This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE

Transactions on Computers
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Abstract—In the emerging artificial intelligence (Al) era, efficient hardware accelerator design for deep neural networks (DNNSs) is very
important to enable real-time energy-efficient DNN model deployment. To this end, various DNN model compression approaches and
the corresponding hardware architectures have been intensively investigated. Recently, PERMDNN, as a permuted diagonal
structure-imposing model compression approach, was proposed with promising classification performance and hardware performance.
However, the existing PERMDNN hardware architecture is specifically designed for fully-connected (FC) layer-contained DNN models;
while its support for convolutional (CONV) layer is missing. To fill this gap, this paper proposes PERMCNN, an energy-efficient
hardware architecture for permuted diagonal structured convolutional neural networks (CNNs). By fully utilizing the strong structured
sparsity in the trained models as well as dedicatedly leveraging the dynamic activation sparsity, PERMCNN delivers very high hardware
performance for inference tasks on CNN models. A design example with 28nm CMOS technology shows that, compared the to
state-of-the-art CNN accelerator, PERMCNN achieves 3.74 x and 3.11x improvement on area and energy efficiency, respectively, on
AlexNet workload, and 17.49x and 14.22x improvement on area and energy efficiency, respectively, on VGG model. After including
energy consumption incurred by DRAM access, PERMCNN achieves 2.60x and 9.62x overall energy consumption improvement on

AlexNet and VGG workloads, respectively.

Index Terms—Deep Learning, Model Compression, Hardware Accelerator, Convolutional Neural Network

1 INTRODUCTION

N the emerging artificial intelligence (AI)-centric era, deep
Ineural networks (DNNs) have become the most impor-
tant and powerful intelligence-enabled technique. Thanks
to the availability of massive amount of training data and
much stronger computing power than before, DNNs models
can now be well trained with very deep and wide archi-
tecture, and thereby being able to achieve unprecedented
high classification accuracy and/or prediction quality in
various practical application domains, such as computer
vision, speech recognition, natural language processing, rec-
ommendation systems etc.

However, the current prosperity of DNNs is not free
but comes from the significant increase on model sizes.
Today’s DNN models commonly have tens or hundreds of
layers and each layer contains hundreds or thousands of
neurons/filters. Such large-size architecture, consequently,
causes DNNs inherently suffer high computational and
storage complexity, and thereby posing severe challenge for
their real-time and energy-efficient deployment, especially
in the resource-constrained and latency-sensitive applica-
tions such as embedded and mobile platforms.

To address these challenges, numerous solutions from
both machine learning and computing hardware communi-
ties have been proposed [1]-[25], and these prior efforts can
be roughly categorized to two orthogonal directions: model
compression and hardware acceleration. Model compression,
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as an algorithm-level solution, targets to reduce the DNN
model sizes without accuracy drop or only negligible loss.
Currently the most popular and well-investigated model
compression approaches are weight pruning [26]-[28] and
precision reduction [29], [30]. On the other hand, efforts
on hardware acceleration aim to achieve high-performance
execution of DNN models via designing DNN-specific com-
puting platforms. These platforms, namely DNN accelera-
tors, provide customized hardware support for the kernel
computations in DNN executions, especially for inference,
and hence they can achieve orders-of-magnitude improve-
ment on hardware performance as compared with general
purpose CPUs and GPUs.

Recently, PERMDNN, as a work that performs model
compression and hardware acceleration simultaneously, is
proposed in [31] to provide an algorithm/hardware co-
design solution for high-performance DNN model execu-
tion. By imposing permutation diagonal structure on the DNN
models, PERMDNN develops low-complexity forward and
backward propagation schemes for both permuted diagonal
structure-based fully-connected (FC) layers and convolu-
tional (CONV) layers, thereby ensuring that such structured
DNN models can be trained and executed at the algorithm
level. Then, PERMDNN develops a corresponding hard-
ware engine that specifically supports the inference task
of permuted diagonal structured DNN models. The strong
structure in DNN models is fully leveraged in this hardware
architecture to reduce indexing overhead, and hence such
deep integration between algorithm and hardware brings
very high hardware performance improvement over the
state-of-the-art DNN hardware designs.
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Despite its promising performance, there exists an im-
portant missing in PERMDNN framework. The hardware
architecture developed in [31] is specifically designed for
accelerating the inference on FC layers and it is not well-
suited for CONV layers. As illustrated in Fig. 1, the per-
muted diagonal structure has different meanings in FC
layer and CONV layer cases. In FC layer such structure is
imposed on the 2D weight matrix, while in the CONV layer
it is imposed on the 4D weight tensor. Consequently, the
original matrix-vector multiplication-based data processing
scheme in PERMDNN hardware engine cannot be used for
permuted diagonal structured CONV layer that uses sliding
window-based 2D convolution as kernel function. Given
the very widespread adoption of CONV layer-contained
convolutional neural networks (CNNs) in many real-world
Al tasks, such absence of CONV layer-suited hardware
architecture will significantly hinder and limit the practical
applications of PERMDNN framework.

To fill this gap and deliver the promise of permuted di-
agonal structured CNN models, this paper proposes PERM-
CNN, an energy-efficient CONV layer-targeted hardware
architecture with permuted diagonal structure. By fully uti-
lizing the strong structured sparsity in the trained models as
well as dedicatedly leveraging the dynamic activation spar-
sity, PERMCNN delivers very high hardware performance
for inference tasks on CNN models. A design example
with 28nm CMOS technology shows that, compared to the
state-of-the-art CNN accelerator, PermCNN achieves 3.74x
and 3.11x improvement on area and energy efficiency, re-
spectively, on AlexNet workload, and 17.49x and 14.22x
improvement on area and energy efficiency, respectively, on
VGG model. After including energy consumption incurred
by DRAM access, PermCNN achieves 2.60x and 9.62x
overall energy consumption improvement on AlexNet and
VGG workloads, respectively.

The rest of this paper is organized as follows. Section
2 introduces the basics of CONV layer, the existing DNN
hardware accelerators, and the motivation of our work.
The general forward and backward propagation schemes
on permuted diagonal structure-imposed CONV layer are
briefly reviewed in Section 3. Section 4 describes the hard-
ware architecture of the proposed PERMCNN in detail. The
implementation and evaluation results of PERMCNN are
presented in Section 5. Section 6 draws the conclusion.

2 BACKGROUND AND MOTIVATION
2.1 CONV Layer

In general, CONV layer is the most important component
of a CNN model since it consumes the largest portion of the
overall computation. Mathematically, when the inference is
performed in a batch way, the computation of a CONV layer
is essentially the 2D convolution between a 4D input tensor
(a batch of 3D inputs) and 4D weight tensor (a group of 3D
filters), and the output of CONV layer is also a 4D tensor.
The detailed computation procedure is described as follows:
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Fig. 1: Example of imposing block-diagonal permuted struc-
ture on (a) weight matrix of FC layer and (b) weight tensor
of CONV layer. Here the block size p, as the compression
ratio, is 3. The entire weight matrix or tensor contains blocks
of component weight matrices or tensors, and each compo-
nent permuted diagonal matrix or tensor is affiliated with a
permutation value (PermV). PermV is selected from 0,1,...,p-
1. The non-zero weight values or weight filter kernels can
only be placed in the main diagonal or permuted diagonal
positions in the component weight matrices or tensors.

TABLE 1: The CNN parameters.

Parameter Description

M Number of 3D filters
C Number of channels

H/W Height/width of input

E/F Height/width of output

R/S Filter kernel height/width
N Batch size of 3D input activations
U Stride

where X = RNxCxHxW y c RNxM’xExF W c

RMXCxRExS5 arg input tensor, output tensor, and weight
tensor, respectively. And the meaning of parameters M, C,

H/W,E/F,R/S, N and U are described in Table 1.

2.2 Related Work

To date the high-performance DNN hardware accelerators
have been extensively investigated in prior work. The pi-
oneering effort in this field is Diannao family [20]-[24],
which includes a set of designs ranging from multi-machine
configuration to embedded solution. In [32]-[35], efficient
dataflows are studied and developed to improve the hard-
ware performance of DNN accelerators. Together with dif-
ferent types of model compression approaches, especially
weight pruning, [31], [36]-[41] propose several compressed
model-oriented DNN inference hardware engine. Besides,
utilizing new memory technology to address data move-
ment bottleneck is another popular solution, and the related
efforts using this strategy are reported in [7]-[10], [42], [43].
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2.3 Motivation

Importance of Sparsity in DNN Accelerators. Among var-
ious existing DNN hardware designs, sparsity-aware archi-
tecture is particularly attractive and has gained a lot of at-
tention from both academia and industry [36], [37], [44], [45]
(as shown in Table 2). In general, the existing popularity on
sparse DNNs is due to two reasons. First, weight pruning, as
a widely adopted model compression approach, inherently
brings high sparsity in DNN models. Second, activation
sparsity, as the natural outcome after using rectified linear
unit (ReLU) layer in neural network architecture, widely
exists in different types of DNN models. Consequently,
this co-existence of model sparsity and activation sparsity
significantly enhances the importance and effectiveness of
designing sparsity-aware DNN hardware accelerators.

Current Challenges. Despite its current prosperity, the
research on sparsity-aware DNN hardware accelerators is
still facing unsolved underlying challenges. For instance,
part of existing work [37], [45] only exploit the utilization
of activation sparsity while ignoring model sparsity. The
all-sparsity utilization is studied in [36], but it suffers low
multiplier utilization problem due to the inherent charac-
teristics of its dataflow. The hardware architecture in [44]
can efficiently deal with both model sparsity and activation
sparsity; however, it requires extra indexing overhead and
only targets for FC layers.

Recently, PERMDNN [31] is proposed to address the
unstructured model sparsity problem in prior work with
still fully utilizing two types of sparsity. Evaluation results
show that PERMDNN can achieve both high task perfor-
mance on different datasets and high hardware performance
in terms of different metrics (throughput, area efficiency
and energy efficiency). Unfortunately, similar to [44], the
hardware architecture of PERMDNN is only designed for
FC layers, thereby limiting its applications in CONV layer-
centric scenarios.

Block-level sparsity, such as [46], is another approach to
introduce structured sparsity to DNNs. However, similar to
PERMDNN the state-of-the-art block-level sparsity work are
mainly introduced to compress fully-connected neural net-
work or recurrent neural network. Hence the corresponding
block-level sparsity hardware architecture can only be used
for accelerating FC layer instead of CONV layer.

Motivation of This Work. Notice that at the algorithm
level the permuted diagonal structure-imposing approach,
as the key idea in PERMDNN, already contains the low-
complexity forward and backward propagation schemes
for CONV layers with high sparsity ratio and negligible
accuracy loss. Therefore, based on this already verified the-
oretical outcome and encouraged by the high performance
demonstrated by FC layer-targeted PERMDNN hardware
architecture, this paper aims to develop a CONV layer-
targeted hardware architecture, namely PERMCNN, to de-
liver the promising advantages of imposing permuted diag-
onal structure on CONV layers. Such effort, if successful
in fully utilizing the structured model sparsity as well
as dynamic activation sparsity, would achieve significant
hardware performance improvement over the existing CNN
accelerators.

3

TABLE 2: Some existing sparsity-aware DNN accelerators.
Here WS means weight sparsity, and IAS means input
activation sparsity.

DRAM Access
Accelerator WS | IAS Information Target Layer
Revealed

EIE [44] Y [ Y N FC
Cnvlutin [37] N N N CONV
Eyeriss [45] N Y Y CONV
SCNN [36] Y Y N CONV

PERMDNN [31] | Y | Y N FC
PERMCNN Y Y Y CONV

3 PERMUTED DIAGONAL ON CONV LAYER

In this section we briefly review the forward and back-
ward propagation schemes on permuted diagonal structure-
imposed CONV layers. More algorithm-level details, in-
cluding classification accuracy on different datasets, can be
referred to [31].

Forward Propagation. As illustrated in Fig. 1, the key
idea of designing permuted diagonal CONV layer is to
impose such structure along the two dimensions that are
defined by number of 3D filters and number of channels.
Based on this mechanism, the non-zero kernels can only
be placed in the main diagonal or permuted diagonal po-
sitions. Therefore, we only need to store non-zero kernels
W' e R *BXS and the mapping between original W
and non-zero kernels W' is defined as following:

W, e, ) = {W'(Z Xp+i,rs) (i—i—kl).z ¢ modp
0 otherwise

2)
where p is the block size, i =m mod p, I = || x %—F L]
The k; is the permuted offset for diagonals, also denoted as
PermV. Eqn. 2 describes the indexing design of the PERM-
CNN. Each block only takes p kernels. The [ x p indicates
the offset of current block and ¢ stands for current kernel
within the block. The modulo condition is required for the
permuted diagonal. Based on this mapping, the convolution
is only performed for non-zero kernels. Overall, the forward
propagation can be summarized as:

Q

»1R-15-1
Y(n,m,e, f)=> > > X(n,gp+(i+k modp),
g=0 r=0 s=0
Ue+r,Uf+s)x Wi (ki xp+i,r,s).

®)

Backward Propagation. Besides forward propagation,
the corresponding backward propagation is also developed
in [31] to ensure the trained CONV layer exhibits permuted
diagonal structure as follows:

N—1E—-1F—
W(mcrs ZZZ (n,e,Ue+r,Uf +s)

" ) 8]
oV (n,m. e, f)

3

4)
Y W(m, e, r,s) #0
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TABLE 3: Model compression results [31] on AlexNet, VGG-
16 over ImageNet [47] and ResNet on CIFAR-10 [48].

Model Dataset D Acc. CR of CONYV layers
ResNet-20 CIFAR-10 | 1 | 91.25% 1.09MB (1x)
ResNet-20 CIFAR-10 | 2 | 90.85% 0.70MB (1.55x)

Wide ResNet-48 | CIFAR-10 | 1 | 95.14% 190.2MB (1x)

Wide ResNet-48 | CIFAR-10 | 4 | 94.92% 61.9MB (3.07 x)
AlexNet AlexNet [ 1 | 80.2% 8.9MB (1x)
AlexNet AlexNet | 4 | 79.85% 2.3MB (3.83x)
VGG-16 AlexNet | 1 | 88.7% 56.12MB(1x)
VGG-16 AlexNet | 4 | 88.27% 14.03MB(3.99%)
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Notice that here Eqn. 5 is used to aid the gradient compu-
tation described in Eqn. 4 since X' (n, ¢, z,y) in the current
layer is the output of previous layer as Y(n, m, ¢, f).

Table 3 lists the model compression results over the
AlexNet, VGG, ResNet and Wide ResNet models. The sec-
ond column is the block size p setting and the last column
is the compression ratio (CR) over the corresponding con-
volution layers. More detailed algorithm-level experimental
configurations can be found in our prior PERMDNN work
[31]. It can be noted that permuted diagonal structure can
achieve high sparsity and with negligible accuracy drop.

4 PERMCNN ARCHITECTURE

In this section, we develop the hardware architecture of
PERMCNN for the permuted diagonal structure-imposed
CONV layers. Specifically, we will describe data processing
scheme, key component units, critical inter-unit routing in
detail. Notice that similar to most of the existing CNN
hardware accelerators, PERMCNN architecture is designed
for inference tasks.

4.1 Data Processing Scheme

In general, PERMCNN adopts a partial-parallel data pro-
cessing scheme that utilizes multiple processing elements
(PEs) to perform 2D convolution between a batch of 3D
input tensors and a group of 3D weight filters. Fig. 2 shows
an example data processing scheme for a 4 x 2 x 2 x2 CONV
weight tensor on a 1 x 2 x 2 x 3 input tensor, which is
essentially the activation results of the previous layer. Here
each PE is in charge of computations that belong to a specific
filter, and different PEs perform independent processing on
the input activations to maximize the throughput. Notice
that though each filter can only be affiliated with one PE,
different channels of the input activations can share the
same PE. The details of such data routing scheme will be
described in Section 4.5.

Specifically, the entire processing is performed on the
input activations in the left-to-right and top-to-bottom di-
rection to map the desired sliding window-style 2D con-
volution. As shown in Fig. 2, in each clock cycle each PE
multiplies one non-zero entry in a filter kernel and non-
zero entry in one channel of input activations, and then
accumulate their product. After finishing the computation

4

between the kernel and the current corresponding same-
size partial input activations (e.g. 2 x 2 filter kernel and
2 x 2 part in the entire 2 x 3 channel of activations in
Fig. 2), each PE stores the final accumulated result in the
register (marked as red in Fig. 2, and then continues to “slide
window” on the input activation map. Accordingly, there
are multiple registers contained in each PE to store different
final accumulated results.

Notice that the above described data processing scheme
skips the zero entries in both filter kernels and input
activations to save computation and time. For the zero-
value weights existed in the filters, it is very convenient to
identify and skip them because of the structured sparsity
characteristics in the permuted diagonal CONV layer. On
the other side for activations, as will be described in detail
in Section 4.4, the dedicatedly designed APU utilizes two
types of indexing information to ensure that only the non-
zero values are processed and correctly paired with the
corresponding non-zero weight values.

It should be noticed that the processing scheme illus-
trated in Fig. 2 may have the potential imbalance problem.
Such imbalance problem does not result from uneven non-
zero weight distribution since the inherent regularity of
weight tensor in PermCNN automatically enables balanced
distribution for non-zero weights across different PEs. In-
stead, such imbalance comes from the uneven distribution
of input activation sparsity. Fortunately, such imbalanced
input activation sparsity can be easily and solved by using
FIFOs in APU, which will be described in detail in Section
4.4.

4.2 Overall Hardware Architecture

Based on the data processing scheme described in Section
4.1, we develop the corresponding hardware architecture
of PERMCNN. Fig. 3 shows the overall architecture of
the proposed computing engine. Here different from PER-
MDNN, PERMCNN stores both the compressed models
and activation results of the component layers in the off-
chip DRAM. Such arrangement is based on two reasons: 1)
The compression ratios of CONV layers are typically much
lower than FC layers, and hence even the compressed CNN
models cannot fit to on-chip SRAM; and 2) the activation
results of CONV layers, in the format of 4D tensors, can
consume much higher storage costs than the 1D vector-
format activations of FC layers, thereby also exceeding the
capacity of SRAM.

Next we describe the dataflow in the proposed archi-
tecture. After the activation values are read from DRAM,
they are first processed by sparse-to-dense conversion unit
(52DCU) to be converted back to dense format (see Fig. 4).
This is because though the sparsity format (e.g. compressed
sparse row (CSR) [49]) of activations can help save memory
cost in the off-chip DRAM, in the on-chip processing the
original dense format is still required to identify the original
positions of non-zero values in the activations, thereby
ensuring functional validity in the later computations. Then,
these dense-format activation values are sent to activation
processing units (APUs) to prepare the desired non-zero
values and index information for the next-stage convolution
operation. Notice that here the extracted values and indices,
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Fig. 2: Example data processing scheme.

which are used to ensure the valid computation of 2D con-
volution, are different from those used in the sparse format
in DRAM. Then, a crossbar module is used to route the
non-zero values and index information to the corresponding
PEs, and the PEs are in charge of 2D convolutions between
different filter kernels and different channels of input ac-
tivations. Notice that the weights of filter kernels are first
read from off-chip DRAM, and then they are stored in the
SRAMs in PEs for local reuse. After all the PEs finish their
computations, the final results will be converted back to
sparse format via dense-to-sparse conversion unit (D25CU)
to save the memory costs in DRAM.

4.3 Sparse/Dense Conversion Units

As described before, the interface between PERMCNN com-
puting engine and DRAM are S2DCU and D2SCU modules.
Here the sparse encoding format used in this two types of

Here filter kernel size is 2 x 2.

conversion units are compressed sparse row (CSR), which is
the same data representation adopted in [45]. Specifically,
the S2DCU reads one channel of input activations from
DRAM in a row-wise way and then converts it to dense
format. Similarly, the D2SCU compresses the dense-format
results of PEs to the sparse format and sends them back to
DRAM.

4.4 Activation Processing Unit

As mentioned in Section 4.2, APU is used to extract non-zero
values and their index information for the later 2D convolu-
tion. Specifically, there are three types of information that are
generated by APU: convolution ID (CID), position ID (PID)
and extended activation vector (ACT). Fig. 4 illustrates the
function of APU on a 3 x 3 input activations. After receiving
the converted dense-format activation from S2DCU, APU
identifies each non-zero value that is needed in the 2D
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Fig. 3: Overall architecture of PERMCNN hardware.

convolution and sequences them. Notice that there exists
data repeat in the sequence due to the fact that the filter
kernel processes the same activation value in the different
dot product-format computation steps when it slides over
the activation map. Accordingly, in order to ensure that each
activation value in the ACT sequence, no matter it has repeat
or not, can always be used for the correct computation step
in the 2D convolution, each activation value in the ACT is
affiliated its individual CID and PID. Here CID indicates
the specific computation step when the current activation
value will be used, and PID indicates the correct position
where the activation value should be placed in the dot
product computation step. Notice that the index principles
for computation step and the positions are pre-determined
as illustrated in Fig. 4. After all the entries in ACT sequence
and their corresponding PIDs and CIDs have been gener-
ated, all of them will be buffered in a FIFO. The reason
for using this FIFO is to reduce load imbalance problem
incurred by uneven input activation sparsity distribution.
In the worst case scenario, some PEs will receive N,
zero activation values; while some other PEs will receive
Ngce non-zero activation values for the current computation
steps. Accordingly, in order to avoid stalling PEs in this
worst case scenario, the FIFO depth in the PE of PERMCNN
is set as Ny to ensure the continuous processing of each
PE. Please notice that such strategy is similar to the one
used in EIE [44] that targets sparse fully-connected layer.

4.5 Crossbar Module

To ensure each PE receives its desired activation values
from APUs, a dedicatedly designed crossbar module, as
the underlying hardware to realize such interconnection,
is needed in the PERMCNN architecture. Fig. 5 shows an
example interconnection among multiple PEs and APUs for
a block-permuted diagonal weight tensor with block size
p = 3. Here different PEs process different filters of weight
model and different APUs provide different channels of acti-
vations to PEs. Notice that within each component diagonal
permuted tensor, the specific PermV is a very important
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DRAM Data Layout
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Fig. 4: Data processing example in S2DCU and APU. Here
activation map is 3 x 3, and filer kernel size is 2 x 2.
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Fig. 5: An example of interconnection between APUs and
PEs with block size p=3. A crossbar module is in charge of
Iea]jzing such interconnection.

parameter to help pair the correct PE and APU by utilizing
the inherent structure existed in the permuted diagonal
model. Algorithm 1 describes our proposed routing scheme
in detail. The key idea here is to utilize the information of
PermV in different component permuted diagonal tensors to
quickly identify the non-zero filters via modulo operation,
and thereby paring the correct non-zero filter kernels and
activations. Consider the modulo operation can be easily
implemented by comparator and adder, and all the other
routing operations are simply based on multiplexers, the
overall hardware cost of crossbar module is very low.
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Algorithm 1: Crossbar Routing Scheme

Input : M, C, Npg, Napy, compression ratio p, 1-D
permutation value array PermVArray with
size B x D, where B= f;ﬂ, D= [%—|

Output: PE-APU relation

1 for j =0to D-1 do

fori =0 to M-1 do

/ /Calculate address of PermVArray for PE ¢

BlockRowBase = L%J

BlockRowOf fset=1 % p

Address = BlockRowBase x D + j

PermVy; = PermVArray[ Address]

APU;q = (PermVi; + BlockRowOf f set) % p

Channel;g =j x p+ APUyy

When processing channel Channel;q,
connect PE # (i + 1) with APU # (APU;4+1).

C-I- I -

=
(=]

4.6 Processing Element

After receiving the desired weight values and activation
values, an array of PEs performs parallel multiply-and-
accumulation processing to realize 2D convolution. Fig. 8
shows the inner architecture of one PE. Here the weight
values are first read from off-chip DRAM and stored in
the PE’s own SRAM for data reuse. Notice that in order to
ensure the next-stage multiplication in the 2D convolution
is performed on the correct pair of weight and activation
values, the layout of weight in the on-chip SRAM needs
to follow a pre-defined principle. Fig. 7 shows an example
of this data layout principle. Here for the weight filters
belonging to the same PE, they should be accessed in the
left-to-right and top-to-bottom order over the entire block-
permuted diagonal weight tensor, and then stored into the
SRAM one by one. In addition, within the same filter, the
different weight values should be stored using the order
determined by the pre-defined PID index principle. For
instance, as shown in Fig. 7 for 2 x 2-size kernel the value
with PID index as 1 should be stored first while the value
with PID index as 4 should be stored last. Notice that here
the pre-defined PID index principle is exactly the same to
that is used in APU (see Fig. 4).

During the process of 2D convolution, each PE first loads
the weight values from its SRAM to registers, and then the
proper weight values, with the help of PID index sent from
APU, is selected to be multiplied with the corresponding
activation values. Fig. 8 illustrates the computing procedure
of one PE in detail. Here once receiving the PID, CID and
ACT information generated by APU, the PE utilizes PID
information to select the corresponding registers. Notice
that the data layout in PE’s weight SRAM (see Fig. 7) and
PID sequence in APU’s processing (see Fig. 4) share the
same PID index principle. This arrangement ensures that
the element-wise multiplication between weight values and
activation values are always performed on the correct pairs.
Then, using CID information, which indicates the current
multiplication should belong to which dot product in the
overall 2D convolution, PE accumulates the products of the
multiplication to calculate the final results of 2D convolu-
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Fig. 6: Inner structure of PE.
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Fig. 7: Example of data layout in PE’s weight SRAM.

tion.

5 EVALUATION
5.1 Experimental Methodology

Simulation and CAD Tools. We first develop a bit-accurate
cycle-accurate software model to simulate the behavior of
PERMCNN hardware architecture. Then, we develop RTL
model using Verilog HDL to implement the proposed archi-
tecture. This RTL model is synthesized with 28nm CMOS
technology via using Synopsys Design Compiler. Then we
use Synopsys IC Compiler to perform place and route (see
Fig. 9). To estimate power consumption, we use Synopsys
Prime-Time PX with considering the switch activity and
toggle rate extracted from simulation.

5.2 Design Configuration and Hardware Performance

Design Configuration. In general, the hardware resource
in the PERMCNN, such as the number of PEs and APUs
can be very flexible for different applications. Similarly, the
configuration for each PE, such as the number of accumula-
tors and number precision, can also be very flexible. Table 4
shows the configuration parameters for our design example.
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Activation TABLE 4: Design configuration parameters.
- Weight
8 1> 5|00 . PE Parameter Value
= o B — - - L. Amount (Npyrprz) 1
E B 1 %k 310)2 = =13 Multiplier Width 6B
= g 0|14 Amount (Nace) 64
) Accumulator Width b
2 112 Amount 1
Mappigl(Fig.7) L2141  mappifi (Fig. 4) Weigth SRAM Width 16 bits
PID Depth 1152
E PERMCNN Computing Engine Parameter | Value
e reo |1f2]afifaf2fs]a] Amount of PEs (Npg) 128
Weisht n | | I | I | | Quantization scheme 16 bits
elg o |11 . 3|13)14|4a)4 Number of APUs (N 4
SRAM WNapu)
o w0 ACT I 5 | 3 l 2 | 3 I 1 | 1 l 2 | a4 l TABLE 5: Performance breakdown of 5 CONV layers in
5 S X AlexNet. Batch size is 4. Here CR means compression ratio
v
3 a (block size), and IAS means input activation sparsity.
£
T © Weightl-zl1|-1|-2|-1|1|2|-1|
I a REG[1]=-2 DRAM
" L crR | 1AS Processing | Power A
REG[2]=1 ayer Time (ms} (mW) ccess
Registers [10f3]2]s[1]2]afa] i
REG[3]=2 CONV1 1 0% 5.49 511 3.1
CONV2 4 20% 1.85 489 14
REG[4]=-1 CONV3 4 50% 0.77 500 1.5
El El E| CONVZ | 4 | 69% 0.36 511 11
CONV5 4 62% 0.29 506 0.7
Fig. 8: Example of processing procedure of PE. Total 383 | 24% 8.76 506 77

mm?, and the power consumption is 506 mW for AlexNet
[50] and 442 mW for VGG [51], respectively. Here the
power consumption is averaged across all the CONV layers
in these two models, and Table 5 and Table 6 show the
information of these two workloads as well as the hardware
performance breakdown on each layer. Also, notice that the
power consumption reported by EDA tools refers to on-chip
computing engine part while excluding the consumption
incurred by off-chip DRAM part. In next subsection, the
contribution from DRAM access will be considered and
included in the overall system evaluation.

5.3 Comparison with Eyeriss

Rationale. In this subsection, we compare our proposed
PERMCNN with the seminal CNN accelerator Eyeriss [45].
It should be noticed that though there have been plenty of

TABLE 6: Performance breakdown of 13 CONV layers in
VGG. Batch size is 3. Here CR means compression ratio
(block size), and IAS means input activation sparsity.

0 . . DRAM
Fig. 9: Layout of one PE. Layer CR | 1AS ?ﬁ:&z:;? I(’;t;ve;' Access
(MB)
CONV1-1 1 0% 5.09 303 10.3
Here one PE is equipped with one 16-bit multiplier and 64 CONVI-2 Fy 49% 1465 315 241
24-bit accumulators. The rationale for such configuration is CONV2-1 4 20% 5.68 493 9.8
to conservatively avoid overflow. Also, there is a 1152 x 16 Egﬂ?ﬁ i ;3:: 223 igg 152 62
Weight SRAM contained in each PE. Accordmgly, the total CONV3-2 1 50% 7:13 500 7:5
weight SRAM in the entire PERMCNN is 288KB. This size CONV33 | 4 | 49% 7.24 499 73
can store up to 147,456 weights in the sparse models, and CONV4-1 | 4 | 56% 3.17 498 39
it is sufficient to accommodate most CONV layers in the CONV4-2 4 66% 4.85 506 6.1
. i . CONV4-3 4 68% 459 508 5.8
popular CNN models with a moderate compression ratio of CONVET T 75% 0.80 519 30
4. CONV5-2 4 74% 0.94 516 3.0
Hardware Performance. According to the reports from EDA CONV5-3 i | 72% 1.01 514 30
tools, the total area of the PERMCNN accelerator is 3.44 Total 4.00 | 45% 69.25 442 101.6
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Fig. 10: Hardware performance comparison between Eyeriss and PERMCNN.

published work on CNN accelerators, Eyeriss is the most
suitable design for a fair and comprehensive comparison
because of the three reasons: 1) it develops a novel row
stationary dataflow, thereby representing the state-of-the-
art at architecture level; 2) it reveals very detailed layer-wise
hardware performance on two practical workloads (AlexNet
and VGG); and 3) most importantly, unlike most of the
existing work, Eyeriss reports its performance including the
energy consumption incurred by DRAM access (see Table
2), which in practice occupies a significant portion of the
overall energy consumption of the entire CNN accelerator
system. Based on these considerations, we adopt the same
workloads and energy modeling approach used in Eyeriss
to perform a fair and comprehensive hardware performance
comparison between PERMCNN and Eyeriss.

Performance Comparison. Table 7 summarizes the hard-
ware performance metrics of PERMCNN and Eyeriss. Con-
sidering the different technology nodes used in these two
work, here we project the Eyeriss to 28nm technology fol-
lowing the project principle in [44]: frequency, area and
power are scaled as linear, quadratic and constant way,
respectively. In order to perform the comprehensive eval-
uation on the overall energy consumption, DRAM access,
including the operation of reading weight and activation
values from DRAM as well as writing activation values to
DRAM, is listed in the table as well. And the overall power
is the addition of DRAM power and the chip power. Notice
that the DRAM access energy we used in the evaluation is
21 p]/bit, which was reported for an LPDDR3 model [52].

From Table 7 it is seen that, PERMCNN achieves 3.74 x
and 3.11x improvement over Eyeriss in terms of area effi-
ciency and energy efficiency, respectively, on the workload
of 5 CONV layers of Alexnet model. On the workload of 13
CONV layers of VGG model, PERMCNN achieves 17.49x
area efficiency improvement and 14.22x energy efficiency
improvement. Moreover, the desired DRAM access for
PERMCNN is reduced by 2.0x and 3.16x than Eyeriss for
AlexNet and VGG workloads, respectively. Consequently,
for the overall system energy efficiency, which includes
both on-chip computing engine part and off-chip DRAM
part, PERMCNN achieves 2.6x and 9.62x improvement on
AlexNet and VGG workloads, respectively. Fig. 10 summa-
rizes the comparison result between Eyeriss and PERMCNN
in terms of area efficiency, chip energy efficiency, and overall
energy efficiency. It is seen that that PERMCNN provides
significant performance improvement with respect to these
hardware performance metrics.

TABLE 7: Comparisons of PERMCNN and Eyeriss. AXN
stands for AlexNet.

Design Eyeriss PERMCNN
65nm 28nm
CMOS Tech. (reported) (projected) 28nm
Frequency (MHz) 200 464 800
Area (mm?) 12.25 2.27 3.44
. 278 (AXN 278 (AXN 506 (AXN
Chip Power (mW) | 50 EVG(;; 236 Evc;(;g 442 §VGG;
Overall Power 300 (AXN) 300 (AXN) 654 (AXN)
(mW) 249 (VGG) | 249 (VGG) | 689 (VGG)
Processing Time 28.83 (AXN) | 12.42 (AXN) 2.19 (AXN)
(ms) 1437 (VGG) | 619 (VGG) | 23.09 (VGG)
Throughput 347 (AXN) | 80.55 (AXN) | 456.6 (AXN)
(frame/s) 0.70 (VGG) | 1.625 (VGG) | 4331 (VGG)
Area Efficiency 2.83 (AXN) 35.48 (AXN) | 132.73(AXN)
(frame/s/mm?) 0.057 (VGG) | 0.72(VGG) | 12.59(VGG)
C]}E‘;gc}iz;fcrgy 124.8 (AXN) | 289.7 (AXN) | 902.4 (AXN)
Y 297 (VGG) | 6.89 (VGG) | 97.99(VGG)
(frame/J)
DRAM Access 3.85 (AXN) | 3.85(AXN) | 1.93 (AXN)
(MB) 107.0 (VGG) | 107.0 (VGG) | 33.87(VGG)
OVE;EH. Energy | 1145 (AXN) | 268.5 (AXN) | 698.2 (AXN)
Py crency 2.80 (VGG) | 653 (VGG) | 62.86(VGG)
rame/J)

6 CONCLUSION

This paper proposes PERMCNN, a CNN hardware archi-
tecture to execute the hardware-friendly permuted diagonal
structured CNN models. PERMCNN can fully leverage the
benefits provided by the structured models to deliver very
high hardware performance. Evaluation results show that,
compared with the state-of-the-art CNN accelerator, PERM-
CNN achieves 3.74x, 3.11x and 2.60x improvement on
area efficiency, on-chip energy efficiency and overall energy
efficiency, respectively, when executing AlexNet models.
And it achieves 17.49x, 14.22x and 9.62 x improvement on
area efficiency, on-chip energy efficiency and overall energy
efficiency, respectively, when executing VGG model.
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