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ABSTRACT

In political redistricting, the compactness of a district is used as a quantitative proxy for its fairness.
Several well established, yet competing, notions of geographic compactness are commonly used
to evaluate the shapes of regions, including the Polsby-Popper score, the convex hull score, and the
Reock score, and these scores are used to compare two or more districts or plans. In this paper, we
prove mathematically that any map projection from the sphere to the plane reverses the ordering
of the scores of some pair of regions for all three of these scores. We evaluate these results
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empirically on United States congressional districts and demonstrate that this order-reversal does
occur in practice with respect to commonly used projections. Furthermore, the Reock score
ordering in particular appears to be quite sensitive to the choice of map projection.

1. Introduction

Striving for the geographic compactness of electoral dis-
tricts is a traditional principle of redistricting (Altman,
1998), and, to that end, many jurisdictions have
included the criterion of compactness in their legal
code for drawing districts. Some of these include
Iowa’s measuring the perimeter of districts (Iowa Code
§42.4(4), 2007), Maine’s minimizing travel time within
a district (Maine Statute §1206-A, 2013), and Idaho’s
avoiding drawing districts which are oddly shaped
(Idaho Statute 72-1506(4), 1996). Such measures can
vary widely in their precision, both mathematical and
otherwise. Computing the perimeter of districts is a very
clear definition, minimizing travel time is less so, and
what makes a district oddly shaped or not seems rather
challenging to consider from a rigorous standpoint.
While a strict definition of when a district is or is not
compact is quite elusive, the purpose of such a criterion
is much easier to articulate. Simply put, a district which
is bizarrely shaped, such as one with small tendrils
grabbing many distant chunks of territory, probably
wasn’t drawn like that by accident. Such a shape need
not be drawn for nefarious purposes, but its unusual
nature should trigger closer scrutiny. Measures to com-
pute the geographic compactness of districts are
intended to formalize this quality of bizarreness math-
ematically. We briefly note here that the term compact-
ness is somewhat overloaded, and that we exclusively

use the term to refer to the shape of geographic regions
and not to the topological definition of the word.
People have formally studied geographic compact-
ness for nearly two hundred years, and, over that period,
scientists and legal scholars have developed many for-
mulas to assign a numerical measure of compactness to
a region such as an electoral district (Young, 1988).
Three of the most commonly discussed formulations
are the Polsby-Popper score, which measures the nor-
malized ratio of a district’s area to the square of its
perimeter, the convex hull score, which measures the
ratio of the area of a district to the smallest convex
region containing it, and the Reock score, which mea-
sures the ratio of the area of a district to the area of the
smallest circular disc containing it. Each of these mea-
sures is appealing at an intuitive level, since they assign
to a district a single scalar value between zero and one,
which presents a simple method to compare the relative
compactness of two or more districts. Additionally, the
mathematics underpinning each is widely understand-
able by the relevant parties, including lawmakers,
judges, advocacy groups, and the general public.
However, none of these measures truly discerns
which districts are compact and which are not. For
each score, we can construct a mathematical counter-
example for which a human’s intuition and the score’s
evaluation of a shape’s compactness differ. A region
which is roughly circular but has a jagged boundary
may appear compact to a human’s eye, but such
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a shape has a very poor Polsby-Popper score. Similarly,
a very long, thin rectangle appears non-compact to
a person but has a perfect convex hull score.
Additionally, these scores often do not agree. The
long, thin rectangle has a very poor Polsby-Popper
score, and the ragged circle has an excellent convex
hull score. These issues are well studied by political
scientists and mathematicians alike (Barnes &
Solomon, 2020; Frolov, 1975; MacEachren, 1985;
Polsby & Popper, 1991).

In this paper, we propose a further critique of these
measures, namely sensitivity under the choice of map
projection. Each of the compactness scores named
above is defined as a tool to evaluate geometric shapes
in the plane, but in reality, we are interested in analyz-
ing shapes which sit on the surface of the planet Earth,
which is (roughly) spherical. When we analyze the
geometric properties of a geographic region, we work
with a projection of the Earth onto a flat plane, such as
a piece of paper or the screen of a computer. Therefore,
when a shape is assigned a compactness score, it is
implicitly done with respect to some choice of map
projection. We prove that this may have serious con-
sequences for the comparison of districts by these
scores. Because there is no projection from the sphere
to the plane which preserves “too many” metric prop-
erties and most compactness scores synthesize several
of these properties, it is unreasonable to expect any
projection to preserve the numerical values of these
scores for all regions. However, since there are projec-
tions which preserve some geometric properties, such
as those which preserve the area of all regions or
conformal projections which preserve the angle of
intersection of all line segments, we might ask
a weaker question and consider whether there is
a projection which can preserve the induced ordering
of a compactness score over all regions.

In particular, we consider the Polsby-Popper, convex
hull, and Reock scores on the sphere, and demonstrate
that for any choice of map projection, there are two
regions, A and B, such that A is more compact than B
on the sphere but B is more compact than A when
projected to the plane. We prove our results in
a theoretical context before evaluating the extent of this
phenomenon empirically. We find that with real-world
examples of Congressional districts, the effect of the
commonly used Plate carée projection, which treats lati-
tude-longitude coordinates as Cartesian coordinate pairs,
on the convex hull and Polsby-Popper scores is relatively
minor, but the impact on Reock scores is quite dramatic,
which may have serious implications for the use of this
measure as a tool to evaluate geographic compactness.

1.1. Organization

For each of the compactness scores we analyze, our
proof that no map projection can preserve their order
follows a similar recipe. We first use the fact that any
map projection which preserves an ordering must pre-
serve the maximizers in that ordering. In other words, if
there is some shape which a score says is the most
compact on the sphere but the projection sends this to
a shape in the plane which is not the most compact, then
whatever shape does get sent to the most compact shape
in the plane leapfrogs the first shape in the induced
ordering. For all three of the scores we study, such
a maximizer exists.

Using this observation, we can restrict our attention
to those map projections which preserve the maximizers
in the induced ordering, then argue that any projection
in this restricted set must permute the order of scores of
some pair of regions.

Preliminaries. We first introduce some definitions
and results which we will use to prove our three main
theorems. Since spherical geometry differs from the
more familiar planar geometry, we carefully describe
a few properties of spherical lines and triangles to
build some intuition in this domain.

Convex Hull. For the convex hull score, we first show
that any projection which preserves the maximizers of
the convex hull score ordering must maintain certain
geometric properties of shapes and line segments
between the sphere and the plane. Using this, we
demonstrate that no map projection from the sphere
to the plane can preserve these properties, and therefore
no such convex hull score order preserving projection
exists.

Reock. For the Reock score, we follow a similar tack,
first showing that any order-preserving map projection
must also preserve some geometric properties and then
demonstrating that such a map projection cannot exist.

Polsby-Popper. To demonstrate that there is no pro-
jection which maintains the score ordering induced by
the Polsby-Popper score, we leverage the difference
between the isoperimetric inequalities on the sphere
and in the plane, in that the inequality for the plane is
scale invariant in that setting but not on the sphere, in
order to find a pair of regions in the sphere, one more
compact than the other, such that the less compact one
is sent to a circle under the map projection.

Empirical Results. We finally examine the impact of
the Cartesian latitude-longitude map projection on the
convex hull, Reock, and Polsby-Popper scores and
the ordering of regions under these scores. While the
impacts of the projection on the convex hull and Polsby-
Popper scores and their orderings are not severe, the



Reock score and the Reock score ordering both change
dramatically under the map projection.

2. Preliminaries

We begin by introducing some necessary observations,
definitions, and terminology which will be of use later.

2.1. Spherical geometry

In this section, we present some basic results about
spherical geometry with the goal of proving Girard’s
Theorem, which states that the area of a triangle on
the unit sphere is the sum of its interior angles minus
7. Readers familiar with this result should feel free to
skip ahead.

We use R* to denote the Euclidean plane with the
usual way of measuring distances,

d(x,y) =/ (x = »);

similarly, R* denotes Euclidean 3-space. We use S* to
denote the unit 2-sphere, which can be thought of as the
set of points in R’ at Euclidean distance one from the
origin.

In this paper, we only consider the sphere and the
plane, and leave the consideration of other surfaces,
measures, and metrics to future work.

Definition 2.1. On the sphere, a great circle is the
intersection of the sphere with a plane passing through
the origin. These are the circles on the sphere with
radius equal to that of the sphere. See Figure 1 for an
illustration.

Definition 2.2. Lines in the plane and great circles on
the sphere are called geodesics. A geodesic segment is
a line segment in the plane and an arc of a great circle on
the sphere.

Figure 1. A great circle on the sphere with its identifying plane.
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Figure 2. Two great circles meet at antipodal points.

The idea of geodesics generalizes the notion of straight
lines in the plane to other settings. One critical difference
is that in the plane, there is a unique line passing through
any two distinct points and a unique line segment joining
them. On the sphere, there will typically be a unique great
circle and two geodesic segments through a pair of points,
except in the case that the two points are antipodal.
Definition 2.3. A triangle in the plane or the sphere is
defined by three distinct points and the shortest geode-
sics connecting each pair of points.

Observation 1. Given any two points p and g on the
sphere which are not antipodal, meaning that our points
aren’t of the form p = (x,y,z) and q = (—x, —y, —2),
there is a unique great circle through p and g and there-

fore two geodesic segments joining them.
If p and g are antipodal, then any great circle contain-

ing one must contain the other as well, so there are
infinitely many such great circles. For any two non-
antipodal points on the sphere, one of the geodesic
segments will be shorter than the other. This shorter
geodesic segment is the shortest path between the points
and its length is the metric distance between p and q.

We now have enough terminology to show a very
important fact about spherical geometry. This observa-
tion is one of the salient features which distinguishes it
from the more familiar planar geometry.

Claim 2.4. Any pair of distinct great circles on the sphere
intersect exactly twice, and the points of intersection are
antipodes.

Why is this weird? In the plane, it is always the case that
any pair of distinct lines intersects exactly once or never, in
which case we call them parallel. Since distinct great circles
on the sphere intersect exactly twice, there is no such thing
as parallel lines on the sphere, and we have to be careful
about discussing “the” intersection of two great circles since
they do not meet at a unique point (Figure 2). Furthermore,
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it is not the case that there is a unique segment of a great
circle connecting any two points; there are two, but unless
our two points are antipodes, one of the two segments will
be shorter.

Another difference between spherical and planar geo-
metry appears when computing the angles of triangles. In
the planar setting, the sum of the interior angles of
a triangle is always 7, regardless of its area. However, in
the spherical case, we can construct a triangle with three
right angles. The north pole and two points on the equator,
one a quarter of the way around the sphere from the other,
form such a triangle. Its area is one eighth of the whole

sphere, or Z, which is, not coincidentally, equal to

%
2 +5+75—mn Girard’s theorem, which we will prove
below, connects the total angle to the area of a spherical
triangle.

In order to show Girard’s Theorem, we need some way
to translate between angles and area. To do that, we'll use
a shape which doesn’t even exist in the plane: the diangle or
lune, as in Figure 3. We know that two great circles intersect
at two antipodal points, and we can also see that they cut
the surface of the sphere into four regions. Consider one of
these regions. Its boundary is a pair of great circle segments
which connect antipodal points and meet at some angle
0 < m at both of these points.

Using that the surface area of a unit sphere is 4,
computing the area of a lune with angle 0 is
straightforward.

Claim 2.5. Consider a lune whose boundary segments
meet at angle 0. Then, the area of this lune is 20.

Figure 3. A lune corresponding to an angle 6.

Now that we have a tool that lets us relate angles and
areas, we can prove Girard’s Theorem.
Lemma 2.6. (Girard’s Theorem)

The sum of the interior angles of a spherical triangle is
strictly greater than m. More specifically, the sum of the
interior angles is equal to 7 plus the area of the triangle.
Proof. Consider a triangle T on the sphere with angles 0,
6>, and 0;. Let area(T) denote the area of this triangle. If
we extend the sides of the triangle to their entire great
circles, each pair intersects at the vertices of T as well as
the three points antipodal to the vertices of T, and at the
same angles at antipodal points. This second triangle is
congruent to T, so its area is also area(T). Each pair of
great circles cuts the sphere into four lunes, one which
contains T, one which contains the antipodal triangle,
and two which do not contain either triangle. We are
interested in the three pairs of lunes which do contain the
triangles. We will label these lunes by their angles, so we
have a lune L(6;) and its antipodal lune L'(6;), and we
can similarly define L(6,), L'(6,), L(65), and L'(65). For
an illustration of this, see Figure 4.

We have six lunes. In total, they cover the sphere, but
share some overlap. If we remove T from two of the
three which contain it and the antipodal triangle from
two of the three which contain it, then we have six non-
overlapping regions which cover the sphere, so the area
of the sphere must be equal to the sum of the areas of
these six regions.

By the earlier claim, we know that the areas of the
lunes are twice their angles, so we can write this as

Figure 4. A spherical triangle and the antipodal triangle define
six lunes.



Figure 5. The height h and radius r of a spherical cap.

4 = 26, + 20, + (26, — area(T)) + (20, — area(T))
+ (205 — area(T)) + (2605 — area(T))

and rearrange to get
61 + 02 + 93 =+ area(T),

which is exactly the statement we wanted to show.
We will need one more fact about spherical triangles

before we conclude this section. It follows immediately
from the Spherical Law of Cosines.

Fact 1. An equilateral triangle is equiangular, and vice
versa, where equilateral means that the three sides have
equal length and equiangular means that the three

angles all have the same measure.

An astute reader may notice that this result is also true of
planar triangles, and the planar version follows from
Propositions 1.6 and 1.8 in Euclid’s Elements (Byrne, 1847;
Crowell, 2016). Since Euclid’s proof doesn’t rely on the
existence of parallel lines, this fact can alternatively be
shown using his argument.

2.2. Some definitions

Now that we have the necessary tools of spherical geo-
metry, we will wrap up this section with a battery of
definitions. We carefully lay these out so as to align with
an intuitive understanding of the concepts and to
appease the astute reader who may be concerned with
edge cases, geometric weirdness, and nonmeasurability.
Throughout, we implicitly consider all figures on the
sphere to be strictly contained in a hemisphere.

Definition 2.7. A region is a non-empty, open subset

Q of S* or R* such that Q is bounded and its
boundary is piecewise smooth.

We choose this definition to ensure that the area and
perimeter of the region are well-defined concepts. This
eliminates pathological examples of open sets whose
boundaries have non-zero area or edge cases like consider-
ing the whole plane a region. We will, at times, abuse the
name region to contain parts of its boundary.
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Definition 2.8. A compactness score function C is
a function from the set of all regions to the non-negative
real numbers or infinity. We can compare the scores of any
two regions, and we adopt the convention that more com-
pact regions have higher scores. That is, region A is at least
as compact as region B if and only if C(A) > C(B).

The final major definition we need is that of a map
projection. In reality, the regions we are interested in
comparing sit on the surface of the Earth (i.e. a sphere),
but these regions are often examined after being pro-
jected onto a flat sheet of paper or computer screen, and
so have been subject to such a projection.

Definition 2.9. A map projection ¢ is a diffeomorph-
ism from a region on the sphere to a region of the plane.

We choose this definition, and particularly the term
diffeomorphism, to ensure that ¢ is smooth, its inverse
¢! exists and is smooth, and both ¢ and ¢! send
regions in their domain to regions in their codomain.
Throughout, we use ¢ to denote such a function from
a region of the sphere to a region of the plane and ¢, to
denote the inverse which is a function from a region of
the plane back to a region of the sphere.

Since the image of a region under a map projection ¢ is

also a region, we can examine the compactness score of that
region both before and after applying ¢, and this is the heart
of the problem we address in this paper. We demonstrate, for
several examples of compactness scores C, that the order
induced by C is different than the order induced by C o ¢
for any choice of map projection ¢.
Definition 2.10. We say that a map projection ¢ pre-
serves the compactness score ordering of a score C if
for any regions Q, ) in the domain of ¢, C(Q) > C(QY)
if and only if C(¢(Q)) > C(¢(€Y')) in the plane.

This is a weaker condition than simply preserving the
raw compactness scores. If there is some map projection
which results in adding .1 to the score of each region, the
raw scores are certainly not preserved, but the ordering of
regions by their scores is. Additionally, ¢ preserves
a compactness score ordering if and only if ¢! does.
Definition 2.11. A cap on the sphere S* is a region on the
sphere which can be described as all of the points on the
sphere to one side of some plane in R>. A cap has a height,
which is the largest distance between this cutting plane and
the cap, and a radius, which is the radius of the circle
formed by the intersection of the plane and the sphere.
See Figure 5 for an illustration.

3. Convex hull

We first consider the convex hull score. We briefly recall
the definition of a convex set and then define this score
function.
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Definition 3.1. A set in R* or S? is convex if every
shortest geodesic segment between any two points in
the set is entirely contained within that set.

Definition 3.2. Let conv(Q) denote the convex hull of
aregion ) in either the sphere or the plane, which is the
smallest convex region containing Q. Then, we define
the convex hull score of Q as

CH(®) = area?i:ec;glrf\?()ﬂ) ).

An example of a region and its convex hull is given in
Figure 6. Since the intersection of convex sets is
a convex set, there is a unique smallest (by containment)
convex hull for any region Q.

Suppose that our map projection ¢ does preserve the
ordering of regions induced by the convex hull score. We
begin by observing that such a projection must preserve
certain geometric properties of regions within its domain.
Lemma 3.3. Let ¢ be a map projection from some region of
the sphere to a region of the plane. If ¢ preserves the convex

hull compactness score ordering, then the following must
hold:

(1) ¢ and ¢! send convex regions in their domains to
convex regions in their codomains.

(2) ¢ sends every segment of a great circle in its domain
to a line segment in its codomain. That is, it preserves
geodesics. Such a projection is sometimes called
a geodesic map for this reason.

(3) There exists a region U in the domain of ¢ such
that for any regions A,B C U, if A and B have
equal area on the sphere, then ¢(A) and ¢(B) have
equal area in the plane. The same holds for ¢~ ! for
all pairs of regions inside of ¢(U).

CH(Q)

Figure 6. A region Q and its convex hull.

Proof. The proof of (1) follows from the idea that
any projection which preserves the convex hull score
ordering of regions must preserve the maximizers in
that ordering. Here, the maximizers are convex sets.

To show (2) we suppose, for the sake of contradiction,
that there is some geodesic segment s in U such that ¢(s)
is not a line segment. Construct two convex spherical
polygons L and M inside of U which both have s as a side.

By (1), ¢ must send both of these polygons to convex
regions in the plane, but this is not the case. All of the
points along ¢(s) belong to both ¢(L) and ¢(M), but
since ¢(s) is not a line segment, we can find two points
along it which are joined by some line segment which
contains points which only belong to ¢(L) or ¢(M),
which means that at least one of these convex spherical
polygons is sent to something non-convex in the plane,
which contradicts our assumption. See Figure 7 for an
illustration.

That ¢! sends line segments in the plane to great
circle segments on the sphere is shown analogously.
This completes the proof of (2).

To show (3), let U be some convex region in the domain
of ¢. Take A, B to be regions of equal area such that A and
B are properly contained in the interior of U, as in Figure 8.
Define two new regions X = U\A and Y = U\B, i.e. these
regions are equal to U with A or B deleted, respectively.

The region U is itself the convex hull of both X and
Y, and since A and B have equal area, we have that
CH(X) = CH(Y). Since U is a cap, it is convex, so by
(1), ¢(U) is also convex. Since ¢ preserves the ordering
of convex hull scores and X and Y had equal scores on
the sphere, ¢ must send X and Y to regions in the plane
which also have the same convex hull score as each
other. Furthermore, the convex hulls of ¢(X) and ¢(Y)

are o(U).

Figure 7. If ¢(s) is not a line segment, then one of p(M) or ¢(L)
is not convex.



Figure 8. Two equal area regions A and B removed from U to
form the regions X and Y.

By definition, we have
CH(X) = CH(Y)
and by the construction of X and Y, we have

area(p(U)) — area(p(4)) _ area(g(U)) — area(g(B)
area(p(U)) area(p(U))

area(¢(A)) = area(¢(B))

which is what we wanted to show. The proof that ¢!
also has this property is analogous.

We can now show that no map projection can pre-
serve the convex hull score ordering of regions by
demonstrating that there is no projection from
a region on the sphere to the plane which has all three
of the properties described in Lemma 3.3.

Theorem 3.4. There does not exist a map projection with

the three properties in Lemma 3.3.
Proof. Assume that such a map, ¢, exists, and restrict it

to U as above. Let T C U be a sufficiently small equi-
lateral spherical triangle centered at the center of U. Let
T, and T, be two congruent triangles meeting at a point
and each sharing a face with T, as in Figure 9.

Figure 9. The spherical regions T, T;, T.
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We first argue that the images of TU T; and TU T,
are parallelograms.

Without loss of generality, consider T'U T;. By con-
struction, it is a convex spherical quadrilateral. By sym-
metry, its geodesic diagonals on the sphere divide it into
four triangles of equal area. To see this, consider the
geodesic segment which passes through the vertex of T
opposite the side shared with T} which divides T into two
smaller triangles of equal area. Since T is equilateral, this
segment meets the shared side at a right angle at the
midpoint, and the same is true for the area bisector of
T;. Since both of these bisectors meet the shared side at
a right angle and at the same point, together they form
a single geodesic segment, the diagonal of the quadrilat-
eral. Since the diagonal cuts each of T and T in half, and
T and T; have the same area, the four triangles formed in
this construction have the same area.

Since ¢ sends spherical geodesics to line segments in
the plane, it must send T'U T; to a Euclidean quadrilat-
eral Q whose diagonals are the images of the diagonals
of the spherical quadrilateral T'U T;.

Since ¢ sends equal area regions to equal area
regions, it follows that the diagonals of Q split it into
four equal area triangles.

We now argue that this implies that Q is a Euclidean
parallelogram by showing that its diagonals bisect each
other. Since the four triangles formed by the diagonals of
Q are all the same area, we can pick two of these triangles
which share a side and consider the larger triangle
formed by their union. One side of this triangle is
a diagonal d; of Q and its area is bisected by the other
diagonal d,, which passes through d; and its opposite
vertex. The area bisector from a vertex, called the median,

Figure 10. The image under ¢ of T,T;, T, which form the
quadrilateral in the plane.
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passes through the midpoint of the side d;, meaning that
the diagonal d, bisects the diagonal d;. Since this holds
for any choice of two adjacent triangles in Q, the diag-
onals must bisect each other, so Q is a parallelogram.

Since TU T, and T U T, are both spherical quadri-
laterals which overlap on the spherical triangle T, the
images of TUT; and T U T, are Euclidean parallelo-
grams of equal area which overlap on a shared triangle
@(T). See Figure 10 for an illustration.

Because the segment ¢ is parallel to m; and m,, m,
and my, are parallel to each other, and because they meet
at the point shared by all three triangles, m; and m;,
together form a single segment parallel to €. Therefore,
the image of the three triangles forms a quadrilateral in
the plane. Therefore, the image of TUT; UT, has
a boundary consisting of four line segments.

To find the contradiction, consider the point on the
sphere shared by T, Ti, and T,. Since these triangles are
all equilateral spherical triangles, the three angles at this
point are each strictly greater than £ radians, because the
sum of interior angles on a triangle is strictly greater than
7. 50, the total measure of the three angles at this point is
greater than 7, Therefore, the two geodesic segments
which are part of the boundaries of Ty and T, meet at
this point at an angle of measure strictly greater than .
Therefore, together they do not form a single geodesic.
On the sphere, the region T U T} U T, has a boundary
consisting of five geodesic segments whereas its image has
a boundary consisting of four, which contradicts the
assumption that ¢ and ¢! preserve geodesics.

This implies that no map projection can preserve the
ordering of regions by their convex hull scores, which is
what we aimed to show.

4. Reock

Let circ(Q) denote the smallest bounding circle (smallest
bounding cap on the sphere) of a region Q. Then, the
Reock score of Q) is

Reock(Q) = L(Q).
area(circ(Q))

We again consider what properties a map projection ¢
must have in order to preserve the ordering of regions by
their Reock scores.

Lemma 4.1. If ¢ preserves the ordering of regions induced
by their Reock scores, then the following must hold:

(1) ¢ sends spherical caps in its domain to Euclidean
circles in the plane, and ¢! does the opposite.

(2) There exists a region U in the domain of ¢ such
that for any regions A,B C U, if A and B have
equal area on the sphere, then ¢(A) and ¢(B) have
equal area in the plane. The same holds for ¢~ for
all pairs of regions inside of ¢(U).

Proof. Similarly to the convex hull setting, the proof
of (1) follows from the requirement that ¢ preserves
the maximizers in the compactness score ordering.
In the case of the Reock score, the maximizers are
caps in the sphere and circles in the plane.

To show (2), let k be a cap in the domain of ¢, and let
A,B C k be two regions of equal area properly con-
tained in the interior of x. Then, define two new regions
X = x\A and Y = «\B, which can be thought of as «
with A and B deleted, respectively.

Since « is the smallest bounding cap of X and Y and
since A and B have equal areas, Reock(X) = Reock(Y).
Furthermore, by (1), ¢ must send « to some circle in the
plane, which is the smallest bounding circle of ¢(X) and
¢(Y). Since ¢ preserves the ordering of Reock scores, it
must be that ¢(X) and ¢(Y) have identical Reock scores
in the plane.

By definition, we can write

Reock(X) = Reock(Y)

area(p(X)) _ area(o(Y))
area(p(x))  area(p(x))

and by the construction of X and Y, we have

area(¢(x)) — area(p(A)) _ area(¢(x)) — area(¢(B))
area(¢(x)) area(¢(x))

area(p(A)) = area(¢(B)),

meaning that area(p(A)) = area(¢(B)). Thus, for all
pairs of regions of the same area inside of x, the images
under ¢ of those regions will have the same area as well.

The same construction works in reverse, which
demonstrates that ¢! also sends regions of equal area
in some circle in the plane to regions of equal area in the
sphere.

We can now show that no such ¢ exists. Rather
than constructing a figure on the sphere and exam-
ining its image under ¢, it will be more convenient
to construct a figure in the plane and reason
about ¢!

Theorem 4.2. There does not exist a map projection with
the two properties in Lemma 4.1.



Figure 11. Seven circles arranged as in the construction for
Theorem 4.2.

Proof. Assume that such a ¢ does exist and restrict its
domain to a cap «x as above. This corresponds to
a restriction of the domain of ¢! to a circle in the
plane. Inside of this circle, draw seven smaller circles
of equal area tangent to each other as in Figure 11.

Under ¢!, they must be sent to an similar config-
uration of equal-area caps on the sphere.

However, the radius of a of a spherical cap is deter-
mined by its area, so since the areas of these caps are all
the same, their radii must be as well. Thus, the mid-
points of these caps form six equilateral triangles on the
sphere which meet at a point. However, this is impos-
sible, as the three angles of an equilateral triangle on the
sphere must all be greater than %, but the total measure
of all the angles at a point must be equal to 27, which

contradicts the assumption that such a ¢ exists.
This shows that no map projection exists which pre-

serves the ordering of regions by their Reock scores.

5. Polsby-Popper

The final compactness score we analyze is the Polsby-
Popper score, which takes the form of an isoperimetric
quotient, meaning it measures how much area a region’s
perimeter encloses, relative to all other regions with the
same perimeter.

Definition 5.1. The Polsby-Popper score of a region Q
is defined to be

PP(Q) — 4 - area((i)

perim(Q)
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in either the sphere or the plane, and area and perim are
the area and perimeter of Q, respectively.

The ancient Greeks were first to observe that if Q is
a region in the plane, then 47 - area(Q) < perim(Q)?,
with equality if and only if Q is a circle. This became
known as the isoperimetric inequality in the plane. This
means that, in the plane, 0 < PP(Q) < 1, where the
Polsby-Popper score is equal to 1 only in the case of
a circle. We can observe that the Polsby-Popper score is
scale-invariant in the plane.

An isoperimetric inequality for the sphere exists, and we
state it as the following lemma. For a more detailed treat-
ment of isoperimetry in general, see Osserman (1979), and
for a proof of this inequality for the sphere, see Rado
(1935).

Lemma 5.2. If Q) is a region on the sphere with area A
and perimeter P, then P> > 4nA — A? with equality if

and only if Q) is a spherical cap.
A consequence of this is that among all regions on the

sphere with a fixed area A, a spherical cap with area A has
the shortest perimeter. However, the key difference between
the Polsby-Popper score in the plane and on the sphere is
that on the sphere, there is no scale invariance; two spherical
caps of different sizes will have different scores.

Lemma 5.3. Let S be the unit sphere, and let k(h) be a cap
of height h. Then PP(x(h)) is a monotonically increasing

function of h.
Proof. Let r(h) be the radius of the circle bounding x(h).

We compute:

1 = r(h)* + (1 — h)?, by right triangle trigonometry

=r(h)’ +1-2h+ 1

Rearranging, we get that r(h)> = 2h — h?, which we can
plug in to the standard formula for perimeter:

perimg(x(h)) = 2nr(h) = 2nv2h — b2
We can now use the Archimedian equal-area projection
defined by (x,y,z) — <\/X+Tyz’\/x+Tyz72> to compute
areag(x(h)) = 27h and plug it in to get:

_ 4n(Q2mh) 2
 4m2(2h — h?)

PPy(x(h)) —

Which is a monotonically increasing function of h.
Corollary 5.4. On the sphere, Polsby-Popper scores of
caps are monotonically increasing with area.

Using this, we can show the main theorem of this
section, that no map projection from a region on the
sphere to the plane can preserve the ordering of Polsby-
Popper scores for all regions.
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Figure 12. The construction of regions A and B in the proof of
Theorem 5.5.

Theorem 5.5. If ¢ : U — V is a map projection from the
sphere to the plane, then there exist two regions A,B C U
such that the Polsby-Popper score of B is greater than that
of A in the sphere, but the Polsby-Popper score of p(A) is

greater than that of ¢(B) in the plane.
Proof. Let ¢ be a map projection, and let k C U be some

cap. We will take our regions A and B to lie in «. Set B to
be a cap contained in k. Let X be a circle in the plane
such that X¢(B) and let A = ¢~ !(X). See Figure 12 for
an illustration.

We now use the isoperimetric inequality for the
sphere and Corollary 5.4 to claim that A does not max-
imize the Polsby-Popper score in the sphere.

To see this, take A to be a cap in the sphere with area
equal to that of A. Note that since the area of A is less than

the area of the cap B, it follows that we can choose A C B.
By the isoperimetric inequality of the sphere,

PPg(A) > PPg(A). Since map projections preserve con-
tainment, ¥ g ¢(B) implies that Ag B, meaning that

area(A) = area(A) j area(B). By Corollary 5.4, we

know that PPs(A) < PPs(B), and combining this with
the earlier inequality, we get

PPs(A) < PPs(A) < PPs(B)

Since ¥ = ¢(A) maximizes the Polsby-Popper score
in the plane, but A does not do so in the sphere, we have
shown that ¢ does not preserve the maximal elements in
the score ordering, and therefore it cannot preserve the
ordering itself.

The reason why every map projection fails to preserve
the ordering of Polsby-Popper scores is because the score
itself is constructed from the planar notion of isoperi-
metry, and there is no reason to expect this formula to
move nicely back-and-forth between the sphere and the
plane. This proof crucially exploits a scale invariance
present in the plane but not the sphere. If we consider
any circle in the plane, its Polsby-Popper score is equal to
one, but that is not true of every cap in the sphere.

6. Empirical evaluation

In the previous sections we showed that no projection
from the sphere to the plane can preserve various com-
pactness orderings. These theorems suggest that in gen-
eral maps that distort shape cannot preserve compactness
orderings. In this section we investigate empirically the
consequences of calculating compactness in different
map projections, demonstrating the practical relevance
of our investigation and providing evidence for possible
generalizations.

6.1. Commonly used projections

We briefly identify four commonly used projections in
the redistricting domain, which we will use in the next
section to compare the empirical effects of the choice of
map projection on the compactness orderings.

Plate Carrée. The plate carrée projection, sometimes
called an equirectangular projection interprets latitude-
longitude coordinates on the Earth as planar x, y coor-
dinates. This map projection does not accurately reflect
most geographic figures and is therefore inappropriate
for most applications. The U.S. Census Bureau distri-
butes its shapefiles in this format, trusting the user to
reproject the data into a format suited for the relevant
application. However, because the data is distributed in
this format, redistricting analysts and stakeholders (e.g.,
Chen (2017), Chikina et al. (2017), and League of
Women Voters of Pennsylvania et al. (2018)) often do
not perform this reprojection step, and this has led to
the plate carrée projection becoming a de facto standard
in this domain.

Mercator. The Web Mercator projection is a cylindrical
projection which is popular in Web mapping applications.
As a result, this is the projection used in several online
redistricting software tools available to the public, includ-
ing DistrictBuilder (Public Mapping Project, 2018), Dave’s
Redistricting App (Bradlee et al., 2019), and Districtr
(Metric Geometry and Gerrymandering Group, 2019).

Lambert. The Lambert conic projection is a conformal
projection, which means that it preserves the angles of
intersection of all segments. This is colloquially inter-
preted as “preserving shape at a small scale”. This projec-
tion is used in some portions of the U.S. State Plate
Coordinate System, and is therefore used in an official
capacity for some states.

Albers. The Albers projection is an equal area conic
projection, meaning it preserves the areas of all figures.
The U.S. Atlas projection for the conterminous 48 states
is an Albers projection and is the default in the
Maptitude for Redistricting software, which is widely



used by redistricting professionals, including legislators,
consultants, and advocacy groups.

6.2. Results

While we have shown mathematically that the ordering
of compactness scores is necessarily permuted by any
map projection, we now consider the possibility of this
effect occurring in reality. If it is the case that congres-
sional districts all have scores far enough apart that the
distortion introduced by the choice of projection is not
sufficient to swap the ordering of this score, then the
results above are merely mathematical curiosities.
Precisely stated, we ask whether reprojection affects
compactness score rankings of real districts in the con-
text of commonly used map projections. In previous
both the scientific literature and the legal landscape,
this question was either unaddressed, or asserted to be
answered in the negative (c.f. Chen (2017), Chikina et al.
(2017), and League of Women Voters of Pennsylvania
et al. (2018)).

In this section, we demonstrate that for the com-
monly used map projections listed above and the three
compactness scores we examine in the previous sec-
tions, that this permutation effect does occur in practice,
using the congressional districts from the 115th
Congress, which were used for the 2016 congressional
elections. We extract the boundaries of the districts
from a U.S. Census Bureau shapefile, using the highest
resolution available, drawn at a scale of 1:500,000. We
then compute the convex hull, Reock, and Polsby-
Popper scores with respect to common map projections
using code based on compactr (Hachadoorian, 2018).
We then examine the ordering of the districts with
respect to both. While this is slightly different from the
mathematical framework where we compare an abstract
map projection to the computation on the surface of the
sphere, computing the spherical values of these scores is
not a simple task, even in modern geographic informa-
tion systems (GIS) software. Provided that the region is
contained in an open hemisphere, and that the earth is
assumed to be a perfect sphere sitting in R’, a simple
algorithm to calculate a minimum bounding cap is as
follows: find the minimum bounding 3-ball of the
region and intersect that ball with the Earth. Efficient
algorithms exist for computing the minimum bounding
ball of a collection of points (Ritter, 1990). However,
since computing the minimum bounding sphere of
a region is not a typical problem in GIS, the data neces-
sary to run the algorithm is not readily available. Rather,
we can observe that the numerical values of all three
scores on all districts are very similar with respect to the
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Polsby-Popper Score Rank for Texas Districts

N 30 Cb@d)oﬁ 30 %ﬁ
© ©
& &
S 20 & S 20 &
> % ~ &
£ o 3 o
£ 10 %5’ T 10 f"o
0 0
0 10 20 30 0 10 20 30
Lambert Mercator
30 30
= 20 ® = 20
%] %)
S 10 P10
0 0
0 10 20 30 0 10 20 30
Lambert Mercator

Figure 13. The Polsby-Popper score rank is slightly distorted
between different projections.

Lambert and Albers projections. These projections pre-
serve local shape and area, respectively, and so we can
imagine the ground-truth spherical value to also be
concordant with these measures.

With four different map projections and three differ-
ent compactness scores, we explore several instances in
which the choice of map projection distorts the com-
pactness score ranking of districts.

We first consider the 36 congressional districts in
Texas. In Figure 13, we plot the Polsby-Popper score
ordering of these districts, comparing several pairs of
projections. A perfect preservation of the order would
result in these points all falling on the diagonal
However, what we see in practice is that most points
do lie on the diagonal but several are not, indicating
a disagreement between the ordering between the two
projections, although the score orders totally agree in
the Mercator and Albers projections. The distortion is
clearly present, although fairly mild, with the only swaps
occurring being between pairs nearby in the orderings.

We observe a similarly mild, though still present,
perturbation in the convex hull score orderings, shown
in Figure 14. In this setting, however, the score ordering
is identical between the Lambert and Albers projections.
A similar observation holds at the national level, con-
sidering all 433 districts in the coterminous United
States. Thus, we empirically observe that the Polsby-
Popper and convex hull score orders are fairly robust
to the choice of projection, although not entirely.
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Convex Hull Score Rank for Texas Districts
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Figure 14. The convex hull score rank is slightly distorted between
different projections, though not between the Lambert and Albers
projections.

However, some compactness score orderings are more
sensitive than others. In Figure 15 we examine the Reock
score ordering for the same pairs of projections.

While the permutation between the Albers and the
Lambert or Mercator projections is still relatively mild,
although more complex than for the Polsby-Popper
score, the distortion between Plate Carrée and these
two projections is quite dramatic. The districts at the
extreme ends of the ordering are relatively undisturbed,
but the districts in the middle portion get shuffled
around significantly. We observe that this effect is not
a result of some idiosyncracy of Texas’ districts, since
a similar effect persists when we consider all of the
districts in the coterminous United States, shown in
Figure 16.

The Polsby-Popper score is calculated by consider-
ing a portion of the map that contains only the district
itself. Since some of the projections we consider are
locally very similar, and the districts themselves are
very small, this gives an explanation for the robustness
of the compactness orderings for that score. On the
other hand, the more extreme reprojection order
reversal we see in Reock scores results from the fact
that its computation depends on the potentially large
smallest bounding circle around the district. This circle
will always be larger than the region relevant for the
calculation of the convex hull score, since the convex
hull of a district is always contained in any bounding
circle, and all the map projections we consider distort

Reock Score Rank for Texas Districts
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Figure 15. The Reock score ranking is distorted between several
pairs of projections, with the Plate Carrée projection providing
the most dramatic differences.

larger shapes more severely than smaller ones. Thus,
we should expect the distortion from reprojections to
affect the Reock score more significantly than the con-
vex hull score.

While the results outlined here are by no means
comprehensive, they are a representative sample of the
prevalence of the order-reversal phenomenon in prac-
tice. In all cases, extreme shapes remain extreme under
reprojection, but the rankings of the middle-ranked
districts are distorted. While the actual numerical dis-
crepancies between the scores computed under the dif-
ferent projections is small, that this permutation can
even occur when using “nice” projections like Albers
and Lambert muddies the water in discussing compact-
ness. If value of using mathematics to describe the shape
of districts is to provide a small objective frame of
reference in a setting where subjective political factors
play a large role, then the inconsistency even in the
ordering of the districts under the scores works counter
to this purpose.

Furthermore, compactness scores are used directly
and indirectly in the rapidly growing area of statistical
analysis of gerrymandering using ensembles of district-
ing plans (Chen & Rodden, 2015; Chikina et al., 2017;
Herschlag et al, 2018; Liu et al, 2015), where many
possible maps are generated by a computer and used
to contextualize properties of a proposed plan. In that
context, compactness scores are often aggregated into
a score for a districting plan, which is then used to
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U.S. Districts Reock Score Rank: Plate Carrée vs. Lambert
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Figure 16. The Reock score ranking is distorted by reprojection from the Plate Carrée projection to the Lambert projection when the

entire US is considered.

constrain the universe of plans the algorithm generates.
For example, we might insist that the average Polsby-
Popper score of the generated plans not be larger than
our plan of interest or assert a lower threshold for the
scores of the districts individually. One underexplored
question is the extent to which the dependence on the
map projection affects the resulting statistical analysis of
these ensembles. We emphasize that it is possible that
changes to the compactness scores of the “middle of the
pack” districting plans can affect the distribution from
which the algorithm draws samples; for instance, under
the cut-off approach the universe of allowable plans
itself could change significantly if the choice of map
projection shuftles which kinds of shapes have scores
above and below the threshold. We refer the reader to
section 6.2.2 (“the extreme outlier hypothesis”) in (Najt
et al., 2019) for more details on these questions.

7. Discussion

We have identified a major mathematical weakness in
the commonly discussed compactness scores in that no
map projection can preserve the ordering over regions
induced by these scores. This leads to several important

considerations in the mathematical and popular exam-
inations of the detection of gerrymandering.

From the mathematical perspective, rigorous defini-
tions of compactness require more nuance than the
simple score functions which assign a single real-
number value to each district. Multiscale methods,
such as those proposed by DeFord et al. (2019), assign
a vector of numbers or a function to a region, rather
than a single number. The richer information contained
in such constructions is less susceptible to perturbations
of map projections. Alternatively, we can look to cap-
turing the geometric information of a district without
having to work with respect to a particular spherical or
planar representation. So-called discrete compactness
methods, such as those proposed in Duchin and
Tenner (2018), extract a graph structure from the geo-
graphy and are therefore unaffected by the choice of
map projection, and our results suggest that this is an
important advantage of these kinds of scores over tradi-
tional ones. Finally, recent work has used lab experi-
ments to discern what qualities of a region humans use
to determine whether they believe a region is compact
or not (Kaufman, et al, 2020). Incorporating more
qualitative techniques is important, especially in this
setting where the social impacts of a particular
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districting plan may be hard to quantify. To further
complicate matters, as highlighted by Barnes and
Solomon (2020), the resolution of the shapefile influence
the computation of compactness scores, particularly the
Polsby-Popper score where the detail of features like
coastlines can have a massive impact on the measured
perimeter of a region. For this reason, repeating the
experiment in Section 7 for different choices of resolu-
tion results in quantitiatively different (although quali-
tatively similar) results.

We proved our non-preservation results for three par-
ticular compactness scores which appear frequently in the
context of electoral redistricting. There are countless
other scores offered in legal codes and academic writing,
such as definitions analogous to the Reock and convex
hull scores which use different kinds of bounding regions,
scores which measure the ratio of the area of the largest
inscribed shape of some kind to the area of the district,
and versions of these scores which replace the notion of
area with the population of that landmass. Many of these
and others suffer from similar flaws as the three scores we
examined in this work. It would be interesting to consider
the most general version of this problem and enumerate a
collection of properties such that any map projection
permutes the score ordering of a pair of regions under
a score with at least one of those properties.

While compactness scores are not used critically in
a legal context, they appear frequently in the popular
discourse about redistricting issues and frame the per-
ception of the fairness of a plan. An Internet search for
a term like “most gerrymandered districts” will invari-
ably return results naming-and-shaming the districts
with the most convoluted shapes rather than highlight-
ing where more pleasant looking shapes resulted in
unfair electoral outcomes.

Similarly, a sizable amount of work toward remedying
such abuses focuses primarily on the geometry rather than
the politics of the problem. Popular press pieces (e.g.,
Ingraham (2014)) and academic research alike (e.g., Cohen-
Addad et al. (2018), Levin and Friedler (2019), and Svec
et al. (2007)) describe algorithmic approaches to redistrict-
ing which use geometric methods to generate districts with
appealing shapes. However, these approaches ignore all of
the social and political information which are critical to the
analysis of whether a districting plan treats some group of
people unfairly in some way. A purely geometric approach
to drawing districts implicitly supposes that the mathe-
matics used to evaluate the geometric features of districts
are unbiased and unmanipulable and therefore can provide
true insight into the fairness of electoral districts. We proved
here that the use of geographic compactness as a proxy for
fairness is much less clear and rigid than some might expect.

This work opens several promising avenues for
further investigation. We prove strong results for the
most common compactness scores, but the question
remains what the most general mathematical results in
this domain might be, such as giving a set of necessary
and sufficient conditions for a map projection to preserve
the compactness ordering with respect to a particular
score, and which kinds of surfaces do and do not admit
such an order-preserving diffeomorphism or describing
the permutation of scores as a function of the change in
curvature between the two spaces of interest.

Our work demonstrates a potential issue arising from
the lack of standardization in the use of map projections
in redistricting applications, for instance, in the statistical
analysis of gerrymandering, as discussed at the end of
Section 6. Gaining a better understanding of these effects
is crucial as these statistical methods gain both academic
and legal traction. From a cartographic standpoint,
understanding other redistricting-related topics beyond
compactness scores where the choice of map projection
might have a significant effect on the outcome is impor-
tant, particularly as access to mapmaking tools and data
become more widely available to the general public.
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