
REDUCED-COMPLEXITY SINGULAR VALUE DECOMPOSITION FOR TUCKER
DECOMPOSITION: ALGORITHM AND HARDWARE

Xiaofeng Hu, Chunhua Deng, Bo Yuan

Department of Electrical and Computer Engineering, Rutgers University

ABSTRACT

Tensors, as the multidimensional generalization of matrices,
are naturally suited for representing and processing high-
dimensional data. To date, tensors have been widely adopted
in various data-intensive applications, such as machine learn-
ing and big data analysis. However, due to the inherent
large-size characteristics of tensors, tensor algorithms, as
the approaches that synthesize, transform or decompose ten-
sors, are very computation and storage expensive, thereby
hindering the potential further adoptions of tensors in many
application scenarios, especially on the resource-constrained
hardware platforms. In this paper, we propose a reduced-
complexity SVD (Singular Vector Decomposition) scheme,
which serves as the key operation in Tucker decomposition.
By using iterative self-multiplication, the proposed scheme
can significantly reduce the storage and computational costs
of SVD, thereby reducing the complexity of the overall pro-
cess. Then, corresponding hardware architecture is developed
with 28nm CMOS technology. Our synthesized design can
achieve 102GOPS with 1.09 mm2 area and 37.6 mW power
consumption, and thereby providing a promising solution for
accelerating Tucker decomposition.

Index Terms— Tucker Decomposition, SVD, hardware
architecture

1. INTRODUCTION

Tensors, as the multi-dimension generalization of matrices,
are the naturally suitable and powerful mathematical tool for
representing and processing high dimension data. In recent
years, tensor-based computation has been widely applied in
various high dimension data-demanded domains, such as sig-
nal processing [1], linear algebra [2], data mining [3], com-
puter vision [4], and machine learning [5].

However, the superiority of tensor computation greatly
depends on the high-complexity tensor algorithms. Tensor
algorithms are the approaches that synthesize, transform or
decompose tensors as desired. Due to the inherent large-size
characteristics of tensors, even the simplest tensor algorithm,
such as tensor multiplication, are very storage expensive and
computation expensive, thereby limiting the potential further

adoptions of tensors in many resource-constrained applica-
tions.

To address the above challenge, there are two orthogonal
directions that can be explored. First, at the algorithm level,
low-complexity tensor algorithms, if possible, would bring a
very significant algorithm-level reduction in both space and
computational complexity for tensor algorithms. Second, at
the hardware level, customized hardware design of tensor al-
gorithms, if being properly implemented, would also provide
unprecedented acceleration as compared to the state-of-the-
art CPU/GPU implementations [6].

Following these two directions, this paper proposes to
achieve high-performance Tucker decomposition [7], as a
fundamental and popular tensor decomposition approach, us-
ing an algorithm/hardware co-design way. Specifically, we
first propose a new algorithm to reduce the complexity of
SVD, which is the key operation in Tucker decomposition.
The proposed algorithm can significantly reduce the storage
costs (at least 250 times) and computational costs (at least 8
times) of SVD, and hence it also brings a huge performance
increase for the overall Tucker decomposition, especially
when the operated tensor has high order. Then, based on
this algorithm, we further develop the corresponding hard-
ware architecture to accelerate Tucker decomposition. With
28nm CMOS technology, our synthesized design can achieve
102GOPS with 1.09 mm2 area and 37.6 mW power con-
sumption, and thereby providing a promising solution for
implementing Tucker decomposition.

The rest of this paper will be organized as follows: Sec-
tion 2 introduces the background information of tensor and
Tucker decomposition. The proposed reduced-complexity
SVD algorithm is described in Section 3. Section 4 presents
the performance analysis of the proposed SVD algorithm.
The hardware architecture and evaluation results are pre-
sented in Section 5. Section 6 draws the conclusions.

2. BACKGROUND

2.1. Tensor and Related Notations

Tensor, or multidimensional data array, is the natural gener-
alization of one-dimension vector and two-dimensional ma-
trix. In this paper, we use boldface calligraphic letter to rep-

1793978-1-5090-6631-5/20/$31.00 ©2020 IEEE ICASSP 2020

Authorized licensed use limited to: Rutgers University. Downloaded on August 09,2020 at 04:50:15 UTC from IEEE Xplore. Restrictions apply.

resenttensor.Forinstance,B∈RI1×I2×I3denotesonethree-
modetensorofsizeI1×I2×I3.Sliceisdefinedasatwo-
dimensionalmatrixobtainedfromfixingallindicesbuttwo,
andFiberisone-dimensionalarraybyfixingallindicesbut
one.Weuseboldfacecapitalletters,forexample,Bi::,tode-
noteSlice,andlower-caseboldfaceletterstorepresentFiber
likebij:.

2.2. Unfold,TTMandTensornorm

Unfoldingistheprocesstoreordertheelementsofatensor
intoonematrix.Fig.1showsanexampleofunfoldingthree-
modetensor.Ingeneral,themode-dunfoldingofatensorB
inRI1×I2...×IkisamatrixB(d)ofsizeId×(I1·I2...Id−1·
Id+1...Ik).Andeachtensorelement(i1,...id−1,id,id+1...ik)
mapsthematrixelement(id,j)as

j=1+
k

q=d



(iq−1)

q−1

n=d

In



. (1)

Fig.1.Unfoldingofathree-modetensor.

Tensortimesmatrix(TTM)isthehigh-orderextentofma-
trixmultiplication.Ingeneral,thed-modeproductofTTM
betweenagiventensorB∈RI1...×Id...×IkandamatrixX∈
RJ×Idisanewtensoras

Y=B×dX∈R
I1...Id−1×J...×Ik⇐⇒Y(d)=XB(d).(2)

TheprocedureofTTMrequirestheaforementionedun-
foldingoperation.Forinstance,assumewehaveonetensor
B∈R3×2×2andonematrixX∈R2×3:

B(:,:,1)=




1 2
3 4
5 6



,B(:,:,2)=




2 5
4 3
6 1



,X=
1 3 5
6 4 2

,

TheTTMbetweenthemcanbeachievedbyfirstunfold-
ingBintoB(1):

B(1)=




1 2 2 5
3 4 4 3
5 6 6 1



.

Fig.2.ThecomputationflowchartoftheHOOI.

andthentheone-modeTTMproductY = B×1X ⇐⇒
XB(1)isasfollows:

Y(:,:,1)=
35 44
28 40

,Y(:,:,2)=
44 19
40 44

.

Tensornormisanaturalextentofmatrixorvectornorm.The
normofatensorB∈RI1×I2...×IkistypicallytheFrobenius
normdefinedbelow:

B =

I1

i1=1

I2

i2=1

...

Ik

ik=1

b2i1i2...ik (3)

2.3.TuckerDecomposition

TuckerdecompositionapproximatesanoriginaltensorB
asthe multiplicationbetweenasmallcoretensorG ∈
RR1×R2...×RkandasetofmatricesXkineachmode:

B≈G×1X1×2X2...×kXk, (4)

whereXk∈R
Rk×Ik isthefactormatrix,whichisusually

orthogonal.Rkisthenumberofcomponents(columns)in
eachfactormatrix,alsocalledmultilinearrankofB.
Ingeneraltherearetwomajorimplementationmethods

forTuckerdecomposition:thehigh-orderSVD(HOSVD)
[2],andtheHighOrderOrthogonalIteration(HOOI)[8].
SincetheHOSVDisnotoptimalingivingthebestfitofdata
[9],wefocusontheHOOIinthispaper.Thecomputation
flowchartoftheHOOIispresentedinFig.2.

3. REDUCED-COMPLEXITYSVDALGORITHM

AsshowninFig.2,theprocessofHOOIconsistsoftwo
mainsteps:k−1timesTTMsandoneMatrixSVD.Since
theimplementationofTTMisusuallystraightforward,com-
putingSVDisthebottleneckinTuckerdecomposition.Inthis
section,inspiredbytheideainAndersson[10]andZhan[11]

1794

Authorized licensed use limited to: Rutgers University. Downloaded on August 09,2020 at 04:50:15 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Reduced-complexity SVD for Tucker Decom-
position
Input: matrix A, leading vector number N, iteration times T
Output: leading left singular vector U

1: P1 = AA′

2: while i < N do
3: while j < T do
4: Pj

i = k ·Pi
j−1 ×Pj−1

i

5: end while

6: U(:, i) ≈ Pi(:, 1)∥∥Pi(:, 1)
∥∥

7: Pi+1 = (INt
− U:,iU

′

:,i)Pi

8: end while
9: return U

that computing only the dominant singular vectors instead of
the whole SVD, we propose a reduced-complexity SVD algo-
rithm.

Specifically, different from prior work that utilizes Gram-
Schmidt process [11] or Givens rotation [12][13] to guarantee
the orthogonal property of each vector, we derive perfect or-
thogonal singular vector by the simple matrix multiplication.
Algorithm 1 describes the general procedure of our approach.
Here the key idea is to only compute matrix multiplication,
instead of computing singular values, right singular vector
matrix and orthogonalization process, to derive leading left
singular vectors, which will be used in other steps of HOOI
later. Specifically, after computing the first vector u1, the cor-
related component of u1 in P1: σ2

1u1u
′
1 should be eliminated

to derive next component u2. Since the orthogonal vector has
two following properties:

Nt∑
i=1

uiu
′
i = INt (5)

uiu
′
j = 0, i 6= j. (6)

The elimination process (Line7 in Algorithm 1) can be
performed as below

P0
2 = (INt

− u1u′1)P0
1. (7)

Then we can apply the same process to derive all the
needed leading vectors. Notice that at the initialization stage
the initial matrix P1 is:

P1 = AA′ = k ·UΣ2U′ = k ·
Nt∑
i=1

σ2
i uiu

′
i (8)

where k is the arbitrary non-zero coefficient and ui represents
the i-th column of U. In order to avoid overflow, we can
normalize all the matrix’s elements by k, and it can be eas-
ily implemented in hardware by right shift. Since the exact

value of every element on intermediate matrix is not needed
at the whole computing process, this normalization can be ex-
ecuted in every multiplication iteration without jeopardizing
the overall accuracy but alleviating the burden of memory.

Compared with the traditional methods such as Jacobi ro-
tation [13], our proposed approach has unique benefits that it
eliminates the computation and buffer of multiple large inter-
mediate matrix like B(d) ∈ RIk×

∏
i6=k Ri and U(d) ∈ RIk×Ik ,

which is storage-intensive and computing-intensive. Instead,
we only need to buffer and iteratively self-multiply one small
intermediate matrix P = B(d)′ ×B(d) ∈ RIk×Ik during the
entire procedure. Consequently, the required memory cost as
well as computational costs can be significantly reduced, es-
pecially for large-mode tensor.

4. SVD PERFORMANCE ANALYSIS

In this section we evaluate and analyze the performance of our
proposed SVD algorithm. Specifically, convergence speed,
computational cost and memory cost will be discussed.

4.1. Convergence Speed

We set up our experiment in MATLAB R2018b platform,
considering a three-mode tensor generated by Gaussian distri-
bution and corrupted with noise varying 10 percent of the ten-
sor element. We compare our method, both in floating point
and fixed point precision with the popular parallel single-side
Jacobi rotation method [12] in double-floating point preci-
sion. The experiment results are shown in Fig.3. It is seen that
our proposed approach has much faster convergence speed
than single-sided Jacobi rotation method. This verifies their
theoretical difference: our method can converge at the speed
of O

(
| σi

σi+1
|2n
)

; while single-side Jacobi rotation method
only has quadratic convergence speed [9].

Fig. 3. Comparison on convergence speed.

1795

Authorized licensed use limited to: Rutgers University. Downloaded on August 09,2020 at 04:50:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Comparison on computational and memory costs.
Left: Computational cost. Right: Memory cost.

4.2. Computational and Memory Costs Analysis

Computational Cost. The computational cost analyzed here
is measured in term of multiplication-accumulation operation.
For the single-sided Jacobi rotation method, in each SVD it-
eration, Ik(Ik − 1)/2 pairs of orthogonalizations will be per-
formed, and each orthogonalization processes (Ik+

∏
i6=k Ri)

elements, so the entire SVD in this case takes roughly:

Tjac = Ik(Ik − 1)(
Ik +

∏
i6=k Ri

p
)× Tite (9)

operations, where p is the degree of parallelism, and Tite is
the number of SVD iterations with a typical value of 15 to get
acceptable relative error.

For our approach, since we only need to deriveRk leading
vectors, therefore the whole SVD takes roughly

Tmul = Rk × (
I3k
p
)× Tite (10)

operations, which is much fewer than the single-sided Jacobi
rotation method (Eqn. (10) vs Eqn. (9)).

Memory Cost. For single-sided Jacobi rotation method,
it requires large buffer to store at least two large intermediate
matrices: B(d) of size Ik×

∏
i6=k Ri and U of size Ik×Ik. On

the other hand, our approach only needs to buffer one small
intermediate matrix P of size Ik × Ik. Consequently, by ap-
plying our strategy, the required buffer size to store interme-
diate matrix is significantly reduced.

This analysis is further evaluated on different sizes of ten-
sors. We assume the decomposition rate Ik/Rk is fixed 4 : 1,
and the degree of parallelism p is set as 1 all the time. Fig.4
shows the normalized computational and memory costs com-
pared with the single-sided Jacobi method. Here our approach
is normalized as 1. From this figure it can be seen that our pro-
posed approach achieves 8.5-17× reduction in computational
cost and 257-1025× reduction in memory costs.

5. HARDWARE ARCHITECTURE AND
PERFORMANCE

Based on the HOOI algorithm for Tucker decomposition in
Fig.2 and reduced-complexity SVD in Algorithm 1, we de-
velop the hardware architecture for Tucker decomposition

Fig. 5. Hardware architecture of Tucker decomposition en-
gine.

engine (TDE). Fig.5 shows the overall hardware architecture
of the proposed design. Here the main part of the computing
engine is the matrix matrix multiplication engine (MMME).
This is because considering the main computation of Tucker
decomposition is TTM and SVD and both of them can be
implemented by matrix matrix multiplication. In our de-
sign these two types of computations are mapped on the
same hardware resources. Specifically, here the MMME is
configured with 32 × 4 multiplier-accumulator (MAC) unit.
Such arrangement allows this architecture to support different
kinds of configurations to fully utilize the MAC computing
resources. The data movement of all the MACs is orches-
trated by a main controller. Regarding dataflow, the MMME
receives row data from the matrix SRAM, and it receives
column data from the tensor SRAM. To reduce the DRAM
bandwidth requirement and save the power, we configure the
tensor SRAM as 512 KB and the matrix SRAM as 64 KB to
ensure that most of the data can be accessed from SRAM. Be-
sides the MMME, each column of tensor SRAM has a tensor
norm calculator (TNC) for the use of Line6 in Algorithm1.

The proposed architecture is developed and synthesized
with 28nm CMOS technology. The overall area is is 1.09
mm2 with power consumption as 37.6 mW . Under clock-
ing frequency as 400MHz, the TDE can provide 102GOPS
computing power which is very promising.

6. CONCLUSION

This paper proposes a reduced-complexity SVD algorithm for
Tucker decomposition. Based on this method, a hardware ar-
chitecture is developed. Evaluation results show that this de-
sign is very attractive for Tucker decomposition acceleration.

7. ACKNOWLEDGE

This work is partially supported by National Science Founda-
tion Award CCF-1854737 and CCF-1854742.

1796

Authorized licensed use limited to: Rutgers University. Downloaded on August 09,2020 at 04:50:15 UTC from IEEE Xplore. Restrictions apply.

8. REFERENCES

[1] Lieven De Lathauwer and Bart De Moor, “From ma-
trix to tensor: Multilinear algebra and signal process-
ing,” in Institute of Mathematics and Its Applications
Conference Series. Citeseer, 1998, vol. 67, pp. 1–16.

[2] Lieven De Lathauwer, Bart De Moor, and Joos Vande-
walle, “A multilinear singular value decomposition,”
SIAM journal on Matrix Analysis and Applications, vol.
21, no. 4, pp. 1253–1278, 2000.

[3] Volker Strassen, “Gaussian elimination is not optimal,”
Numerische mathematik, vol. 13, no. 4, pp. 354–356,
1969.

[4] M Alex O Vasilescu and Demetri Terzopoulos, “Multi-
linear analysis of image ensembles: Tensorfaces,” in Eu-
ropean Conference on Computer Vision. Springer, 2002,
pp. 447–460.

[5] Nicholas D Sidiropoulos, Lieven De Lathauwer, Xiao
Fu, Kejun Huang, Evangelos E Papalexakis, and Chris-
tos Faloutsos, “Tensor decomposition for signal pro-
cessing and machine learning,” IEEE Transactions on
Signal Processing, vol. 65, no. 13, pp. 3551–3582, 2017.

[6] Brett W. Bader and Tamara G. Kolda, “Algorithm 862:
MATLAB tensor classes for fast algorithm prototyping,”
ACM Transactions on Mathematical Software, vol. 32,
no. 4, pp. 635–653, Dec. 2006.

[7] Ledyard R Tucker, “Some mathematical notes on three-
mode factor analysis,” Psychometrika, vol. 31, no. 3,
pp. 279–311, 1966.

[8] Lieven De Lathauwer, Bart De Moor, and Joos Vande-
walle, “On the best rank-1 and rank-(r 1, r 2,..., rn)
approximation of higher-order tensors,” SIAM journal
on Matrix Analysis and Applications, vol. 21, no. 4, pp.
1324–1342, 2000.

[9] Tamara G Kolda and Brett W Bader, “Tensor decompo-
sitions and applications,” SIAM review, vol. 51, no. 3,
pp. 455–500, 2009.

[10] Claus A Andersson and Rasmus Bro, “Improving
the speed of multi-way algorithms:: Part i. tucker3,”
Chemometrics and intelligent laboratory systems, vol.
42, no. 1-2, pp. 93–103, 1998.

[11] Cheng-Zhou Zhan, Yen-Liang Chen, and An-Yeu Wu,
“Iterative superlinear-convergence svd beamforming al-
gorithm and vlsi architecture for mimo-ofdm systems,”
IEEE Transactions on Signal Processing, vol. 60, no. 6,
pp. 3264–3277, 2012.

[12] James Demmel and Krešimir Veselić, “Jacobis method
is more accurate than qr,” SIAM Journal on Matrix Anal-
ysis and Applications, vol. 13, no. 4, pp. 1204–1245,
1992.

[13] Richard P Brent and Franklin T Luk, “The solution of
singular-value and symmetric eigenvalue problems on
multiprocessor arrays,” SIAM Journal on Scientific and
Statistical Computing, vol. 6, no. 1, pp. 69–84, 1985.

1797

Authorized licensed use limited to: Rutgers University. Downloaded on August 09,2020 at 04:50:15 UTC from IEEE Xplore. Restrictions apply.

