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Abstract—Multiview analysis aims to extract common informa-
tion from data entities across different domains (e.g., acoustic,
visual, text). Canonical correlation analysis (CCA) is one of
the classic tools for this problem, which estimates the shared
latent information via linear transforming the different views of
data. CCA has also been generalized to the nonlinear regime,
where kernel methods and neural networks are introduced to
replace the linear transforms. While the theoretical aspects of
linear CCA are relatively well understood, nonlinear multiview
analysis is still largely intuition-driven. In this work, our interest
lies in the identifiability of shared latent information under a
nonlinear multiview analysis framework. We propose a model
identification criterion for learning latent information from
multiview data, under a reasonable data generating model. We
show that minimizing this criterion leads to identification of the
latent shared information up to certain indeterminacy. We also
propose a neural network based implementation and an efficient
algorithm to realize the criterion. Our analysis is backed by
experiments on both synthetic and real data.

Index Terms—Unsupervised learning, mixture separation, mul-
tiview analysis, neural networks, identifiability

I. INTRODUCTION

Data is oftentimes acquired in different feature domains
(e.g., audio, video, and image). The different domains for
representing data give rise to diverse “views” of the same
data—which may be able to characterize distinct aspects of
the entities of interest. The purpose of multiview analysis is
to extract the “essence” of the data that is in common across
different views. Compared to traditional single-view analytical
tools like principal component analysis (PCA), independent
component analysis (ICA) [1] and nonnegative matrix fac-
torization (NMF) [2], multiview approaches like canonical
correlation analysis (CCA) [3] have some unique traits. For
instance, it is shown that CCA is robust under covariance-
unknown colored noise [4] and strong interference [5], whose
presences are considered very challenging for single-view
methods such as PCA.

Classic CCA finds common information across views
through seeking for linear mappings such that the mapped
data have maximum correlation in a latent space [3], [6].
Long after the advent of CCA, interesting interpretations for
its effectiveness from a factor analysis viewpoint appeared in

This work is supported in part by the National Science Foundation under
NSF ECCS 1808159 and ECCS 1608961, and the Army Research Office
under ARO W911NF-19-1-0247 and ARO W911NF-19-1-0407.

a number of papers [4], [5]. In particular, Bach et al. [4]
explained CCA’s robustness to colored noise from a maximum
likelihood estimation perspective. In [5], the authors analyzed
CCA by modeling each view as a mixture of shared and view-
specific interference components and showed that the classic
CCA extracts the shared components up to certain ambiguities,
no matter how strong are the interference terms. Recently,
nonlinear versions of CCA have been actively studied, since
linear transformations are inadequate to capture the reality
in many applications. Kernel CCA [7], [8] employs various
kernel functions to transform the data. Furthermore, deep CCA
[9], [10] has been proposed to incorporate neural networks to
realize nonlinear transformations. These nonlinear CCA ap-
proaches have brought up boosted performance in applications
like image embedding [10] and speech processing [11].

While the classic CCA has been extensively studied in
both computational and theoretical aspects, the understanding
to nonlinear CCA methods is quite limited. It still remains
unclear in theory why the nonlinear methods have improved
performance. To answer this intriguing question, we take a
model-based perspective to analyze the nonlinear multiview
approaches. Our contribution is twofold. First, we propose
a generative model for nonlinear multiview analysis that is
a natural extension of those for classic CCA in [4], [5]. In
particular, we model the acquired data as nonlinearly distorted
multiview linear mixtures. Based on this model, we propose
a model identification criterion to extract the shared latent
components across views, and show that our criterion leads to
the removal of the unknown nonlinear distortions. Notably, our
nonlinearity removal method does not rely on strong assump-
tions on the latent components in the model, e.g., statistical
independence that is often utilized in nonlinear ICA [12],
[13]. Second, we implement our proposed continuous function
learning formulation leveraging neural networks, and propose
a simple block coordinate descent (BCD) based algorithm
to handle the neural network searching problem. Using this
implementation, our theoretical claims are backed by a series
of experiment results.

II. BACKGROUND

A. Multiview Data and Analysis

Data entities often have different appearances in different
feature domains; e.g., a car can be represented by its audio,



video, and text description, respectively. These different rep-
resentations are called “views” of the data entities. Intuitively,
integrating multiple views of data would have benefits for
extracting essential information that can better represent the
data samples—which eventually can improve performance of
downstream tasks such as clustering and classification.

The classic method in statistical machine learning for this
purpose is CCA, whose mathematical programming form can
be expressed as follows [3], [14]:
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where y(q)
` ∈ RMq is the `th observation of the qth view,

B(q) ∈ RR×Mq with 1 ≤ R ≤ K and the constraints
avoid degenerate solutions. Simply speaking, CCA aims to
find two linear mappings to transform the views—such that
the transformed views are closely matched with each other in
a Euclidean distance sense. The cost function of the above
is equivalent to maxB(q) Tr( 1
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which, under the normalization constraints, is exactly maxi-
mizing the (sample average form of) cross-correlation between
B(1)y

(1)
` and B(2)y

(2)
` .

CCA oftentimes exhibits better performance relative to its
single-view counterparts, e.g., PCA. There are also theoretical
analyses that support this observations [4], [5]. In particular,
the recent work [5] assumes the following generative model
for multiview analysis problems:

y
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(q)
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where q = 1, 2, ` = 1, . . . , N , A(q) ∈ RMq×(K+Rq), s` ∈ RK

denotes the shared components across views (i.e., the essential
information), and c(q)` ∈ RRq is the view-specific component
(or, an interference term). The model is a reasonable extension
of linear mixture model (i.e., y` = As`) to multiview
scenarios. The model in (2) assumes that the differences across
views are due to both A(q) and c(q)` .

It is obvious that with R = K and B(q) = [Θ,0](A(q))†,
where Θ ∈ RK×K is an arbitrary non-singular matrix, the
objective value of Eq. (1) becomes zero, under the model in
Eq. (2). The work in [5] shows that this is indeed the only
solution under the CCA formulation. Hence, B(q)y

(q)
` = Θs`,

` = 1, . . . , L always holds; i.e., the subspace range(S>),
where S = [s1, . . . , sL], can be identified via CCA. Note that
the view-specific c(q)` component is always removed no matter
how strong its energy is. This is quite different compared to
PCA, which always first returns the latent components with
strongest energy (variation). This simple model and its elegant
proof support the effectiveness of CCA for extracting essential
cross-view information in the presence of strong interference.

III. NONLINEAR MULTIVIEW ANALYSIS

The model y(q)
` = A(q)s

(q)
` is a typical linear mixture model

(LMM), since the elements of y(q)
` are linear combinations of

the latent components [s
(q)
` ]k for k = 1, . . . ,K. The LMM is

simple and useful, but might not be able to capture the essence
of realistic data generating processes.

To handle more challenging scenarios where nonlinearity is
involved in data generation, we propose a nonlinear extension
of the linear CCA model in [5]. Our model is as follows:

y
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where the nonlinear function g(q)(·) = [g
(q)
1 (·), . . . , g(q)Mq

(·)]>

and g
(q)
m (·) : R → R represents the nonlinear distortion at

channel m of view q. Note that the unknown nonlinear func-
tions can be different for each view and each dimension. We
also assume that the latent components are random variables
defined on continuous open sets, i.e., s` ∈ S, c(q)` ∈ Cq, where
S and Cq are both open sets.

We should remark that the nonlinear model in (3) for an
individual view is called the post-nonlinear (PNL) model
in the context of nonlinear independent component analysis
(nICA) [12], [13], which is a nonlinear version of ICA-
based single view analysis. The PNL model is not the most
general nonlinear model [15], but is effective in modeling
nonlinear distortions happening in the receiver/sensor end—
which fits applications like bio-signal processing and brain-
computer interface (BCI) [16]–[18]. Classic methods in nICA
hinge on statistical independence among the latent components
(i.e., [s

(q)
` ]k) to remove the nonlinearity. In this work, we will

show that nonlinearity can be removed even if the components
are dependent, if two views of the data entities are available.

A. A Function Learning Based Formulation

Like in the linear CCA case, our goal is to identify the
Θs` for ` = 1, . . . , L with a nonsingular Θ ∈ RK×K

(representing a rotation ambiguity that can be removed by
any blind source separation techniques as post-processing)
under the model in (3). Note that we do not assume statistical
independence among the latent components, which means that
existing nonlinear ICA techniques are not applicable.

We seek an element-wise nonlinear mapping f (q)(·) :

RMq → RMq where f (q)(·) = [f
(q)
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fm(·) : R → R, and a linear transformation B(q) ∈ RK×Mq

so that the following criterion is minimized:
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Ideally, we wish to obtain B(q) = [Θ,0](A(q))† ∈
RK×Mq ,f (q)(·) = [(g

(q)
1 (·))−1, · · · , (g(q)Mq

(·))−1]>. The solu-
tion above will extract the shared row subspace of S—i.e.,



the essential shared information across views. Again, the key
question lies in the uniqueness of this solution. In other words,
does the formulation in (4) have identifiability for the shared
subspace spanned by the rows of S = [s1, . . . , sN ]?

B. Nonlinearity Removal

To see how we approach the identifiability problem, we re-
write problem (4) in its population form:

find B(1),B(2),f (1),f (2) (5a)

s.t. B(1)f (1)
(
y
(1)
`

)
= B(2)f (2)

(
y
(2)
`

)
, (5b)

∀y(q)
` = g(q)(A(q)s

(q)
` ), s` ∈ S, c(q)` ∈ Cq,

f (q) is invertible, q = 1, 2, (5c)

E
[
B(q)f (q)

(
y
(q)
`

)
f (q)

(
y
(q)
`

)>
(B(q))>

]
= I.

Note that the above is derived from (4) assuming that one has
uncountably infinite y(q)

` ’s such that all possible values of y(q)
`

are exhausted under the assumed generative model. We use an
equality constraint in (5b), since when there is no noise, the
optimal value in (4) should be zero under the model in Eq. (3).

To proceed, we will be using the following condition:

Definition 1 (Ubiquitously Unanchored) Consider a collec-
tion of d real-valued random components v = [v1, . . . , vd]>∈
Rd, where vi resides in a continuous and open set Vi ⊆ R
such that volume(Vi) > 0. Denote v̄j as any fixed value from
Vj . Assume that for any i ∈ {1, . . . , d} and any v̄j where
j 6= i, the vectors [v̄1, . . . , v̄i−1, v, v̄i+1, . . . , v̄d]>, ∀v ∈ Vi
are contained in the domain of v. Then, the components in v
are called ubiquitously unanchored.

With the above definition, we show the following:

Theorem 1 (Nonlinearity Removal) Consider the nonlinear
model in Eq. (3). Assume that Mq ≥ K + Rq, q = 1, 2,
and that the mixing matrices A(q) for q = 1, 2 are drawn
from any absolutely continuous distributions. Assume that
the components in [sk,`, (c

(1)
` )>, (c

(2)
` )>]> are ubiquitously

unanchored for any k. Further assume that the dimensions
of the components satisfy Rq(Rq+1)

2 ≥ Mq. Suppose that
(B(q),f (q)) for q = 1, 2 are solutions of Eq. (5) with
‖B(q)‖0 = KMq. Then, the composition f

(q)
i ◦ g(q)i (x) for

all i, q are affine functions with probability one.

There are a couple of notable points: First, removing
nonlinearity does not rely on strong assumptions such as
statistical independence between the latent components. In
fact, the ubiquitously unanchored condition is very mild—
variables that are strongly dependent can satisfy this condition;
see [19]. In addition, the theorem has no restriction on the
relationship between the shared components. Hence, sk,` and
sj,` can be completely dependent without affecting the removal
of nonlinear distortions, which would have been impossible

if one resorts to nonlinear ICA, e.g., those in [12], [13]—
this shows the power of multiview analysis. Additionally, even
if the energy of s` is significantly smaller compared to that
of c(q)` , the proposed criterion can still recover the shared
subspace. This property is inherited from linear CCA [5].

Note that after the nonlinearity is removed, the remaining
problem boils down to a linear CCA problem under the model
in (2). Hence, the shared components Θs` for ` = 1, 2, . . . can
be then identified up to the rotation ambiguity Θ.

IV. IMPLEMENTATION AND ALGORITHM

In this section, we propose a practical implementation and
propose an algorithm to tackle it. We parameterize f

(q)
m (·)

for q = 1, 2 and all m using neural networks (NNs), since
the NNs are known as “universal function approximators”.
With the NN-based parametrization, we consider the following
optimization problem:

min
U ,θ
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where a slack variable U = [u1, . . . ,uN ] ∈ RK×N that
represents the extracted shared components is introduced,
f
(q)
NN (·) = [f

(q)
NN,1(·), . . . , f (q)NN,Mq

(·)]> is a collection of neural
network (NN)-parametrized element-wise non-linear mappings
that we attempt to learn for nonlinearity removal, and θ(q)f

denotes all the NN parameters of f (q)
NN . Similarly, g(q)NN(·) =

[g
(q)
NN,1(·), . . . , g(q)NN,Mq

(·)]> is another set of neural networks for
learning the generative function in (3) which approximately
ensures the learned f (q) is invertible (i.e., the reflect the
invertibility constraints in (4)), at least for the available data
samples y(q)

` for ` = 1, . . . , N . Note that if f (q)
NN is invertible,

then there exists a g(q)NN such that the second term is zero—but
the converse is not necessarily true. This reconstruction idea
is known as the autoencoder in the context of deep learning
[20]. We should remark that the constraint 1

N

∑N
`=1 u` = 0

is vital for avoiding numerical problems. The reason is that
nonlinearity removal is up to affine transformations (cf. The-
orems 1). Hence, if not handled carefully, the constants in
the affine transformations (i.e., the di’s) may dominate, but
these constants are not physically meaningful. Hence, adding
a zero-mean constraint can effectively remove these constants
and retain the variations of the latent components of interest.

To handle (6), we propose a block coordinate descent (BCD)
based algorithm. The variables θ(q)f ,θ

(q)
g and B(q) variables

are treated as one block, and U as another. It is readily seen
that the subproblem w.r.t. the first block is unconstrained thus
can be handled with stochastic gradient descent—which is
easy to implement leveraging back-propagation. While the U -
subproblem is a nonconvex, we show that this subproblem can
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Fig. 1. Nonlinear distortions and the learned composite functions. Left to
right: view 1-2. Top to bottom: 3 randomly selected dimensions.

TABLE I
THE SUBSPACE DISTANCE OF DIFFERENT APPROACHES.

Proposed, w/o zero mean, DCCA DCCAE KCCA CCA PCA
dist 0.035 0.998 0.523 0.530 0.998 0.993 0.999

be solved efficiently through centering and truncated SVD.
Details can be found in the pre-print in [19].

V. NUMERICAL EXPERIMENTS

The baselines include PCA, CCA [3], kernel CCA (KCCA)
[21], Deep CCA (DCCA) [9] and DCCAE [10] (which is a
performance-enhanced version of DCCA). To evaluate the re-
sults, we measure the distance between ground-truth subspace
and the learned range(Ŝ>), which is between 0 and 1 with 0
being the best [22].

A. Synthetic Data Simulations

For the first experiment, we construct the shared compo-
nent s` ∈ R2 which is uniformly sampled from a parabola
([s`]1 = [s`]

2
2, [s`]2 ∈ [−1, 1]). This way, the components

in s` are completely dependent. View-specific components
c
(q)
` ∈ R3 for q = 1, 2 are set to be i.i.d. Gaussian

components with different means and variances. Note that
the condition of Theorem 1 is satisfied in this case. The
elements of A(q) ∈ R5×5 follow zero-mean unit-variance
i.i.d. Gaussian distribution. The sample size for each view
is N = 1, 000. The nonlinear functions are set as follows:
g
(1)
1 (x) = 3sigmoid(x)+0.1x, g(1)2 (x) = 5sigmoid(x)+0.2x,
g
(1)
3 (x) = 0.2 exp(x), g(1)4 (x) = −4sigmoid(x) − 0.3x,
g
(1)
5 (x) = −3sigmoid(x) − 0.2x; g(2)1 (x) = 5tanh(x) + 0.2x,
g
(2)
2 (x) = 2tanh(x) + 0.1x, g(2)3 (x) = 0.1x3 + x, g(2)4 (x) =

TABLE II
THE SUBSPACE DISTANCE UNDER DIFFERENT SCIR.

SCIR Proposed DCCA DCCAE KCCA CCA PCA
−10 dB 0.035 0.523 0.530 0.998 0.993 0.999
−20 dB 0.064 0.999 0.998 0.999 0.998 0.997

TABLE III
SPECTRAL CLUSTERING ACC (%) OF DIFFERENT ALGORITHMS.

raw PCA CCA KCCA DCCA DCCAE Proposed
view1 64.15 65.75 68.60 63.65 60.55 62.15 70.35
view2 50.05 51.05 64.15 59.45 62.15 59.20 66.15

−5tanh(x)−0.4x, g(2)5 (x) = −6tanh(x)−0.3x, some of which
are plotted in orange in Fig. 1.

Fig. 1 shows the learned f̂
(q)
m ◦ g(q)m for q = 1, 2 for

3 randomly selected dimensions. One can see that all the
function compositions are visually affine. Table I shows the
averaged subspace distance of 10 random trials under the same
settings. One can see that the proposed approach admits a
subspace distance that is almost zero. It is much lower than
those of the baselines, perhaps because our method exploits the
model information. In addition, as expected, without the zero-
mean constraint, the result is much worse—which echos our
remark on the importance of having the zero-mean constraint.

To observe the impact of the view-specific interference, we
define the Shared Component to Interference Ratio (SCIR)

SCIR = 10 log10

(
‖S‖2F /K

1
Q

∑Q
q=1 ‖C(q)‖2F /Rq

)
dB. Table II shows

the result under different SCIRs. One can see that even if the
ratio is −20 dB, the performance of the proposed approach is
still very good—the average subspace distance metric is 0.064
which is much better than other baselines. This observation is
consistent with our analysis—the proposed method is robust
to strong view-specific interference.

B. Real Dataset Results

To show the usefulness of the model, we test it on a
multiview handwritten digits clustering [23]. There are 200
samples per class (digit) and they are represented in different
views, among which 64 Karhunen-Love coefficients and 47
Zernike moments are used as two views in this experiments.
The training set includes 1,200 samples, the validation and
testing sets both have 400 samples. Spectral clustering [24]
is performed on the learned representations on the testing set.
The clustering accuracy on the testing set is shown in Table III.
The proposed approach shows promising results. This also
suggests that combining linear and nonlinear mixture models
may improve performance in data representation learning.

VI. CONCLUSION

To conclude, we analyzed the nonlinear multiview approach
from an identifiability-driven and model-based perspective.
A criterion was proposed to recover the shared components
with identifiability guarantees under reasonable conditions.
Our claims were backed by a series of numerical results.
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