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Abstract—Spectrum cartography aims at estimating the pat-
tern of wideband signal power propagation over a region of
interest (i.e. the radio map)—from limited samples taken sparsely
over the region. Classical cartography methods are mostly
concerned with recovering the aggregate radio frequency (RF)
information while ignoring the constituents of the radio map—
but fine-grained emitter-level RF information is of great interest.
In addition, most existing cartography methods are based on
random geographical sampling that is considered difficult to
implement in some cases, due to legal/privacy/security issues.
The theoretical aspects (e.g., identifiability of the radio map)
of many existing methods are also unclear. In this work, we
propose a radio map disaggregation method that is based on
coupled block-term tensor decomposition. Our method guar-
antees identifiability of the individual wideband radio map of
each emitter in the geographical region of interest (thereby
that of the aggregate radio map as well), under some realistic
conditions. The identifiability result holds under a large variety
of geographical sampling patterns, including many pragmatic
systematic sampling strategies. We also propose an effective
optimization algorithm to carry out the formulated coupled
tensor decomposition problem.

Index Terms—coupled tensor decomposition, block term de-
composition, radio map, spectrum cartography

I. INTRODUCTION

Improving spectrum efficiency relies on accurate, fine-
grained, and agile radio frequency (RF) awareness. Spectrum
sensing is the first step towards this end. Spectrum sensing is
commonly poised as a detection problem, which determines
if a frequency band is used or not [1]; some works also
consider it as a power spectral density (PSD) estimation
problem that recovers a wideband PSD using a sub-Nyquist
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sampling rate [2]-[4]. RF cartography [5]-[8] takes one step
further, which aims to construct a spatial power loss field
(SLF) over a geographical area of interest. Because spectrum
cartography provides valuable spatial information on top of
spectral information, it is considered appealing for aggressive
access, interference avoidance, and networking.

Spectrum sensing and cartography offer spectral occupancy
and geographical loss field information to system designers.
Nonetheless, RF awareness-enabling techniques are still far
from being satisfactory. First, most of the aforementioned tech-
niques only recover aggregate PSD or SLF that are normally
contributed by multiple emitters. Simultaneously estimating
PSD and SLF disaggregated to the emitter level has not been
addressed. Second, most existing cartography techniques put
emphases on the algorithmic aspects. However, it has been
unclear if in theory the spectral and spatial information is re-
coverable, given limited samples over space and/or frequency.
Third, most cartography methods work under random spatial
sampling, while random sampling may not always be realistic,
because some areas may be subject to security/privacy/legal
constraints.

To handle the above challenges, in this work, we propose
a new framework for spectrum cartography. Our method is
based on a novel coupled tensor decomposition formulation,
and admits a number of salient features. First, by modeling the
wideband radio map as a tensor that follows the multilinear
rank-(L,., L,., 1) block-term decomposition model [9], our
framework guarantees the identifiability of the SLF and PSD
of each emitter, thereby achieving radio map disaggregation.
Second, the proposed approach works under a number of
systematic sampling strategies. This is particularly useful for
sensing in urban areas, where sensors may not be deployed
randomly. We also offer a simple alternating optimization
algorithm to handle the proposed estimation criterion. A series
of numerical simulations show that the proposed approach is
effective and promising.



II. SIGNAL MODEL AND PROBLEM STATEMENT

We consider a scenario where R transmitters/sources exist
within a 2-D geographical area of interest. Each source trans-
mits over a certain frequency band which may overlap. Flat
fading is assumed in the case where the frequency band of
interest is relatively small compared to the carrier frequency,
e.g., if the frequency bands span 20 MHz at a carrier frequency
within 2-5 GHz. This way, the SLF of transmitter r is
almost identical across different frequency bins fi,..., fk.
To be more precise, assuming that the signals from different
transmitters are uncorrelated, the received aggregate PSD at
2-D geographical position (i, j) is represented as [5], [8]:

R
Ti gk = Z Sr(ivj)ck,r;

r=1

(D

where S, € R’*/ represents the (discretized) SLF of trans-
mitter 7 , cy, represents the PSD of source r measured
at frequency bins f;, and R the number of transmitters.
The signal model (1) means that the received PSD is a
superposition of each PSD scaled by its individual SLF.

The received space-space-frequency radio map can be nat-
urally expressed in tensor notations. Define a tensor X &
RI*I*EK and a matrix C € RE* such that

X(i7j7 k) = xi,j,ka C<k7 71) = Ck,r-

Then, the signal model can be expressed as

R
X - Z S7' O Cp,
r=1

where c, denotes the rth column of C and o denotes the
outer product. We refer to this tensor X as a RF tensor, since
it reveals the RF environment across both the spatial and the
spectral domains.

Accurately estimating X is of great interest for many
reasons—e.g., interference avoidance, routing, and source lo-
calization. Of course, X cannot be fully observed. Many
approaches have been proposed to estimate X or 2-D versions
of X (i.e., SLF at a certain frequency band) from samples
taken within the geographical area of interest [5]—[8]. This
line of work is often referred to as spectrum cartography,
which has drawn a lot attention. In this work, we take a step
further: our goal is not only recovering the aggregate radio
map from downsampled RF data, but also disaggregating X
to estimate SLF and PSD of each source. In other words, our
goal is to estimate S, and c, for all . This task is very well-
motivated, since fine-grained emitter-level RF information can
enable much more effective spectral use/reuse strategies.
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III. PROPOSED APPROACH
A. BTD Model

Our approach starts from the following postulate: In (2), the
SLF of a source r, denoted by S, € R'*7 is approximately
a low-rank matrix. This postulate makes sense, since power
propagation over space is continuous, which makes many

columns and rows of S, correlated. Consequently, each S,
can be approximated by a rank-L matrix, i.e.,

S, =A,B/

with L, < min{I, J}. The low-rank assumption of S, is
reasonable, since SLF is smooth over spatial dimenson and
thus has high correlation between adjacent columns/rows.
Hence, we have

R R
X=>S,0¢, =) (A,B])oc,. (3)
r=1 r=1
where A, € R™*Ir and B, € R7*Er forr =1,...,R. We

further denote
A=[A, -
B = [BI,"' ’BR] eRJXZleLT

C=lci, - ,cp] € REXH

,Ap] € RIXEL L

The key observation here is that the tensor X in (3) follows
a block-term decomposition (BTD) model [10] in multilinear
rank-(L,., L., 1) terms. The BTD model has a very nice
property—A, B and ¢, for » = 1,---, R are identifiable
up to permutation and scaling ambiguities, under some mild
conditions. The corresponding theorem is given as follows:

Theorem 1 [9] Let (A, B, C) represent a BTD of X in rank-
(L,L,1) terms. Assume (A,B,C) are drawn from certain
joint absolutely continuous distributions. If IJ > L?>R and
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then, {A, B, c,.}E | are essentially unique almost surely.

We briefly introduce the matricization of a BTD tensor. Some
necessary definitions are required to support matricization.
The classic Khatri-Rao product (column-wise Kronecker) is
defined as

B,oA, =
B,(:,1) ® A(:,1), -

where ® denotes the Kronecker product. The partionwise
Khatri-Rao product between two partition matrices is defined
as [9]

Co, A=

,B.(:,L) ® A.(:,L)] € RI/*Lr,

[c1 ® A, ,cp® Ag] € RIKXE L

Usmg the above notations, the matricization of X =
Z (A B ) oc, are expressed as follows:

=(Co, B)AT, (4a)
=(Ce,A)BT, (4b)
=[(B1®A)1L,, -, (BROAR)1L,]CT,
= [vec(A;B), -+ ,vec(AgBR)|CT, (4¢)

where the different matricizations are obtained by vectorizing
different types of slabs (i.e., horizontal, vertical, and frontal
slabs, respectively).
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Fig. 1: Using moving sensors to sample the space-space-frequency RF tensor. (a) a
possible sampling route; (b) the observed slabs (yellow and blue slabs).

B. Systematic Sampling

If X is available, then estimating S, and c, can be done
by directly applying BTD algorithms [10] to the tensor. In
practice, however, the complete X is not available. What
we observe is a substantially undersampled version of X. In
this paper, we design a regular sampling strategy where only
some ‘rows’ and ‘columns’ are observed. The observed two
subtensors are denoted by

X(l) = X(Sla 5 :)? X(2) = X(:782’ :)’

with & € {1, -+ ,I} and So C {1, -, J}. Define two row-
selection matrices P = I;(Sy,:) (select rows from an identity
matrix by index set S1) and Q = I;(Ss,:) , and let M = |54 |
and N = |Ss|, where Iy is an I x I identity matrix and I is
a J x J identity matrix. Note that such a sampling pattern is
not hard to implement. For example, a moving sensor (carried
by unmaned vehicles or drones) can cruise over the region of
interest and measure the PSD at each coordinate on its route,
ie., X(i,7,:); see Fig.1 (a).
The sampled tensors can be represented as follows:

R
X =3 (PA,)B])oc,,
r=1
R
X® = Z(AT(BTTQT)) © Cr.
r=1

The sampled data is illustrated in Fig.1 (b). Our task now
amounts to estimating S,. and ¢, for r =1,..., R from Xgl)
and XEQ). We want to remark that the above sampling pattern
is only one example under our framework. There are many

more possible sampling patterns that can be derived.

C. Coupled Tensor Decomposition Approach

We aim to estimate S, and c, from X(l) and X@) and
propose the following criterion:

R
‘ ) _ -
{Amgil}%?'zl,c X Zl((PAT)Br ) o Cp
= F
R 2
+xXO =Y @eee |  ©)
r=1 F

We denote the objective function of Problem (5) as
J(A,B, C). This problem is not hard to handle. We propose
a block coordinate descent (BCD) [11] based algorithm. To be
specific, A, B, C are updated in a cyclical fashion as follows:

A"« argmin J(A, B, C?) (6a)
B! < argmin J(A'™!, B, CY) (6b)
C'! < argmin J(A'™, B! C), (6¢)

where superscript ¢ is the iteration index.

Note that each subproblem above is an unconstrained
quadratic program—and thus is easy to solve. To proceed,
take subproblem (6a) for example. Using the matricization
based representation, solving (6a) is equivalent to solving the
following:

A argmin [|X}" — (C©, B)(PA) |3
2
X ~ (C o, QB)AT}.
The optimality condition of the above is as follows:
P'PA(Co,B) (Co,B)+
H, H,
I, A(Co,QB) (Co,QB)+
HS H4
=P'x{""(Co,B)+X{""(Ce,QB).

Hjs

This simplifies the above equation as
H;AH, + H;AH, = Hs.

To find A from the Sylvester equation H; AH, + HsAH, =
H;, we propose to employ the extended Bartels-Stewart
method [12].

The subproblems in (6b) and (6¢) can be solved in the same
way. In practice, one can also add regularization terms such as
M|l A/ for each latent factor to control scaling/counter-scaling
issues, which will not complicate the algorithm.

D. Identifiability Analysis

In terms of identifiability, we show the following theorem:

Theorem 2 Assume that R < K and that M < I and N < J.
Also assume that R+ 2 < min(|M/L|, R) + min(|J/L]|, R)
and N > L, that P and Q both have full row-rank, and
that A, B, and C are drawn from certain joint absolutely
continuous distributions. Then, solving Problem (5) recovers

{S,,c.} for r =1..., R with probability one.

Proof: Note that the optimal solution to Problem (P1)
should make the two terms zero. Let (A, B, C) denote the
ground-truth and (A, B, C) denote any optimal solution of
Problem (5). We aim to prove that {S,, ¢, }2 ; is essentially
the ground-truth {S,,c,}f | up to permutation and scaling
ambiguities.



By Theorem 1, X!) is identifiable. Then, {PA, B }7
and C can be identified up to scaling and permutation
ambiguities. We have C = CIIA (¢, = A.c,.), where
IT is a permutation matrix and A is a scaling matrix. To
be specific, A = Diag(A1,---,Ag) and m € {1,--- , R}
satisfies II(r.,r) =1 for r = 1,--- , R. Note that

X = [vec(PAB]), - -
= [vec(PKlﬁir), e

,vec(PARB)|CT
,V@C(PKREI—;)]GT. @)

Plugging C = CIIA into (7), we have
PA,B] =\ 'PA, B/ .

Note thatAhAr,Br,]/?;T are all full column-rank matrices
almost surely, and the row selection matrix P is also a full
row-rank matrix. Hence, PA, € RM™*L is a submatrix of A,
and M > 2L, WhiCl’/l\ means that PA, is a full column-rank
matrix and so is PA,. Thereforg, there exists an invertible
matrix F,. € REXL that satisfies B, = B, F,.

Considering the matricization of 5(2)7 we have

X$ = [vec(A1B{QT),---
— [vec(A,B{Q"), -

,vec(ApBLQT)|CT
vec(ARBLQT)ICT. (8)

Plugging C = CIIA into (8), we have
AB/Q" =)\"A.B Q" ©
Plugging ]§T = B, F, into (9), we have
AF'Bl Q" =)"1A,B!Q".

Since BTTFTQT is a full row rank matrix, we have KT =
A-YA . F 7. Therefore,

S, =A,Bl =X\ 'A, F, (B, F,)"
=A\TAL B =)\ 'S,

Therefore, we have proven that ¢, = A.c,. and §r =\1S,.
forr=1,---,R. O

Note that M and N denote the numbers of the sampled
horizontal slabs and vertical slabs of the orginal RF tensor, re-
spectively. This result is very encouraging because it gives the
first identifiability-guaranteed formulation for RF tensor dis-
aggregation using limited regular (i.e. non-random) samples.
Perhaps a bit strikingly, Theorem 2 holds when the number
of sampled slabs is larger than a certain threshold without
assuming any randomness in sampling, without requiring how
the samples should be taken (e.g., uniformly at random)—
since this is reminiscent of identifiability of the BTD model
instead of completion-based approaches. This is very appeal-
ing, since sampling strategies can be very flexible under our
framework—and this can well accommodate scenarios where
some regions cannot be sampled due to legal/privacy/security
issues; see Fig. 2.
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Fig. 2: Feasible sampling patterns, which can well accommodate scenarios where some
regions cannot be sampled due to legal/privacy/security issues.
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Fig. 3: Ground-truth (top) and estimated (bottom) PSDs of two sources.
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Fig. 4: (a) The aggregated SLF at the 5-th frequency bin, namely X(:,:, 5); (b) The
ground-truth SLF of source 1; (c) The ground-truth SLF of source 1; (d) M = 8 rows
and N = 8 columns are sampled from X(:, :, 5); (e) The estimated SLF of source 1;
(f) The estimated SLF of source 2.



TABLE I: Performance under L = 4, R = 3, N = 6.

. M
Algorithm Measure 3 10 T3 0
NAEc 0.0381 0.0088 0.0055 0.0051
Proposed NAEg 0.4717 0.3420 0.2474 0.1905
NAEx 0.3889 0.3017 0.2194 0.1693
Running time(s) 1.1084 1.1716 1.4226 1.6292
NAEg 0.4580 0.3208 0.2281 0.1884
SR NAEx 0.3795 0.2824 0.2083 0.1760
Running time(s) 0.2883 0.4581 0.6992 0.9900
NAEc 0.5995 0.0246 0.0117 0.0110
TPS NAEg 0.9922 0.5430 0.3753 0.3249
NAEx 0.6671 0.4487 0.3226 0.2492
Running time(s) | 13.3200 | 21.3532 31.2258 43.0450
NAEc 0.5741 0.0216 0.0427 0.0251
GLS NAEg 0.9915 0.5518 0.4487 0.4402
NAEx 0.6549 0.4746 0.3196 0.2793
Running time(s) | 32.1612 | 59.2353 [ 113.6869 | 195.5264

IV. SIMULATIONS

In this section, we present a number of simulations that
showcase the effectiveness of our approach. The bands of
interest are divided into K = 64 frequency bins. R = 2
transmitters (with unknown locations and PSDs) are randomly
deployed in a region with a size of 100m x 100m. This region
is uniformly discretized to I x J grids, where I = J = 101.
Each SLF is generated by a path-loss model and spatial
correlated log-normal shadowing modelas in [13], where have
set the spatial decorrelation distance to be 30 m—which means
a relatively severe shadowing effect. Note that in a typical
outdoor scenario, the decorrelation distance ranges from 50 m
to 100 m.

In the first simulation, M = N = 8 equi-spaced frontal
and horizonal slabs are sampled, namely X(l) = X(81,5,1)
and X? = X(:,Sa,:) are sampled (where &1 = Sy =
{5,18,31,44,57,70,83,96}). The ground-truth PSDs and es-
timated PSDs (after removing permutation and maximum
amplitude be scaled to 1) of 2 sources are plotted in Fig.
3. The estimated PSDs and SFLs are shown in Fig. 4. One
can see that the estimated PSDs and SFLs are almost visually
identical to the ground truth, after some simple smoothing
post-processing .

We also compare the performance with some benmarks,
namely, the semi-parametric regression (SR) method [8], the
TPS method [14], and the group lasso splines (GLS) method
in [5]. Similar to our approach, the SR method estimates the
SLF of each emitter, but it assumes that the PSDs are known.
The GLS method and TPS recover the aggregated radio map.
Hence, we use a BTD algorithm offered by the Tensorlab to
disaggregate their estimated radio map. We use the normalized
absolute error (NAE) w.r.t. £; norm for S,, ¢, and X as our
performance metric. We use the ¢; norm since it is robust to
outliers. All the simulations are run for 50 Monte Carlo trials
and then taken the median of the NAEs.

Table I shows the results under L =4, R =3, N =6, K =
128 and various M’s. In general, all the algorithms favor the
cases where M is large, since this means that more samples
are available. SR is very efficient—since it does not need to
estimate the PSDs. The PSD and SLF estimation accuracy

of the proposed algorithm approaches that of SR, without
knowing the PSDs. TPS and GLS work worse in estimating
the PSDs and SLFs. This maybe because this approach did
not utilize the BTD structure of the signal model.

V. CONCLUSION

In this work, we propose a coupled tensor decomposition
framework for spectral cartography. Unlike existing works
that mostly focus on estimating the aggregated radio map
contributed by multiple emitters, our method can provably
identify the SLFs and PSDs of the constituent emitters. In
addition, our framework and identification theory work un-
der a variety of systematic sampling strategies, instead of
random sampling that is popular in the literature. This is
particularly useful for sensing a region that is subject to
legal/security/privacy regulations, e.g., an urban area, where
random sensor deployment may not be possible.
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