
Hardware Acceleration of Persistent
Homology Computation

Fan Wang1(B), Chunhua Deng2, Bo Yuan2, and Chao Chen1

1 Stony Brook University, Stony Brook, NY 11794, USA
fan.wang.1@stonybrook.edu

2 Rutgers University, New Brunswick, NJ 08901, USA

Abstract. As a powerful tool for topological data analysis, persistent
homology captures topological structures of data in a robust manner. Its
pertinent information is summarized in a persistence diagram, which
records topological structures, as well as their saliency. Recent years
have witnessed an increased interest of persistent homology in vari-
ous domains. In biomedical image analysis, persistent homology has
been applied to brain images, neuron images, cardiac images and cancer
pathology images. Meanwhile, the computation of persistent homology
could be time-consuming due to column operations over a large matrix,
called the boundary matrix. This paper seeks to accelerate persistent
homology computation with a hardware implementation of the column
operations of the boundary matrix. By designing a dedicated hardware to
process fast matrix reduction, the proposed hardware accelerator could
potentially achieve up to 20k–30k times speed-up.

Keywords: Topology data analysis · Persistent homology · Matrix
operation · Hardware acceleration

1 Introduction

Topological Data Analysis studies topological structures such as connected com-
ponents, handles and voids, which characterize data in a global, intuitive, and
robust manner. In particular, the theory of persistent homology [8,10] captures
topological properties of data through the view of a filter function, i.e., a scalar
function such as image intensity, density function, etc. One may threshold the
domain with certain threshold and inspect the sublevel set, namely, regions whose
filter value is below the threshold. Persistent homology inspects a series of nested
sublevel sets induced by different thresholds, called a filtration, and tracks the
birth and death of different topological structures. The information is summa-
rized in a persistence diagram, which is a set of points on a 2D plane whose x
and y coordinates are topological structures’ birth and death time respectively.
See Fig. 1 for an example in which persistent homology is computed on a sample
image from the MNIST dataset [13]. The sublevel sets corresponding to differ-
ent function values (t0 to t6) are displayed with black pixels in the top row.
c© Springer Nature Switzerland AG 2019

L. Zhou et al. (Eds.): LABELS 2019/HAL-MICCAI 2019/CuRIOUS 2019, LNCS 11851, pp. 81–88, 2019.

https://doi.org/10.1007/978-3-030-33642-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-33642-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-33642-4_9


82 F. Wang et al.

Fig. 1. Example of a persistence diagram (lower right) computed on an image (lower
left) taken from the MNIST dataset. We use the inverse of the original image as input.
The sublevel sets and the filtration are shown in the top row.

The upper cycle of digit 8 is created at t1 while the lower cycle forms at t2. Both
cycles are eventually filled in with black pixels (and thus disappear) at t5 and t6
respectively.

Numerous topology inspired methods have been proposed in recent years
and they have been successfully applied to different problems, including molec-
ular biology [4,12], signal analysis [18], sensor networks [11], robotics [19], shape
recognition [15], graphics [7], geometric modeling [9] and many more. In biomed-
ical image analysis, topological methods have been used but not limited to ana-
lyze global structures of sMRI and functional MRI images [1,2,14]. Topological
invariant is by design robust to deformation and to noise. Without any tearing or
gluing, topological structures will be preserved regardless of the deformations. A
desirable property of persistence diagrams is that they are Lipschitz with respect
to the underlying filter function [3].

An essential component involved in the computation of persistent homology is
the reduction of a boundary matrix whose columns and rows represent elements
of a discretization of a domain. Simplicies of zero, one, two and three dimensions
are vertices, edges, triangles and tetrahedra (Fig. 2). A boundary matrix ∂ is a
binary matrix with entry ∂(u, v) = 1 when simplex σu corresponding to row u
belongs to boundary of σv corresponding to column v. A reduction of the bound-
ary matrix reduces it into a canonical form through column addition operations
over binary field. The number of column operations required by the reduction
process is usually huge, because the boundary matrices can be prohibitively
large even with input images of small sizes. As an example, digit images of reso-
lution 28× 28 from MNIST have 1D boundary matrix of size 784× 1512 and 2D



Hardware Acceleration of Persistent Homology Computation 83

boundary matrix of size 1512 × 729. Boundary matrix reduction has become a
major bottleneck for persistent homology computation, and impedes its further
applications. Therefore, it is imperative to accelerate the reduction process by
dedicated hardware. Some hardware accelerators can speedup the computation
process hundreds or even thousands of times compared to general purpose CPU
and GPU [5,6]. By designing dedicated hardware to implement boundary matrix
reduction, we can accelerate it up to 20000 times. To the best of our knowledge,
this is the first paper proposing hardware accelerations for persistent homology
computation.

Fig. 2. Top left: a simplicial complex with filter function values marked in the parenthe-
ses beside corresponding vertices, edges, and faces; Top right: simplicies of dimension 0,
1, 2, and 3; Bottom row: examples of boundary operators on 1-, 2-, and 3-dimensional
simplicies.

The remainder of the paper is organized as follows. We briefly explain the
basics of the theory of persistent homology in Sect. 2. Details concerning bound-
ary matrix and boundary matrix reduction are provided in Sect. 3. Lastly, Sect. 4
presents a hardware implementation which considerably accelerates the reduc-
tion process. Potential speedups from proposed hardware implementation are
evaluated on two datasets, namely, MNIST and The Mammographic Image Anal-
ysis Society (MIAS) [20]. For illustration purpose, MIAS dataset is downsized
from 1024 × 1024 to 32 × 32 with aspect ratio intact.



84 F. Wang et al.

Fig. 3. ∂1 is the 1−dimensional boundary matrix computed from the simplicial complex
(with a filter function defined on it) illustrated in top left of Fig. 2. Rows and columns
of ∂1 correspond to vertices (0-simplicies) and edges (1-simplicies) respectively. First
few steps of boundary matrix reduction are shown. The reduction process stops at R1

which is the reduced result of ∂1.

2 Persistent Homology

We review some of the basic concepts necessary to understand the idea of this
paper, including simplex, simplicial complex, boundary operator, and filtration.
Due to space limitations, some theories as important, such as cycle, chain group,
homology group, etc., are intentionally skipped. Interested readers may refer to
[10,16,17] for more details.

Simplicial Complex. A d-dimensional simplex σ is the convex hull of d + 1
affinely independent vertices. In case of 3D data, the 0-, 1-, 2-, and 3-simplex
are vertex, edge, triangle and tetrahedron respectively (top right of Fig. 2). A
simplicial complex K is a finite set of simplicies satisfying two conditions: (1)
any face of a simplex in K is also in K; (2) intersection of any two simplicies in
K is either empty or is a face for both simplicies.

Boundary Operator. The boundary of a d-simplex is the formal sum of the
(d − 1)-simplicies which are faces of the d-simplex. In the second row of Fig. 2,
the boundary of an edge (1-simplex) is the sum of its two endpoints (0-simplex).
The edges constituting the triangle form the boundary of that triangle. And
similarly, the formal sum of the four triangles is the boundary of the tetrahedron.
The boundary operator is defined on individual simplicies as an operator that
decomposes a d-simplex into its boundary comprising of a set of (d−1)-simplicies.

Filtration. Given a topology space X and a real-valued function f defined on
X, we can construct a sublevel set Xt = {x ∈ X : f(x) ≤ t} where t is a



Hardware Acceleration of Persistent Homology Computation 85

threshold controlling the “progress” of sublevel sets. As t increases from −∞ to
+∞, a sequence of sublevel sets is produced in which the first is an empty set
while the last covers the whole topology space X. This increasing sequence of
sets is called a filtration induced by function f .

Algorithm 1. Boundary matrix reduction
1: procedure Initialization
2: R ← boundary matrix ∂
3: lowR() ← −1
4: for i = 1 to n do
5: if column i has 1 then
6: lowR(i) ← row index of the last 1 in column i of R

7: endif
8: endfor
9: for i = 1 to n do

10: while ∃i
′
< i with lowR(i

′
) = lowR(i) do

11: add column i
′

to column i
12: update lowR(i)
13: endwhile
14: endfor

3 Boundary Matrix Reduction

Computation of persistence diagram requires a filter function defined on simpli-
cies. As can be seen from top left of Fig. 2, filtration function values are marked
beside corresponding simplicies (vertices, edges, and faces). With the simplicies
sorted usually in increasing order according to their function values, a bound-
ary matrix ∂ can be computed by encoding the boundary operator in a binary
matrix. An entry ∂(u, v) = 1 when simplex σu corresponding to column u is part
of the boundary of simplex σv corresponding to column v.

Boundary matrix reduction reduces ∂ to another binary matrix R through
column operations performed on ∂ from left to right. During each operation, a
new column is reduced by addition with a potentially already reduced column
from its left. The reduction process finishes when the rightmost column of R has
index of nonzero entry as small as possible (or as high as possible in terms of
matrix position) or the rightmost column is zero. To better explain the reduction,
we define lowR(i) to be the row index of the last 1 in column i of R or −1 in case
that column i is zero. To reduce column i, we keep searching for another column
j satisfying condition lowR(i) = lowR(j), j < i and adding column j to column
i until i is zero or no column j satisfying above condition can be found. It is
important to note that these column additions use Z2 (i.e. mod 2) arithmetic so
that 1 + 1 = 0.

As an example, the 1−dimensional boundary matrix ∂1 computed from
the simplicial complex defined in top left of Fig. 2 is reduced with first few



86 F. Wang et al.

Fig. 4. Left: architecture of the proposed hardware implementation of boundary matrix
reduction. Right: example Col SRAM updates of the first reduction step in Fig. 3.

steps of reduction process shown in Fig. 3. The reduced result is R1 where
lowR1(i) �= lowR1(j), i �= j where column i and j specify two nonzero columns
(see lower right of Fig. 3). Pseucodes for boundary matrix reduction is provided
in Algorithm 1 where the boundary matrix is first scanned to initialize lowR()
with correct indices (the first for-loop) after which the algorithm follows what
we have described previously.

4 Hardware Implementation

As described in Sect. 3, boundary matrix reduction entails a lot of column opera-
tions, which make it time-consuming to compute persistence diagram. Provided
a large boundary matrix, the excessive number of cache misses caused by afore-
mentioned column operations involved in reduction process inevitably become a
major challenge in memory operations. Moreover, finding two columns i and j
satisfying lowR(i) = lowR(j) proves to be difficult due to the time and power
consumption incurred from the perspective of both software and hardware. A
novel hardware accelerator for boundary matrix reduction is proposed in this
section, which can potentially achieve up to 20k–30k times speedups on MNIST
and MIAS dataset.

A full description of the functionality for each hardware module illustrated
in Fig. 4 is as follows:

1. Memory: the memory module stores boundary matrix. Currently, only on-
chip SRAM is considered. The architecture can be easily extended to DRAM
when applied to a larger dataset.

2. Col SRAM1: Col SRAM1 stores the index of the lowest 1 in each column (i.e.
lowR()).

3. Col SRAM2: Col SRAM2 stores the number columns which share the same
lowR().

4. Main Controller: the main controller module is responsible for the control of
the entire hardware including reading and writing of the SRAMs.



Hardware Acceleration of Persistent Homology Computation 87

An example hardware flow of the first boundary matrix reduction step in
Fig. 3 is shown in Fig. 4. Col SRAM1 indicates the index of the lowest 1 in column
i (i.e. lowR(i)) while Col SRAM2 records the number of columns with the same
lowR(). As the process of boundary matrix reduction progresses, the SRAMs are
updated concurrently. With the information readily stored in SRAMs, the time
to search for a new pair of qualifying columns can be greatly reduced.

Specifically, the Memory module is configured to have 24 SRAMs, each with
depth of 1536 and width of 32−bit in our implementation. The circuit is syn-
thesized with 28 nm CMOS technology. The circuit is designed to have an area
of 0.5 mm2 and to consume 20 mW power at 1 Ghz clock frequency.

10 samples were randomly drawn from both MNIST and MIAS dataset, and
we measured their software and hardware reduction time on 1− and 2− dimen-
sional boundary matrices separately for clarity purpose. Our software implemen-
tation of boundary matrix reduction (abbreviated as SW in Table 1 for clarity)
was coded in C++ and compiled on a 64−bit Windows with Visual Studio
2015 as baseline approach. It took in filtration matrices as inputs and produced
reduced boundary matrices as outputs. Additionally, software metrics reported
in Table 1 were produced from a machine with an Intel Core i7-9700K 3.6 GHz
CPU, and 8GB DDR4 memory. Table 1 gives averaged running time over 10
samples for both dataset, and we can observe considerable speedups from our
proposed hardware accelerator especially for 1-dimensional boundary matrices.

Table 1. Comparisons of processing time between software and hardware
implementations.

Dataset Dimensions SW runtime HW runtime HW/SW speedups

MNIST 2-dim 2224 ms 1.10 ms 2022x

1-dim 2639 ms 0.13 ms 20300x

MIAS 2-dim 4087 ms 1.51 ms 2706x

1-dim 4816 ms 0.22 ms 21891x

Acknowledgement. This work is partially supported by National Science Foundation
Awards CCF-1854742, CCF-1815699, IIS-1855759 and CCF-1855760.

References

1. Chung, M.K., Bubenik, P., Kim, P.T.: Persistence diagrams of cortical surface data.
In: Prince, J.L., Pham, D.L., Myers, K.J. (eds.) IPMI 2009. LNCS, vol. 5636, pp.
386–397. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02498-
6 32

2. Chung, M., Hanson, J., Ye, J., Davidson, R., Pollak, S.: Persistent homology in
sparse regression and its application to brain morphometry. IEEE Trans. Med.
Imaging 34(9), 1928–1939 (2015). https://doi.org/10.1109/TMI.2015.2416271

3. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams.
Discret. Comput. Geom. 37(1), 103–120 (2007)

https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1007/978-3-642-02498-6_32
https://doi.org/10.1109/TMI.2015.2416271


88 F. Wang et al.

4. Cohen-Steiner, D., Edelsbrunner, H., Morozov, D.: Vines and vineyards by updat-
ing persistence in linear time. In: Proceedings of the Twenty-second Annual Sym-
posium on Computational Geometry, SCG 2006, pp. 119–126. ACM, New York
(2006). https://doi.org/10.1145/1137856.1137877

5. Deng, C., Liao, S., Xie, Y., Parhi, K.K., Qian, X., Yuan, B.: PermDNN: efficient
compressed DNN architecture with permuted diagonal matrices. In: 2018 51st
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pp.
189–202, October 2018. https://doi.org/10.1109/MICRO.2018.00024

6. Deng, C., Sun, F., Qian, X., Lin, J., Wang, Z., Yuan, B.: TIE: energy-efficient
tensor train-based inference engine for deep neural network. In: Proceedings of the
46th International Symposium on Computer Architecture, ISCA 2019, pp. 264–
278. ACM, New York (2019). https://doi.org/10.1145/3307650.3322258

7. Dey, T.K., Li, K., Sun, J., Cohen-Steiner, D.: Computing geometry-aware handle
and tunnel loops in 3D models. In: ACM SIGGRAPH 2008 Papers, pp. 45:1–45:9.
ACM, New York (2008). https://doi.org/10.1145/1399504.1360644

8. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological persistence and sim-
plification. Discrete Comput. Geom. 28(4), 511–533 (2002). https://doi.org/10.
1007/s00454-002-2885-2

9. Edelsbrunner, H.: Surface tiling with differential topology. In: Desbrun, M.,
Pottmann, H. (eds.) Eurographics Symposium on Geometry Processing 2005. The
Eurographics Association (2005). https://doi.org/10.2312/SGP/SGP05/009-011

10. Edelsbrunner, H., Harer, J.: Computational Topology: An Introduction. American
Mathematical Society, Providence (2010)

11. Ghrist, R., Muhammad, A.: Coverage and hole-detection in sensor networks via
homology. In: IPSN 2005: Fourth International Symposium on Information Pro-
cessing in Sensor Networks, pp. 254–260, April 2005. https://doi.org/10.1109/
IPSN.2005.1440933

12. Goodman, J.E., O’Rourke, J. (eds.): Handbook of Discrete and Computational
Geometry. CRC Press, Inc., Boca Raton (1997)

13. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning
applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

14. Lee, H., Kang, H., Chung, M.K., Lee, D.S.: Persistent brain network homology
from the perspective of dendrogram. IEEE Trans. Med. Imaging 31, 2267–2277
(2012)

15. Li, C., Ovsjanikov, M., Chazal, F.: Persistence-based structural recognition. In:
2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2003–
2010, June 2014. https://doi.org/10.1109/CVPR.2014.257

16. Munkres, J.R.: Elements of Algebraic Topology. Addison Wesley Publishing Com-
pany (1984). http://www.worldcat.org/isbn/0201045869

17. Oudot, S.: Persistence theory - from quiver representations to data analysis. In:
Mathematical Surveys and Monographs (2015)

18. Perea, J.A., Harer, J.: Sliding windows and persistence: an application of topolog-
ical methods to signal analysis. Found. Comput. Math. 15, 799–838 (2015)

19. Silva, V.D., Ghrist, R.: Blind swarms for coverage in 2-D. In: Proceedings of
Robotics: Science and Systems, p. 01 (2005)

20. Suckling, J.: The mammographic image analysis society digital mammogram
database. Exerpta Medica. International Congress Series 1069, January 1994

https://doi.org/10.1145/1137856.1137877
https://doi.org/10.1109/MICRO.2018.00024
https://doi.org/10.1145/3307650.3322258
https://doi.org/10.1145/1399504.1360644
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.1007/s00454-002-2885-2
https://doi.org/10.2312/SGP/SGP05/009-011
https://doi.org/10.1109/IPSN.2005.1440933
https://doi.org/10.1109/IPSN.2005.1440933
https://doi.org/10.1109/CVPR.2014.257
http://www.worldcat.org/isbn/0201045869

	Hardware Acceleration of Persistent Homology Computation
	1 Introduction
	2 Persistent Homology
	3 Boundary Matrix Reduction
	4 Hardware Implementation
	References




