
0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

1

PERMCNN: Energy-efficient Convolutional
Neural Network Hardware Architecture with

Permuted Diagonal Structure
Chunhua Deng, Siyu Liao, Bo Yuan

Abstract—In the emerging artificial intelligence (AI) era, efficient hardware accelerator design for deep neural networks (DNNs) is very
important to enable real-time energy-efficient DNN model deployment. To this end, various DNN model compression approaches and
the corresponding hardware architectures have been intensively investigated. Recently, PERMDNN, as a permuted diagonal
structure-imposing model compression approach, was proposed with promising classification performance and hardware performance.
However, the existing PERMDNN hardware architecture is specifically designed for fully-connected (FC) layer-contained DNN models;
while its support for convolutional (CONV) layer is missing. To fill this gap, this paper proposes PERMCNN, an energy-efficient
hardware architecture for permuted diagonal structured convolutional neural networks (CNNs). By fully utilizing the strong structured
sparsity in the trained models as well as dedicatedly leveraging the dynamic activation sparsity, PERMCNN delivers very high hardware
performance for inference tasks on CNN models. A design example with 28nm CMOS technology shows that, compared the to
state-of-the-art CNN accelerator, PERMCNN achieves 3.74× and 3.11× improvement on area and energy efficiency, respectively, on
AlexNet workload, and 17.49× and 14.22× improvement on area and energy efficiency, respectively, on VGG model. After including
energy consumption incurred by DRAM access, PERMCNN achieves 2.60× and 9.62× overall energy consumption improvement on
AlexNet and VGG workloads, respectively.

Index Terms—Deep Learning, Model Compression, Hardware Accelerator, Convolutional Neural Network

F

1 INTRODUCTION

IN the emerging artificial intelligence (AI)-centric era, deep
neural networks (DNNs) have become the most impor-

tant and powerful intelligence-enabled technique. Thanks
to the availability of massive amount of training data and
much stronger computing power than before, DNNs models
can now be well trained with very deep and wide archi-
tecture, and thereby being able to achieve unprecedented
high classification accuracy and/or prediction quality in
various practical application domains, such as computer
vision, speech recognition, natural language processing, rec-
ommendation systems etc.

However, the current prosperity of DNNs is not free
but comes from the significant increase on model sizes.
Today’s DNN models commonly have tens or hundreds of
layers and each layer contains hundreds or thousands of
neurons/filters. Such large-size architecture, consequently,
causes DNNs inherently suffer high computational and
storage complexity, and thereby posing severe challenge for
their real-time and energy-efficient deployment, especially
in the resource-constrained and latency-sensitive applica-
tions such as embedded and mobile platforms.

To address these challenges, numerous solutions from
both machine learning and computing hardware communi-
ties have been proposed [1]–[25], and these prior efforts can
be roughly categorized to two orthogonal directions: model
compression and hardware acceleration. Model compression,

• Chunhua Deng, Siyu Liao, and Bo Yuan are with the Department of
Electrical and Computer Engineering, Rutgers University, Piscataway,
NJ, 08854.
E-mail: bo.yuan@soe.rutgers.edu

as an algorithm-level solution, targets to reduce the DNN
model sizes without accuracy drop or only negligible loss.
Currently the most popular and well-investigated model
compression approaches are weight pruning [26]–[28] and
precision reduction [29], [30]. On the other hand, efforts
on hardware acceleration aim to achieve high-performance
execution of DNN models via designing DNN-specific com-
puting platforms. These platforms, namely DNN accelera-
tors, provide customized hardware support for the kernel
computations in DNN executions, especially for inference,
and hence they can achieve orders-of-magnitude improve-
ment on hardware performance as compared with general
purpose CPUs and GPUs.

Recently, PERMDNN, as a work that performs model
compression and hardware acceleration simultaneously, is
proposed in [31] to provide an algorithm/hardware co-
design solution for high-performance DNN model execu-
tion. By imposing permutation diagonal structure on the DNN
models, PERMDNN develops low-complexity forward and
backward propagation schemes for both permuted diagonal
structure-based fully-connected (FC) layers and convolu-
tional (CONV) layers, thereby ensuring that such structured
DNN models can be trained and executed at the algorithm
level. Then, PERMDNN develops a corresponding hard-
ware engine that specifically supports the inference task
of permuted diagonal structured DNN models. The strong
structure in DNN models is fully leveraged in this hardware
architecture to reduce indexing overhead, and hence such
deep integration between algorithm and hardware brings
very high hardware performance improvement over the
state-of-the-art DNN hardware designs.

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

2

Despiteitspromisingperformance,thereexistsanim-
portant missinginPERMDNNframework.Thehardware
architecturedevelopedin[31]isspecificallydesignedfor
acceleratingtheinferenceonFClayersanditisnotwell-
suitedforCONVlayers.AsillustratedinFig.1,theper-
muteddiagonalstructurehasdifferent meaningsinFC
layerandCONVlayercases.InFClayersuchstructureis
imposedonthe2Dweightmatrix,whileintheCONVlayer
itisimposedonthe4Dweighttensor.Consequently,the
originalmatrix-vectormultiplication-baseddataprocessing
schemeinPERMDNNhardwareenginecannotbeusedfor
permuteddiagonalstructuredCONVlayerthatusessliding
window-based2Dconvolutionaskernelfunction.Given
thevery widespreadadoptionofCONVlayer-contained
convolutionalneuralnetworks(CNNs)inmanyreal-world
AItasks,suchabsenceofCONVlayer-suitedhardware
architecturewillsignificantlyhinderandlimitthepractical
applicationsofPERMDNNframework.
Tofillthisgapanddeliverthepromiseofpermuteddi-

agonalstructuredCNNmodels,thispaperproposesPERM-
CNN,anenergy-efficientCONVlayer-targetedhardware
architecturewithpermuteddiagonalstructure.Byfullyuti-
lizingthestrongstructuredsparsityinthetrainedmodelsas
wellasdedicatedlyleveragingthedynamicactivationspar-
sity,PERMCNNdeliversveryhighhardwareperformance
forinferencetasksonCNN models. Adesignexample
with28nmCMOStechnologyshowsthat,comparedtothe
state-of-the-artCNNaccelerator,PermCNNachieves3.74×
and3.11×improvementonareaandenergyefficiency,re-
spectively,onAlexNetworkload,and17.49×and14.22×
improvementonareaandenergyefficiency,respectively,on
VGGmodel.Afterincludingenergyconsumptionincurred
by DRAMaccess,PermCNNachieves2.60× and9.62×
overallenergyconsumptionimprovementonAlexNetand
VGGworkloads,respectively.
Therestofthispaperisorganizedasfollows.Section

2introducesthebasicsofCONVlayer,theexistingDNN
hardwareaccelerators,andthe motivationofour work.
Thegeneralforwardandbackwardpropagationschemes
onpermuteddiagonalstructure-imposedCONVlayerare
brieflyreviewedinSection3.Section4describesthehard-
warearchitectureoftheproposedPERMCNNindetail.The
implementationandevaluationresultsofPERMCNNare
presentedinSection5.Section6drawstheconclusion.

2 BACKGROUNDANDMOTIVATION

2.1 CONVLayer

Ingeneral,CONVlayeristhemostimportantcomponent
ofaCNNmodelsinceitconsumesthelargestportionofthe
overallcomputation.Mathematically,whentheinferenceis
performedinabatchway,thecomputationofaCONVlayer
isessentiallythe2Dconvolutionbetweena4Dinputtensor
(abatchof3Dinputs)and4Dweighttensor(agroupof3D
filters),andtheoutputofCONVlayerisalsoa4Dtensor.
Thedetailedcomputationprocedureisdescribedasfollows:

Y(n,m,e,f)=
C−1

c=0

R−1

r=0

S−1

s=0

W(m,c,r,s)

×X(n,c,Ue+r,Uf+s),

(1)

Fig.1:Exampleofimposingblock-diagonalpermutedstruc-
tureon(a)weightmatrixofFClayerand(b)weighttensor
ofCONVlayer.Heretheblocksizep,asthecompression
ratio,is3.Theentireweightmatrixortensorcontainsblocks
ofcomponentweightmatricesortensors,andeachcompo-
nentpermuteddiagonalmatrixortensorisaffiliatedwitha
permutationvalue(PermV).PermVisselectedfrom0,1,...,p-
1.Thenon-zeroweightvaluesorweightfilterkernelscan
onlybeplacedinthemaindiagonalorpermuteddiagonal
positionsinthecomponentweightmatricesortensors.

TABLE1:TheCNNparameters.

Parameter Description
M Numberof3Dfilters
C Numberofchannels
H/W Height/widthofinput
E/F Height/widthofoutput
R/S Filterkernelheight/width
N Batchsizeof3Dinputactivations
U Stride

where X ∈ RN×C×H×W,Y ∈ RN×M×E×F,W ∈
RM×C×R×S areinputtensor,outputtensor,and weight
tensor,respectively.AndthemeaningofparametersM,C,
H/W,E/F,R/S,NandUaredescribedinTable1.

2.2 RelatedWork

Todatethehigh-performanceDNNhardwareaccelerators
havebeenextensivelyinvestigatedinpriorwork.Thepi-
oneeringeffortinthisfieldis Diannaofamily[20]–[24],
whichincludesasetofdesignsrangingfrommulti-machine
configurationtoembeddedsolution.In[32]–[35],efficient
dataflowsarestudiedanddevelopedtoimprovethehard-
wareperformanceofDNNaccelerators.Togetherwithdif-
ferenttypesof modelcompressionapproaches,especially
weightpruning,[31],[36]–[41]proposeseveralcompressed
model-orientedDNNinferencehardwareengine.Besides,
utilizingnew memorytechnologytoaddressdata move-
mentbottleneckisanotherpopularsolution,andtherelated
effortsusingthisstrategyarereportedin[7]–[10],[42],[43].

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

3

2.3 Motivation

Importance of Sparsity in DNN Accelerators. Among var-
ious existing DNN hardware designs, sparsity-aware archi-
tecture is particularly attractive and has gained a lot of at-
tention from both academia and industry [36], [37], [44], [45]
(as shown in Table 2). In general, the existing popularity on
sparse DNNs is due to two reasons. First, weight pruning, as
a widely adopted model compression approach, inherently
brings high sparsity in DNN models. Second, activation
sparsity, as the natural outcome after using rectified linear
unit (ReLU) layer in neural network architecture, widely
exists in different types of DNN models. Consequently,
this co-existence of model sparsity and activation sparsity
significantly enhances the importance and effectiveness of
designing sparsity-aware DNN hardware accelerators.

Current Challenges. Despite its current prosperity, the
research on sparsity-aware DNN hardware accelerators is
still facing unsolved underlying challenges. For instance,
part of existing work [37], [45] only exploit the utilization
of activation sparsity while ignoring model sparsity. The
all-sparsity utilization is studied in [36], but it suffers low
multiplier utilization problem due to the inherent charac-
teristics of its dataflow. The hardware architecture in [44]
can efficiently deal with both model sparsity and activation
sparsity; however, it requires extra indexing overhead and
only targets for FC layers.

Recently, PERMDNN [31] is proposed to address the
unstructured model sparsity problem in prior work with
still fully utilizing two types of sparsity. Evaluation results
show that PERMDNN can achieve both high task perfor-
mance on different datasets and high hardware performance
in terms of different metrics (throughput, area efficiency
and energy efficiency). Unfortunately, similar to [44], the
hardware architecture of PERMDNN is only designed for
FC layers, thereby limiting its applications in CONV layer-
centric scenarios.

Block-level sparsity, such as [46], is another approach to
introduce structured sparsity to DNNs. However, similar to
PERMDNN the state-of-the-art block-level sparsity work are
mainly introduced to compress fully-connected neural net-
work or recurrent neural network. Hence the corresponding
block-level sparsity hardware architecture can only be used
for accelerating FC layer instead of CONV layer.

Motivation of This Work. Notice that at the algorithm
level the permuted diagonal structure-imposing approach,
as the key idea in PERMDNN, already contains the low-
complexity forward and backward propagation schemes
for CONV layers with high sparsity ratio and negligible
accuracy loss. Therefore, based on this already verified the-
oretical outcome and encouraged by the high performance
demonstrated by FC layer-targeted PERMDNN hardware
architecture, this paper aims to develop a CONV layer-
targeted hardware architecture, namely PERMCNN, to de-
liver the promising advantages of imposing permuted diag-
onal structure on CONV layers. Such effort, if successful
in fully utilizing the structured model sparsity as well
as dynamic activation sparsity, would achieve significant
hardware performance improvement over the existing CNN
accelerators.

TABLE 2: Some existing sparsity-aware DNN accelerators.
Here WS means weight sparsity, and IAS means input
activation sparsity.

Accelerator WS IAS
DRAM Access

Information
Revealed

Target Layer

EIE [44] Y Y N FC
Cnvlutin [37] N N N CONV
Eyeriss [45] N Y Y CONV
SCNN [36] Y Y N CONV

PERMDNN [31] Y Y N FC
PERMCNN Y Y Y CONV

3 PERMUTED DIAGONAL ON CONV LAYER

In this section we briefly review the forward and back-
ward propagation schemes on permuted diagonal structure-
imposed CONV layers. More algorithm-level details, in-
cluding classification accuracy on different datasets, can be
referred to [31].

Forward Propagation. As illustrated in Fig. 1, the key
idea of designing permuted diagonal CONV layer is to
impose such structure along the two dimensions that are
defined by number of 3D filters and number of channels.
Based on this mechanism, the non-zero kernels can only
be placed in the main diagonal or permuted diagonal po-
sitions. Therefore, we only need to store non-zero kernels
W ′ ∈ R

M×C
p ×R×S , and the mapping between original W

and non-zero kernelsW ′ is defined as following:

W(m, c, r, s) =

{
W ′(l × p+ i, r, s) (i+ kl) ≡ c mod p

0 otherwise
(2)

where p is the block size, i ≡ m mod p, l = bmp c×
C
p +b cpc.

The kl is the permuted offset for diagonals, also denoted as
PermV. Eqn. 2 describes the indexing design of the PERM-
CNN. Each block only takes p kernels. The l × p indicates
the offset of current block and i stands for current kernel
within the block. The modulo condition is required for the
permuted diagonal. Based on this mapping, the convolution
is only performed for non-zero kernels. Overall, the forward
propagation can be summarized as:

Y(n,m, e, f) =

C
p −1∑
g=0

R−1∑
r=0

S−1∑
s=0

X (n, gp+ (i+ kl mod p),

Ue+ r, Uf + s)×W ′(kl × p+ i, r, s).
(3)

Backward Propagation. Besides forward propagation,
the corresponding backward propagation is also developed
in [31] to ensure the trained CONV layer exhibits permuted
diagonal structure as follows:

∂J

W(m, c, r, s)
=

N−1∑
n=0

E−1∑
e=0

F−1∑
f=0

X (n, c, Ue+ r, Uf + s)

× ∂J

∂Y(n,m, e, f)
,∀ W(m, c, r, s) 6= 0

(4)

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

4

TABLE 3: Model compression results [31] on AlexNet, VGG-
16 over ImageNet [47] and ResNet on CIFAR-10 [48].

Model Dataset p Acc. CR of CONV layers
ResNet-20 CIFAR-10 1 91.25% 1.09MB (1×)
ResNet-20 CIFAR-10 2 90.85% 0.70MB (1.55×)

Wide ResNet-48 CIFAR-10 1 95.14% 190.2MB (1×)
Wide ResNet-48 CIFAR-10 4 94.92% 61.9MB (3.07×)

AlexNet AlexNet 1 80.2% 8.9MB (1×)
AlexNet AlexNet 4 79.85% 2.3MB (3.83×)
VGG-16 AlexNet 1 88.7% 56.12MB(1×)
VGG-16 AlexNet 4 88.27% 14.03MB(3.99×)

∂J

∂X (n, c, x, y)
=

M−1∑
m=1

R−1∑
r=0

S−1∑
s=0

W(n,m, r, s)

× ∂J

∂Y(n,m, , (x− r)/U, (y − s)/U)
.

(5)

Notice that here Eqn. 5 is used to aid the gradient compu-
tation described in Eqn. 4 since X (n, c, x, y) in the current
layer is the output of previous layer as Y(n,m, e, f).

Table 3 lists the model compression results over the
AlexNet, VGG, ResNet and Wide ResNet models. The sec-
ond column is the block size p setting and the last column
is the compression ratio (CR) over the corresponding con-
volution layers. More detailed algorithm-level experimental
configurations can be found in our prior PERMDNN work
[31]. It can be noted that permuted diagonal structure can
achieve high sparsity and with negligible accuracy drop.

4 PERMCNN ARCHITECTURE

In this section, we develop the hardware architecture of
PERMCNN for the permuted diagonal structure-imposed
CONV layers. Specifically, we will describe data processing
scheme, key component units, critical inter-unit routing in
detail. Notice that similar to most of the existing CNN
hardware accelerators, PERMCNN architecture is designed
for inference tasks.

4.1 Data Processing Scheme
In general, PERMCNN adopts a partial-parallel data pro-
cessing scheme that utilizes multiple processing elements
(PEs) to perform 2D convolution between a batch of 3D
input tensors and a group of 3D weight filters. Fig. 2 shows
an example data processing scheme for a 4×2×2×2 CONV
weight tensor on a 1 × 2 × 2 × 3 input tensor, which is
essentially the activation results of the previous layer. Here
each PE is in charge of computations that belong to a specific
filter, and different PEs perform independent processing on
the input activations to maximize the throughput. Notice
that though each filter can only be affiliated with one PE,
different channels of the input activations can share the
same PE. The details of such data routing scheme will be
described in Section 4.5.

Specifically, the entire processing is performed on the
input activations in the left-to-right and top-to-bottom di-
rection to map the desired sliding window-style 2D con-
volution. As shown in Fig. 2, in each clock cycle each PE
multiplies one non-zero entry in a filter kernel and non-
zero entry in one channel of input activations, and then
accumulate their product. After finishing the computation

between the kernel and the current corresponding same-
size partial input activations (e.g. 2 × 2 filter kernel and
2 × 2 part in the entire 2 × 3 channel of activations in
Fig. 2), each PE stores the final accumulated result in the
register (marked as red in Fig. 2, and then continues to ”slide
window” on the input activation map. Accordingly, there
are multiple registers contained in each PE to store different
final accumulated results.

Notice that the above described data processing scheme
skips the zero entries in both filter kernels and input
activations to save computation and time. For the zero-
value weights existed in the filters, it is very convenient to
identify and skip them because of the structured sparsity
characteristics in the permuted diagonal CONV layer. On
the other side for activations, as will be described in detail
in Section 4.4, the dedicatedly designed APU utilizes two
types of indexing information to ensure that only the non-
zero values are processed and correctly paired with the
corresponding non-zero weight values.

It should be noticed that the processing scheme illus-
trated in Fig. 2 may have the potential imbalance problem.
Such imbalance problem does not result from uneven non-
zero weight distribution since the inherent regularity of
weight tensor in PermCNN automatically enables balanced
distribution for non-zero weights across different PEs. In-
stead, such imbalance comes from the uneven distribution
of input activation sparsity. Fortunately, such imbalanced
input activation sparsity can be easily and solved by using
FIFOs in APU, which will be described in detail in Section
4.4.

4.2 Overall Hardware Architecture

Based on the data processing scheme described in Section
4.1, we develop the corresponding hardware architecture
of PERMCNN. Fig. 3 shows the overall architecture of
the proposed computing engine. Here different from PER-
MDNN, PERMCNN stores both the compressed models
and activation results of the component layers in the off-
chip DRAM. Such arrangement is based on two reasons: 1)
The compression ratios of CONV layers are typically much
lower than FC layers, and hence even the compressed CNN
models cannot fit to on-chip SRAM; and 2) the activation
results of CONV layers, in the format of 4D tensors, can
consume much higher storage costs than the 1D vector-
format activations of FC layers, thereby also exceeding the
capacity of SRAM.

Next we describe the dataflow in the proposed archi-
tecture. After the activation values are read from DRAM,
they are first processed by sparse-to-dense conversion unit
(S2DCU) to be converted back to dense format (see Fig. 4).
This is because though the sparsity format (e.g. compressed
sparse row (CSR) [49]) of activations can help save memory
cost in the off-chip DRAM, in the on-chip processing the
original dense format is still required to identify the original
positions of non-zero values in the activations, thereby
ensuring functional validity in the later computations. Then,
these dense-format activation values are sent to activation
processing units (APUs) to prepare the desired non-zero
values and index information for the next-stage convolution
operation. Notice that here the extracted values and indices,

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

5

Fig. 2: Example data processing scheme. Here filter kernel size is 2× 2.

which are used to ensure the valid computation of 2D con-
volution, are different from those used in the sparse format
in DRAM. Then, a crossbar module is used to route the
non-zero values and index information to the corresponding
PEs, and the PEs are in charge of 2D convolutions between
different filter kernels and different channels of input ac-
tivations. Notice that the weights of filter kernels are first
read from off-chip DRAM, and then they are stored in the
SRAMs in PEs for local reuse. After all the PEs finish their
computations, the final results will be converted back to
sparse format via dense-to-sparse conversion unit (D2SCU)
to save the memory costs in DRAM.

4.3 Sparse/Dense Conversion Units

As described before, the interface between PERMCNN com-
puting engine and DRAM are S2DCU and D2SCU modules.
Here the sparse encoding format used in this two types of

conversion units are compressed sparse row (CSR), which is
the same data representation adopted in [45]. Specifically,
the S2DCU reads one channel of input activations from
DRAM in a row-wise way and then converts it to dense
format. Similarly, the D2SCU compresses the dense-format
results of PEs to the sparse format and sends them back to
DRAM.

4.4 Activation Processing Unit

As mentioned in Section 4.2, APU is used to extract non-zero
values and their index information for the later 2D convolu-
tion. Specifically, there are three types of information that are
generated by APU: convolution ID (CID), position ID (PID)
and extended activation vector (ACT). Fig. 4 illustrates the
function of APU on a 3×3 input activations. After receiving
the converted dense-format activation from S2DCU, APU
identifies each non-zero value that is needed in the 2D

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

6

Fig.3:OverallarchitectureofPERMCNNhardware.

convolutionandsequencesthem.Noticethatthereexists
datarepeatinthesequenceduetothefactthatthefilter
kernelprocessesthesameactivationvalueinthedifferent
dotproduct-formatcomputationstepswhenitslidesover
theactivationmap.Accordingly,inordertoensurethateach
activationvalueintheACTsequence,nomatterithasrepeat
ornot,canalwaysbeusedforthecorrectcomputationstep
inthe2Dconvolution,eachactivationvalueintheACTis
affiliateditsindividualCIDandPID.HereCIDindicates
thespecificcomputationstepwhenthecurrentactivation
valuewillbeused,andPIDindicatesthecorrectposition
wheretheactivationvalueshouldbeplacedinthedot
productcomputationstep.Noticethattheindexprinciples
forcomputationstepandthepositionsarepre-determined
asillustratedinFig.4.AfteralltheentriesinACTsequence
andtheircorrespondingPIDsandCIDshavebeengener-
ated,allofthem willbebufferedinaFIFO.Thereason
forusingthisFIFOistoreduceloadimbalanceproblem
incurredbyuneveninputactivationsparsitydistribution.
Inthe worstcasescenario,somePEs willreceiveNacc
zeroactivationvalues;whilesomeotherPEswillreceive
Naccnon-zeroactivationvaluesforthecurrentcomputation
steps.Accordingly,inordertoavoidstallingPEsinthis
worstcasescenario,theFIFOdepthinthePEofPERMCNN
issetasNacctoensurethecontinuousprocessingofeach
PE.Pleasenoticethatsuchstrategyissimilartotheone
usedinEIE[44]thattargetssparsefully-connectedlayer.

4.5 CrossbarModule

ToensureeachPEreceivesitsdesiredactivationvalues
fromAPUs,adedicatedlydesignedcrossbar module,as
theunderlyinghardwaretorealizesuchinterconnection,
isneededinthePERMCNNarchitecture.Fig.5showsan
exampleinterconnectionamongmultiplePEsandAPUsfor
ablock-permuteddiagonalweighttensorwithblocksize
p=3.HeredifferentPEsprocessdifferentfiltersofweight
modelanddifferentAPUsprovidedifferentchannelsofacti-
vationstoPEs.Noticethatwithineachcomponentdiagonal
permutedtensor,thespecificPermVisaveryimportant

Fig.4:DataprocessingexampleinS2DCUandAPU.Here
activationmapis3×3,andfilerkernelsizeis2×2.

Fig.5:AnexampleofinterconnectionbetweenAPUsand
PEswithblocksizep=3.Acrossbarmoduleisinchargeof
realizingsuchinterconnection.

parametertohelppairthecorrectPEandAPUbyutilizing
theinherentstructureexistedinthepermuteddiagonal
model.Algorithm1describesourproposedroutingscheme
indetail.Thekeyideahereistoutilizetheinformationof
PermVindifferentcomponentpermuteddiagonaltensorsto
quicklyidentifythenon-zerofiltersviamodulooperation,
andtherebyparingthecorrectnon-zerofilterkernelsand
activations.Considerthe modulooperationcanbeeasily
implementedbycomparatorandadder,andalltheother
routingoperationsaresimplybasedon multiplexers,the
overallhardwarecostofcrossbarmoduleisverylow.

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

7

Algorithm1:CrossbarRoutingScheme

Input:M,C,NPE,NAPU,compressionratiop,1-D
permutationvaluearrayPermVArraywith
sizeB×D,whereB= M

p ,D=
C
p

Output:PE-APUrelation

1forj=0toD-1do
2 fori=0toM-1do
3 //CalculateaddressofPermVArrayforPEi
4 BlockRowBase= i

p

5 BlockRowOffset=i%p
6 Address=BlockRowBase×D+j
7 PermVij=PermVArray[Address]
8 APUid=(PermVij+BlockRowOffset)%p
9 Channelid=j×p+APUid
10 Whenprocessingchannel Channelid,

connectPE#(i+1)withAPU#(APUid+1).

4.6 ProcessingElement

Afterreceivingthedesired weightvaluesandactivation
values,anarrayofPEsperformsparallel multiply-and-
accumulationprocessingtorealize2Dconvolution.Fig.8
showstheinnerarchitectureofonePE.Heretheweight
valuesarefirstreadfromoff-chipDRAMandstoredin
thePE’sownSRAMfordatareuse.Noticethatinorderto
ensurethenext-stagemultiplicationinthe2Dconvolution
isperformedonthecorrectpairofweightandactivation
values,thelayoutofweightintheon-chipSRAMneeds
tofollowapre-definedprinciple.Fig.7showsanexample
ofthisdatalayoutprinciple. Hereforthe weightfilters
belongingtothesamePE,theyshouldbeaccessedinthe
left-to-rightandtop-to-bottomorderovertheentireblock-
permuteddiagonalweighttensor,andthenstoredintothe
SRAMonebyone.Inaddition,withinthesamefilter,the
differentweightvaluesshouldbestoredusingtheorder
determinedbythepre-definedPIDindexprinciple.For
instance,asshowninFig.7for2×2-sizekernelthevalue
withPIDindexas1shouldbestoredfirstwhilethevalue
withPIDindexas4shouldbestoredlast.Noticethathere
thepre-definedPIDindexprincipleisexactlythesameto
thatisusedinAPU(seeFig.4).

Duringtheprocessof2Dconvolution,eachPEfirstloads
theweightvaluesfromitsSRAMtoregisters,andthenthe
properweightvalues,withthehelpofPIDindexsentfrom
APU,isselectedtobe multipliedwiththecorresponding
activationvalues.Fig.8illustratesthecomputingprocedure
ofonePEindetail.HereoncereceivingthePID,CIDand
ACTinformationgeneratedbyAPU,thePEutilizesPID
informationtoselectthecorrespondingregisters. Notice
thatthedatalayoutinPE’sweightSRAM(seeFig.7)and
PIDsequenceinAPU’sprocessing(seeFig.4)sharethe
samePIDindexprinciple.Thisarrangementensuresthat
theelement-wisemultiplicationbetweenweightvaluesand
activationvaluesarealwaysperformedonthecorrectpairs.
Then,usingCIDinformation,whichindicatesthecurrent
multiplicationshouldbelongtowhichdotproductinthe
overall2Dconvolution,PEaccumulatestheproductsofthe
multiplicationtocalculatethefinalresultsof2Dconvolu-

Fig.6:InnerstructureofPE.

Fig.7:ExampleofdatalayoutinPE’sweightSRAM.

tion.

5 EVALUATION

5.1 ExperimentalMethodology

SimulationandCADTools.Wefirstdevelopabit-accurate
cycle-accuratesoftwaremodeltosimulatethebehaviorof
PERMCNNhardwarearchitecture.Then,wedevelopRTL
modelusingVerilogHDLtoimplementtheproposedarchi-
tecture.ThisRTLmodelissynthesizedwith28nmCMOS
technologyviausingSynopsysDesignCompiler.Thenwe
useSynopsysICCompilertoperformplaceandroute(see
Fig.9).Toestimatepowerconsumption,weuseSynopsys
Prime-TimePX withconsideringtheswitchactivityand
togglerateextractedfromsimulation.

5.2 DesignConfigurationandHardwarePerformance

DesignConfiguration.Ingeneral,thehardwareresource
inthePERMCNN,suchasthenumberofPEsandAPUs
canbeveryflexiblefordifferentapplications.Similarly,the
configurationforeachPE,suchasthenumberofaccumula-
torsandnumberprecision,canalsobeveryflexible.Table4
showstheconfigurationparametersforourdesignexample.

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

8

Fig.8:ExampleofprocessingprocedureofPE.

Fig.9:LayoutofonePE.

HereonePEisequippedwithone16-bitmultiplierand64
24-bitaccumulators.Therationaleforsuchconfigurationis
toconservativelyavoidoverflow.Also,thereisa1152×16
weightSRAMcontainedineachPE.Accordingly,thetotal
weightSRAMintheentirePERMCNNis288KB.Thissize
canstoreupto147,456weightsinthesparsemodels,and
itissufficienttoaccommodate mostCONVlayersinthe
popularCNNmodelswithamoderatecompressionratioof
4.
HardwarePerformance.AccordingtothereportsfromEDA
tools,thetotalareaofthePERMCNNacceleratoris3.44

TABLE4:Designconfigurationparameters.

PEParameter Value

Multiplier
Amount(NMUL) 1

Width 16bits

Accumulator
Amount(NACC) 64

Width 24bits

WeigthSRAM
Amount 1
Width 16bits
Depth 1152

PERMCNNComputingEngineParameter Value
AmountofPEs(NPE) 128
Quantizationscheme 16bits

NumberofAPUs(NAPU) 4

TABLE5:Performancebreakdownof5CONVlayersin
AlexNet.Batchsizeis4.HereCRmeanscompressionratio
(blocksize),andIASmeansinputactivationsparsity.

Layer CR IAS
Processing
Time(ms)

Power
(mW)

DRAM
Access
(MB)

CONV1 1 0% 5.49 511 3.1
CONV2 4 20% 1.85 489 1.4
CONV3 4 50% 0.77 500 1.5
CONV4 4 69% 0.36 511 1.1
CONV5 4 62% 0.29 506 0.7
Total 3.83 24% 8.76 506 7.7

mm2,andthepowerconsumptionis506mWforAlexNet
[50]and442 mWfor VGG[51],respectively. Herethe
powerconsumptionisaveragedacrossalltheCONVlayers
inthesetwo models,andTable5andTable6showthe
informationofthesetwoworkloadsaswellasthehardware
performancebreakdownoneachlayer.Also,noticethatthe
powerconsumptionreportedbyEDAtoolsreferstoon-chip
computingenginepart whileexcludingtheconsumption
incurredbyoff-chipDRAMpart.Innextsubsection,the
contributionfrom DRAMaccess willbeconsideredand
includedintheoverallsystemevaluation.

5.3 ComparisonwithEyeriss

Rationale.Inthissubsection, wecompareourproposed
PERMCNNwiththeseminalCNNacceleratorEyeriss[45].
Itshouldbenoticedthatthoughtherehavebeenplentyof

TABLE6:Performancebreakdownof13CONVlayersin
VGG.Batchsizeis3.HereCRmeanscompressionratio
(blocksize),andIASmeansinputactivationsparsity.

Layer CR IAS
Processing
Time(ms)

Power
(mW)

DRAM
Access
(MB)

CONV1-1 1 0% 5.09 303 10.3
CONV1-2 4 49% 14.65 315 24.1
CONV2-1 4 20% 5.68 493 9.8
CONV2-2 4 34% 9.38 496 12.2
CONV3-1 4 35% 4.64 493 5.6
CONV3-2 4 50% 7.13 500 7.5
CONV3-3 4 49% 7.24 499 7.3
CONV4-1 4 56% 3.17 498 3.9
CONV4-2 4 66% 4.85 506 6.1
CONV4-3 4 68% 4.59 508 5.8
CONV5-1 4 75% 0.89 519 3.0
CONV5-2 4 74% 0.94 516 3.0
CONV5-3 4 72% 1.01 514 3.0
Total 4.00 45% 69.25 442 101.6

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

9

Fig. 10: Hardware performance comparison between Eyeriss and PERMCNN.

published work on CNN accelerators, Eyeriss is the most
suitable design for a fair and comprehensive comparison
because of the three reasons: 1) it develops a novel row
stationary dataflow, thereby representing the state-of-the-
art at architecture level; 2) it reveals very detailed layer-wise
hardware performance on two practical workloads (AlexNet
and VGG); and 3) most importantly, unlike most of the
existing work, Eyeriss reports its performance including the
energy consumption incurred by DRAM access (see Table
2), which in practice occupies a significant portion of the
overall energy consumption of the entire CNN accelerator
system. Based on these considerations, we adopt the same
workloads and energy modeling approach used in Eyeriss
to perform a fair and comprehensive hardware performance
comparison between PERMCNN and Eyeriss.

Performance Comparison. Table 7 summarizes the hard-
ware performance metrics of PERMCNN and Eyeriss. Con-
sidering the different technology nodes used in these two
work, here we project the Eyeriss to 28nm technology fol-
lowing the project principle in [44]: frequency, area and
power are scaled as linear, quadratic and constant way,
respectively. In order to perform the comprehensive eval-
uation on the overall energy consumption, DRAM access,
including the operation of reading weight and activation
values from DRAM as well as writing activation values to
DRAM, is listed in the table as well. And the overall power
is the addition of DRAM power and the chip power. Notice
that the DRAM access energy we used in the evaluation is
21 pJ/bit, which was reported for an LPDDR3 model [52].

From Table 7 it is seen that, PERMCNN achieves 3.74×
and 3.11× improvement over Eyeriss in terms of area effi-
ciency and energy efficiency, respectively, on the workload
of 5 CONV layers of Alexnet model. On the workload of 13
CONV layers of VGG model, PERMCNN achieves 17.49×
area efficiency improvement and 14.22× energy efficiency
improvement. Moreover, the desired DRAM access for
PERMCNN is reduced by 2.0× and 3.16× than Eyeriss for
AlexNet and VGG workloads, respectively. Consequently,
for the overall system energy efficiency, which includes
both on-chip computing engine part and off-chip DRAM
part, PERMCNN achieves 2.6× and 9.62× improvement on
AlexNet and VGG workloads, respectively. Fig. 10 summa-
rizes the comparison result between Eyeriss and PERMCNN
in terms of area efficiency, chip energy efficiency, and overall
energy efficiency. It is seen that that PERMCNN provides
significant performance improvement with respect to these
hardware performance metrics.

TABLE 7: Comparisons of PERMCNN and Eyeriss. AXN
stands for AlexNet.

Design Eyeriss PERMCNN

CMOS Tech. 65nm
(reported)

28nm
(projected) 28nm

Frequency (MHz) 200 464 800
Area (mm2) 12.25 2.27 3.44

Chip Power (mW) 278 (AXN)
236 (VGG)

278 (AXN)
236 (VGG)

506 (AXN)
442 (VGG)

Overall Power
(mW)

300 (AXN)
249 (VGG)

300 (AXN)
249 (VGG)

654 (AXN)
689 (VGG)

Processing Time
(ms)

28.83 (AXN)
1437 (VGG)

12.42 (AXN)
619 (VGG)

2.19 (AXN)
23.09 (VGG)

Throughput
(frame/s)

34.7 (AXN)
0.70 (VGG)

80.55 (AXN)
1.625 (VGG)

456.6 (AXN)
43.31 (VGG)

Area Efficiency
(frame/s/mm2)

2.83 (AXN)
0.057 (VGG)

35.48 (AXN)
0.72 (VGG)

132.73(AXN)
12.59(VGG)

Chip Energy
Efficiency
(frame/J)

124.8 (AXN)
2.97 (VGG)

289.7 (AXN)
6.89 (VGG)

902.4 (AXN)
97.99(VGG)

DRAM Access
(MB)

3.85 (AXN)
107.0 (VGG)

3.85 (AXN)
107.0 (VGG)

1.93 (AXN)
33.87(VGG)

Overall Energy
Efficiency
(frame/J)

114.5 (AXN)
2.80 (VGG)

268.5 (AXN)
6.53 (VGG)

698.2 (AXN)
62.86(VGG)

6 CONCLUSION

This paper proposes PERMCNN, a CNN hardware archi-
tecture to execute the hardware-friendly permuted diagonal
structured CNN models. PERMCNN can fully leverage the
benefits provided by the structured models to deliver very
high hardware performance. Evaluation results show that,
compared with the state-of-the-art CNN accelerator, PERM-
CNN achieves 3.74×, 3.11× and 2.60× improvement on
area efficiency, on-chip energy efficiency and overall energy
efficiency, respectively, when executing AlexNet models.
And it achieves 17.49×, 14.22× and 9.62× improvement on
area efficiency, on-chip energy efficiency and overall energy
efficiency, respectively, when executing VGG model.

REFERENCES

[1] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and
A. Moshovos, “Stripes: Bit-serial deep neural network comput-
ing,” in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM
International Symposium on. IEEE, 2016.

[2] J. Albericio, A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov,
and A. Moshovos, “Bit-pragmatic deep neural network comput-
ing,” in Proceedings of the 50th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2017.

[3] A. Ren, Z. Li, C. Ding, Q. Qiu, Y. Wang, J. Li, X. Qian, and B. Yuan,
“Sc-dcnn: highly-scalable deep convolutional neural network us-
ing stochastic computing,” in Proceedings of the Twenty-Second
International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM, 2017.

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

10

[4] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra,
and H. Esmaeilzadeh, “Bit fusion: Bit-level dynamically com-
posable architecture for accelerating deep neural network,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018.

[5] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer,
D. Sylvester, D. Blaauw, and R. Das, “Neural cache: Bit-serial
in-cache acceleration of deep neural networks,” arXiv preprint
arXiv:1805.03718, 2018.

[6] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, and C. W.
Fletcher, “Ucnn: Exploiting computational reuse in deep neural
networks via weight repetition,” arXiv preprint arXiv:1804.06508,
2018.

[7] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: a novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in
ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016.

[8] M. Gao, J. Pu, X. Yang, M. Horowitz, and C. Kozyrakis, “Tetris:
Scalable and efficient neural network acceleration with 3d mem-
ory,” in Proceedings of the Twenty-Second International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2017.

[9] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie,
“Drisa: A dram-based reconfigurable in-situ accelerator,” in Pro-
ceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture. ACM, 2017.

[10] D. Kim, J. Kung, S. Chai, S. Yalamanchili, and S. Mukhopadhyay,
“Neurocube: A programmable digital neuromorphic architecture
with high-density 3d memory,” in Computer Architecture (ISCA),
2016 ACM/IEEE 43rd Annual International Symposium on. IEEE,
2016.

[11] D. Mahajan, J. Park, E. Amaro, H. Sharma, A. Yazdanbakhsh,
J. K. Kim, and H. Esmaeilzadeh, “Tabla: A unified template-based
framework for accelerating statistical machine learning,” in High
Performance Computer Architecture (HPCA), 2016 IEEE International
Symposium on. IEEE, 2016.

[12] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and
S. W. Keckler, “Compressing dma engine: Leveraging activation
sparsity for training deep neural networks,” in High Performance
Computer Architecture (HPCA), 2018 IEEE International Symposium
on. IEEE, 2018.

[13] M. Song, J. Zhang, H. Chen, and T. Li, “Towards efficient microar-
chitectural design for accelerating unsupervised gan-based deep
learning,” in High Performance Computer Architecture (HPCA), 2018
IEEE International Symposium on. IEEE, 2018.

[14] C. Chen, J. Choi, D. Brand, A. Agrawal, W. Zhang,
and K. Gopalakrishnan, “Adacomp : Adaptive residual
gradient compression for data-parallel distributed training,”
CoRR, vol. abs/1712.02679, 2017. [Online]. Available:
http://arxiv.org/abs/1712.02679

[15] N. Wang, J. Choi, D. Brand, C. Chen, and K. Gopalakrishnan,
“Training deep neural networks with 8-bit floating point
numbers,” CoRR, vol. abs/1812.08011, 2018. [Online]. Available:
http://arxiv.org/abs/1812.08011

[16] S. Venkataramani, A. Ranjan, S. Banerjee, D. Das, S. Avancha,
A. Jagannathan, A. Durg, D. Nagaraj, B. Kaul, P. Dubey, and
A. Raghunathan, “Scaledeep: A scalable compute architecture for
learning and evaluating deep networks,” in 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA),
June 2017.

[17] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie,
H. Luo, S. Yao, Y. Wang, H. Yang, and W. J. Dally, “ESE:
efficient speech recognition engine with compressed LSTM on
FPGA,” CoRR, vol. abs/1612.00694, 2016. [Online]. Available:
http://arxiv.org/abs/1612.00694

[18] S. Wang, Z. Li, C. Ding, B. Yuan, Y. Wang, Q. Qiu, and Y. Liang,
“C-LSTM: enabling efficient LSTM using structured compression
techniques on fpgas,” CoRR, vol. abs/1803.06305, 2018. [Online].
Available: http://arxiv.org/abs/1803.06305

[19] S. Liao, A. Samiee, C. Deng, Y. Bai, and B. Yuan, “Compressing
deep neural networks using toeplitz matrix: Algorithm design and
fpga implementation,” in ICASSP 2019 - 2019 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), May
2019.

[20] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam,

“Diannao: A small-footprint high-throughput accelerator for ubiq-
uitous machine-learning,” ACM Sigplan Notices, vol. 49, 2014.

[21] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun et al., “Dadiannao: A machine-learning supercom-
puter,” in Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society, 2014.

[22] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng,
Y. Chen, and O. Temam, “Shidiannao: Shifting vision processing
closer to the sensor,” in ACM SIGARCH Computer Architecture
News, vol. 43, no. 3. ACM, 2015.

[23] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng,
X. Zhou, and Y. Chen, “Pudiannao: A polyvalent machine learn-
ing accelerator,” in ACM SIGARCH Computer Architecture News,
vol. 43, no. 1. ACM, 2015.

[24] S. Liu, Z. Du, J. Tao, D. Han, T. Luo, Y. Xie, Y. Chen, and T. Chen,
“Cambricon: An instruction set architecture for neural networks,”
in ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016.

[25] C. Deng, F. Sun, X. Qian, J. Lin, Z. Wang, and B. Yuan,
“Tie: Energy-efficient tensor train-based inference engine
for deep neural network,” in Proceedings of the 46th
International Symposium on Computer Architecture, ser. ISCA
’19. New York, NY, USA: ACM, 2019. [Online]. Available:
http://doi.acm.org/10.1145/3307650.3322258

[26] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and
huffman coding,” arXiv preprint arXiv:1510.00149, 2015.

[27] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen,
M. Fardad, and Y. Wang, “A systematic DNN weight
pruning framework using alternating direction method of
multipliers,” CoRR, vol. abs/1804.03294, 2018. [Online]. Available:
http://arxiv.org/abs/1804.03294

[28] T. Yang, Y. Chen, and V. Sze, “Designing energy-
efficient convolutional neural networks using energy-aware
pruning,” CoRR, vol. abs/1611.05128, 2016. [Online]. Available:
http://arxiv.org/abs/1611.05128

[29] M. Courbariaux and Y. Bengio, “Binarynet: Training deep
neural networks with weights and activations constrained to
+1 or -1,” CoRR, vol. abs/1602.02830, 2016. [Online]. Available:
http://arxiv.org/abs/1602.02830

[30] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-
net: Imagenet classification using binary convolutional neural
networks,” CoRR, vol. abs/1603.05279, 2016. [Online]. Available:
http://arxiv.org/abs/1603.05279

[31] C. Deng, S. Liao, Y. Xie, K. K. Parhi, X. Qian, and B. Yuan,
“Permdnn: Efficient compressed dnn architecture with permuted
diagonal matrices,” in 2018 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), Oct 2018.

[32] W. Lu, G. Yan, J. Li, S. Gong, Y. Han, and X. Li, “Flexflow: A
flexible dataflow accelerator architecture for convolutional neural
networks,” in High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on. IEEE, 2017.

[33] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer
cnn accelerators,” in Microarchitecture (MICRO), 2016 49th Annual
IEEE/ACM International Symposium on. IEEE, 2016.

[34] A. S. Hyoukjun Kwon and T. Krishna, “Maeri: Enabling flexible
dataflow mapping over dnn accelerators via reconfigurable inter-
connects,” in International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), 2017.

[35] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for
energy-efficient dataflow for convolutional neural networks,” in
ACM SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE
Press, 2016.

[36] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “Scnn: An accel-
erator for compressed-sparse convolutional neural networks,” in
Proceedings of the 44th Annual International Symposium on Computer
Architecture. ACM, 2017.

[37] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger,
and A. Moshovos, “Cnvlutin: Ineffectual-neuron-free deep neural
network computing,” in ACM SIGARCH Computer Architecture
News, vol. 44, no. 3. IEEE Press, 2016.

[38] P. Hill, A. Jain, M. Hill, B. Zamirai, C.-H. Hsu, M. A. Laurenzano,
S. Mahlke, L. Tang, and J. Mars, “Deftnn: addressing bottlenecks
for dnn execution on gpus via synapse vector elimination and
near-compute data fission,” in Proceedings of the 50th Annual

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

0018-9340 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TC.2020.2981068, IEEE
Transactions on Computers

11

IEEE/ACM International Symposium on Microarchitecture. ACM,
2017.

[39] C.-E. Lee, Y. S. Shao, J.-F. Zhang, A. Parashar, J. Emer, S. W. Keckler,
and Z. Zhang, “Stitch-x: An accelerator architecture for exploiting
unstructured sparsity in deep neural networks.”

[40] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee,
J. M. Hernández-Lobato, G.-Y. Wei, and D. Brooks, “Minerva:
Enabling low-power, highly-accurate deep neural network accel-
erators,” in ACM SIGARCH Computer Architecture News, vol. 44,
no. 3. IEEE Press, 2016.

[41] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing dnn pruning to the underlying hardware
parallelism,” in Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture. ACM, 2017.

[42] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-
efficient neural network design,” in Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on. IEEE,
2016.

[43] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei, “Rana: Towards efficient
neural acceleration with refresh-optimized embedded dram,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA), June 2018.

[44] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “Eie: efficient inference engine on compressed deep
neural network,” in Computer Architecture (ISCA), 2016 ACM/IEEE
43rd Annual International Symposium on. IEEE, 2016.

[45] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural
networks,” IEEE Journal of Solid-State Circuits, vol. 52, 2016.

[46] S. Narang, E. Undersander, and G. Diamos, “Block-sparse recur-
rent neural networks,” arXiv preprint arXiv:1711.02782, 2017.

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Im-
agenet: A large-scale hierarchical image database,” in Computer
Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference
on. IEEE, 2009.

[48] A. Krizhevsky and G. Hinton, “Learning multiple layers of fea-
tures from tiny images,” 2009.

[49] R. W. Vuduc, “Automatic performance tuning of sparse matrix
kernels,” Ph.D. dissertation, 2003, aAI3121741.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
neural information processing systems, 2012.

[51] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[52] M. Schaffner, F. K. Gürkaynak, A. Smolic, and L. Benini, “Dram or
no-dram? exploring linear solver architectures for image domain
warping in 28 nm cmos,” in 2015 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2015.

Chunhua Deng received his Bachelor degree
from China University of Petroleum in 2005, and
his Master degree from Beijing Institute of Tech-
nology in 2007. From 2007 to 2017, he worked
at ZTE Corportation as a senior IC design engi-
neer. He is currently pursuing his PhD degree
in the Department of Electrical and Computer
Engineering, Rutgers University. His research
interests include machine learning, VLSI design.

Siyu Liao received the BE degree in information
security from the Hefei University of Technology,
Hefei, China, in 2014. He is now working toward
the PhD degree in the Department of Electrical &
Computer Engineering at the Rutgers, the State
University of New Jersey. His research interests
include machine learning and high performance
computing.

Bo Yuan received his bachelor and master de-
grees from Nanjing University, China in 2007 and
2010, respectively. He received his PhD degree
from Department of Electrical and Computer En-
gineering at University of Minnesota, Twin Cities
in 2015. His research interests include algo-
rithm and hardware co-design and implementa-
tion for machine learning and signal processing
systems, error-resilient low-cost computing tech-
niques for embedded and IoT systems and ma-
chine learning for domain-specific applications.

He is the recipient of Global Research Competition Finalist Award in
Broadcom Corporation and Doctoral Dissertation Fellowship in Univer-
sity of Minnesota. Dr. Yuan serves as technical committee track chair
and technical committee member for several IEEE/ACM conferences.
He is the technical member for VSA and CASCOM technical committees
in IEEE Circuits and Systems society and DISPS technical committee in
IEEE Signal Processing society. He is the associated editor of Springer
Journal of Signal Processing System.

Authorized licensed use limited to: Rutgers University. Downloaded on August 14,2020 at 00:31:44 UTC from IEEE Xplore. Restrictions apply.

