

Composition, Crystallography, and Oxygen Vacancy Ordering Impacts on the Oxygen Ion Conductivity of Lanthanum Strontium Ferrite

Tridip Das, Jason D. Nicholas, and Yue Qi^{*}

Chemical Engineering & Materials Science Department, Michigan State University, 428 South

Shaw Lane, 2527 Engineering Building, East Lansing, MI 48824, USA

ABSTRACT

9 This work presents a comprehensive computational study showing how aliovalent doping,
10 crystal structure, and oxygen vacancy interactions impact the oxygen vacancy conductivity of
11 lanthanum strontium ferrite (LSF) as a function of temperature in air. First, density functional
12 theory (DFT) calculations were performed to obtain the oxygen vacancy migration barriers and
13 understand the oxidation state changes on neighboring Fe atoms during oxygen vacancy migration.
14 The oxygen migration barrier energy and the corresponding diffusion coefficient were then
15 combined with previously determined mobile oxygen vacancy concentrations to predict the overall
16 oxygen vacancy conductivity and compare it with experimentally measured values. More
17 importantly, the impact of phase changes, the La/Sr ratio, and the oxygen non-stoichiometry on
18 the mobile oxygen vacancy concentration, diffusivity, and conductivity were analyzed. It was
19 found that stabilizing rhombohedral LSF or cubic SFO (through doping or other means), such that
20 oxygen-vacancy-ordering-induced phase transitions are prevented, leads to high oxygen
21 conductivity under solid oxide fuel cell operating conditions.

22 *Corresponding author: yueqi@egr.msu.edu

24 **I. INTRODUCTION**

25 Mixed Ionic Electronic Conducting (MIEC) oxides with high electronic conductivity and
26 high oxygen ion conductivity are used in a variety of high-tech devices including oxygen sensors,¹
27 gas separation membranes,² catalytic converters,³ Solid Oxide Fuel Cells (SOFCs),⁴ Solid Oxide
28 Electrolysis Cells,⁵ memristors,⁶ electrochromic displays,⁷ etc. Although MIEC oxides come in
29 fluorite,⁸ Ruddlesden-Popper,⁹ double perovskite,¹⁰ and a variety of other crystal structures,
30 perovskite-structured MIEC oxides have received the most attention in the literature due to their
31 favorable properties, tolerance to manipulation by doping, and relative stability.⁴ Of these,
32 lanthanum strontium ferrite (pure and especially cobalt doped lanthanum strontium ferrite¹¹) is one
33 of the most experimentally well-studied. In these MIEC oxides, many coupled factors, including
34 the aliovalent doping level, the charge state of multivalent lattice ions, the crystal structure, the
35 oxygen non-stoichiometry, the temperature, and the strain imposed on the structure control oxygen
36 vacancy formation and migration, and thus the overall oxygen conductivity.⁹ Therefore, the present
37 paper focuses on detailing the underlying relationships among these factors and their impact on
38 the oxygen vacancy conductivity of lanthanum strontium ferrite as a function of temperature.

39 As just mentioned, many factors influence oxygen vacancy formation and migration in
40 lanthanum strontium ferrite, $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ (LSF). These factors include the La/Sr ratio, the
41 temperature, the crystal structure, the charge distribution on neighboring multivalent Fe atoms, the
42 oxygen non-stoichiometry (δ), and the interactions between oxygen vacancies at higher δ .¹²⁻¹⁴
43 These factors are intertwined, as shown in the combined phase diagram for LSF in Figure 1. For
44 instance, below 1000 °C LSF changes from orthorhombic to rhombohedral to eventually cubic, as
45 the La/Sr ratio decreases from one to zero. Similarly, the LSF solid solution end member SrFeO_3

46 (SFO) experiences cubic, tetragonal, orthorhombic, and brownmillerite phase changes with
 47 increasing temperature and increasing δ .

48 Obtaining high, stable oxygen ion transport below ~ 650 °C in LSF and related MIEC
 49 compounds has been desired, but challenging, for SOFC applications.^{14–18} Interestingly, the
 50 oxygen ion conductivity of LSF does not exponentially increase with temperature due to phase
 51 changes and oxygen vacancy interactions at higher vacancy concentration.^{19–21} Further, attempts
 52 to improve the performance of these MIEC compounds via doping, lattice strain engineering, or
 53 other extrinsic means has been complicated by a lack of understanding of how these intertwined
 54 factors regulate MIEC oxygen ion conductivity.

55 The ionic conductivity depends on both the formation and the diffusion of ionic defects.^{22,23}
 56 In MIEC perovskite materials like LSF, the oxygen ions move via a vacancy hopping
 57 mechanism,²⁴ and the oxygen ion conductivity (σ) can be calculated using the relation:

$$58 \quad \sigma = \frac{Z^2 e^2 c D}{k_B T} \quad [1],$$

59 where c is the mobile oxygen vacancy concentration, Z is the charge on the oxygen ion as a
 60 multiple of e (the charge of an electron), and D is the oxygen vacancy diffusivity.^{22,23} Therefore,
 61 the 1) oxygen vacancy formation energy and 2) oxygen vacancy migration energy barrier are the
 62 major factors controlling the oxygen vacancy concentration and diffusivity, respectively.

63 Previous LSF computational studies have shown that the oxygen vacancy formation
 64 energy varies by ~ 3 eV as the La/Sr ratio is decreased from one to zero.²⁵ Also, a significant
 65 variation (~ 2.5 eV) was observed in the SFO oxygen vacancy formation energy with temperature
 66 due to the multiple SFO phase changes shown in Figure 1.¹⁹ In addition, previous experimental
 67 and computational studies of oxygen vacancy migration in LSF have suggested that A-site doping

68 has a negligible effect on the LSF oxygen migration barriers.²⁶⁻²⁹ Specifically, these prior density
69 functional theory (DFT) studies^{29,30} have produced results consistent with the statement from
70 Mastrikov *et al.*^{26,29} that “In (La,Sr)(Mn,Fe,Co)O_{3- δ} perovskites, the oxygen vacancy diffusion
71 coefficients were experimentally found to be almost independent of the cation composition, with
72 a typical migration barrier of ≈ 0.8 eV”. However, these earlier DFT studies were not completed
73 over a broad range of LSF La/Sr ratios, crystallographic phases, and/or oxygen non-stoichiometry
74 levels. In addition, these previous DFT oxygen vacancy diffusivity calculations also assumed
75 dilute oxygen vacancies,^{24,29} even though this is not always the case. The work of. Das *et al.*,²⁵
76 recently showed that the critical δ threshold, above which oxygen vacancies are interacting,
77 increases with La/Sr ratio and decreases with the oxygen vacancy polaron size. This critical δ
78 threshold is ~ 0.05 , ~ 0.1 , ~ 0.25 , >0.25 , in cubic SFO, cubic LSF55, rhombohedral LSF55, and
79 LFO, respectively. Since the experimentally observed typical δ at the SOFC operating temperature
80 is ~ 0.1 for LSF55 and ~ 0.3 for SFO,^{31,32} vacancy interactions should be considered in the high
81 temperature cubic SFO and cubic LSF55 phases.²⁵

82 Das *et al.*²⁵ overcame several computational challenges to predict the overall oxygen
83 vacancy non-stoichiometry and the mobile vacancy site fraction in LSF as a function of La/Sr
84 ratio, temperature, and crystallographic phase. First, the interacting oxygen vacancies were shown
85 to lead to an increasing vacancy formation energy with vacancy concentration, necessitating the
86 development of a new computational model to predict the oxygen-vacancy-concentration-
87 dependent non-stoichiometry in both dilute and non-dilute cases.¹⁹ Second, since the mobile
88 oxygen vacancy concentration, c in Equation 1, is not necessarily equal to the overall oxygen non-
89 stoichiometry (δ) due to the formation of structural oxygen vacancies, c was related to the mobile
90 oxygen vacancy site fraction, X via the Equation:

91 $c = (3 - \delta^0)X/V_u$ [2],

92 where V_u is the volume per formula unit and δ^0 is the nonstoichiometry lost due to oxygen vacancy
 93 ordering included phase transformations that reduce the total number of lattice oxygen sites.
 94 Equation [2] holds for phases both with and without oxygen vacancy ordering. For phases without
 95 vacancy ordering, $\delta^0 = 0$; thus, $\delta = 3X$ and $c = \delta/V_u$. For the vacancy-ordered-phases in this
 96 study, $\delta^0 = 0.125$ in tetragonal SFO, $\delta^0 = 0.25$ in orthorhombic SFO, and $\delta^0 = 0.25$ in
 97 brownmillerite SFO.

98 The present work focused on how the oxygen vacancy diffusivity and ionic conductivity
 99 in LSF vary with La/Sr ratio, temperature, and oxygen nonstoichiometry in order to determine the
 100 LSF composition with the maximum ionic conductivity under SOFC operating conditions. This
 101 was achieved by using the DFT calculation methods described in Section 2 to compute the oxygen
 102 ion migration barriers at different representative oxygen vacancy concentrations in orthorhombic
 103 $\text{LaFeO}_{3-\delta}$ (LFO), rhombohedral $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-\delta}$ (LSF55), cubic LSF55, cubic $\text{SrFeO}_{3-\delta}$ (SFO),
 104 tetragonal SFO, and orthorhombic SFO. Due to the extremely high oxygen vacancy formation
 105 energy of ~ 3 eV in brownmillerite SFO that makes it impractical for most SOFC applications, its
 106 diffusion barrier was not analyzed here. The previously predicted mobile oxygen vacancy
 107 concentration, c , from Das *et al.*¹⁹ was then combined with the newly predicted oxygen vacancy
 108 diffusivity D in this study to calculate the LSF oxygen ionic conductivity as a function of
 109 temperature and phase, in air. These results were then used to explain the phase-transition-induced
 110 loss of oxygen conductivity observed experimentally.^{33,34}

111

112 **II. COMPUTATIONAL DETAILS**

113 The oxygen migration barriers following all possible oxygen vacancy migration pathways
 114 in cubic, tetragonal, and orthorhombic SFO, rhombohedral LSF55, and orthorhombic LFO were
 115 calculated and compared at 0 K. All calculations were performed with VASP (Vienna *Ab initio*
 116 Simulation Package), a planewave-based DFT method. Projector-augmented-wave (PAW)
 117 potentials with valence configurations of $5s^25p^65d^16s^2$ for La, $4s^24p^65s^2$ for Sr, $3d^74s^1$ for Fe, and
 118 $2s^22p^4$ for O were used to describe the valence electrons. The generalized gradient approximation
 119 (GGA) functional along with Perdew, Burke, and Ernzerhof (PBE) parameters were used to
 120 describe the exchange-correlation potentials of the constituting elements. Fe was treated with the
 121 GGA+U method with a $U_{eff} = 3$, that have been shown previously to describe the lattice parameters
 122 and the charge states of Fe in both LaFeO_3 and SrFeO_3 reasonably well.²⁵ Spin-polarized
 123 calculations were performed and the magnetic moment on each Fe was calculated by spherical
 124 integration. From convergence studies, it was determined that a k -spacing of 0.2 \AA^{-1} and a cutoff
 125 energy of 500 eV were sufficient. The accuracy for each electronic calculation was within 1 μeV
 126 and the ionic relaxations were performed until the Hellmann-Feynman force on each atom reached
 127 the order of 10 meV/ \AA .³⁵

128 The migration energy was calculated using the Climb Image Nudge Elastic Band (CINEB)
 129 method³⁶ which also provided the transition state structure at the saddle point.³⁷ The diffusion path
 130 was set initially along the Fe-O octahedral edges and three images between the start and end points
 131 were used for each path. Specifically, the CINEB method found the image structure with the
 132 minimum energy path (MEP)^{38,39} and the maximum value of the potential energy along that path
 133 was used to determine the diffusion activation energy (barrier) using the Equation:

$$134 \quad D = \frac{1}{n} d^2 v \exp\left(-\frac{E_m}{k_B T}\right) \quad [3]$$

135 where, E_m is the CINEB calculated oxygen vacancy migration barrier, d is the vacancy migration
136 distance, v is the jump frequency (which was assumed to be 10^{13} Hz for solid state diffusion⁴⁰), n
137 is the number of possible jump directions with the minimum energy barrier. For isotropic diffusion
138 in a cubic lattice, $n=6$. For anisotropic diffusion, multiple vacancy migration pathways were
139 evaluated and only the lowest diffusion path was counted. Thus, n is the number of possible jump
140 directions with the minimum energy barrier and d represents the jump distance for that minimum
141 energy barrier.

142 Table 1 summarizes the atomic structures used in the simulation. More detailed discussions about
143 these structures and properties can be found in previous oxygen vacancy formation studies.^{19,25} All
144 vacancies were assumed to be charge neutral. Lastly, the changes in the neighboring Fe oxidation
145 states during oxygen vacancy migration were determined by interpreting the magnetic moments
146 of the neighboring Fe atoms following the procedures described in Das *et al.*¹⁹

147

148 III. RESULTS

149 3.1 Oxygen Vacancy Migration in $\text{LaFeO}_{3-\delta}$

150 Figure 2(a) shows the oxygen migration pathway in LFO, highlighted with pink atoms.
151 The lattice distortion shown in Figure 2(a) corresponds to the transition state lattice distortion.
152 The calculated migration barrier in two simulations cells with two different LFO oxygen
153 nonstoichiometries ($\delta = 0.06$ and 0.25), shown in Figure 2(b), possess the same migration energy
154 barrier of 0.89 eV. This confirms that even at high oxygen nonstoichiometry concentrations ($\delta =$
155 0.25), oxygen vacancies do not interact in LFO. Further, this calculated oxygen vacancy migration
156 barrier in LFO is comparable to the experimentally observed oxygen migration barrier of 0.77 eV

157 obtained in oxygen tracer diffusion experiments²⁶ and the 1.1 eV obtained in conductivity
158 relaxation experiments.⁴¹

159 Figure 2(c) shows the small polaron (dashed purple line) generated by neutral oxygen
160 vacancy formation (i.e. the oxygen vacancy and the two electrons left behind by its formation) in
161 LFO. Based on the magnetic-moment-interpreted oxidation state of the Fe atoms, Das *et al.*,²⁵
162 found that the two Fe atoms connected to the oxygen vacancy site became 2+, while the other Fe
163 atoms in the lattice remained 3+ (as in stoichiometric LFO). Thus, the small polaron in LFO is
164 elongated along a length of ~4.0 Å. Figure 2(d) shows how the magnetic moment changes on the
165 four oxygen-vacancy-neighboring Fe atoms (labeled in Figure 2(a)) during oxygen vacancy
166 migration. This calculation shows that the magnetic-moment-interpreted oxidation state¹⁹ of the
167 second nearest neighboring Fe (Fe4) remains constant at 3+ during oxygen vacancy migration.
168 This finding is consistent with the small polaron size shown in Figure 2(c). Furthermore, it can be
169 noticed that when an oxygen atom moves from one equilibrium site ($\zeta = 0$) to another equilibrium
170 site ($\zeta = 1$), the Fe2 atom reduces its charge from Fe³⁺ to Fe²⁺ and Fe3 changes its charge from
171 Fe²⁺ to Fe³⁺, as the oxygen vacancy moves away from Fe3 to Fe2 along the opposite direction as
172 the path of oxygen atom. It is interesting to note that at the transition state, both Fe2 and Fe3 are
173 close to Fe^{2.3+} due to the partial distribution of the two electrons among Fe1, Fe2 and Fe3. The
174 magnetic moment on Fe1 drops at the transition state, suggesting that Fe1 becomes a low-spin
175 Fe²⁺ at the transition state. This is further confirmed by a Projected Density of States (PDOS)
176 analysis. Low spin Fe in perovskite structure is rare, its occurrence at the transition state with large
177 local structure distortion, might be due to weak Jahn-Teller effect with low spin Fe. After the
178 oxygen atom completes its move to $\zeta = 1$, the magnetic moment on Fe1 (i.e. the oxygen-vacancy-
179 adjacent Fe) returns to Fe²⁺.

180

181 **3.2 Oxygen Vacancy Migration in $La_{0.5}Sr_{0.5}FeO_{3-\delta}$**

182 Figures 3(a) and 4(a) show the oxygen migration pathways in rhombohedral and cubic LSF55,
183 respectively. Similar to the structures used in previous oxygen vacancy formation studies,²⁵
184 ordered LSF55 phases were assumed here in which an alternate layer of La-O and Sr-O was
185 separated by the Fe-containing layer, as shown in Figure 3(c) and 4(c). This is representative, as
186 a single phase behavior of LSF55 was observed experimentally and the extensive site ordering of
187 La/Sr simulated by Ritzmann *et al.*¹⁴ revealed a weak dependence of the oxygen vacancy
188 formation energy on the La/Sr site configuration. The calculated oxygen migration barriers are
189 shown in Figure 3(b) and 4(b) for rhombohedral and cubic LSF55. The calculated migration
190 barrier in rhombohedral LSF55 is 0.45 eV for both dilute and interacting vacancies (at $\delta = 0.04$
191 and 0.17). As discussed previously, it is not computationally possible to obtain a stable cubic
192 LSF55 structure with very low oxygen vacancy concentration,²⁵ as the local structure prefers tilted
193 octahedra around each oxygen vacancy. In this study, for cubic LSF55, the calculated oxygen
194 migration barrier is 0.70 eV at $\delta = 0.13$. Due to the lattice distortions in cubic LSF55, the two Fe-
195 O octahedra sharing the diffusing oxygen tilt dramatically and locally transform into a
196 “rhombohedral LSF55”-like structure, resulting a significant decrease in the total energy at $\zeta =$
197 0.25 and $\zeta = 0.75$. This results in a “trapped state” in the vacancy migration pathway and the
198 diffusion barrier is from this trapped state to the saddle point transition state. These results explain
199 why the rhombohedral to cubic LSF55 phase change has less of an impact on the oxygen migration
200 barrier (it only differs by ~0.25 eV) than the on oxygen vacancy formation energy (it differs by
201 ~0.5 eV).²⁵

202 Figure 3(c) and 4(c) show that the polaron shape (dashed purple line) around an oxygen
203 vacancy (indicated by the black dot) is asymmetric in rhombohedral LSF55 but symmetric in the
204 cubic LSF55. In Figures 3(d) and 4(d), the changes in the magnetic moment of the oxygen-
205 vacancy-neighboring Fe atoms are shown in rhombohedral and cubic LSF55, respectively. The
206 oxygen-vacancy-adjacent Fe1 maintains the same oxidation state before and after oxygen vacancy
207 migration, but not at the transition state, in both rhombohedral and cubic LSF55. In rhombohedral
208 LSF55, magnetic-moment-interpreted charge transfer shows that the oxidation state on Fe4 (a
209 second nearest neighbor to the oxygen vacancy) is slightly reduced as the oxygen vacancy passes
210 by, which is presumably due to the asymmetric polaron shape. In contrast, in cubic LSF55 where
211 the polaron shape is symmetrical, the magnetic-moment-interpreted charge on Fe4 does not
212 change as the oxygen vacancy passes by. After the migration of the oxygen vacancy from the Fe3-
213 adjacent site to the Fe2-adjacent site, the magnetic moments indicate that the oxidation states on
214 Fe2 and Fe3 exchange in cubic LSF55. The exchange occurs at the transition state. However, the
215 magnetic moments of Fe2 and Fe3 do not exchange simply in rhombohedral LSF55, due to the
216 anisotropic shape of the polaron.²⁵ Figure 4(d) shows a sudden dip in the magnetic moment or a
217 decrease in Fe oxidation state due to the low spin state configuration associated with a weak Jahn–
218 Teller distortion observed in the “trapped state” in the migration path. The larger change of the
219 magnetic moment and the charge state on Fe is consistent with the higher migration energy barrier
220 in cubic LSF55 compared to rhombohedral LSF55.

221

222 3.3 *Oxygen Vacancy Migration in SrFeO_{3- δ}*

223 Figure 5(a) shows the oxygen migration pathway (pink atoms) in cubic SFO. As shown in
224 Figure 5(b), the calculated oxygen migration barriers in cubic SFO are 0.58, 0.62 and 1.07 eV at

225 δ = 0.04, 0.12, and 0.5 respectively. These results show that the effect of oxygen non-
226 stoichiometry on the oxygen vacancy migration barrier is insignificant (<0.05 eV) below a critical
227 non-stoichiometry, above which oxygen vacancies strongly interact (between δ =0.12 and δ = 0.5).
228 Since the oxygen vacancy nonstoichiometry is less than ~0.125 in cubic SFO until it transforms
229 to the tetragonal phase, below this concentration, the migration energy barrier is ~0.6 eV and does
230 not change with δ . Figure 5(c) shows the large pancake-shaped polaron¹⁹ generated by neutral
231 oxygen vacancy formation in cubic SFO. Note, the cubic phase with δ = 0.5 is not a stable phase,
232 the data is provided as an example of the impact high concentrations of oxygen vacancies have on
233 cubic SFO. Figure 5(d) shows the magnetic moment change on the neighboring Fe atoms during
234 oxygen vacancy migration. Initially (at ζ = 0), the oxygen vacancy is between Fe1 and Fe3.
235 Therefore, the oxidation state on square pyramidal-Fe1 and Fe3 are the same (~4.1+)
236 corresponding to the vacancy adjacent or nearest neighboring Fe atoms. The magnetic-moment-
237 interpreted charge of Fe2 and Fe4 are also the same (~3.8+) corresponding to the oxygen vacancy
238 second nearest neighboring Fe atoms (Figure 5(c)). After an oxygen vacancy moves to the site
239 between Fe1 and Fe2 (ζ = 1), the magnetic-moment-interpreted charge on Fe2 increases to 4.1+
240 due to the square pyramidal coordination and the second-nearest-neighboring Fe3 and Fe4 have
241 an oxidation state of 3.8+ due to the octahedral coordination. This indicates that the oxidation
242 states of Fe2 and Fe3 have exchanged due to oxygen vacancy migration. According to Figure 5(d),
243 the interchange occurs at the transition state. At the transition state, the magnetic moment on the
244 vacancy adjacent Fe1 goes through a minimum indicating that the Fe oxidation state is increased
245 at the transition state, which is consistent with the excess electrons being pushed to the second
246 nearest neighboring Fe4. Fe1 maintains the same oxidation state (~4.1+) before and after oxygen
247 vacancy migration due to its square pyramidal coordination with neighboring oxygen atoms.

248 Overall, Figure 5(d) shows that the extent of the magnetic moment/Fe oxidation state change on
 249 the oxygen-vacancy-neighboring Fe ($\sim 0.3\mu_B$) is not as large as it is for LFO ($\sim 1.3\mu_B$) due to the
 250 more distributed electrons or the larger polaron size of $\sim 7.8 \times 3.9 \text{ \AA}$, shown in Figure 5(c).

251 The presence of multiple nonequivalent oxygen sites in tetragonal and orthorhombic
 252 strontium ferrites leads to long hopping distances and many different migration paths, as shown in
 253 Figures 6 and 7. Hopping to the equivalent site with the lowest oxygen vacancy formation energy
 254 requires a path through multiple oxygen sites. Following previous work,⁴² here the Wyckoff
 255 positions of the oxygen atoms in the perfect lattice were used to denote different migration paths.
 256 Figure 6 (a) shows three paths in tetragonal SFO with $\delta = 0.188$ and $\delta^0 = 0.125$ (Note, δ^0
 257 corresponds to the perfect tetragonal SFO phase of $\text{SrFeO}_{2.875}$). There are six non-equivalent
 258 oxygen sites, and the most energetically favorable oxygen vacancy site is 4c. Path \vec{a} , \vec{b} and \vec{c}
 259 follows $4c \rightarrow 16k \rightarrow 8h \rightarrow 16k \rightarrow 4c$, $4c \rightarrow 16k \rightarrow 16m \rightarrow 16k \rightarrow 4c$; and $4c \rightarrow 16k \rightarrow 4c$,
 260 respectively. Since the three different migration paths have almost the same oxygen vacancy
 261 migration barrier of ~ 0.71 eV, the diffusion in tetragonal SFO is isotropic in nature. Figure 7(a)
 262 shows the oxygen migration pathways in ink atoms in orthorhombic SFO with $\delta = 0.312$ and
 263 $\delta^0 = 0.250$ (Note, Note, δ^0 corresponds to the perfect orthorhombic SFO structure of $\text{SrFeO}_{2.75}$).
 264 There are three non-equivalent oxygen sites, and the most energetically favorable oxygen vacancy
 265 site is 2b. Path \vec{a} , \vec{b} and \vec{c} follows $2b \rightarrow 16r \rightarrow 16r \rightarrow 2b$; $2b \rightarrow 16r \rightarrow 4j \rightarrow 16r \rightarrow 2b$; and $2b \rightarrow$
 266 $16r \rightarrow 16r \rightarrow 2b$, respectively. These diffusion paths go through oxygen sites with elevated oxygen
 267 vacancy formation energy, as shown in Fig 7(c), resulting in a lowest migration barrier that is 1.17
 268 eV in orthorhombic SFO and slightly anisotropic in nature.
 269

270 **3.4 Oxygen Ionic Conductivity in $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ as a Function of Temperature (in Air)**

271 Figure 8 shows the concentration, diffusivity, and ionic conductivity of LFO, LSF55, and SFO.
272 As shown in Figure 1, the experimental LSF phase diagram contains several phase
273 transformations.⁴³ To facilitate a direct comparison with experiments, the “LSF55 (combined)”
274 data includes the rhombohedral to cubic phase transformation at $250 \pm 50^\circ\text{C}$.⁴³ In contrast, to
275 illustrate the impact of phase changes on the ionic conductivity, individual phases, such as “Cubic
276 SFO” and “Rhomb LSF55”, were calculated, for comparison, by ignoring the phase changes. “HT
277 SFO” includes the high temperature phases, such as the tetragonal, orthorhombic and
278 brownmillerite SFO phases, which were plotted over their specific stable temperature ranges. The
279 ionic conductivity for LFO was too low to be shown in Figure 7(c) due to its very high oxygen
280 vacancy formation energy.

281 Figure 8(a) shows the computed mobile oxygen vacancy concentration, c , in different
282 phases of LSF. Due to a very high oxygen vacancy formation energy of $\sim 3.5 \text{ eV}$,²⁵ the mobile
283 oxygen vacancy concentration in LFO (which is orthorhombic over the entire temperature range)
284 is relatively low. In contrast, the mobile oxygen vacancy concentration in LSF55 is higher and
285 shows an order of magnitude drop around 250°C due to the rhombohedral to cubic phase transition
286 in the bulk structure.⁴³ The increase in the mobile oxygen vacancy concentration with temperature
287 slows down in (cubic) LSF55 above $\sim 750^\circ\text{C}$ due to the onset of oxygen vacancy interactions.
288 Cubic SFO has a high oxygen vacancy concentration from 0 to 1000°C , but it does not increase
289 exponentially with temperature due to the strong vacancy interactions that led to an increase in
290 oxygen vacancy formation energy with increasing oxygen vacancy concentration.¹⁹ However, the
291 mobile oxygen vacancy concentration in the high temperature SFO phases (tetragonal,
292 orthorhombic, brownmillerite) fluctuates with temperature due to oxygen vacancy ordered phase
293 transitions which cause a loss in the mobile oxygen vacancy concentration due to vacancy site

294 ordering (Equation 2). Once brownmillerite SFO is formed at high temperature ($\sim 700^\circ\text{C}$), the
295 vacancy concentration is drastically reduced by 8 orders of magnitude due to the high oxygen
296 vacancy formation energy of ~ 3 eV. As a result, the oxygen vacancy concentration in
297 brownmillerite SFO becomes comparable to the oxygen vacancy concentration in LFO. A
298 maximum in the oxygen vacancy concentration can be observed in orthorhombic SFO at $\sim 650^\circ\text{C}$
299 in air.

300 Figure 8(b) shows the oxygen diffusivity in different phases of LSF. The oxygen diffusivity
301 in LFO is lower than the other LSF compositions below $\sim 750^\circ\text{C}$. The diffusivity of oxygen in
302 tetragonal and orthorhombic SFO is also lower than cubic SFO due to the higher migration barriers
303 shown in Figures 5, 6, and 7, respectively. The oxygen vacancy migration barrier increases from
304 0.7 eV in tetragonal SFO to 1.17 eV in orthorhombic SFO due to oxygen vacancy ordering.
305 Rhombohedral LSF55 shows the highest oxygen ionic diffusivity in the LSF family at low
306 temperature. However, the LSF55 oxygen vacancy diffusivity drops above 250°C , due to
307 rhombohedral to cubic phase transition and the higher oxygen vacancy migration barrier in cubic
308 LSF55 (0.7 eV) compared to rhombohedral LSF55 (0.45 eV).

309 Figure 8(c) shows the ionic conductivity of different LSF phases. It clearly illustrates that
310 LSF55 possesses an ionic conductivity that is higher than LFO or SFO at or above 800°C in air.
311 This is consistent with the work of Patrakeev *et al.*⁴⁴ who have experimentally shown that LSF55
312 possesses the highest oxygen ionic conductivity within the LSF family at 950°C in air. The
313 calculated ionic conductivity for LSF55 at 950°C is 0.40 S/cm and is comparable to experimentally
314 measured value of 0.5 S/cm at the same temperature.⁴⁴

315 The dotted “Rhomb LSF55” line represents a hypothetical rhombohedral LSF55 phase (as
316 rhombohedral LSF55 transforms in real-life to cubic LSF55 above $\sim 250^\circ\text{C}$ in air). The high

317 oxygen ion conductivity of this hypothetical rhombohedral LSF phase compared to other real-
318 world LSF compositions (i.e. those undergoing the phase transitions shown in Figure 1), is
319 consistent with $\text{La}_{0.4}\text{Sr}_{0.6}\text{FeO}_{3-\delta}$ being considered the best LSF composition for 800°C SOFC
320 operation⁴⁵⁻⁵⁰ because, as can be inferred here, $\text{La}_{0.4}\text{Sr}_{0.6}\text{FeO}_{3-\delta}$ is the highest Sr doping level that
321 can be achieved (in order to maximize the mobile oxygen vacancy concentration) while still
322 realizing the high oxygen diffusivity of the rhombohedral phase.

323 In contrast to stabilizing rhombohedral LSF for high temperature SOFC operation, Figure
324 8c shows that superior SOFC ionic conductivity could be achieved below ~575°C by determining
325 how to stabilize cubic SFO above ~300°C (as shown in Figure 1, cubic SFO undergoes an oxygen-
326 vacancy-ordering-induced phase transition at ~300°C). Due to its low oxygen vacancy formation
327 energy, cubic SFO possesses the highest oxygen ionic conductivity of any phase in the LFO-SFO
328 solid solution between 0 and 1000°C. Though it was previously shown by Das *et al.*²⁵ that
329 orthorhombic SFO possesses the highest oxygen vacancy concentration within the 0 – 1000°C
330 SOFC operating window in the air, due to its high oxygen migration barrier, it is not predicted to
331 be the best candidate as an oxygen ion conductor. It is left as a challenge the research community
332 of how to best stabilize cubic SFO, but recent progress in high-entropy perovskite oxides⁵¹ might
333 be a promising new platform to tune the oxygen vacancy formation and migration for improved
334 oxygen conductivity while maintaining the homogeneous single solid-solution cubic phase.

335

336 IV. CONCLUSION

337 In summary, here the oxygen vacancy migration pathways, transition state structures, and
338 energy barriers were predicted for multiple $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ phases using a DFT based CINEB
339 method. The oxidation state changes on the nearby Fe atoms during oxygen migration were

340 obtained using magnetic-moment-calibrated charge states to reveal the distribution of excess
341 electrons left on the lattice by neutral oxygen vacancy formation (i.e. the polaron shape). In
342 general, the progressively larger polaron sizes occurring with increasing oxygen nonstoichiometry,
343 and/or decreasing La/Sr ratio, resulted in increasing oxygen vacancy formation energies and higher
344 oxygen migration barriers. This was consistent with experimental results⁴³ showing that Sr-rich
345 LSF and highly oxygen deficient compositions are more prone to oxygen-vacancy-ordering-
346 induced phase transformations that reduce the mobile oxygen vacancy concentration, while Sr-
347 poor and oxygen rich LSF compositions are structurally stable.

348 It was found that the oxygen vacancy migration barrier does not change with the oxygen
349 non-stoichiometry in rhombohedral LSF55 (0.45 eV) or orthorhombic LFO (0.89 eV), due to their
350 small oxygen vacancy polaron size. Due to its stronger oxygen vacancy interactions, SFO
351 demonstrates an increasing oxygen vacancy migration barrier with each subsequent oxygen-
352 vacancy-ordering-induced phase change [cubic $E_m = 0.58$ eV < tetragonal $E_m = 0.62$ eV <
353 orthorhombic $E_m = 1.07$ eV]. LSF55 also shows an increased oxygen vacancy migration barrier
354 (0.45 vs. 0.70 eV) after transforming from a rhombohedral to cubic structure. Comparing all the
355 phases and compositions of LSF, the overall effect of phase changes on the oxygen vacancy
356 migration barrier is not as substantial (it differs by $< \sim 0.7$ eV) as it is on the oxygen vacancy
357 formation energy (this differs by ~ 3 eV).

358 The computationally predicted ionic conductivity showed that rhombohedral LSF55 has a
359 higher 800°C ionic conductivity than cubic LSF55. However, cubic SFO is promising at low
360 temperature, as it has the highest ionic conductivity of any other phase until its cubic to tetragonal
361 phase transition. This work also suggests that ionic conductivity values even larger than “state-of-
362 the-art” rhombohedral $\text{La}_{0.6}\text{Sr}_{0.4}\text{FeO}_{3-\delta}$ may be possible for low to intermediate temperature ($\sim 300-$

363 600°C) SOFCs by devising a way to extend the cubic SFO stability field to these higher
364 temperatures.

365

366 Acknowledgments

367 TD and YQ acknowledge support from National Science Foundation Award Number DMR-
368 1410850 and 1832808. JDN acknowledges support from National Science Foundation CAREER
369 Award Number CBET-1254453. All the calculations reported here were performed at the High
370 Performance Computing Center at Michigan State University.

371

372

373 REFERENCES

- 374 (1) Stefanik, T. S.; Tuller, H. L. Ceria-Based Gas Sensors. *J. Eur. Ceram. Soc.* **2001**, *21* (10–
375 11), 1967–1970. [https://doi.org/10.1016/S0955-2219\(01\)00152-2](https://doi.org/10.1016/S0955-2219(01)00152-2).
- 376 (2) Shao, Z. Investigation of the Permeation Behavior and Stability of a Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-δ}
377 Oxygen Membrane. *J. Membr. Sci.* **2000**, *172* (1–2), 177–188.
378 [https://doi.org/10.1016/S0376-7388\(00\)00337-9](https://doi.org/10.1016/S0376-7388(00)00337-9).
- 379 (3) Trovarelli, A. Catalytic Properties of Ceria and CeO₂ -Containing Materials. *Catal. Rev.*
380 **1996**, *38* (4), 439–520. <https://doi.org/10.1080/01614949608006464>.
- 381 (4) Skinner, S. J. Recent Advances in Perovskite-Type Materials for Solid Oxide Fuel Cell
382 Cathodes. *Int. J. Inorg. Mater.* **2001**, *3* (2), 113–121. [https://doi.org/10.1016/S1466-6049\(01\)00004-6](https://doi.org/10.1016/S1466-6049(01)00004-6).
- 384 (5) Jensen, S. H.; Larsen, P. H.; Mogensen, M. Hydrogen and Synthetic Fuel Production from
385 Renewable Energy Sources. *Int. J. Hydrog. Energy* **2007**, *32* (15), 3253–3257.
386 <https://doi.org/10.1016/j.ijhydene.2007.04.042>.
- 387 (6) Yang, J. J.; Pickett, M. D.; Li, X.; Ohlberg, D. A. A.; Stewart, D. R.; Williams, R. S.
388 Memristive Switching Mechanism for Metal/Oxide/Metal Nanodevices. *Nat. Nanotechnol.*
389 **2008**, *3* (7), 429–433. <https://doi.org/10.1038/nnano.2008.160>.
- 390 (7) Klingler, M.; Chu, W. F.; Weppner, W. Electrochromism by Polarization of
391 Semiconducting Ionic Materials. *Ionics* **1995**, *1* (3), 251–256.
392 <https://doi.org/10.1007/BF02426026>.
- 393 (8) Mogensen, M.; Nigel, S.; Geoff, T. Physical, Chemical and Electrochemical Properties of
394 Pure and Doped Ceria. *Solid State Ion.* **2000**, *129* (1–4), 63–94.
395 [https://doi.org/10.1016/S0167-2738\(99\)00318-5](https://doi.org/10.1016/S0167-2738(99)00318-5).

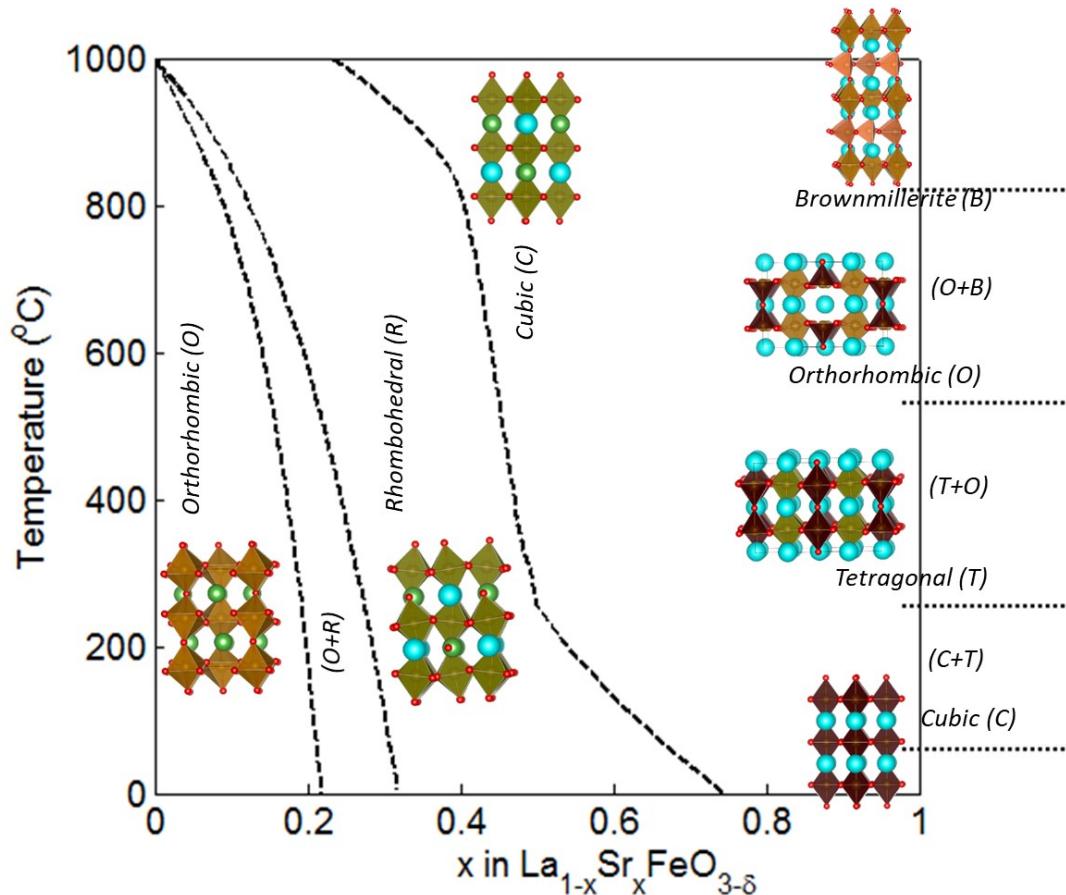
- 396 (9) Xu, S.; Jacobs, R.; Morgan, D. Factors Controlling Oxygen Interstitial Diffusion in the
 397 Ruddlesden–Popper Oxide $\text{La}_{2-x}\text{Sr}_x\text{NiO}_{4+\delta}$. *Chem. Mater.* **2018**, *30* (20), 7166–7177.
 398 <https://doi.org/10.1021/acs.chemmater.8b03146>.
- 399 (10) Burriel, M.; Peña-Martínez, J.; Chater, R. J.; Fearn, S.; Berenov, A. V.; Skinner, S. J.;
 400 Kilner, J. A. Anisotropic Oxygen Ion Diffusion in Layered $\text{PrBaCo}_2\text{O}_{5+\delta}$. *Chem. Mater.*
 401 **2012**, *24* (3), 613–621. <https://doi.org/10.1021/cm203502s>.
- 402 (11) Jiang, S. P. Development of Lanthanum Strontium Cobalt Ferrite Perovskite Electrodes of
 403 Solid Oxide Fuel Cells – A Review. *Int. J. Hydrog. Energy* **2019**, *44* (14), 7448–7493.
 404 <https://doi.org/10.1016/j.ijhydene.2019.01.212>.
- 405 (12) Mizusaki, J.; Sasamoto, T.; Cannon, W. R.; Bowen, H. K. Electronic Conductivity, Seebeck
 406 Coefficient, and Defect Structure of $\text{La}_{1-x}\text{Sr}_x\text{FeO}_3$ ($x=0.1, 0.25$). *J. Am. Ceram. Soc.* **1983**,
 407 *66* (4), 247–252. <https://doi.org/10.1111/j.1151-2916.1983.tb15707.x>.
- 408 (13) Kuklja, M. M.; Kotomin, E. A.; Merkle, R.; Mastrikov, Yu. A.; Maier, J. Combined
 409 Theoretical and Experimental Analysis of Processes Determining Cathode Performance in
 410 Solid Oxide Fuel Cells. *Phys. Chem. Chem. Phys.* **2013**, *15* (15), 5443.
 411 <https://doi.org/10.1039/c3cp44363a>.
- 412 (14) Ritzmann, A. M.; Muñoz-García, A. B.; Pavone, M.; Keith, J. A.; Carter, E. A. Ab Initio
 413 DFT+U Analysis of Oxygen Vacancy Formation and Migration in $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta} = 0, 0.25,$
 414 0.50). *Chem. Mater.* **2013**, *25* (15), 3011–3019. <https://doi.org/10.1021/cm401052w>.
- 415 (15) Ren, Y.; Küngas, R.; Gorte, R. J.; Deng, C. The Effect of A-Site Cation ($\text{Ln}=\text{La, Pr, Sm}$) on
 416 the Crystal Structure, Conductivity and Oxygen Reduction Properties of Sr-Doped Ferrite
 417 Perovskites. *Solid State Ion.* **2012**, *212*, 47–54. <https://doi.org/10.1016/j.ssi.2012.02.028>.
- 418 (16) Cassir, M.; Gourba, E. Reduction in the Operating Temperature of Solid Oxide Fuel Cells—
 419 Potential Use in Transport Applications. *Ann. Chim. Sci. Matér.* **2001**, *26* (4), 49–58.
- 420 (17) Steele, B. C. H.; Heinzel, A. Materials for Fuel-Cell Technologies. *Nature* **2001**, *414* (6861),
 421 345–352. <https://doi.org/10.1038/35104620>.
- 422 (18) Dogdibegovic, E.; Wang, R.; Lau, G. Y.; Tucker, M. C. High Performance Metal-Supported
 423 Solid Oxide Fuel Cells with Infiltrated Electrodes. *J. Power Sources* **2019**, *410–411*, 91–
 424 98. <https://doi.org/10.1016/j.jpowsour.2018.11.004>.
- 425 (19) Das, T.; Nicholas, J. D.; Qi, Y. Long-Range Charge Transfer and Oxygen Vacancy
 426 Interactions in Strontium Ferrite. *J. Mater. Chem. A* **2017**, *5* (9), 4493–4506.
 427 <https://doi.org/10.1039/C6TA10357J>.
- 428 (20) Lee, Y.-L.; Morgan, D. Ab Initio and Empirical Defect Modeling of $\text{LaMnO}_{3\pm\delta}$ for Solid
 429 Oxide Fuel Cell Cathodes. *Phys. Chem. Chem. Phys.* **2012**, *14* (1), 290–302.
 430 <https://doi.org/10.1039/C1CP22380A>.
- 431 (21) Kuklja, M. M.; Mastrikov, Y. A.; Jansang, B.; Kotomin, E. A. The Intrinsic Defects,
 432 Disordering, and Structural Stability of $\text{Ba}_x\text{Sr}_{1-x}\text{Co}_y\text{Fe}_{1-y}\text{O}_{3-\delta}$ Perovskite Solid Solutions. *J.*
 433 *Phys. Chem. C* **2012**, *116* (35), 18605–18611. <https://doi.org/10.1021/jp304055s>.
- 434 (22) Maier, J. *Physical Chemistry of Ionic Materials: Ions and Electrons in Solids*; Wiley:
 435 Chichester ; Hoboken, NJ, 2004.
- 436 (23) Pan, J.; Cheng, Y.-T.; Qi, Y. General Method to Predict Voltage-Dependent Ionic
 437 Conduction in a Solid Electrolyte Coating on Electrodes. *Phys. Rev. B* **2015**, *91* (13),
 438 134116. <https://doi.org/10.1103/PhysRevB.91.134116>.
- 439 (24) Chroneos, A.; Yildiz, B.; Tarancón, A.; Parfitt, D.; Kilner, J. A. Oxygen Diffusion in Solid
 440 Oxide Fuel Cell Cathode and Electrolyte Materials: Mechanistic Insights from Atomistic
 441 Simulations. *Energy Environ. Sci.* **2011**, *4* (8), 2774. <https://doi.org/10.1039/c0ee00717j>.

- 442 (25) Das, T.; Nicholas, J. D.; Qi, Y. Polaron Size and Shape Effects on Oxygen Vacancy
 443 Interactions in Lanthanum Strontium Ferrite. *J. Mater. Chem. A* **2017**.
 444 <https://doi.org/10.1039/C7TA06948K>.
- 445 (26) Ishigaki, T.; Yamauchi, S.; Kishio, K.; Mizusaki, J.; Fueki, K. Diffusion of Oxide Ion
 446 Vacancies in Perovskite-Type Oxides. *J. Solid State Chem.* **1988**, *73* (1), 179–187.
 447 [https://doi.org/10.1016/0022-4596\(88\)90067-9](https://doi.org/10.1016/0022-4596(88)90067-9).
- 448 (27) De Souza, R. A.; Kilner, J. A. Oxygen Transport in $\text{La}_{1-x}\text{Sr}_x\text{Mn}_{1-y}\text{Co}_y\text{O}_{3\pm\delta}$ Perovskites: Part
 449 I. Oxygen Tracer Diffusion. *Solid State Ion.* **1998**, *106* (3–4), 175–187.
 450 [https://doi.org/10.1016/S0167-2738\(97\)00499-2](https://doi.org/10.1016/S0167-2738(97)00499-2).
- 451 (28) Berenov, A. V.; Atkinson, A.; Kilner, J. A.; Bucher, E.; Sitte, W. Oxygen Tracer Diffusion
 452 and Surface Exchange Kinetics in $\text{La}_{0.6}\text{Sr}_0.4\text{CoO}_{3-\delta}$. *Solid State Ion.* **2010**, *181* (17–18), 819–
 453 826. <https://doi.org/10.1016/j.ssi.2010.04.031>.
- 454 (29) Mastrikov, Y. A.; Merkle, R.; Kotomin, E. A.; Kuklja, M. M.; Maier, J. Formation and
 455 Migration of Oxygen Vacancies in $\text{La}_{1-x}\text{Sr}_x\text{Co}_{1-y}\text{Fe}_y\text{O}_{3-\delta}$ Perovskites: Insight from Ab Initio
 456 Calculations and Comparison with $\text{Ba}_{1-x}\text{Sr}_x\text{Co}_{1-y}\text{Fe}_y\text{O}_{3-\delta}$. *Phys Chem Chem Phys* **2013**, *15*
 457 (3), 911–918. <https://doi.org/10.1039/C2CP43557H>.
- 458 (30) Mayeshiba, T. T.; Morgan, D. D. Factors Controlling Oxygen Migration Barriers in
 459 Perovskites. *Solid State Ion.* **2016**, *296*, 71–77. <https://doi.org/10.1016/j.ssi.2016.09.007>.
- 460 (31) Yoo, J. Determination of the Equilibrium Oxygen Non-Stoichiometry and the Electrical
 461 Conductivity of $\text{La}_{0.5}\text{Sr}_{0.5}\text{FeO}_{3-x}$. *Solid State Ion.* **2004**, *175* (1–4), 55–58.
 462 <https://doi.org/10.1016/j.ssi.2004.09.026>.
- 463 (32) Takeda, Y.; Kanno, K.; Takada, T.; Yamamoto, O.; Takano, M.; Nakayama, N.; Bando, Y.
 464 Phase Relation in the Oxygen Nonstoichiometric System, SrFeO_x ($2.5 \leq x \leq 3.0$). *J. Solid*
 465 *State Chem.* **1986**, *63* (2), 237–249. [https://doi.org/10.1016/0022-4596\(86\)90174-X](https://doi.org/10.1016/0022-4596(86)90174-X).
- 466 (33) Hombo, J.; Matsumoto, Y.; Kawano, T. Electrical Conductivities of $\text{SrFeO}_{3-\delta}$ and $\text{BaFeO}_{3-\delta}$
 467 Perovskites. *J. Solid State Chem.* **1990**, *84* (1), 138–143. [https://doi.org/10.1016/0022-4596\(90\)90192-Z](https://doi.org/10.1016/0022-4596(90)90192-Z).
- 468 (34) Kharton, V.; Kovalevsky, A.; Tsipis, E.; Viskup, A.; Naumovich, E.; Jurado, J.; Fraude, J.
 469 Mixed Conductivity and Stability of A-Site-Deficient $\text{Sr}(\text{Fe},\text{Ti})\text{O}_{3-\delta}$; Perovskites. *J. Solid*
 470 *State Electrochem.* **2002**, *7* (1), 30–36. <https://doi.org/10.1007/s10008-002-0286-3>.
- 471 (35) Lee, C.-W.; Behera, R. K.; Wachsman, E. D.; Phillipot, S. R.; Sinnott, S. B. Stoichiometry
 472 of the LaFeO_3 (010) Surface Determined from First-Principles and Thermodynamic
 473 Calculations. *Phys. Rev. B* **2011**, *83* (11), 115418.
 474 <https://doi.org/10.1103/PhysRevB.83.115418>.
- 475 (36) Greg Mills, K. W. J. Nudged Elastic Band Method for Finding Minimum Energy Paths of
 476 Transitions. **1998**.
- 477 (37) Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A Climbing Image Nudged Elastic Band
 478 Method for Finding Saddle Points and Minimum Energy Paths. *J. Chem. Phys.* **2000**, *113*
 479 (22), 9901–9904. <https://doi.org/10.1063/1.1329672>.
- 480 (38) Sheppard, D.; Terrell, R.; Henkelman, G. Optimization Methods for Finding Minimum
 481 Energy Paths. *J. Chem. Phys.* **2008**, *128* (13), 134106. <https://doi.org/10.1063/1.2841941>.
- 482 (39) Tucker, M. C. Progress in Metal-Supported Solid Oxide Fuel Cells: A Review. *J. Power*
 483 *Sources* **2010**, *195* (15), 4570–4582. <https://doi.org/10.1016/j.jpowsour.2010.02.035>.
- 484 (40) Mantina, M.; Wang, Y.; Chen, L. Q.; Liu, Z. K.; Wolverton, C. First Principles Impurity
 485 Diffusion Coefficients. *Acta Mater.* **2009**, *57* (14), 4102–4108.
 486 <https://doi.org/10.1016/j.actamat.2009.05.006>.

- 488 (41) Wærnhus, I.; Grande, T.; Wiik, K. Surface Exchange of Oxygen in $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ ($x = 0, 0.1$). *Top. Catal.* **2011**, *54* (13–15), 1009–1015. <https://doi.org/10.1007/s11244-011-9712-z>.
- 489 (42) Das, T.; Nicholas, J. D.; Qi, Y. First-Principles Studies of Oxygen Vacancy Interactions and 490 Their Impact on Oxygen Migration in Lanthanum Strontium Ferrite. *ECS Trans.* **2017**, *78* 491 (1), 2807–2814. <https://doi.org/10.1149/07801.2807ecst>.
- 492 (43) Fossdal, A.; Menon, M.; Wærnhus, I.; Wiik, K.; Einarsrud, M.-A.; Grande, T. Crystal 493 Structure and Thermal Expansion of $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$ Materials. *J. Am. Ceram. Soc.* **2004**, *87* 494 (10), 1952–1958. <https://doi.org/10.1111/j.1151-2916.2004.tb06346.x>.
- 495 (44) Patrakeev, M. V.; Bahteeva, J. A.; Mitberg, E. B.; Leonidov, I. A.; Kozhevnikov, V. L.; 496 Poepelmeier, K. R. Electron/Hole and Ion Transport in $\text{La}_{1-x}\text{Sr}_x\text{FeO}_{3-\delta}$. *J. Solid State* 497 *Chem.* **2003**, *172* (1), 219–231. [https://doi.org/10.1016/S0022-4596\(03\)00040-9](https://doi.org/10.1016/S0022-4596(03)00040-9).
- 498 (45) Yang, Q.; Burye, T. E.; Lunt, R. R.; Nicholas, J. D. In Situ Oxygen Surface Exchange 499 Coefficient Measurements on Lanthanum Strontium Ferrite Thin Films via the Curvature 500 Relaxation Method. *Solid State Ion.* **2013**, *249–250* (0), 123–128. 501 <https://doi.org/10.1016/j.ssi.2013.07.025>.
- 502 (46) ten Elshof, J. E.; Lankhorst, M. H. R.; Bouwmeester, H. J. M. Chemical Diffusion and 503 Oxygen Exchange of $\text{La}_{0.6}\text{Sr}_{0.4}\text{Co}_{0.6}\text{Fe}_{0.4}\text{O}_{3-\delta}$. *Solid State Ion.* **1997**, *99* (1–2), 15–22. 504 [https://doi.org/10.1016/S0167-2738\(97\)00263-4](https://doi.org/10.1016/S0167-2738(97)00263-4).
- 505 (47) Mosleh, M.; Søgaard, M.; Hendriksen, P. V. Kinetics and Mechanisms of Oxygen Surface 506 Exchange on $\text{La}_{0.6}\text{Sr}_{0.4}\text{FeO}_{3-\delta}$ Thin Films. *J. Electrochem. Soc.* **2009**, *156* (4), B441–B457. 507 <https://doi.org/10.1149/1.3062941>.
- 508 (48) Søgaard, M.; Vang Hendriksen, P.; Mogensen, M. Oxygen Nonstoichiometry and Transport 509 Properties of Strontium Substituted Lanthanum Ferrite. *J. Solid State Chem.* **2007**, *180* (4), 510 1489–1503. <https://doi.org/10.1016/j.jssc.2007.02.012>.
- 511 (49) Søgaard, M.; Bieberle-Hütter, A.; Hendriksen, P. V.; Mogensen, M.; Tuller, H. L. Oxygen 512 Incorporation in Porous Thin Films of Strontium Doped Lanthanum Ferrite. *J. 513 Electroceramics* **2011**, *27* (3–4), 134–142. <https://doi.org/10.1007/s10832-011-9658-3>.
- 514 (50) Burye, T. E.; Tang, H.; Nicholas, J. D. The Effect of Precursor Solution Desiccation or 515 Nano-Ceria Pre-Infiltration on Various $\text{La}_{0.6}\text{Sr}_{0.4}\text{Fe}_y\text{Co}_{1-y}\text{O}_{3-x}$ Infiltrate Compositions. *J. 516 Electrochem. Soc.* **2016**, *163* (9), F1017–F1022. <https://doi.org/10.1149/2.0431609jes>.
- 517 (51) Jiang, S.; Hu, T.; Gild, J.; Zhou, N.; Nie, J.; Qin, M.; Harrington, T.; Vecchio, K.; Luo, J. A 518 New Class of High-Entropy Perovskite Oxides. *Scr. Mater.* **2018**, *142*, 116–120. 519 <https://doi.org/10.1016/j.scriptamat.2017.08.040>.
- 520
- 521
- 522
- 523

524

525 **Table 1** Structure details for the DFT vacancy calculations and the DFT computed vacancy
 526 formation energy E_f (at 0K) and migration energy barrier E_b .

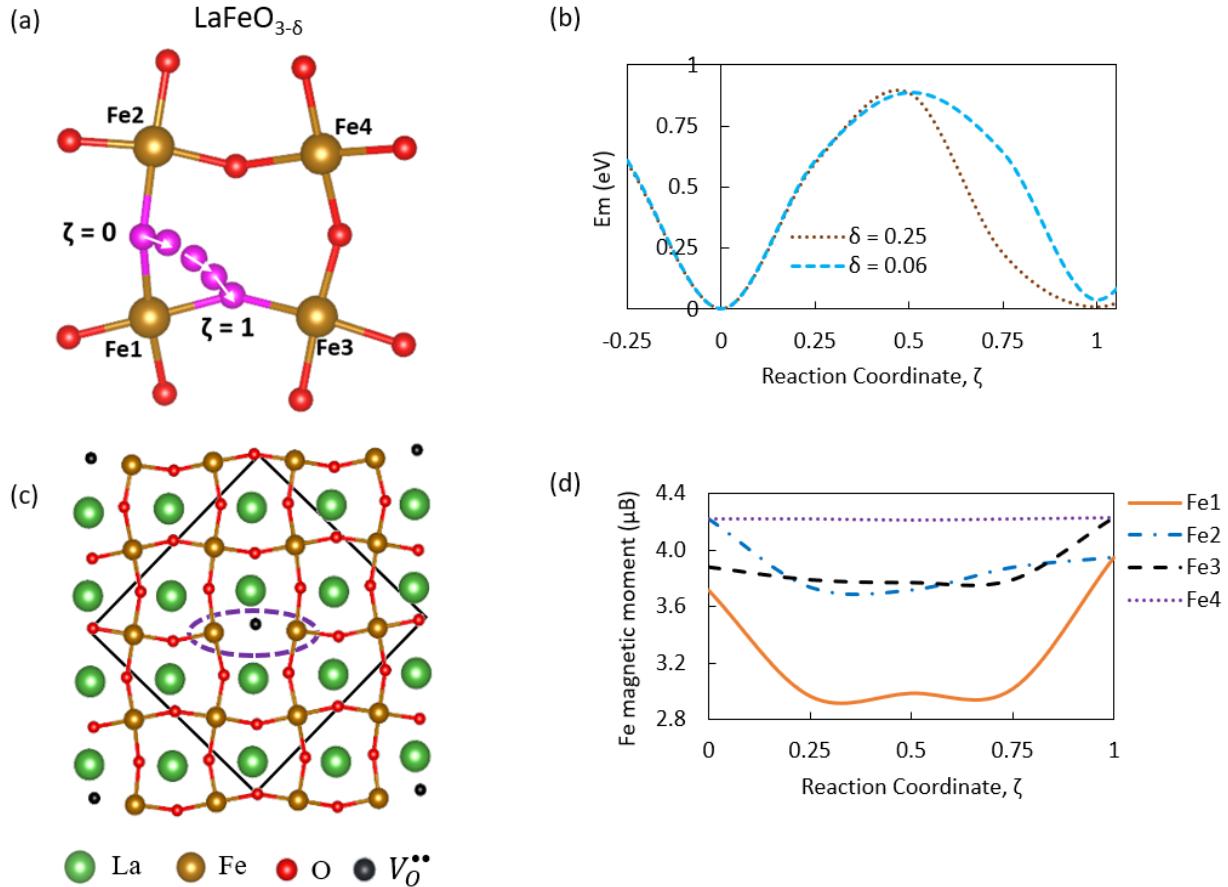

527

Phase	Unit Cell Lattice Parameters (Å)			Supercell cell with vacancy				
	a	b	c	δ	# of atoms	Cell Length (Å)	E_f (eV)	E_b (eV)
LaFeO₃ (Orthorhombic)	5.67	7.92	5.58	0.06	La ₁₆ Fe ₁₆ O ₄₇	11.34×7.92×11.16	3.54	0.89
				0.25	La ₄ Fe ₄ O ₁₁	5.67×7.92×5.58	3.61	0.88
La_{0.5}Sr_{0.5}FeO₃ (Rhombohedral)	5.51	-	-	0.04	La ₁₂ Sr ₁₂ Fe ₂ 4O ₇₁	11.13×11.13×13.45	1.62	0.45
				0.17	La ₃ Sr ₃ Fe ₆ O ₁₇	5.56×5.56×13.45	1.83	0.44
La_{0.5}Sr_{0.5}FeO₃ (Cubic)	5.53	-	-	0.13	La ₄ Sr ₄ Fe ₈ O ₂₃	11.05×11.05×11.05	1.45	0.70
SrFeO₃ (Cubic)	3.88	-	-	0.04	Sr ₂₄ Fe ₂₄ O ₇₁	10.97×10.97×11.64	0.39	0.58
				0.12	Sr ₈ Fe ₈ O ₂₃	7.76×7.76×11.64	0.71	0.62
				0.5	Sr ₂ Fe ₂ O ₅	5.49×5.49×3.88	1.45	1.07
SrFeO_{2.875} (Tetragonal)	11.03	-	7.76	0.188	Sr ₁₆ Fe ₁₆ O ₄₅	11.03×11.03×7.76	0.92	0.71
SrFeO_{2.75} (Orthorhombic)	11.09	7.78	5.52	0.312	Sr ₁₆ Fe ₁₆ O ₄₃	7.78×11.09×11.04	1.25	1.17
SrFeO_{2.5} (Brownmillerite)	5.58	15.70	5.77	0.625	Sr ₈ Fe ₈ O ₁₉	5.58×15.70×5.77	3.00	-

528

529

530

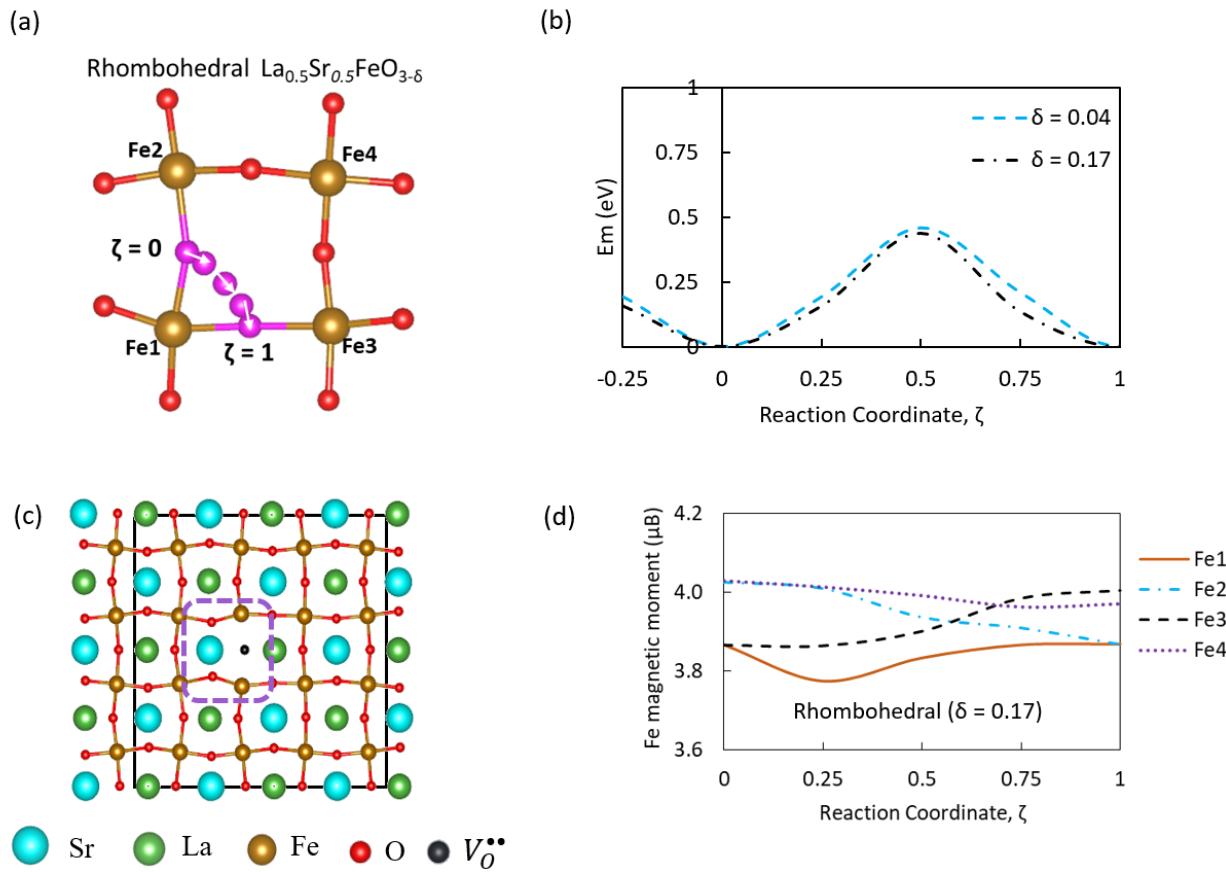


531

532

533 **Figure 1.** (Color online) Experimentally determined LSF phase boundaries with varying La/Sr
 534 ratio and temperature in air. The lattice structure of the corresponding phases are shown for
 535 reference.²⁵

536

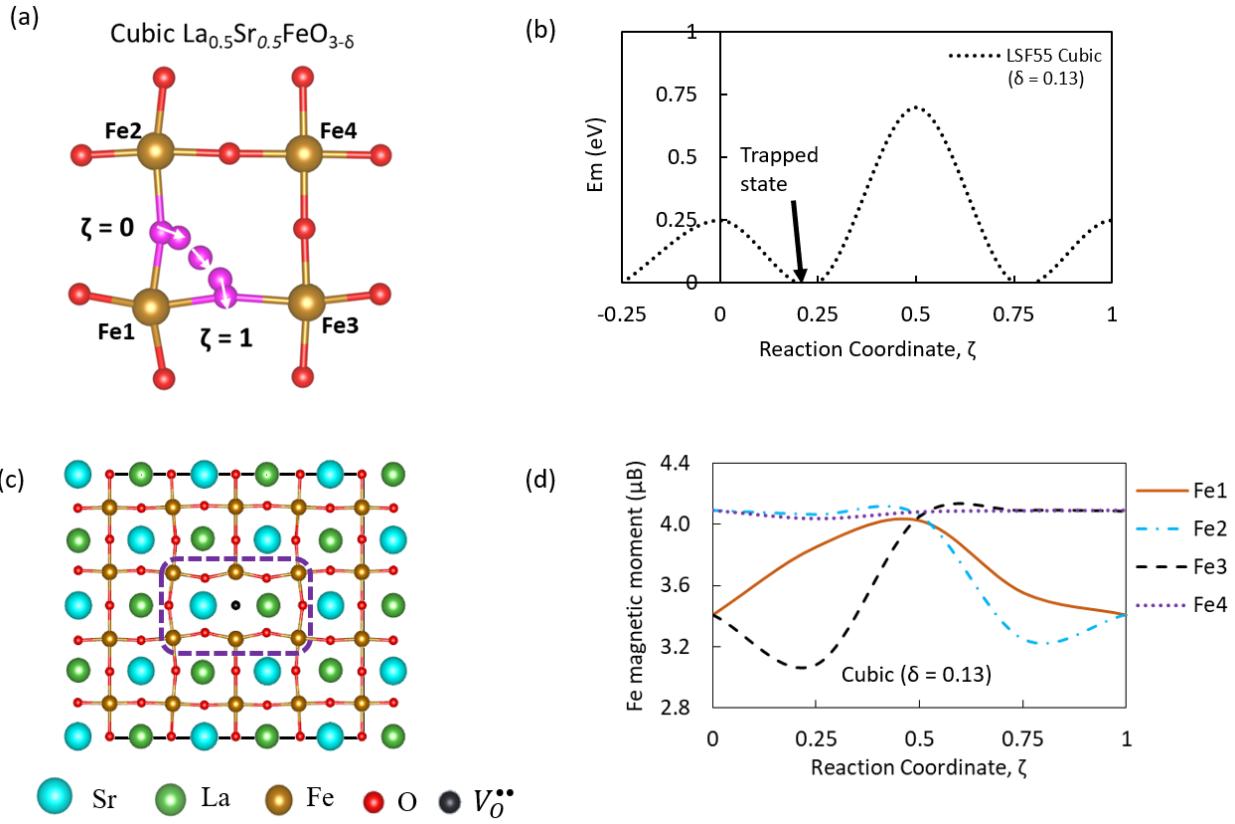


537

538 **Figure 2.** (Color online) Oxygen migration in LaFeO_{3-δ}. The pink atoms in (a) highlight the oxygen
 539 migration pathway (with the lattice pictured at the transition state), (b) shows the oxygen migration
 540 barrier along this path for two different δ , (c) shows a cross-section of the oxygen vacancy (the
 541 black dot) migration plane, and (d) shows the magnetic moment change on the neighboring Fe
 542 atoms during oxygen vacancy migration along the path shown in (a). The purple dashed line in (c)
 543 signifies the polaron volume (i.e. the long-range charge transfer area due to the presence of the
 544 oxygen vacancy). The calculated magnetic moment change on the oxygen-vacancy-neighboring
 545 Fe atoms shown in (d) results from charge transfer during oxygen ion migration. Note, the La
 546 atoms are hidden in part (a) so the migration pathways can be more easily seen.

547

548


549

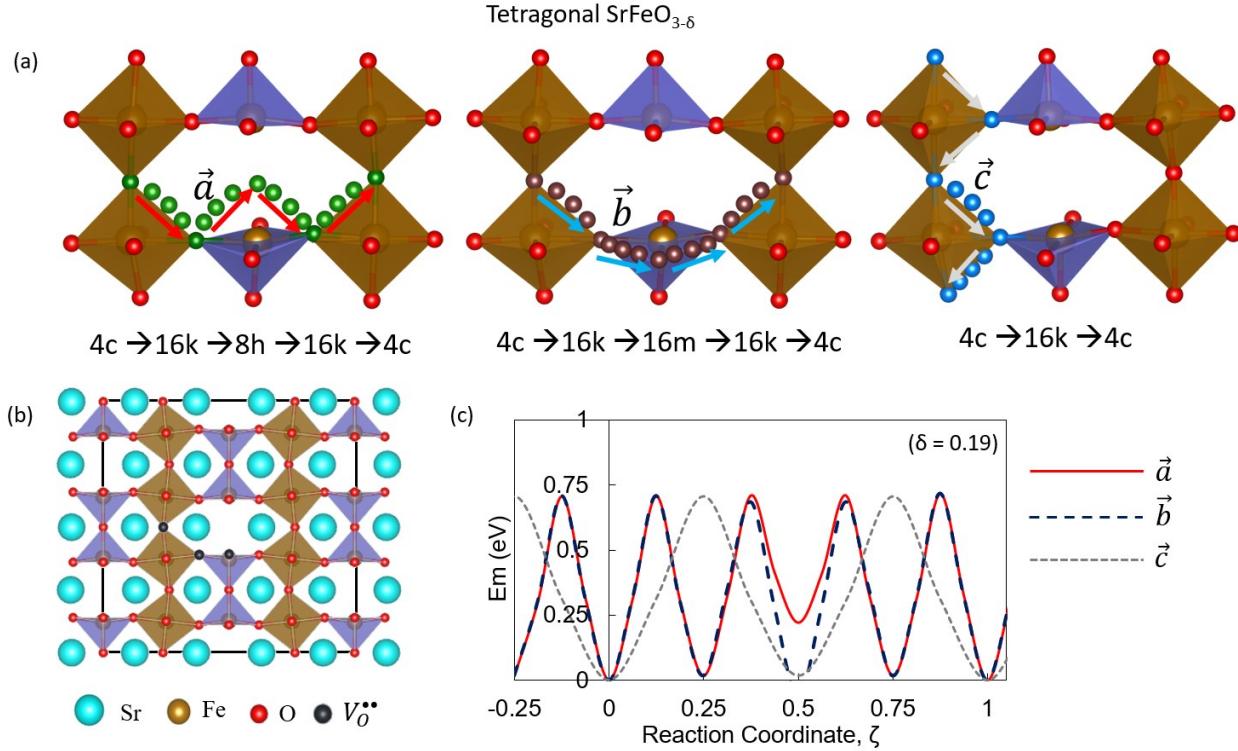
550 **Figure 3.** (Color online) Oxygen migration in Rhombohedral $(\text{LaSr})\text{FeO}_{3-\delta}$ for $\delta=0.04$ and $\delta=0.17$. The pink atoms in (a) highlight the oxygen migration pathway (with the lattice pictured at the transition state), (b) shows the oxygen migration barrier along this path, (c) shows a cross-section of the oxygen vacancy (the black dot) migration plane, and (d) shows the magnetic moment change on the neighboring Fe atoms during oxygen vacancy migration along the path shown in (a). The purple dashed line in (c) signifies the polaron volume (i.e. the long-range charge transfer area due to the presence of the oxygen vacancy). The calculated magnetic moment change on the oxygen-vacancy-neighboring Fe atoms shown in (d) results from charge transfer during oxygen ion migration. Note, the La and Sr atoms are hidden in part (a) so the migration pathways can be more easily seen.

560

561

562

576



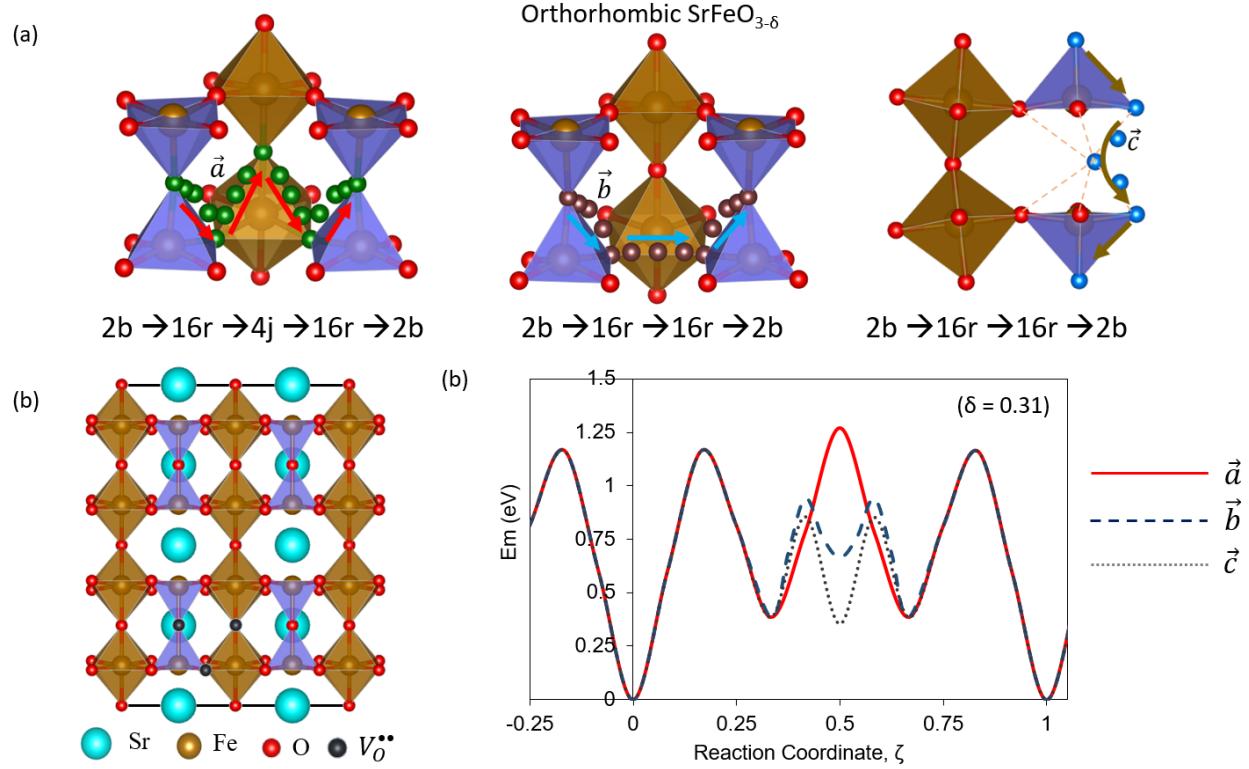
577

Figure 5. (Color online) Oxygen migration in cubic $\text{SrFeO}_{3-\delta}$. Here, (a) highlights the oxygen migration pathway (with the lattice pictured at the transition state) in cubic $\text{SrFeO}_{3-\delta}$ at $\delta=0.04$, (b) shows the oxygen migration barrier along this path for three different δ , (c) shows a cross-section of the oxygen vacancy migration plane in cubic $\text{SrFeO}_{3-\delta}$ for $\delta=0.04$, and (d) shows the magnetic moment change on the neighboring Fe atoms during oxygen vacancy migration along the path shown in (a). The purple dashed line in (c) signifies the polaron volume (i.e. the long range charge transfer area due to the presence of the oxygen vacancy). The calculated magnetic moment change on the oxygen-vacancy-neighboring Fe atoms shown in (d) results from charge transfer during oxygen ion migration cubic $\text{SrFeO}_{3-\delta}$ at $\delta=0.04$. Note, the Sr atoms are hidden in part (a) so the migration pathways can be more easily seen.

588

589

590

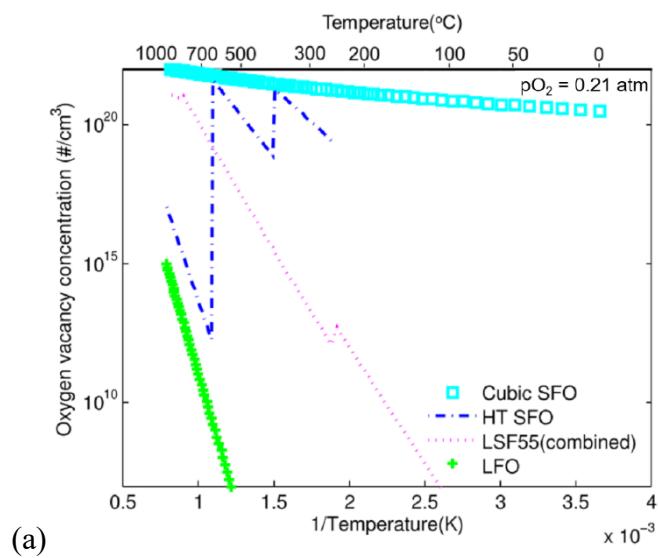

591 **Figure 6.** (Color online) Oxygen migration in tetragonal $\text{SrFeO}_{3-\delta}$ with $\delta = 0.188$ and $\delta^0 =$
 592 0.125 . Only Fe (brown) and O (red) atoms are shown in the lattice for ease of visibility. (a) The
 593 green, dark brown, and dark blue atoms highlight three different oxygen migration pathways that
 594 labeled by different Wyckoff positions. Path \vec{a} follows $4c \rightarrow 16k \rightarrow 8h \rightarrow 16k \rightarrow 4c$; Path \vec{b}
 595 follows $4c \rightarrow 16k \rightarrow 16m \rightarrow 16k \rightarrow 4c$; and Path \vec{c} follows $4c \rightarrow 16k \rightarrow 4c$ (b) shows a cross-
 596 section of the oxygen vacancy migration plane and (c) shows the oxygen migration barriers along
 597 these pathways.

598

599

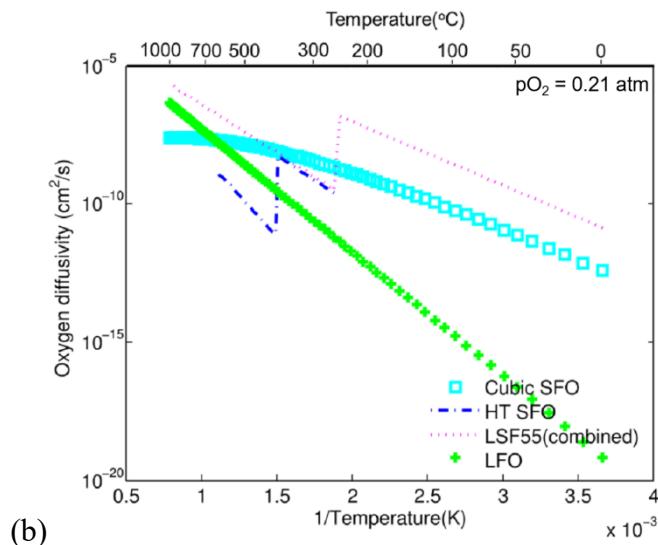
600

601

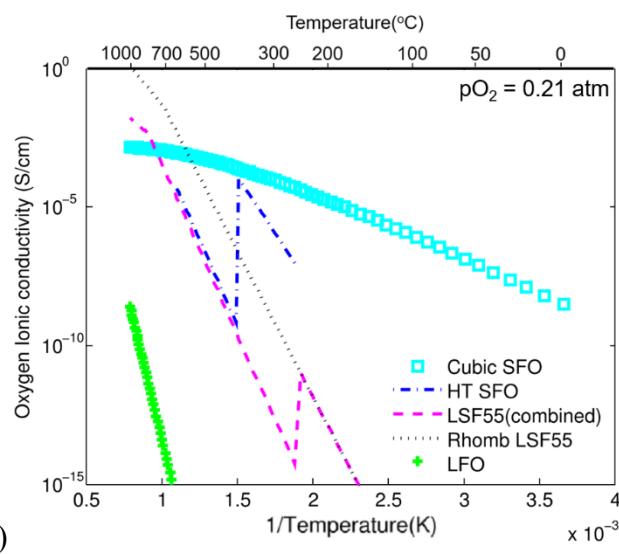

602

603 **Figure 7.** (Color online) Oxygen migration in orthorhombic $\text{SrFeO}_{3-\delta}$ with $\delta = 0.312$ and $\delta^0 =$
 604 0.250 . Only Fe (brown) and O (red) atoms are shown in the lattice for ease of visibility. (a) The
 605 green, dark brown, and dark blue atoms highlight three different oxygen migration pathways that
 606 labeled by different Wyckoff positions. Path \vec{a} follows $2b \rightarrow 16r \rightarrow 16r \rightarrow 2b$; Path \vec{b} follows
 607 $2b \rightarrow 16r \rightarrow 4j \rightarrow 16r \rightarrow 2b$; and Path \vec{c} follows $2b \rightarrow 16r \rightarrow 16r \rightarrow 2b$ (b) shows a cross-section
 608 of the oxygen vacancy migration plane and (c) shows the oxygen migration barriers along these
 609 pathways.

610


611

612


(a)

613

(b)

614

615 **Figure 8.** (Color online) The (a) mobile oxygen vacancy concentration, (b) oxygen vacancy
616 diffusivity, and (c) oxygen vacancy conductivity in different LSF compositions as a function of
617 temperature in air. ‘Cubic SFO’ represents cubic $\text{SrFeO}_{3-\delta}$. ‘HT SFO’ represents combined data
618 for tetragonal, orthorhombic, and brownmillerite phases (note, due to a very low oxygen vacancy
619 concentration, diffusivity and conductivity calculations were not performed for brownmillerite
620 SFO). ‘LSF55(combined)’ represents LSF55 that experiences the rhombohedral to cubic phase
621 change. ‘Rhomb LSF55’ represents real and hypothetical data for rhombohedral LSF55.

622