and significantly alleviate the challenging nonconvexity arising
from either objective functions (e.g., the max-min structure in
the max-min fair multicasting beamforming problem, and the

volume function in the VolMin problem) or the constraints
(e.g., the relay power constraint in the joint source-relay
design problem that couples the source precoder and the relay
preocder, and the matrix factorization equality constraint in
the VolMin problem).

The developed algorithms enjoy several desirable features.
First, differently from the state-of-the-art algorithms, they are
proven to achieve convergence to stationary solutions of the
aforementioned problems, and in practical they outperform
the state-of-the-art algorithms in a number of performance
metrics. Second, the iterations of the algorithms have closed-
form and simple updates, therefore they are relatively easy to
implement. Third, the algorithms are quite flexible and they
are applicable to some generalizations of the aforementioned
problems as well. For instance, the PDD algorithm can be
easily generalized to dealing with the VolMin problem in the
original space with a nonnegativity constraint on the basis
factors.

The remainder of this paper is organized as follows. In
Section II-IV, we apply the PDD method to the the afore-
mentioned problems. Specifically, in each of three sections,
we first reformulate the three problems, then show how
the corresponding augmented Lagrangian problem is solved
by BCD-type algorithms, followed by some simulations to
compare the performance of the PDD-based algorithms with
the state-of-art algorithms. Section V concludes the paper.

Notations: Besides the notations specified in Part I of this
paper, we use the following notations. Cn (or Cm�n) denotes
the n (or m � n)-dimensional space of complex number. For
a matrix X, XH and �i(X) denote its conjugate transpose
and its i-th largest singular value, respectively. For a vector
x, diag {x} denotes a diagonal matrix with the elements of
x being its diagonal entries. �e {x} and �m {x} denote the
real part and the imaginary part of a complex number x,
respectively, and x� denotes the conjugate of x. The notation
A � B means the Kronecker product of two matrices A and
B. A � 0 (or � 0) means that A is a positive semidefinite
(or definite) matrix. E {·} denotes expectation operation.

II. MAXMIN-RATE FAIRNESS MULTI-CAST
BEAMFORMING

Signal-to-interference-plus-noise ratio is an important per-
formance metric used in signal design. It is generally in a
quadratic ratio form with respect to the designed variables.
On the other hand, max-min fairness is a popular resource
allocation criterion that is widely adopted in wireless commu-
nication and signal processing [10], [12], [13], [39], [40]. As
a result, we are often faced with the following problem

max
x�X

min
k�K

xHAkx

xHBkx
(1)

where x is a design variable which is constrained to a set
X ; Ak’s and Bk’s are known matrices with Bk � 0. Several
examples of (1) can be found in max-min fariness precoding
for wireless networks [14], [41], waveform design for radar
systems [39], [40], and robust classification in machine learn-
ing [42], etc.. Problem (1) is challenging due to the nonlinear
and nondifferentiable max-min ratio structure. In this section,
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as an important example, we illustrate the application of PDD
to multi-cast beamforming for achieving max-min rate fairness
[10].

A. Problem Formulation
Consider a single-cell multi-user multiple-input-single-

output (MISO) downlink system, where a base station (BS)
equipped with Nt antennas transmits ng > 1 independent
data streams to ng group of users over a common frequency
band. Suppose that the i-th group, denoted by Gi, has mi

single-antenna users, each of which is interested in receiving
a common data stream. Let si denote the data stream for group
Gi, i = 1, 2, . . . , ng and wi � CNt be the beamforming weight
for the i-th group. The transmitted signal at the BS is given
by

�ng

i=1 wisi. Let hk � CNt denote the conjugated channel
between the BS and the receiver k � Gi. Then the received
signal at receiver k � Gi is given by

rk = hH
k wisi +

�

j �=i

hH
k wjsj + zk, k � Gi (2)

where zk denotes additional Gaussian white noise (AWGN)
with variance �2

k.
Assume that si’s are i.i.d complex Gaussian random variable

with zero mean and unit variance, and moreover si’s and zk’s
are independent of each other. Then the signal-to-interference-
plus-noise-ratio (SINR) can be expressed as

SINRk =
wH

i Rkwi�
j �=i wH

j Rkwj + �2
k

, k � Gi, i = 1, 2, . . . , ng

(3)

where Rk � hkhH
k .

To achieve rate fairness among users, a popular criterion
for beamforming design is to maximize the minimum user rate
subject to the BS power constraint

�n
i=1 �wi�2 � PBS , where

PBS denotes the total available power at the BS. Since the
power constraint must be active at the optimality, we can write
the max-min rate fairness multi-cast beamforming problem
equivalently as

max
{wi}

min
i

min
k�Gi

log2

�
1 +

wHAikw

wHBikw

�
, (4)

s.t. �w�2 = 1

where w = (wi)i, Aik = diag {ei} � Rk, and

Bik = (I � diag {ei}) � Rk +
�2

k

PBS
I.

This problem is known to be NP-hard [10]. After solving (4),
we need to scale w such the power constraint. A popular
method to address this problem is using semidefinite relaxation
method coupled with bisection method [10], referred to as
BisecSDR method, where, in each bisection, it is required
to solve a semidefinite programming, requiring complexity at
most O

�
Ibsc log( 1

�ip
)
�

ngNt(n3
gN

6
t + ngN2

t K
�

. Here K �
�ng

i=1 mi, the parameter �ip represents the solution accuracy
at the interior-point algorithm’s termination, and Ibsc denotes
the number of bisections.

B. PDD-based Algorithm
For convenience, let us consider a more general but equiv-

alent formulation of problem (4), which is given by

max
w

min
k�K

wHAkw

wHBkw
, s.t. �w�2 = 1 (P1)

where K � {1, 2, . . . , K}, and the matrices Ak’s are all
positive semidefinite and Bk’s are all positive definite. In what
follows, we present the PDD-based algorithm for problem
(P1).

First, we recast problem (P1) as follows

max
t�0,w

min
k

tk

s.t. �A
1
2
k w� = tk�B

1
2
k w�, �k,

�w�2 = 1,

(5)

which is a special case of problem (P ). In problem (5), the
first K equality constraints are difficult coupling constraints.
By moving these constraints into the objective, we obtain the
corresponding augmented Lagrangian problem as follows

max
t�0,w

min
k

tk � 1

2�

K�

k=1

�
�A

1
2
k w� � tk�B

1
2
k w� + ��k

�2

s.t. �w�2 = 1. (6)

where � is a penalty parameter and �k is a Lagrange multiplier
associated with the k-th constraint.

The key to using the PDD method is to find appropriate
locally tight lower bounds for the objective function, so that
BSUM [43] can be applied to optimize the AL. For problem
(6), we can simply decouple the variables into two blocks w
and t, leading to two subproblems: i.e., 1) solve (6) for t while
fixing w, and 2) solve (6) for w while fixing t, which are
respectively referred to as t-subproblem and w-subproblem.
The t-subproblem is strictly convex and thus has a unique
solution, which can be easily solved by exploiting the problem
structure; see Appendix A for a detailed derivation. The main
difficulty lies in solving the w-subproblem given by

min
w

�(w) �
K�

k=1

�
�A

1
2
k w��tk�B

1
2
k w�+��k

�2

s.t. �w�2 = 1.

Apparently, the w-subproblem is difficult to solve. Instead of
exactly minimizing �(w), we try to find a locally tight upper
bound u(w; w̃) for �(w) and minimize this upper bound
to update w given t. Observing the constraint �w� = 1,
we expect the upper bound to be a homogeneous quadratic
function in the form of wHCw or wT

eqCweq where weq �
(�e {w} , �m {w}), so that the resulting problem is an easily
solvable eigenvalue problem.

By expanding �(w), we can find that �(w) includes the
following four kinds of terms: 1) wHAkw + t2kwHBkw; 2)
�2tk�A

1
2
k w��B

1
2
k w�; 3) 2��k�A

1
2
k w�; 4)�2��ktk�B

1
2
k w�.

Clearly, we need to make efforts to bound the last three
terms with homogenous quadratic functions. Unfortunately,
since the multiplier �k’s could be either negative or positive,
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TABLE I
ALGORITHM 1: BSUM FOR PROBLEM (6)

0. initialize w and t

1. repeat

2. ak �� �B
1
2
k w�2

2�

3. bk �� �A
1
2
k w�+��k

�B
1
2
k w�

.

4. update t by solving problem (48)
5. compute C =

�K
k=1 Ck via (57) with w̃ = w

6. update w �� vmin(C)

7. until some termination criterion is met

it is challenging to bound the last two terms with homogenous
quadratic functions. Thanks to the fact that �w� = 1, we can
modify the third term as 2��k�A

1
2
k w� �w� when �k < 0 and

the fourth term as �2��ktk�B
1
2
k w� �w� when �k > 0. Hence,

essentially, �(w) includes two kinds of terms in the forms
of �Q1w� and � �Q1w� �Q2w� with some appropriate Q1

and Q2. To bound these two terms, we resort to the following
lemma.

Lemma 2.1: For real vectors x, y, x̃, ỹ, the following
inequalities

1) �x� �y� � 1
�x̃��ỹ�xT x̃ỹT y, � x̃ �= 0, ỹ �= 0, x, y;

2) �x� � 1
2�x̃� �x�2 + 1

2 �x̃� , � x̃ �= 0, x

hold true with equality satisfied at x = x̃ and y = ỹ.
Proof: Part 1) follows directly from the Cauchy-Schwartz

inequality, while Part 2) follows from the property of concave
function by noting that �x� =

�
�x�2 is a concave function

of �x�2.
In terms of the above analysis and using Lemma 2.1, we

can obtain �(w) � u(w, w̃) � wT
eqCweq + const in the real

domain, where C is a 2ngNt by 2ngNt matrix function of w̃
whose detailed derivation is shown in Appendix B. Moreover,
it can be verified that u(w, w̃) is a locally tight upper bound
[43] of �(w) over the set {w | �w� =1}. With such an
upper bound function, we update w by solving the following
eigenvalue problem, i.e., minweq wT

eqCweq, s.t. �weq� = 1.
Denote by vmin(C) the eigenvector of C corresponding to its
minimum eigenvalue. Once we get vmin(C), we can construct
the corresponding w.

To summarize, the BSUM algorithm for addressing problem
(6) is presented in TABLE I. It can be shown that the
most costly step of the BSUM algorithm lies in calculating
vmin(C), requiring complexity of O(Kn2

gN
2
t ) + O(n3

gN
3
t ),

where the first term corresponds to the computation of C while
the second term corresponds to the eigenvalue decomposition.
It is easily seen that the PDD method has lower complexity
than the BisecSDR method in [10].

C. Numerical Results
In the simulations, the noise power is set to unit for all

receivers and PBS = 10 dB. For convenience, we denote
by (Nt, ng, mg) a multi-user multi-cast network with Nt

BS antennas, ng multi-cast groups each with mg single-
antenna users, hence K = ngmg users in total. Furthermore,
unless otherwise specified, we set �0 = 0.5K, �0 = 1e�3,
�O = 1e�4, as well as �k = c�k�1 and �k = �k�1c with
c = 0.6 for the PDD method in all of our simulations.
Moreover, to avoid numerical instability, we set the maximum
number of inner BSUM iterations of the PDD method as 100
in practical implementation.

We compare the PDD method with the BisecSDR method
in [10] and the penalty-BSUM method1 proposed in [45]
(abbreviated as “Penalty” in the plot). The basic idea of the
BisecSDR method is as follows. First, by applying semidefi-
nite relaxation (SDR), problem (P1) is relaxed as

max
t,W

t

s.t. Tr ((Ak � tBk)W) � 0, �k,

W � 0.

(7)

Second, by searching over t using Bisection method, we can
obtain the optimal W by solving a sequence of semidefinite
programmings (obtained by fixing t in the above problem).
Third, given the optimal W, we can find a suboptimal solution
w by checking all candidate solutions including the principal
eigenvector of W and those obtained by performing Gaussian
randomization procedure (GRP). Note that, the optimal value
of problem (7) can serve as an upper bound for the achievable
maxmin user rate. Particularly, when the SDR is tight, the
maxmin user rate coincides with the upper bound. In simula-
tions, the semidefinite programmings are solved by interior-
point method, e.g., using the off-the-shelf package SeDuMi
[46] for efficiency. The Bisection procedure is terminated
when the relative size of the bisection interval is smaller
than 1e�3. In addition, the penalty-BSUM shares the same
parameter setting with the PDD.

The average convergence behavior of the algorithm over
ten randomly generated examples is illustrated in Fig. 1,
where the minimum user rate is normalized by the upper
bound value. It is seen that the PDD method exhibits better
convergence behavior than the penalty-BSUM method in terms
of both the objective value and the optimality gap, while both
achieving similar constraint violation. Here the optimality gap
measures how well the solution w satisfies the KKT condition
of problem (P1), which is defined by the optimal value of the
following convex optimization problem2

min
{�k}

�����

K�

k=1

�kfk + �0w

�����

s.t.
K�

k=1

�k = 1, �k � 0, k = 1, 2, . . . , K

(8)

1The penalty-BSUM algorithm is similar to the PDD method but does not
include the dual update as in the PDD method. The algorithm in [44] is in
essence the penalty-BSUM algorithm, with the only difference in that some
fixed penalty parameter was used in [44] while the penalty-BSUM algorithm
uses increasing penalty. However, fixed penalty parameter cannot guarantee a
KKT solution. Moreover, it is generally difficult to choose a penalty parameter
which works well for all cases. Hence, we modify the algorithm in [44] to
the exact penalty-BSUM algorithm by using increasing penalty.

2By KKT analysis, it can be shown that problem (8) having a zero optimal
value is a necessary optimality condition for problem (P1).
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where fk is the gradient of the function wHAkw
wHBkw with respect

to w. Moreover, the PDD can achieve the upper bound value
in this example, implying the excellent performance of the
PDD method. In addition, one can see that both the feasibility
gap and the optimality gap (i.e., constraint violation defined in
Part I) decrease at the same time. Although the zero feasibility
gap does not necessarily imply the zero optimality gap, it is
much easier to evaluate the former than the latter. Hence, in
our later simulations, we only examine the feasibility gap for
simplicity.
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Fig. 1. The convergence behavior of the PDD method for network (8, 4, 2).
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Fig. 2 illustrates the max-min rate performance of the PDD
method versus the BS power budget PBS as compared to
the upper bound provided by the BisecSDR method (i.e., the

optimal value of problem (7)) and the performance of the
BisecSDR method with 1000 Gaussian randomizations. The
results in the plot are averaged over 100 random channel
realizations. For the network (4, 2, 1), it is known that the
SDR is tight in this case and thus the upper bound is exactly
the same as the optimal max-min user rate. From the figure, it
is observed that the performance of the PDD method coincides
with the upper bound for both networks, which is better than
the performance of the BisecSDR method for the network
(8, 4, 2).

For a clear illustration, Table 2 compares the performance
of three methods in terms of the cpu time and the achieved
minimum rate averaged over 100 random channel realizations.
In the table, RUB , RPDD, RSDR, and RPenalty denote the
upper bound value, and the minimum rate achieved by the
PDD method, the BisecSDR method with 1000 Gaussian
randomizations, and the penalty-BSUM method, respectively,
while TPDD, TSDR, and TPenalty denote the corresponding
cpu time required by three methods. It can be observed that
the PDD method requires less cpu time than the BisecSDR
method while achieving almost global optimality. Moreover,
it performs more efficiently than the penalty-BSUM method
in terms of the consumed cpu time.

TABLE II
THE AVERAGE CPU TIME AND MIN. RATE COMPARISON

Network RP DD
RUB

RP DD
RSDR

TSDR
TP DD

RP DD
RP enalty

TP enalty

TP DD

(2, 2, 2) 99.97% 100.36% 3.38 100.26% 2.05
(4, 2, 2) 99.98% 100.28% 3.83 100.14% 1.98
(8, 4, 2) 99.98% 102.06% 3.44 100.13% 1.96
(8, 2, 4) 99.93% 101.78% 3.02 100.15% 1.74
(16, 4, 4) 99.92% 102.93% 2.76 100.18% 1.70

III. JOINT SOURCE-RELAY DESIGN FOR MULTI-ANTENNA
RELAY BROADCAST SYSTEMS

Wireless relaying in cellular networks has attracted consid-
erable attention due to its advantage of coverage extension and
throughput improvement. It is well-known that, joint source-
relay design can further enhance the system throughput per-
formance for multi-antenna relay systems. However, the relay
power constraint results in the coupling between the source
precoder and the relay precoder, therefore the resulting joint
source-relay design problem is very challenging to solve. In
this section, by applying PDD, we present a joint source-relay
design method which can reach at least stationary solutions.
Note that our method is developed for a multi-antenna relay
broadcasting channel but its basic idea can be extended to joint
source-relay design of other relay systems.

A. Problem formulation

Consider a sum-rate maximization problem for a multi-
antenna relay broadcasting channel, where a multi-antenna
source (e.g, base station), equipped with Ns antennas, sends
signal to K single-antenna users with the aid of a multi-
antenna relay equipped with Nr antennas. The received signal
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at each user can be expressed as

yk=gH
k F

�

�H
K�

j=1

vjsj+nR

�

� +nk, k=1, 2, . . . , K. (9)

where vj and sj denote transmit beamformer employed by
the source and the transmitted symbol intended for user j,
respectively; the term

�K
j=1 vjsj is the transmit signal of

the source; H � CNr�Ns represents the channel between the
source and the relay; nR and nk denote the AWGN at the
relay and user k, respectively; F � CNr�Nr is the precoder
employed by the relay to process the received signal (i.e.,
the bracketed term) from the source; gk � CNr denotes the
conjugated channel between the relay and user k.

Suppose that the transmitted symbols and noises are inde-
pendent of each other. Moreover, let �2

R and �2
k denote the

noise power at the relay and user k, and define the source
precoder V � [v1 v2 . . . vK ] � CNs�K . Then the SINR �k

at user k is given by

�k(V,F) � |gH
k FHvk|2

�
j �=k |gH

k FHvj |2 + �2
R

��gH
k F

��2
+ �2

k

. (10)

Furthermore, the source power consumption is given by
Tr

�
VVH

�
and the relay power consumption is �FHV�2

F +
�2

R �F�2
F .

We are interested in maximizing the weighted sum-rate
subject to the source and relay power constraints, which can
be mathematically formulated as follows

max
V,F

K�

k=1

�k log (1 + �k(V,F))

s.t. Tr
�
VVH

�
� PS ,

�FHV�2
F + �2

R �F�2
F � PR.

(P2)

where �k denotes the weight measuring the priority of user
k, PS and PR denote the source and relay power budget. The
problem is hard to solve due mainly to the coupling of the
source precoder V and relay precoder F at the relay power
constraint. Note that such coupling is common to a number of
joint source-relay designs well beyond problem (P2). We here
aim to provide a way to deal with such coupling constraints.

B. PDD-based algorithm
We start by reformulating problem (P2) so that the

PDD algorithm can be easily applied. Introducing a set
of auxiliary variables {X, V̄, F̄ , X̄}, and defining X �
{V,F,X, V̄, F̄ , X̄} for notational simplicity, we can recast
problem (P2) as

max
X

K�

k=1

�k log

�
1+

|gH
k xk|2

�
j �=k |gH

k xj |2+�2
R

��gH
k F

��2
+�2

k

�

s.t. Tr
�
V̄V̄H

�
� PS ,

��X̄
��2

F
+ �2

R

��F̄
��2

F
� PR, (11)

X = FHV, �RF = �RF̄,

X = X̄, V = V̄

where having �R in the constraint �RF = �RF̄ facilitates the
solution of the subproblem involving {X̄, F̄}. This point will
become clear shortly. Now we can see that the reformulation
has separable inequality constraints. By building all the equal-
ity constraints into the objective, we can obtain the augmented
Lagrangian problem as follows

max
X

K�

k=1

�k log

�
1 +

|gH
k xk|2

�
j �=k |gH

k xj |2 + �2
R

��gH
k F

��2
+ �2

k

�

� P�(X )

s.t. Tr
�
V̄V̄H

�
� PS , (12)

��X̄
��2

F
+ �2

R

��F̄
��2

F
� PR

where

P�(X ) � 1

2�

�
�X � FHV + �Z�2+

���RF � �RF̄ + �Zf

��2

+
��X � X̄ + �Zx

��2
+

��V � V̄ + �Zv

��2
�

,

and Z, Zf , Zx and Zv are the dual variables associated with
the equality constraints of problem (11).

Next, we show how to solve problem (12) using BSUM.
The key to apply BSUM to (12) is to find a tractable locally
tight lower bound for the objective of (12). To do so, we resort
to the well-known WMMSE method [47]. First, by the theory
of the WMMSE method, we have the following lemma.

Lemma 3.1: For each k, we have

log

�
1 +

|gH
k xk|2

�
j �=k |gH

k xj |2 + �2
R

��gH
k F

��2
+ �2

k

�

= max
uk,wk

log(wk) � wkek(uk,X,F) + 1

(13)

where ek(uk,X,F) � |1�u�
kgH

k xk|2+
�

j �=k �k|u�
kgH

k xj |2+
�2

R�u�
kgH

k F�2 + �2
k|uk|2.

This lemma can be easily proven by checking the first-order
optimality condition of the problem on the right-hand-side
(rhs) of (13), leading to the optimal uk and wk (given X and
F) as follows

uk(X,F) =
gH

k xk�K
k=1 |gH

k xj |2 + �2
R�gH

k F�2 + �2
k

, (14)

wk(X,F) =
1

ek(uk(X,F),X,F)

=
1

1 � u�
k(X,F)gH

k xk
(15)

= 1 +
|gH

k xk|2�
j �=k |gH

k xj |2 + �2
R�gH

k F�2 + �2
k

,

where we have denoted the optimal uk and wk as uk(X,F)
and wk(X,F) for a clear illustration of their dependence on
X and F. As a direct result of Lemma 3.1, we have

log

�
1 +

|gH
k xk|2

�
j �=k |gH

k xj |2 + �2
R

��gH
k F

��2
+ �2

k

�

� log(wk(X̃, F̃)) � wk(X̃, F̃)ek(uk(X̃, F̃),X,F) + 1,

�X̃, F̃,X,F.

(16)
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Moreover, it can be easily verified that the rhs of (16) is a
locally tight lower bound of the rate function shown on the
lhs of (16). With such a tractable locally tight lower bound,
we can easily apply BSUM to (12) with the block variables
separated as 1) F, 2) X, 3) {V̄, X̄, F̄}, and 4) V. Specifically,
by applying the lower bound shown in (16), we propose to
solve the following problem

min
X

K�

k=1

wk�kek(uk,X,F) + P�(X )

s.t. Tr
�
V̄V̄H

�
� PS ,

��X̄
��2

F
+ �2

��F̄
��2

F
� PR

(17)

where wk and uk are given. Further, by simple manipulations,
we can rewrite the above problem compactly as

min
X

Tr
�
XHGwX

�
� 2�e

�
Tr

�
XHGDw

��

+ �2
RTr

�
FHGwF

�
+ P�(X )

s.t. Tr
�
V̄V̄H

�
� PS ,

��X̄
��2

F
+ �2

R

��F̄
��2

F
� PR

(18)

where

Gw�
K�

k=1

wk�k|uk|2gkgH
k and Dw�diag {(wk�kuk)k} .

(19)
Now we are ready to show the BSUM iteration for problem
(18), which consists of the following four steps.

1) Step 1: solving (18) for F given {V, F̄}: The F-
subproblem is an unconstrained quadratic optimization prob-
lem. By the first order optimality condition, we obtain

�2
R(2�Gw + I)F + FHVVHHH

=�R(�RF̄ � �Zf ) + (X + �Z)VHHH
(20)

which is the so-called Sylvester equation and admits efficient
unique solution [48].

2) Step 2: solving (18) for {X̄, F̄, V̄} given {X,F}: The
subproblem with respect to {X̄, F̄, V̄} can be further divided
into two independent problems: one is with respect to V̄
while the other is with respect to {F̄, V̄}. Both problems are
equivalent to projection of a point onto a ball centered at the
origin, which can be solved in closed-form. Specifically, we
have

V̄ = PPS {V + �Zv}, (21)
[X̄ �RF̄] = PPR {[X + �Zx �RF + �Zf ]} . (22)

where PX (x) denotes the projection of x onto the convex
set X . From (22), we can obtain the optimal F̄. It is worth
mentioning that, the �R in the constraint �RF = �RF̄ is
introduced to make the subproblem with respect to {F̄, X̄}
have a closed-form solution; otherwise, we need to solve
a quadratic equation to get the optimal Lagrange multiplier
associated with the relay power constraint.

TABLE III
ALGORITHM 2: BSUM ALGORITHM FOR PROBLEM (12)

0. initialize {F,V} such that the power constraints
1. set X = FHV, X̄ = X, F̄ = F, V̄ = V

2. repeat
3. compute u and w via (14) and (15)
4. compute Gw and Dw via (19)
5. update F by solving Eq. (20)
6. update V̄ via Eq. (21)
7. update X̄ and F̄ via Eq. (22)
8. update X via (23)
9. update V via (24)

10. until some termination criterion is met

3) Step 3: solving (18) for X given {X̄,V, F̄}: The X-
subproblem is also an unconstrained quadratic optimization
problem. Again, by the first order optimality condition, we
obtain a unique closed-form solution as follows

X=
1

2
(�Gw+I)�1(2�GDw+(FHV��Z)+(X̄��Zx)). (23)

4) Step 4: solving (18) for V given {V̄,X, F̄}: The V-
subproblem is also an unconstrained quadratic optimization
problem. Similarly, we obtain a unique closed-form solution
as follows by applying the first-order optimality condition

V = (I+HHFHFH)�1(V̄��Zv+HHFH(X+�Z)). (24)

In sum, every step of the BSUM iteration has a unique
closed-form solution. Combining the steps for computing the
lower bound, i.e., (14) and (15), we summarize the BSUM
algorithm for (12) in Table III.

C. Numerical results
This section presents some numerical results to evaluate

the performance of the proposed PDD method by comparing
the alternating optimization (AO) method. In the AO method
applied to problem (P2), we alternatingly update the source
precoder V and F while fixing the other. Specifically, in each
iteration of the AO method, after updating u and w via (14)
and (15), we alternatingly optimize F and V by solving the
following problem for the optimized variable

min Tr
�
VHHHFHGwFHV

�

� 2�e
�

Tr
�
VHHHFHGDw

��
+ �2

RTr
�
FHGwF

�

s.t. Tr
�
VVH

�
� PS ,

�FHV�2
F + �2

R �F�2
F � PR

(25)

leading to F-subproblem and V-subproblem. The F-
subproblem can be solved using Bisection method while the
V-subproblem can be solved by interior-point method, e.g.,
using the off-the-shelf package SeDuMi. Due to the coupling
between the source precoder and the relay precoder in the relay
power constraint, the AO method is not necessarily converge to
KKT solutions of problem (P2). Specifically, for this problem,
the AO method can easily get trapped in some inefficient
feasible point, as shown below.
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In the simulations, we set �k = 1, �k, and the noise power
is set to unit for all receivers (i.e., �2

k = �2
R = 1, �k). It

is further assumed that the relay and the source have the
same power budget P for simplicity, i.e., PS = PR = P ,
and define SNR � 10 log10(P ). Furthermore, each channel
coefficient in both H and G is generated from the zero mean
complex Gaussian distribution with unit variance. Moreover,
for convenience, we denote by (Ns, Nr, K) a relay BC net-
work with Ns source antenna, Nr relay antennas, and K users.
For the PDD method, we set the initial penalty parameter
�0 = 500K

2KNr+N2
r +KNs

.
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Fig. 3. The convergence performance of the PDD method for different relay
BC networks.

The average convergence behavior of the PDD method
over ten randomly generated examples is illustrated in Fig. 3,
compared with the AO method in Fig. 4. It is observed from
Fig. 3 that the PDD method exhibits excellent convergence
performance in terms of both the objective value and the
feasibility gap. In general, the PDD can converge in 20 itera-
tions for both the network (4, 4, 4) and the network (8, 8, 8).
Moreover, it is seen from Fig. 4 that the AO method is not
only slow but also gets trapped in inefficient solutions whose
objective values are much smaller than that achieved by the
PDD method (i.e., right Y-axis versus left Y-axis).
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Fig. 4. The convergence performance of the PDD method and the AO method
for network (4, 4, 4).

Fig. 5 shows the average sum-rate performance of the PDD
method as compared to the AO method for three different

networks. Each result of the plot is averaged over 100 chan-
nels. One can see that, the PDD method always significantly
outperforms the AO mehtod. his is mainly due to the fac
that the AO method gets often trapped in some inefficient
solutions due to the coupling between the source precoder
and the relay precoder. In particular, as the variable dimension
grows with the network size, the nonlinear coupling between
the variables becomes more heavy and the AO method exhibits
worse performance. In addition, we find that the PDD method
is always more efficient than the AO method in terms of the
cpu time required for convergence, as shown in the caption of
Fig. 5.
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Fig. 5. The sum-rate performance of the PDD method and the AO method.
The average ratio between the cpu time required by the AO method and by
the PDD method is respectively 26.83, 39.06, and 12.82 for three networks.

IV. VOLMIN-BASED MATRIX FACTORIZATION

As a popular tool in signal processing and machine learning,
matrix factorization (MF) has attracted considerable interest
in recent years. In addition to the most popular nonnegative
matrix factorization (NMF) [37], various matrix factorization
models have been proposed in the literature. Among them,
volume-minimization (VolMin)-based matrix factorization is
an important class of matrix factorizations where the columns
of one factor matrix are constrained to lie in the unit simplex
[36]. Compared to NMF, VolMin-based matrix factorization
is computationally more challenging. This section considers
application of PDD to VolMin-based matrix factorization and
provides an alterative VolMin algorithm which can work in
the original data space.

A. Problem formulation
Consider the following data measurement model:

a[�] = Xs[�], � = 1, 2, . . . , L, (26)

where a[�] � RN is a measured data vector indexed by �, X �
RN�K denotes a basis which is assumed to have full column-
rank, s[�] � RK is the weight vector lying in a probability
simplex, i.e.,

s[�] � 0,1T s[�] = 1, ��. (27)

Define S � [s[1] s[2] . . . s[L]] and A � [a[1] a[2] . . . a[L]].
Then the signal model (26) can be compactly written as

A = XS. (28)
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An important motivating example of this model is hyper-
spectral remote sensing [6], where a[�] represents a remotely
sensed pixel using sensors of high spectral resolution, the
columns of X denote K different spectral signatures of
materials that comprise the pixels, sk[�] denotes the portion
of material k contained in pixel x[�]. Recovering X is helpful
in recognition of the underlying materials in a hyperspectral
image. Other applications of this model can be found in
document clustering, multi-sensor array processing and blind
separation of power spectra for dynamic spectrum access [7],
[38], [49].

Given the data measurements A, there possibly exist many
combinations of factors X and S such A = XS. The
notable works [7] and [50] showed that, under some realistic
conditions, unique loading factors (up to column permutations)
can be obtained by finding a minimum-volume enclosing
simplex of the data vectors. Formally, the VolMin problem
can be formulated as3 [7]

min
X,S

log det(XT X)

s.t. A = XS,

ST 1 = 1,S � 0.

(29)

Problem (29) is challenging due to the nonconvex objective
function and the presence of the coupling constraint A=XS.
Moreover, it is readily seen that the objective function is not
well-defined for rank-deficient X, which may produce numer-
ical instability for iterative algorithms that cannot guarantee
full-rank of X during iterations. To make it well-defined, we
modify the objective function as f�(XT X), defined by

f�(Y) �
n�

i=1

log(g�(�i(Y)))

where g�(·) is given by

g�(x) �

�
�

�

x if |x| � �
1

2�
x2 +

�

2
otherwise

(30)

where � is a small scalar, e.g., 1e�2, to control the approxima-
tion accuracy. With the modified objective function, we obtain
an approximation of problem (29)

min
X,S

f�(X
T X)

s.t. A = XS,

ST 1 = 1,S � 0.

(P3)

It is noted from (30) that f�(XT X) = log det(XT X) when
the smallest singular value of X is equal or larger than

�
�. As

a result, problem (P3) is equivalent to problem (29) when all
the singular values of the optimal solution X to problem (29)
are no smaller than

�
�. Note that, since the singular value

of the optimal X can be easily ensured to be larger than
�

�

3It is worth mentioning that, we can also apply the PDD to an equivalent
problem of (29) in the reduced-dimension domain (see (45) below). However,
we here focus on the original data domain because it allows incorporating
constraints on X (e.g., nonnegativity constraints or other box constraints) into
(29) easily, and aims to shed lights on algorithm design for VolMin-related
problems in the original data domain.

by appropriately scaling up A, the approximation (P3) could
incur no loss of optimality.

B. PDD-based algorithm

In this subsection, we develop PDD-based algorithm to
address problem (P3). First we reformulate (P3) as follows

min
X,S,Y

f�(X
T X)

s.t. A = YS

X � Y = 0,

ST 1 = 1,S � 0.

(31)

By building the first two equality constraints into the objective,
we obtain the augmented Lagrangian problem of the above
reformulation as follows

min
X,S,Y

f�(X
T X) +

1

2�
�A + �P � YS�2

+
1

2�
�X + �Q � Y�2

s.t. ST 1 = 1,S � 0.

(32)

where P and Q are the Lagrange multipliers associated with
the first two equality constraints of problem (31), respectively.

Next, we present the BSUM algorithm for problem (32),
which consists of the following four steps.

1) Step 1: Update Y given X and S: : Fixing X and S in
(32), we obtain the subproblem with respect to Y as follows

min
Y

�A + �P � YS�2 + �X + �Q � Y�2 (33)

It is a quadratic optimization problem which admits a closed-
form solution as follows

Y =
�
(A + �P)ST + (X + �Q)

�
(I + SST )�1. (34)

2) Step 2: Update S given X and Y: : By fixing X and Y
in (32), we obtain the subproblem with respect to S as follows

min
S

�YS � (A + �P)�2

s.t. 1T S = 1,S � 0.
(35)

The above problem is a convex problem which can be globally
solved by using some iterative algorithms. To obtain an
efficient update for S, we consider updating S by minimizing
a locally tight upper bound of the objective function of (35),
i.e., solving

min
S

�YS � (A + �P)�2 + �S � S̃�2
W

s.t. 1T S = 1,S � 0.
(36)

where S̃ is the value of S obtained in the last iteration and
W is a positive definite matrix such that Y + W = �I with
� > (�1(Y))2. With simple manipulations, problem (36) can
be equivalently written as

min
S

�S � S̄�2,

s.t. 1T S = 1,S � 0.
(37)
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where S̄ = 1
�

�
YT (A + �P) + (�I � YT Y)S̃

�
. Problem

(37) can be decomposed into L independent subproblems
which are known as the problem of projection onto the
probability simplex and admit very efficient semi-closed-form
solutions (see [51]).

3) Update X given Y and S: By fixing Y and S in (32),
we obtain the subproblem with respect to X as follows

min
X

f�(X
T X) +

1

2�
�X � X̄�2 (38)

where X̄ � Y � �Q. By the definition of f�(·), it is
known that f�(XT X) is only related to the singular val-
ues of X. Furthermore, by Von Neumann’s trace inequality
|Tr

�
XT X̄

�
| �

�n
i=1 �i(X)�i(X̄), it is easily known that

the singular vectors of the optimal X should be aligned with
those of X̃. Hence, letting Ū�̄V̄H be the thin SVD of X̄, the
optimal X is structured as X = Ū�V̄H . As a result, problem
(38) reduces to

min
��0

f�(�
2) +

1

2�
�� � �̄�2 (39)

which can be decomposed into a set of independent subprob-
lems with the i-th subproblem in the form of

min
�i�0

log(g�(�
2
i )) +

1

2�
(�i � �̄i)

2 (40)

where �i is the i-th singular value of X. The above prob-
lem is difficult to solve and thus we devote our efforts
to minimizing a locally tight upper bound of the objective
function. By the concavity of the log(·) function, we have
log(x) � log(x̃) + 1

x̃ (x � x̃), �x, x̃ > 0. Using such an upper
bound for log(g�(�2

i )), we update �i by solving

min
�i�0

1

g̃�
g�(�

2
i ) +

1

2�
(�i � �̄i)

2 (41)

where g̃� = g�

�
(�̃i)

2
�

and �̃i = �i(X̃) with X̃ being the
value of X obtained in the last iteration.

It can be shown that the objective function of problem (41)
is convex with respect to �i � 0. Hence, problem (41) is
a convex problem and can be globally solved. Specifically,
we solve it by considering two cases. The first case is when
�2

i � �. In this case, problem (41) reduces to

min
�i�

�
�

1

g̃�
�2

i +
1

2�
(�i � �̄i)

2 (42)

which admits a closed-form solution as follows

�i = max

�
g̃�

2� + g̃�
�̄i,

�
�

�

In the second case when �2
i � �, problem (41) reduces to

min
0��i�

�
�

1

2�g̃�
�4

i +
1

2�k
(�i � �̄i)

2 (43)

which admits a closed-form solution as �i = [��
i ]

�
�

0 where ��
i

is the unique solution to the following cubic equation

2

�g̃�
�3

i +
1

�k
�i � 1

�k
�̄i = 0.

By comparing the objective values of the above two cases,
we can obtain the optimal �i for problem (41). After obtaining
�, we finally obtain the optimal solution X to problem (38),
i.e., X = Ū�V̄H . We omit the detailed implementation of the
BSUM algorithm for problem (32) due to space limitation.

4) Numerical examples: We here present numerical ex-
amples to illustrate the performance of the PDD-based
VolMin algorithm by comparing with the state-of-art VolMin
algorithm—SISAL [6]. SISAL works for the equivalent prob-
lem of problem (P3) in the reduced-dimension domain [6],

max
Q�RK�K

log | det(Q)|

s.t. QT 1 = (ArA
T
r )�1Ar1,QAr � 0.

(44)

where Ar � UT
r A and Ur � RN�K consists of the left-

sigular vectors of A (which can be obtained by performing
thin SVD on A). In SISAL, the inequality constraints are
penalized to the objective by using hinge-loss function, leading
to a penalized problem [6]

max
Q�RK�K

log | det(Q)| � �
�

i,j

max(�[QAr]ij , 0)

s.t. QT 1 = (ArA
T
r )�11.

(45)

where � is a penalty parameter. The SISAL algorithm aims to
solve the penalized problem by using successive second-order
approximation and variable splitting technique4. The algorithm
is lightweight but its convergence is unclear. Moreover, the
SISAL algorithm does not apply to the original data space.

In our simulations, we generate the elements of X from the
uniform distribution between zero and one, and generate s[�]
on the unit simplex and with maxi si[�] � �, where � = 0.8
is given, which results in a so-called ‘no-pure-pixel case’ in
the context of remote sensing and is known to be challenging
to handle [6], [49]. Moreover, we use the mean-square-error
(MSE) of X as a measure of estimation performance (instead
of achieved volume which is less physically meaningful),
defined by

MSE = min
���

1

K

K�

k=1

����
xk

�xk� � x̂�k

�x̂�k�

����
2

(46)

where � is the set of all permutations of {1, 2, . . . , K}, and
x̂k is the estimate of xk. For the PDD method, the initial
penalty parameter �0 is set to L/100.

We first show in Fig. 6 the convergence performance of
the PDD method. In the plot, the results are averaged over
ten randomly generated examples with random initialization
for two cases: (N,K, L) = (10, 3, 200) and (N, K, L) =
(50, 3, 2000). It can be observed that the PDD method achieve
approximate feasibility in tens of iterations. Particularly, it can
quickly reach a good estimation accuracy; the MSE could be
less than �35 dB in twenty outer iterations.

We then use two illustrative examples to show the effec-
tiveness of the proposed PDD-based VolMin algorithm. In
these two examples, we again set (N, K,L) = (10, 3, 200)
and (N, K, L) = (50, 3, 2000). To visualize the results, we

4The code of SISAL can be found from http://www.lx.it.pt/�bioucas/code.
htm.
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project the data points, the ground truth, and the estimates
to a two-dimensional plane. In Figs. 7 and 8, we see that,
the PDD method can provide an estimate as good as the
SISAL method’s if the latter is particularly initialized from
the estimate of VCA method [52]. Moreover, we observe from
simulations that the PDD method is less sensitive to random
initialization than the SISAl method, as shown in the Figs. 7-8
and also Fig. 9 below.

To further demonstrate the performance of the PDD method
under random initialization, we randomly generate 100 ex-
amples and evaluate the estimation performance of vari-
ous methods. Motivated by the observations from Fig. 6,
we simply set the maximum outer iterations of the PDD
method as 30 in this set of simulations. Moreover, to test
the performance of the PDD method in a noisy environ-
ment, zero-mean white Gaussian noise v[�] is added to each
generated data. We define the signal-to-noise ratio (SNR)

as SNR=10 log10

�
E{�Xs[�]�2}
E{�v[�]�2}

�
, and set SNR=40 dB for

each example. Fig. 9 illustrates the estimation performance of
various methods for 100 examples. We see that, the PDD is
much more robust to random initializations than SISAL. In
addition to random initialization, the performance of SISAL
is also impacted by the choice of �. Moreover, the PDD
method5 with three random initializations can provide very
high estimation performance that is comparable with the
SISAL method when the latter is set with a finely tuned penalty
parameter � and particularly initialized from VCA.
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Fig. 6. The convergence performance of the PDD method.

V. CONCLUSIONS

In this two-part paper, we proposed and analyzed a new
optimization framework for optimizing nonconvex nonsmooth
functions subject to nonconvex coupling constraints. Part I
developed the general framework and investigated its con-
vergence properties. In this Part II, we customized our PDD
framework to three challenging problems in signal processing
and machine learning. Our algorithms guarantee convergence
to stationary solutions of the three problems6 and were shown

5To combat against the impact of initialization, we run PDD with three
random initializations and pick the best one as the output.

6The verification of constraint qualification for the three problems is
relegated to Appendix C.
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Fig. 7. A geometric illustration of estimation results by different methods
with N = 10, K = 3, and L = 200.
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Fig. 8. A geometrical illustration of estimation results by different methods
with N = 50, K = 3, and L = 2000.

numerically to be able to yield better solutions than the
state-of-the-art schemes in the literature. We remark that, our
framework finds applications also in other areas, such as
optimal power flow in smart grids, user scheduling in wireless
communications, cross-layer design of networks, etc..

APPENDIX A
SOLVING PROBLEM (6) FOR t

This appendix shows how the t-subproblem is globally
solved. For a clear illustration, we write the t-subproblem
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Fig. 9. The MSE performance of different methods with N = 50, K = 3,
and L = 1000
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explicitly as follows

max
t�0

min
1�k�K

tk� 1

2�

K�

k=1

�
�A

1
2
k w��tk�B

1
2
k w�+��k

�2
(47)

It can be compactly written as

max
t�0

min
k

tk �
K�

k=1

ak(tk � bk)2 (48)

where ak � �B
1
2
k w�2

2� and bk � �A
1
2
k w�+��k

�B
1
2
k w�

. Further, by

introducing an auxiliary variable s, the above problem can
be equivalently written as

max
t�0,s

s �
K�

k=1

ak(tk � bk)2 (49)

s.t. tk � s � 0, �k.

We solve the above problem by exploiting its problem
structure. To do so, let t�k’s and s� denote the optimal solution
to the above problem. It is seen from (49) that, if t�k > s� � 0,
then we must have t�k = bk to maximize the objective. Hence,
by assuming without loss of generality b1 � b2 � . . . � bK ,
we infer that, there exists k̄ such that t�k = bk, �k � k̄, and
t�k = s�, �k > k̄, where s� is given by

s� = arg max
s�0

s �
�

k>k̄

ak(s � bk)2 (50)

= max

�
1 + 2

�
k>k̄ akbk

2
�

k>k̄ ak
, 0

�
� �(k̄). (51)

As a result, it is equivalent to find k̄ > 0 such that b�
k̄

> �(k̄) if
such a k̄ exists; otherwise we have k̄ = 0 (i.e., t�k = s� = �(0),
�k). Given k̄, we can derive the optimal solution as stated
above.

APPENDIX B
THE EXPRESSION OF MATRIX C

We here derive a homogeneous quadratic upper bound for
�(w) over the constraint �w� = 1. Since �(w) is in the form
of

�(w) =
K�

k=1

�
�A

1
2
k w��tk�B

1
2
k w�+��k

�2
,

we only need to bound each summand �k(w) ��
�A

1
2
k w��tk�B

1
2
k w�+��k

�2
, k = 1, 2, . . . , K.

First, �k(w) can be expressed as

�k(w) = wHAkw + t2kwHBkw + �2�2
k

� 2tk�A
1
2
k w��B

1
2
k w� + 2�gk(w)

(52)

where

gk(w) �

�
�

�
� �ktk �w�

���B
1
2
k w

��� + �k�A
1
2
k w�, if �k � 0

� �ktk
���B

1
2
k w

��� + �k �w� �A
1
2
k w�, otherwise

(53)
Note that we have used the fact �w� = 1 in the definition of
gk(w), so that gk(w) has similar forms for both cases of �k,

which can be easily upper bounded. In what follows, without
loss of generality, we consider only the case when �k � 0.

To bound �k(w), let us define weq � (�e {w} , �m {w}),
w̃eq � (�e {w̃} , �m {w̃}), and

Ak,eq �
�

�e {Ak} ��m {Ak}
�m {Ak} �e {Ak}

�
,

Bk,eq �
�

�e {Bk} ��m {Bk}
�m {Bk} �e {Bk}

�
.

Then, by applying part 1) of Lemma 2.1, we have

2tk
���A

1
2
k w

���
���B

1
2
k w

��� + 2��ktk �w�
���B

1
2
k w

���

=2tk
���A

1
2
k,eqweq

���
���B

1
2
k,eqweq

��� + 2��ktk �weq�
���B

1
2
k,eqweq

���

�wT
eq�k(w̃)weq

where

�k(w̃) � tk���A
1
2
k,eqw̃eq

���
���B

1
2
k,eqw̃eq

���

�
Ak,eqw̃eqw̃

T
eqBk,eq

+Bk,eqw̃eqw̃
T
eqAk,eq

�

+
��ktk

�w̃eq�
���B

1
2
k,eqw̃eq

���

�
w̃eqw̃

T
eqBk,eq + Bk,eqw̃eqw̃

T
eq

�
.

(54)

Furthermore, by applying part 2) of Lemma 2.1, we have

2
���A

1
2
k w

��� = 2
���A

1
2
k,eqweq

���

� 1���A
1
2
k,eqw̃eq

���

���A
1
2
k,eqweq

���
2

+
���A

1
2
k,eqw̃eq

��� (55)

As a result, we can obtain a locally tight quadratic upper bound
for �k(w) given by

�k(w) � wT
eqCkweq + const (56)

where

Ck �
�

1 +
��k

�A
1
2
k w̃�

�
Ak,eq + t2kBk,eq � �k(w̃). (57)

Finally, we have

�(w) � u(w, w̃) � wT
eqCweq + const (58)

where C � �K
k=1 Ck.

APPENDIX C
CONSTRAINT QUALIFICATION OF PROBLEMS (5), (11), AND

(31)
In this appendix, we verify the constraint qualification of

problems (5), (11), and (31) by considering Mangasarian-
Fromovitz constraint qualification (MFCQ) (which is equiv-
alent to Robinson’s condition for these problems).

First, let us introduce MFCQ for the constraints of the
following problem

min f(x)

s.t. h(x) = 0,

g(x) � 0,

(59)
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where the functions f : Rn � R, g : Rn � Rp and h :
Rn � Rm are continuously differentiable. The feasible set is
� = {x � Rn | h(x) = 0, g(x) � 0}. Given x̄ � �, A(x̄) is
the set of the inequality active constraint indices, that is

A(x̄) = {i � {1, 2, . . . , p} | gi(x̄) = 0}. (60)

For problem (59), we say that MFCQ holds at x̄ when
the equality constraint gradients are linearly independent and
there exists a vector d � Rn such that

�h(x̄)d = 0, (61)
�gj(x̄)T d < 0, �j � A(x̄). (62)

Here, �h(x̄) denotes the Jacobian matrix of h(x) and �gj(x̄)
is the gradient of gj(x). Thus, the equality constraint gradients
are given by the columns of �h(x̄)T .

Remark C.1: By the first-order approximation, we have
h(x̄ + d) � h(x̄) + �h(x̄)d. Hence, we can obtain the
term �h(x̄)d by using first-order approximation without need
of computing the Jacobian matrix (or the gradient). This
observation will facilitate the MFCQ verification in the case
when h and x are both matrices.

Next, let us check the MFCQ of three problems one by one.

A. CQ verification for problem (5)
For problem (5), we have
Lemma C.1: MFCQ holds for problem (5) at any feasible

point (w, t).
Proof: It is readily seen that the inequality constraints

t � 0 of problem (5) must be inactive. Hence, we only need to
check the equality constraints which can be compactly written
as h(w, t) = 0 with the following definition

h(w, t) �

�

�����

�A
1
2
1 w� � t1�B

1
2
1 w�

�A
1
2
2 w� � t2�B

1
2
2 w�

...
�w�2 � 1

�

�����
. (63)

The equality constraint gradients are computed in (64)
(see the top of the next page). By noting w �= 0, it is
readily known that the columns of �h(w, t)T are linearly
independent. Furthermore, by simply setting d = 0, MFCQ
holds for problem (5) at any its feasible point.

B. CQ verification for problem (11)
For problem (11), we have
Lemma C.2: MFCQ holds for problem (11) at any nonzero

feasible point (V,F,X) with V �= 0, and F �= 0 or X �= 0.
Proof: The constraints of problem (11) are written as

follows

g1 � Tr
�
V̄V̄H

�
� PS � 0, (65a)

g2 �
��X̄

��2

F
+ �2

R

��F̄
��2

F
� PR � 0, (65b)

�1 � X � FHV = 0, (65c)
�2 � F � F̄ = 0, (65d)
�3 � X � X̄ = 0, (65e)
�4 � V � V̄ = 0. (65f)

As we can see, �1, �2 and �3 do not contain variable V̄
but �4 does. Thus, the gradients of the components of �1,
�2, �3, and �4 are linearly dependent if and only if those
of the components of �1, �2, and �3 are linearly dependent.
Similarly, since �1 and �2 do not contain X̄, the gradients of
the components of �1, �2, and �3 are linearly dependent if
and only if those of the components of �1 and �2 are linearly
dependent. However, the gradients of the components of �1

and �2 are linearly independent because �1 does not contain
F̄ but �2 does. Therefore, the equality constraint gradients of
problem (11) are linearly independent.

Given the above gradient independence result, we are left
to show that, there exists {DX,DF,DV,DX̄,DF̄,DV̄} such

�e
�

Tr
�
V̄DH

V̄

��
< 0, (66a)

�e
�

Tr
�
X̄DH

X̄

�
+ �2

R�e
�

Tr
�
F̄DH

F̄

���
< 0, (66b)

DX � DFHV � FHDV = 0, (66c)
DF � DF̄ = 0, (66d)
DX � DX̄ = 0, (66e)
DV � DV̄ = 0, (66f)

which are derived using first-order approximation according to
Remark C.1. Note that we here consider only the case when
(65a) and (65b) are active. Other cases (i.e., both are inactive,
and either of (65a) and (65b) is active) can be simply treated.

It can be shown that, Eq. (66) is satisfied
by taking {DX,DF,DV,DX̄,DF̄,DV̄} =
{�2X, �F, �V, �2X, �F, �V} with V �= 0, and F �= 0 or
X �= 0. This completes the proof.

C. CQ verification for problem (31)
For problem (31), we have
Lemma C.3: MFCQ holds for problem (31) at any feasible

point (X,S,Y).
Proof: Similarly as for problem (11), we can show that

the linear independence of the equality constraint gradients of
problem (31). So our main efforts are paid to show that, there
exists {DX,DS,DY} such

YDS + DYS = 0, (67a)
DX � DY = 0, (67b)
DT

S1 = 0, (67c)
[DS]i,j > 0, �(i, j) � S0, (67d)

where S0 is the set of zero entry indices of S, [DS]i,j is the
(i, j)-th entry of DS.

Let us check Eq. (67) with the point (DX,DY,DS) given
by

DS =
1

L
11T � S,DX = DY = Y(I � 1

L
11T ). (68)

where 1 is an all-one vector of dimension L. Obviously, Eqs.
(67b) and (67d) are true. Furthermore, we have

DT
S1 =(

1

L
11T � S)1

=1 � ST 1 = 0
(69)
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�h(w, t) =

�

������

wT AT
1

�A1w� � t1wT BT
1

�B1w� ��B1w� · · · 0
...

...
...

...
wT AT

K
�AKw� � tKwT BT

K
�BKw� 0

... ��BKw�
2wT 0T 0T 0T

�

������
. (64)

where the last equality follows from the feasibility. Substitut-
ing (68) into (67a), we obtain

Y(
1

L
11T � S) + DYS

=
1

L
Y11T � YS + DYS

=
1

L
Y11T S � YS + DYS

= [DY � Y(I � 1

L
11T )]S = 0,

(70)

where the second equality is due to ST 1 = 1. Therefore,
MFCQ holds for problem (31) at any feasible point.
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