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Abstract—In this paper, cross-layer design of transmitting
data packets over AWGN fading channel with adaptive decision
feedback is considered. The transmitter decides the number of
packets to transmit and the threshold of the decision feedback
based on the queue length and the channel state. The transmit
power is chosen such that the probability of error is below a pre-
specified threshold. We model the system as a Markov decision
process and use ideas from lattice theory to establish qualitative
properties of optimal transmission strategies. In particular, we
show that: (i) if the channel state remains the same and the
number of packets in the queue increase, then the optimal policy
either transmits more packers or uses a smaller decision feedback
threshold or both; and (ii) if the number of packets in the queue
remain the same and the channel quality deteriorates, then the
optimal policy either transmits fewer packets or uses a larger
threshold for the decision feedback or both. We also show that if
the channel gains for all channel gains are above a threshold, then
the “or” in the above characterization can be replaced by “and”.
Finally, we present a numerical example showing that adaptive
decision feedback significantly improves the power-delay trade-
off as compared with the case of no feedback.

Index Terms—Power-delay trade-off, cross-layer design, fading
channels, decision feedback, Markov decision processes,

I. INTRODUCTION

Wireless communication is a ubiquitous component of almost
all modern technologies. Emerging applications such as vehicle-
to-vehicle communication, automated driving, industrial control,
virtual reality, and tactile Internet have strict requirements in
terms of latency and reliability. Meeting such ultra-reliable
low-latency requirements over time-varying fading channels in
an energy efficient manner is one of the key challenges in the
design of next generation wireless networks [1].

Typically, a higher layer application generates traffic which is
queued in a buffer; packets from the buffer are transmitted over
the wireless fading channel, and then passed on to a higher layer
application at the receiver. Such models have two competing
objectives: minimizing the power consumed to transmit the
packets and minimizing the end-to-end delay experienced by
the packets. There is a fundamental trade-off between the two:
delay may be reduced by increasing the transmission rate which,
in turn, results in an increase in the power required to maintain
the same probability of error. In the presence of fading, it is
also possible to adapt the transmission rate (or, equivalently,
the transmit power), based on the state of the channel.

The power-delay trade-off has been investigated for various

models [2]–[7]. These include minimizing transmit power under
delay constraints [2]–[4], optimizing power and rate under
delay constraints [5], minimizing the delay under constraint
on transmit power [6], or general throughput maximization
under a cost constraint [7]. All these models are analyzed using
Markov decision theory and for some of the models, qualitative
properties of optimal strategies are also established.

In all of the papers above, rate adaptation was the only
mechanism of trading off transmit power and delay. Another
mechanism for adaptation was proposed in [8], which consid-
ered a communication model where the receiver uses decision
feedback [9], i.e., if the received symbol is too far away from
the transmitted codewords, the receiver may declare an erasure
and request a retransmission. It was shown in [8] that this
additional degree of freedom improves the power-delay trade-
off for a stylized model with binary transmit decisions (transmit
or not transmit) and binary decision feedback (to use or not use
decision feedback). They modeled the problem as a Markov
decision process with two dimensional state (queue length and
channel state) and two dimensional actions (number of packets
to transmit and the decision feedback to use) and characterized
the structural properties of the optimal transmission strategies.

Our main contribution is to generalize the result of [8]
to a more realistic system model where we do not restrict
the number of transmitted packets or decision feedback to
binary values. The proof technique of [8] relied on exhaustive
enumeration of all possible combinations of actions and does
not work for the more general case that we consider. We use
ideas from lattice theory to develop monotonicity properties
of arg min of functions defined over partially ordered sets and
then use these properties to establish the structural properties
of optimal transmission strategies. We then present a numerical
example to show that the presence of decision feedback can
significantly improve the power-delay trade-off.

II. MODEL AND PROBLEM FORMULATION

A. The communication system

Consider a communication system show in Fig.1. A source
generates bursty data packets that have to be transmitted over
an i.i.d. AWGN fading channel. The transmitter has a buffer
where the data packets are queued. The system operates in
discrete time slots. The data packets that arrive in a slot are
available only at the beginning of the next slot.
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Fig. 1: Model of a transmitter with decision feedback

At the beginning of a slot, the transmitter chooses some
data packets from the queue, encodes them, and transmits the
encoded symbol at some energy level over the AWGN channel.

The receiver receives an attenuated and noise corrupted copy
of transmitted symbol. The receiver uses decision feedback to
decode. If the log likelihood ratio of the hypothesis that the
received signal comes from the closest codeword is less than
a threshold, then the receiver declares an erasure and sends a
negative acknowledgment to the transmitter. If not, the receiver
declares the closest codeword as the decoded symbol and sends
an acknowledgment to transmitter.

If the transmitter receives an acknowledgment, it removes
the transmitter packets from the queue; if it receives a negative
acknowledgment, it keeps the transmitted packets in the queue.
At the end of the slot, the system incurs a delay penalty that
depends on the number of packets remaining in the queue.

Time slots are indexed by k ∈ N. The system variables are
denoted as follows:
• Qk ∈ Z≥0 denotes the number of packets in the queue

at the beginning of slot k.
• Ak ∈ Z≥0 denotes the number of packets that arrive at

the beginning of slot k.
• Uk ∈ F (Qk) := {0, . . . , Qk} denotes the number of

packets transmitted during slot k.
• Sk ∈ S denotes the state of the channel during slot k. The

fading coefficient in state s ∈ S is denoted by H(s). For
ease of analysis, we define h(s) = 1/H(s). We assume
that S is a finite and totally ordered set and the function
h : S → R≥0 is strictly increasing and convex. Thus, a
smaller value of the state of the channel indicates a better
channel quality.

• Πk ∈ R≥0 denotes the energy used to transmit during
slot k.

• Tk ∈ T denotes the threshold used for the decision
feedback, where T is a closed and convex subset of R≥0.

• E ∈ {0, 1} denotes the decision feedback generated by
the receiver, where E = 1 denotes an acknowledgment
and E = 0 denotes a negative acknowledgment.

For ease of notation, we define Q = Z≥0 and U = Z≥0 to
denote the space of realizations for Qk and Uk. The various
components of the communication system are described below.

1) Assumptions on the primitive random variables: We
assume that the data arrival process {Ak}k≥1 and the channel
state process {Sk}k≥1 are independent and identically dis-
tributed exogenous processes that are independent of each
other. Let PA and PS denote the probability mass functions of
Ak and Sk, k ∈ N. We assume that PA is weakly decreasing

and convex, i.e., the difference between consecutive probability
mass points is also decreasing.

2) Network layer modeling: We assume that each packet
has N bits. The queue dynamics are given by:

Qk+1 =

{
Qk − Uk +Ak, if Ek = 1;

Qk +Ak, if Ek = 0.
(1)

Packets that remain in the queue at the end of slot k incur
a delay penalty of d(Qk+1 − Ak), where d : Z≥0 → R≥0 is
weakly increasing and convex function with d(0) = 0.

3) Physical layer modeling: We assume that the channel
is a narrow-band block-fading AWGN channel in which the
coherence time of the channel equals to the time slot. Thus,
the fading gain remains constant for the duration of the time
slot and changes independently across time. Each transmission
uses a block code of length M . Let Xk = [Xk1, . . . , XkM ]
and Yk = [Yk1, . . . , YkM ] denote the transmitted and received
signals at slot k. These two signals are related according to

Yk = H(Sk)Xk + Zk

where Zk = [Zk1, . . . , ZkM ] is the channel noise. We as-
sume that {Zk}k≥0 is an i.i.d. process and the variables
Zk1, . . . , ZkM are independent zero-mean Gaussian random
variables with unit variance. The average transmitted power
during slot k is given by Πk =

(∑M
m=1E[X2

km]
)
/M where

expectation is with respect to the measure induced on the
message.

Let Pe and Pr denote the probability of (block) error and the
probability of erasure (i.e., E = 0), respectively. By substituting
the error exponent for AWGN channels [10, Eq. (124)] in the
expressions for probability of error for adaptive feedback [9,
Theorem 2], we can bound Pe and Pr as following:

Pe ≤ pe(Uk, Tk,Πk, Sk) and Pr ≤ pr(Uk, Tk,Πk, Sk),

where pe(u, t, π, s) is given by

exp
(
−ρ2M log

(
1 + πH(s)

(1+ρ)

)
+ ρNu− ρ

1+ρMt
)
, (2)

and pr(u, t, π, s) is given by

exp
(
−ρ2M log

(
1 + πH(s)

(1+ρ)

)
+ ρNu+ 1

1+ρMt
)
, (3)

where ρ is a parameter between 0 and 1. Note that

pr(u, t, π, s) = exp(Mt)pe(u, t, π, s). (4)

We assume that M is large enough so that the upper bounds
pe(Uk, Tk,Πk, Sk) and pr(Uk, Tk,Πk, Sk) are tight approxi-
mations for Pe and Pr.

B. The performance metrics and the optimization problem

There are three performance metrics of interest at each time:
1) The probability Pe of block error, which we assume can

be approximated by the upper bound pe(Uk, Tk,Πk, Sk).
2) The power Πk used for transmissions.
3) The delay d(Qk+1−Ak) incurred for holding the packets

in the queue.



We are interested in characterizing the power-delay trade-off
under the assumption that the probability of block error Pe is
equal to some pre-specified value ε, i.e., Pe = ε.

There are three decision variables: the number Uk of packets,
the threshold Tk of decision feedback, and the power Πk

used for transmission. We impose the following simplifying
assumption which implies that Πk is a function of Uk and Tk.

We assume that (recall that h(s) = 1/H(s)):

Πk = φ(Uk, Tk)h(Sk), (5)

where

φ(u, t) = (1 + ρ)
[
exp
(
−2 log ε

ρM
+ 2

N

M
u− 2

1 + ρ
t
)
− 1
]
.

Such a choice for Πk ensures that for any (Sk, Uk, Tk), we
always satisfy

pe(Uk, Tk,Πk, Sk) = ε. (6)

Note that, by construction, φ(u, t) is strictly increasing in u
and strictly decreasing in t. Furthermore, by (4) and (6), the
retransmission probability is given by

pr(Un, Tn,Πn, Sn) = exp(MTn)ε =: p(Tn). (7)

By construction, p(t) is strictly increasing in t. As a
consequence of (5), we are left with only two decision variables:
Uk and Tk. We assume that both of these are chosen at the
transmitter and communicated noiselessly to the receiver over
a control channel. Both the variables are chosen as a function
of Qk and Sk, i.e.,

(Uk, Tk) = gk(Qk, Sk),

where for any q ∈ Q and s ∈ S, gk(q, s) ∈ F (q) × T . The
function gk is called the communication rule at slot k and the
collection g = (g1, g2, . . . ) is called the communication policy.

We assume that there is a cost λd for each unit of delay
and a cost λπ for each unit of power. Then, the per-step cost
incurred by the system is given by

Ck = λπΠk + λdd(Qk+1 −Ak).

For ease of notation, we define

c(q, s, u, t) = E[Ck | Qk = q, Sk = s, Uk = u, Tk = t]

= λπφ(u, t)h(s) + λd
[
p(t)d(q) + (1− p(t))d(q − u)

]
. (8)

For ease of reference, we restate the assumptions on
the different components of the cost and the probability
distribution:

(A1) The probability mass function PA is weakly decreasing
and convex.

(A2) d(q) is weakly increasing and convex in q and d(0) = 0.
(A3) h(s) is strictly increasing and convex in s.
(A4) φ(u, t) is strictly increasing in u and strictly decreasing

in t.
(A5) p(t) is strictly increasing in t.

The system runs for a finite horizon K. The performance
of any communication policy g is given by

J(g) = E
[ K∑
k=1

c(Qk, Sk, Uk, Tk)
]
, (9)

where the expectation is with respect to the joint measure on
the system variables induced by the choice of g.

We are interested in the following optimization problem.

Problem 1 For the model described above, given an hori-
zon K, choose a communication policy g = (g1, . . . , gK) to
minimize J(g) given by (9).

Problem 1 is a finite horizon Markov decision process
(MDP). In Sec. III-A, we present use standard results from
Markov decision theory [11] to obtain a dynamic program. Our
main contribution is to use the dynamic program to identify
qualitative properties of the value function and the optimal
policy, which we present in Sec. III-B. One of the challenges in
identifying such qualitative properties is that the action space
U ×T is not a totally ordered set. The proofs of the qualitative
properties utilize results on partially ordered sets from lattice
theory, which we summarize in Sec. V. The proofs themselves
are presented in Sec. VI.

III. THE MAIN RESULTS

A. Dynamic Programming Decomposition

Proposition 1 Consider the functions {Vk : Q× S → R}k≥1,
{W k : Q× U × T → R}k≥1, and {Wk : Q× S × U × T →
R}k≥1 defined as follows: For any q ∈ Q and s ∈ S ,

VK+1(q, s) = 0

and for k ∈ {K,K − 1, . . . , 1}, recursively define

W k(q, u, t) =
∑

(s,a)∈S×Z≥0

PS(s)PA(a)
[
(1− p(t))Vk+1(q − u+ a, s)

+ p(t)Vk+1(q + a, s)
]
,

(10)

Wk(q, s, u, t) = ck(q, s, u, t) +W k(q, u, t), (11)
Vk(q, s) = min

u∈F (q),t∈T
Wk(q, s, u, t). (12)

Let gk(q, s) denote the arg min at stage k. Then, the policy
g = (g1, . . . , gK) is optimal for Problem 1. 2

B. Qualitative properties of the solution

Theorem 1 For any time slot k, the value function Vk(q, s)
satisfies the following properties:

1) For any s ∈ S , Vk(q, s) is weakly increasing in q.
2) For any q ∈ Q, Vk(q, s) is weakly increasing in s. 2

The proof is presented in Section VI-A.
Theorem 1 establishes the following qualitative properties

of the value function. If the channel state remains the same,
increasing the number of packets in the queue increases the
optimal cost to go. Similarly, if the number of packets in
the queue remain the same, going to a worse channel state
increases the optimal cost to go.



Theorem 2 For any k ∈ {1, . . . ,K}, we have the following.
1) For any s ∈ S and q1, q2 ∈ Q such that q1 ≤ q2, let

(u1, t1) = gk(q1, s) and (u2, t2) = gk(q2, s). Then, u1 ≤
u2 or t1 ≥ t2.

2) For any q ∈ Q and s1, s2 ∈ S such that s1 ≤ s2, let
(u1, t1) = gk(q, s1) and (u2, t2) = gk(q, s2). Then, u1 ≥
u2 or t1 ≤ t2. 2

Note that the “or” in the above theorem is an inclusive or. The
proof is presented in Sec. VI-B.

Theorem 2 establishes the following qualitative properties of
the optimal policy. If the channel state remains the same and
the number of packets in the queue increase, then the optimal
policy either transmits more packets or uses a smaller threshold
for decision feedback or both. If the number of packets in the
queue remain the same and the channels state increases (i.e.,
the channel quality deteriorates), then the optimal policy either
transmits fewer packets or uses a larger threshold for decision
feedback or both.

Theorem 3 Suppose the cost function satisfies the following
property:
(P) for any (q, s) ∈ Q×S , and any u1, u2 ∈ U and t1, t2 ∈ T

such that u1 ≤ u2 and t1 ≤ t2, we have

c(q, s, u1, t2) + c(q, s, u2, t1)

≤ c(q, s, u2, t2) + c(q, s, u1, t1).

Then, the “or” in Theorem 2 can be replaced by “and”. 2

The proof is presented in Sec. III-B.

Theorem 4 The following two conditions are sufficient for
property (P) to hold.

1) There exists a differentiable function D : R≥0 → R≥0
such that at q ∈ Z≥0, D(q) = d(q) and D′(q) ≥ 1 (where
D′(q) denotes the derivative of q).

2) For all s ∈ S ,

h(s) ≤ λd
λπ

εM2

4N
exp

( 2

ρM

)
.

2

The proof is presented in Appendix C.

Remark 1 The first condition in Theorem 4 covers a large
family of delay functions of interest, e.g., d(q) = q or d(q) =
q2. Recall that h(s) denotes the reciprocal of the fading gain
when the channel is in state s. Thus, the second condition in
Theorem 4 states that fading gain for all channel states must
be greater than a threshold, where the threshold depends on
the design parameters (λd, λπ, N,M). 2

C. Significance of the results

The results of Theorems 2 and 3 may appear to be
“obvious”, but it is important to formally establish them because
there are models where such qualitative properties do not
hold [12]. Knowing that the optimal policy is monotone has
two advantages. First, the monotonicity of optimal policy can
be exploited for more efficient planning and learning algorithms

(e.g., monotone dynamic programming [11], renewal Monte
Carlo [13], and structure aware reinforcement leanring [14]).
Second, monotone policies are easier to implement in either
hardware or software than general policies.

IV. AN EXAMPLE TO ILLUSTRATE THE BENEFIT OF
DECISION FEEDBACK

In this section, we present a numerical example to illustrate
the value of decision feedback for improving the power-delay
trade-off. For simplicity of exposition, we consider an infinite
horizon discounted setup. For any time-homogeneous trans-
mission policy g, define the expected discounted transmitted
power as

Π(g)(q, s) = (1− β)E
[ ∞∑
k=1

βk−1φ(Uk, Tk)h(Sk)
∣∣∣

Q1 = q, S1 = s
]

and the expected discounted delay as

D(g)(q, s) = (1−β)E
[ ∞∑
k=1

βk−1D(Qk+1−Ak)
∣∣∣ Q1 = q, S1 = s

]
.

For fixed (q, s), the optimal power-delay trade-off is given
by

P(α) = min
g
{Π(g)(q, s) | D(g)(q, s) ≤ α}. (13)

We compare the power-delay trade-off of a system with
adaptive feedback with the power-delay trade-off of the system
without adaptive feedback. The latter is obtained by restricting
attention to policies which choose Tk = 0 and setting p(0) =
0. We compute the power-delay trade-off for both systems
for the following choice of parameters: N = 10, M = 100,
ε = 10−6, ρ = 1, β = 0.99. Data packets arrive according
to a deterministic process of 5 packets per unit time. The
channel has two states and both states are equally likely with
H(1) = 0.1 and H(2) = 0.9 (thus, h(1) = 10 and h(2) =
10/9). The delay function is d(q) = q. The state space of the
dynamic program is Z≥0×R≥0. To obtain a numerical solution,
we truncate the model to {0, 1, . . . , B} × {0, τ1, τ2, . . . , τ10},
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Fig. 2: Power-delay trade-off with and without adaptive decision
feedback



where B = 100 and {τ1, . . . , τ10} are chosen such that p(t)
takes values {0, 0.1, . . . , 1}. The power-delay function P(α)
is computed by solving the constrained MDP using linear
programming [15]. The code of this numerical example is
available at [16].

The power-delay trade-off for (q, s) = (0, 1) are shown in
Figure 2, which shows the advantage of using adaptive decision
feedback.

V. PRELIMINARIES ON LATTICE THEORY

In this section, we present some basic definitions from lattice
theory [17]. These definitions are required in the proof of
structural results of the optimal transmission and feedback
policies.

A. Partially ordered sets, monotone functions, and functions
with monotone differences

Given a binary relation � on a set X , we say that (X ,�)
is a partially ordered set if the relation � is

1) reflexive, i.e., for any x ∈ X , x � x;
2) anti-symmetric, i.e., for any x, y ∈ X , if x � y and y � x,

then x = y; and
3) transitive, i.e., for any x, y, z ∈ X , if x � y and y � z,

then x � z.
For two elements x, y ∈ X , if x � y and x 6= y, then we say
x ≺ y. The negation of x ≺ y is denoted by x 6≺ y.

A partially ordered set (X ,�) is said to be totally ordered
if for any two elements x and y, either x � y or y � x.

Remark 2 In general, given two elements x and y in a partially
ordered set (X ,�), it is possible that x 6≺ y and y 6≺ x. Such
elements are said to be incomparable. Due to the existence of
incomparable elements, x 6≺ y does not imply y � x. 2

Given two partially ordered sets (X ,�X ) and (Y,�Y), a
function f : X → Y is called increasing if for any x1, x2 ∈ X ,
x1 �X x2 implies that f(x1) �Y f(x2). The function f
is called non-decreasing if for any x1, x2 ∈ X , x1 �X x2
implies that f(x1) 6�Y f(x2). It follows from Remark 2 that
non-decreasing function is not necessarily increasing. Similar
definitions hold for decreasing and non-increasing functions.

Given two partially ordered sets (X ,�X ) and (Y,�Y), a
function f : X ×Y → R is said to have increasing differences
if for any x1, x2 ∈ X and y1, y2 ∈ Y such that x1 �X x2 and
y1 �Y y2, we have

f(x2, y2)− f(x1, y2) ≥ f(x2, y1)− f(x1, y1). (14)

If the inequality in (14) is reversed, the function f is said to
have decreasing differences.

B. Lattice and submodular functions

Given a partially ordered set (X ,�) and a subset S of X ,
an element x ∈ X is called a lower bound of S if, for any
element s ∈ S, we have x � s. If b is a lower bound of S
such that for any other lower bound x, x � b, then b is called
greatest lower bound. Upper bound and least upper bound are
defined analogously.

A partially ordered set (X ,�) is called a lattice if every
two-element subsets {x, y} has a join (i.e. least upper bound
denoted by x∨y) and a meet (i.e. greatest lower bound denoted
by x ∧ y) in X . A lattice (X ,�) is said to be complete if the
set X has a least upper bound and a greatest lower bound.1

Given a lattice (X ,�X ), a function f : X → R is called
submodular if for any x1, x2 ∈ X , we have

f(x1 ∧ x2) + f(x1 ∨ x2) ≤ f(x1) + f(x2).

C. Nested increasing subsets, nested submodularity, and nested
monotone differences

Given a partially ordered set (X ,�X ) and a lattice (Y,�Y),
a family {Sx}x∈X of subsets of Y is called nested increasing
if each subset Sx is a totally ordered set; for all x1, x2 ∈ X
such that x1 �X x2, we have Sx1 ⊆ Sx2 ; and for any y1 ∈ Sx1

and y2 ∈ Sx2 \ Sx1 , we have y1 �Y y2.
Given a partially ordered set (X ,�X ), a lattice (Y,�Y),

and a family {Sx}x∈X of nested increasing subsets of Y , a
function f : X×Y → R with domain {(x, y) : x ∈ X , y ∈ Sx}
is called nested submodular if the section f(x, ·) is submodular
on Sx, for all x.

Given a partially ordered set (X ,�X ), a lattice (Y,�Y), and
a family {Sx}x∈X of nested increasing subsets of Y , a function
f : X ×Y → R with domain {(x, y) : x ∈ X , y ∈ Sx} is said
to have increasing differences on nested increasing subsets if
for any x1, x2 ∈ X and y1, y2 ∈ Sx1

such that x1 �X x2 and
y1 �Y y2, Eq. (14) holds.

If the inequality in (14) is reversed, the function f is said
to have decreasing differences on nested increasing subsets.

D. Minimizing a function over a lattice

Consider a function f : X × Y → R with domain {(x, y) :
x ∈ X , y ∈ Sx}, where (X ,�X ) is a partially ordered
set, (Y,�Y) is a lattice and {Sx}x∈X is a family of nested
increasing subsets. Suppose that for all x, the miny∈Sx f(x, y)
exists and the (partially-ordered) set arg miny∈Sx f(x, y) has
a minimum element. Define

g(x) := min
{

arg min
y∈Sx

f(x, y)
}
. (15)

The next result identifies sufficient conditions for g to be
monotone.

Theorem 5 The following properties hold:
1) If f has increasing differences, then g is non-increasing.
2) If f has increasing differences and, for all x ∈ X ,

the function f(x, ·) : Sx → R is submodular, then g is
decreasing.

3) If f has decreasing differences on the nested increasing
subsets {Sx}x∈X , then g is non-decreasing.

4) If f has decreasing differences on the nested increasing
subsets {Sx}x∈X and, for all x ∈ X , the function
f(x, ·) : Sx → R is submodular, then g is increasing.
2

1A lattice (X ,�) with finite number of elements is always complete, but
lattice with countably or uncountably infinite elements need not be complete.



The proof is omitted due to space constraints.
Theorem 5 is similar in spirit to the monotonicity results

presented in [17]. However, the analysis in [17] did not consider
the setup with nested increasing sets.

VI. PROOF OF MAIN RESULTS

A. Proof of Theorem 1

We first observe that as an immediate consequence of
properties (A2) and (A3), we have the following.

Lemma 1 The cost function c(q, s, u, t) satisfies the following
properties:

1) For any fixed (s, u, t) ∈ S × U × T , c(q, s, u, t) is
increasing and convex in q ∈ Q, q ≥ u.

2) For any fixed (q, u, t) ∈ Q × U × T , c(q, s, u, t) is
increasing and convex in s ∈ S . 2

We now prove the two parts of Theorem 1 separately.
a) Monotonicity in q: We prove this part by backward

induction. The results hold trivially for VK+1. This forms the
basis of induction. Now assume that for any fixed s, Vk+1(q, s)
is weakly increasing in q. Now consider two q1, q2 ∈ Q such
that q1 < q2. Let (u2, t2) = gk(q2, s). We now consider two
cases: u2 ∈ F (q1) and u2 6∈ F (q1).

1) First consider u2 ∈ F (q1). From the induction hypothesis
and (10), we have

W k(q2, u2, t2) ≥W k(q1, u2, t2). (16)

From Lemma 1 and (16), we have

Wk(q2, s, u2, t2) ≥Wk(q1, s, u2, t2). (17)

Now, consider

Vk(q2, s) = Wk(q2, s, u2, t2)
(a)

≥ Wk(q1, s, u2, t2)

(b)

≥ Vk(q1, s), (18)

where (a) follows from (17) and (b) follows from (12).
2) Now consider the case u2 6∈ F (q1). Let u1 = q1 −

min{q2 − u2, q1}. By construction, u1 ∈ F (q1) and q1 −
u1 ≤ q2 − u2. Now, by the induction hypothesis, we
have Vk+1(q2 − u2 + a, s) ≥ Vk+1(q1 − u1 + a, s) and
Vk+1(q2 + a, s) ≥ Vk+1(q1 + a, s). Substituting in (10),
we have

W k(q2, u2, t) ≥W k(q1, u1, t). (19)

By a similar argument, we have that

p(t)d(q2) + (1− p(t))d(q2 − u2)

≥ p(t)d(q1) + (1− p(t))d(q1 − u1). (20)

Since u1 ∈ F (q1) and u2 6∈ F (q1), we have u1 < u2 and
hence

φ(u2, t)h(s) ≥ φ(u1, t)h(s) (21)

Combining (20) and (21), we get

c(q2, s, u2, t) ≥ c(q1, s, u1, t). (22)

Combining (19) and (22), we get

Wk(q2, s, u2, t) ≥Wk(q1, s, u1, t). (23)

Now, consider

Vk(q2, s) = Wk(q2, s, u2, t2)
(c)

≥ Wk(q1, s, u1, t2)

(d)

≥ Vk(q1, s), (24)

where (c) follows from (23) and (d) follows from (12).
Eqs. (18) and (24) show that Vk(q, s) is weakly increasing

in q. Thus, by the principle of induction, the property holds
for all k.

b) Monotonicity in s: For any fixed (q, u, t), Lemma 1
and (11) imply that Wk(q, s, u, t) is strictly increasing in s. The
pointwise minimum of strictly increasing functions is strictly
increasing. Thus, Vk(q, s) is strictly increasing in s.

B. Proof of Theorem 2

The proof of Theorem 2 relies on establishing that the
action-value function Wk(q, s, u, t) has monotone differences
in appropriate components and use Theorem 5 to establish that
the optimal policy is monotone.

We start by defining a partial order on the space of actions.

Definition 1 (Partial order on U × T ) Let �A denote a
partial order on U × T such that for any (u1, t1), (u2, t2) ∈
U × T , we say (u1, t1) �A (u2, t2) if u1 ≤ u2 and t1 ≥ t2.2

Since both U and T are totally ordered sets, the partially
ordered set (U × T ,�A) is a lattice. Furthermore, {F (q) ×
T }q∈Q is a family of nested increasing subsets of U × T .

Remark 3 Property (P) in Theorem 2 states that for any fixed
(q, s) ∈ Q×S , the cost function c(q, s, u, t) is submodular on
F (q)× T with respect to the partial order defined above. 2

Let L(q′|q, u, t) = P(Qk+1 ≥ q′ | Qk = q, Uk = u, Tk = t)
denote the reverse cumulative density function for the queue
length, which can also be written as

L(q′|q, u, t) = p(t)P(A ≥ q′ − q)
+ (1− p(t))P(A ≥ q′ − q + u). (25)

Lemma 2 For any q′ ∈ Q, the reverse cumulative density
function L(q′|q, u, t) has decreasing differences on Q×(U×T )
on nested increasing sets {F (q)× T }q∈Q. 2

The proof is omitted due to space constraints.

Lemma 3 The cost function satisfies the following properties:
1) For any fixed s ∈ S, the cost function c(q, s, u, t) has

decreasing differences onQ×(U×T ) on nested increasing
sets {F (q)× T }q∈Q.

2) For any fixed q ∈ Q, the cost function c(q, s, u, t) has
increasing differences on S × (F (q)× T ). 2

The proof is presented in Appendix A.

Lemma 4 For any k ∈ {1, . . . ,K}, the action-value function
Wk(q, s, u, t) has the following properties:



1) For fixed s ∈ S , Wk(q, s, u, t) has decreasing differences
on Q× (U × T ) on nested increasing subsets {F (q) ×
T }q∈Q.

2) For fixed q ∈ Q, Wk(q, s, u, t) has increasing differences
on S × (U × T ). 2

The proof is presented in Appendix B.

PROOF (THEOREM 2 PART 1) The results of Theorem 2-
part (1), follows from Theorem 5-part (3). By Lemma 4-part (1),
we know Wk(q, s, u, t) has decreasing difference on nested
increasing subsets {F (q)× T }q∈Q. By applying Theorem 5-
part (3) on Wk(q, s, u, t), we prove the result. �

PROOF (THEOREM 2 PART 2) The results of Theorem 2-
part (2), follows from Theorem 5-part (1). By Lemma 4-part (2),
we know Wk(q, s, u, t) has increasing difference on S×(U×T ).
By applying Theorem 5-part (1) on Wk(q, s, u, t), we prove
the result. �

C. Proof of Theorem 3

In the proof of Theorem 2, we showed action-value function
Wk(q, s, u, t) has monotone difference. The proof of Theorem 3
relies on using these results and additionally prove that
Wk(q, s, u, t) is submodular in (u, t) with respect to �A.

Lemma 5 For any q′, q ∈ Q and s ∈ S, reverse cumulative
density function L(q′|q, u, t) is submodular in U × T with
respect to �A. 2

The proof is omitted due to space constraints.
An implication of Lemma 5 is the following lemma.

Lemma 6 Given the condition (P), for any k ∈ {1, . . . ,K},
q ∈ Q, and s ∈ T the action-value function Wk(q, s, u, t) is
submodular in Q× T with respect to �A. 2

The proof is omitted due to space constraints.

PROOF (THEOREM 3 PART 1) The results of Theorem 3-
part (1), follows from Theorem 5-part (4). By Lemma 4-part (1),
we know Wk(q, s, u, t) has decreasing difference on nested
increasing subsets {F (q)×T }q∈Q. Furthermore, by Lemma 6,
we know Wk(q, s, u, t) is submodular in U × T for fixed q, s.
Now, by applying Theorem 5-part (4) on Wk(q, s, u, t), we
prove the result. �

PROOF (THEOREM 3 PART 2) The results of Theorem 3-
part (2), follows from Theorem 5-part (2). By Lemma 4-
part (2), we know Wk(q, s, u, t) has increasing difference on
S×(U×T ). Furthermore, by Lemma 6, we know Wk(q, s, u, t)
is submodular in U × T for fixed q, s. Now, by applying
Theorem 5-part (2) on Wk(q, s, u, t), we prove the result. �

VII. CONCLUSION

In this paper, we consider a cross-layer design of transmitting
bursty traffic over AWGN fading channels with adaptive deci-
sion feedback. We formulate the problem as a Markov decision
process and use ideas from lattice theory to characterize the
qualitative properties of the optimal policies. We illustrate via a

numerical example that adaptive decision feedback significantly
improves the power-delay trade-off as compared to no feedback.
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APPENDIX A
PROOF OF LEMMA 3

We prove the two parts separately.
a) Decreasing differences on Q× (U × T ): We want to

show that for any q1, q2 ∈ Q and (u1, t1), (u2, t2) ∈ F (q1)×T
such that q1 ≤ q2 and (u1, t1) �A (u2, t2) (i.e., u1 ≤ u2 and
t1 ≥ t2), we have

c(q2, s, u2, t2)− c(q1, s, u2, t2)

≤ c(q2, s, u1, t1)− c(q1, s, u1, t1). (26)

Define ∆0 = d(q2)− d(q1), ∆1 = d(q2− u1)− d(q1− u1),
and ∆2 = d(q2 − u2) − d(q1 − u2). Since d(·) is weakly
increasing and convex, we have ∆0 ≥ ∆1 ≥ ∆2.

Now, consider left hand side of (26).

c(q2, s, u2, t2)− c(q1, s, u2, t2)

= p(t2)∆0 + (1− p(t2))∆2 = p(t2)[∆0 −∆2] + ∆2



(a)

≤ p(t1)[∆0 −∆2] + ∆2 = p(t1)∆0 + (1− p(t1))∆2

(b)

≤ p(t1)∆0 + (1− p(t1))∆1

= c(q2, s, u1, t1)− c(q1, s, u1, t1).

where (a) follows from (A5) and (b) follows from ∆1 ≥
∆2. Thus, Eq. (26) holds and thus c(q, s, u, t) has the stated
property.

b) Increasing differences on S × (U × T ): Consider
s1, s2 ∈ S and (u1, t1), (u2, t2) ∈ U × T such that s1 ≤ s2
and (u1, t1) �A (u2, t2), i.e., u1 ≤ u2 and t1 ≥ t2. We want
to show that

c(q, s2, u2, t2)− c(q, s1, u2, t2)

≥ c(q, s2, u1, t1)− c(q, s1, u1, t1). (27)

From (9), we get that (27) is equivalent to

φ(u2, t2)[h(s2)− h(s1)] ≥ φ(u1, t1)[h(s2)− h(s1)]. (28)

From (A3), h(s2)−h(s1) ≥ 0. From (A4), we get φ(u2, t2) ≥
φ(u1, t2) ≥ φ(u1, t1). Thus, Eq. (28) holds and consequently,
so does (27).

APPENDIX B
PROOF OF LEMMA 4

We first state a basic inequality [11, Lemma 4.7.2]

Lemma 7 Let {xi}i≥0 and {yi}i≥0 be real-valued non-
negative sequences satisfying

∑
i≥j xi ≥

∑
i≥j yi, ∀j ∈

Z≥0. Then, for any increasing real-valued sequence {vi}i≥0,
we have

∑∞
i=0 xivi ≥

∑∞
i=0 yivi. 2

We prove the two parts separately.
a) Decreasing differences on Q × (U × T ): Consider

q1, q2 ∈ Q and (u1, t1), (u2, t2) ∈ F (q1)×T such that q1 ≤ q2
and (u1, t1) �A (u2, u2) (i.e., u1 ≤ u2 and t1 ≥ t2). We use
PQ(`|q, u, t) as a short hand for P(Qk+1 = ` | Qk = q, Uk =
u, Tk = t).

Observe that for any q′ ∈ Q, Lemma 2 implies that

L(q′|q2, u2, t2) + L(q′|q1, u1, t1).

≤ L(q′|q2, u1, t1) + L(q′|q1, u2, t2).

Or, equivalently,∑
`≥q′

[PQ(`|q2, u2, t2) + PQ(`|q1, u1, t1)]

≤
∑
`≥q′

[PQ(`|q2, u1, t1) + PQ(`|q1, u2, t2)]. (29)

Each term in the square bracket of the above equation is positive.
Pick any s ∈ S . From (29), Lemma 7, and Theorem 1, we get
that

∞∑
q′=0

[PQ(q′|q2, u2, t2) + PQ(q′|q1, u1, t1)]Vk+1(q′, s)

≤
∞∑
q′=0

[PQ(q′|q2, u1, t1) + PQ(q′|q1, u2, t2)]Vk+1(q′, s).

(30)

Multiplying both sides by PS(s) and summing over s, we get

W k(q2, u2, t2) +W k(q1, u1, t1)

≤W k(q2, u1, t1) +W k(q1, u2, t2). (31)

Thus, W k(q, u, t) has decreasing differences on Q× (U × T )
on nested increasing subsets {F (q)× T }q∈Q. The result then
follows from Lemma 3 and (11).

b) Increasing differences on S × (U × T ): This is an
immediate consequence of Lemma 3 and (11).

APPENDIX C
PROOF OF THEOREM 4

We want to show that for fixed q ∈ Q, s ∈ S , c(q, s, u, t) is
submodular on F (q)×T with respect to the partial order �A.

Since T is a continuous set, sub-modularity of c(q, s, u, t)
is equivalent to ∂

∂tc(q, s, u, t) being increasing in u for all t.
We first derive the expression for some partial derivatives.

1) Let A = 2 log ε/ρM , B = 2N/M , K = (1 + ρ), C =
2/K. Then φ(u, t) can be written as

φ(u, t) = K[exp(−A+Bu− Ct)− 1].

Thus,
∂φ(u, t)

∂t
= −2 exp(−A+Bu− Ct).

2) Recall p(t) = exp(Mt)ε. Thus

∂p(t)

∂t
= εM exp(Mt).

Now,
∂

∂t
c(q, s, u, t) = λπh(s)

∂

∂t
φ(u, t)

+ λd
∂

∂t
p(t)[d(q)− d(q − u)]

= −2λπh(s) exp(−A+Bu− Ct)
+ λdεM exp(Mt)[d(q)− d(q − u)]. (32)

Let ct(q, s, u, t) denote the RHS of (32). We want to show
that for fixed q, s, t, ct(q, s, u, t) is increasing in u ∈
F (q) = {0, 1, . . . , q}. To show this, we expand the domain of
ct(q, s, u, t) to [0, q] and define it as

∂

∂t
c(q, s, u, t) = −2λπh(s) exp(−A+Bu− Ct)

+ λdεM exp(Mt)[D(q)−D(q − u)]. (33)

Then,

∂

∂u
ct(q, s, u, t) = −2λπBh(s) exp(−A+Bu− Ct)

+ λdεM exp(Mt)D′(q − u).

Note that exp(−A + Bu − Ct) ≤ exp(−A), and under the
condition D′(q) ≥ 1, we have:

∂

∂u
ct(q, s, u, t) ≥ −2λπBh(s) exp(−A) + λdεM.

Under the condition on h(s), we get ∂ct(q, s, u, t)/∂u ≥ 0.
Thus, c(q, s, u, t) is sub-modular on F (q)× T with respect to
�A.


