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Abstract. In this note we explicitly compute the resonances on hyperbolic cones. These
are manifolds diffeomorphic to R+ × Y and equipped with the singular Riemannian metric
dr2 + sinh2 r h, where Y is a compact manifold without boundary and h is a Riemannian
metric on Y . The calculation is based on separation of variables and Kummer’s connection
formulae for hypergeometric functions. To our knowledge this is the one of the few explicit
resonance calculations that does not rely on the resolvent being a two-point function.

1. Introduction

In this note we explicitly calculate all of the resonances for a hyperbolic cone in terms of
the eigenvalues of the cross-section. To fix notation, let X be a manifold of dimension n+ 1
diffeomorphic to (R+)r × Y , where Y is a compact n-manifold without boundary. Given a
Riemannian metric h on Y , we equip X with the hyperbolic conic metric dr2 + sinh2 r h.
Except in the special case of hyperbolic space, X has an isolated conic singularity at r = 0.

Given a hyperbolic cone X and its associated metric g, we define the resolvent

R(λ) = −∆g − λ2 − n2

4

−1

,

which is a bounded operator L2(X, g) → L2(X, g) for Imλ > 0 (with the possible exception
of finitely many poles). The resolvent R(λ) admits a meromorphic continuation from {Imλ >
0} to the complex plane as an operator L2

c(X, g) → L2
loc(X, g), i.e., from compactly supported

functions to locally L2 functions. The poles of this meromorphic continuation (aside from
potentially finitely many eigenvalues lying in the upper half plane) are called resonances.

This note establishes the following theorem:

Theorem 1. Let {µ2
j}j∈N be the eigenvalues of −∆h. The resonances of −∆g are given by

λj,k = −ı

1

2
+ k +

s
n− 1

2

2

+ µ2
j


for k ∈ N = {0, 1, 2, . . . }, and j so thats

n− 1

2

2

+ µ2
j /∈

1

2
+ Z.

Here an eigenvalue µ2
j with multiplicity m for −∆h adds multiplicity m to λj,k.

Note that if s
n− 1

2

2

+ µ2
j ∈

1

2
+ Z,

then µj contributes no resonances to −∆g.
1
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In fact, in the proof of Theorem 1 we find all poles of the meromorphic continuation
of the resolvent. A simple calculation shows that λ2

j,k + n2

4
≤ 0 for all j and k, so that

none of the poles corresponds to an eigenvalue. Although the hyperbolic cones we consider
do not fit into the framework of Patterson–Sullivan theory [Pat76, Sul79], the lack of any
eigenvalues is in line with their characterization of the bottom of the spectrum. Indeed, for
convex co-compact quotients of hyperbolic space, the Laplacian has an eigenvalue in (0, n2/4)
only when the dimension of the limit set (and hence the trapped set) is large enough. The
hyperbolic cones considered here have no trapping, so the lack of eigenvalues in this range
should not be surprising.

By appealing to the standard Weyl law on compact manifolds, Theorem 1 admits the
following immediate consequence:

Corollary 2. Suppose that (Y, h) is generic in the sense thats
n− 1

2

2

+ µ2
j /∈

1

2
+ Z

for all j. Then the resonances on the hyperbolic cone (X, g) obey the following Weyl law:

# {λj,k : |λj,k| ≤ λ} =
|Bn|

(2π)n(n+ 1)
Vol(Y, h)λn+1 +O(λn).

Remark 3. Many examples of generic (Y, h) exist. Although the standard metrics on the
sphere and flat torus are non-generic, there are arbitrarily small generic perturbations of
them. Indeed, if h0 is the round metric on the sphere and α is any transcendental number,
then α2h0 satisfies the genericity condition. In particular, this shows that resonances can
exist in principle in any dimension, even or odd.

A necessary ingredient for Theorem 1 is of course the meromorphic continuation of the
resolvent in this setting. We provide only a sketch of that argument as it is nearly identical
to the proof provided by Guillarmou–Mazzeo [GM12, Section 3.3], which is in turn based
on the parametrix of Guillopé–Zworski [GZ95b, GZ95a] and previous analysis of Sjöstrand–
Zworski [SZ91]. One defines the parametrix Q(λ) = χ̃0R0(λ)χ0 + χ̃∞R∞(λ)χ∞, where Ri(λ)
are model resolvents (R0 is the resolvent on a compact manifold with a conic singularity
containing a large compact region of X and R∞ is the resolvent on a smooth manifold
hyperbolic near infinity) and χi and χ̃i are appropriately chosen cutoff functions. Applying
(−∆ − λ2 − n2/4) yields a remainder of the form I +

P
[−∆X , χ̃i]Ri(λ)χi. Because the

inclusion of the Friedrichs domain into L2 is compact on the compact piece,1 we can use the
well-known mapping properties of the hyperbolic resolvent to conclude that the remainder is
a meromorphic Fredholm operator that is invertible for large Imλ. Applying R(λ) to both
sides and inverting the remainder shows that R(λ) has a meromorphic continuation.

One can also compute the poles of the scattering matrix in this setting. Indeed, the
scattering matrix can in general be written in terms of an extension operator and the re-
solvent [GZ95b, BP02, GZ03, Gui05, DZ16]. With possibly countably many exceptions, the
poles of the scattering matrix are precisely those of the resolvent. These other poles (as
in the case of odd-dimensional hyperbolic space, which has no resolvent poles but infinitely
many scattering poles) typically arise as poles of the extension operator and are localized on

1For an explicit characterization of the Friedrichs domain, we direct the reader to Melrose–Wunsch [MW04,
Proposition 3.1].
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the boundary of the conformal compactification. Poles of the scattering matrix not arising
as poles of the resolvent provide a deep connection between the scattering matrix and the
conformal geometry of the boundary at infinity [Gui05].

Although many explicit calculations of resonances exist in the setting of potential scat-
tering on Euclidean space, many fewer such calculations are known in geometric scattering
theory. To our knowledge, Theorem 1 is one of the few explicit calculations of resonances
where the resolvent is not necessarily a two-point function (i.e., where the resolvent depends
on more than the distance between two points). The main such setting in which exact cal-
culations are known is that of quotients of hyperbolic space. For hyperbolic cylinders, the
exact resonance structure was worked out by Epstein [Eps] and Guillopé [Gui90]. For hyper-
bolic surfaces, Borthwick–Philipp [BP14] worked out the resonances for hyperbolic warped
products and Datchev–Kang–Kessler [DKK15] studied resonances of surfaces of revolution
obtained by removing a disk from a cone and attaching a hyperbolic cusp. Further examples
for hyperbolic surfaces can be found in Appendix B of a paper of Patterson–Perry [PP01]
and in the book by Borthwick [Bor07].

In other settings, it is sometimes possible to work out the asymptotic distribution of
the resonances. For example, Sá Barreto–Zworski [SBZ97] worked out resonances on the
Schwarzschild black hole asymptotically lie on a lattice, while Stefanov [Ste06] described the
asymptotic distribution of resonances exterior to a disk in Euclidean space.

On perturbations of R3, solutions of the wave equation (or the wave equation with a po-
tential) have a resonance expansion on compact sets. The resonances of −∆ (or −∆ + V )
provide the rates of decay and modes of oscillation seen in this expansion. On hyperbolic
spaces, solutions of the corresponding wave equation also have a resonance expansion (see,
for example, the work of Datchev [Dat16] and the references therein). Recent work of the
first author and collaborators [BVW15, BVW16] shows that resonances on some asymptot-
ically hyperbolic spaces also provide the decay rates for solutions of the wave equation on
asymptotically Minkowski spaces. One interpretation of the difference in decay rates for the
wave equation in even- and odd-dimensions is that even-dimensional hyperbolic space has
resonances, while odd-dimensional hyperbolic space does not.

The proof of Theorem 1 has two main steps. First, we use the warped product structure
to construct an explicit representation of the resolvent on hyperbolic cones (Proposition 4).
This formula is found by using a coordinate representation (that is essentially the same as the
one used in Patterson’s computation of the hyperbolic resolvent [Pat75]) and then applying
Kummer’s connection formula for hypergeometric functions. We then compute poles of the
resolvent by analyzing our resolvent formula; the poles arise as poles of the relevant Gamma
functions. To deal with the other values of the parameters, we rely heavily on the formulae
for hypergeometric functions coming from [DLMF, OLBC10]. In the final section of the
paper, we give some explicit resonance expansions for a handful of relevant model problems.

Acknowledgments. The first author was supported in part by U.S. NSF Grant DMS–
1500646. The second author was supported in part by U.S. NSF Grants DMS–1312874 and
DMS-1352353. We wish to thank Jesse Gell-Redman, Luc Hillairet, Laura Matusevich, Rafe
Mazzeo and Jared Wunsch for helpful conversations during the production of this work. We
also thank the anonymous referee for giving us many useful suggestions for dramatically
improving the exposition for the result, especially relating to carefully explaining the mero-
morphic continuation of the resolvent, constructing the resolvent for this family of manifolds
and the connection between the resolvent and the scattering matrix.
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2. An Explicit Expression For The Resolvent

We consider the resolvent R(λ) given by

R(λ) = −∆g − λ2 − n2

4

−1

, (1)

where we take the Friedrichs extension of the Laplacian. We adopt the convention that R(λ)
is a bounded operator on L2(X) when Imλ 0.

Because X is a warped product, we may analyze the resolvent by separating variables.
Suppose that {φj} is an orthonormal basis of eigenfunctions of ∆h with eigenvalues −µ2

j .
For a function f on X, we then write

f(r, y) =
∞X
j=0

fj(r)φj(y).

As the φj are orthogonal, the resolvent decomposes into a family of one-dimensional resol-
vents:

u = R(λ)f =
∞X
j=0

(Rj(λ)fj) (r)φj(y).

In terms of the coordinate r and the eigenvalue −µ2
j , Rj(λ) has the following expression

acting on L2(R+, sinhn r dr):

Rj(λ) = −∂2
r − n coth r ∂r +

µ2
j

sinh2 r
− λ2 − n2

4

−1

.

The main result of this section is the following formula:

Proposition 4. For fj ∈ C∞
c (R+ × Y ) and σ = (cosh2(r/2))−1, the resolvent is given by

(Rj(λ)fj)(σ) =
Γ(a)Γ(b)

Γ(c)Γ(1 + s)

× −
Z σ

1

fj(ρ)F (a, b, c;σ)F (a, b, 1 + s; 1 − ρ)
σ

ρ

n
2
−ıλ

1 − σ

1 − ρ

−n−1
4

+ 1
2
s

ρc−2(1 − ρ)s dρ

+

Z σ

0

fj(ρ)F (a, b, c; ρ)F (a, b, 1 + s; 1 − σ)
σ

ρ

n
2
−ıλ

1 − σ

1 − ρ

−n−1
4

+ 1
2
s

ρc−2(1 − ρ)s dρ ,

where a, b, c, and s are given by

a =
1

2
− ıλ, b =

1

2
− ıλ+ s,

c = 1 − 2ıλ, s =

s
n− 1

2

2

+ µ2
j .

Proof. Given some g ∈ C∞
c (R+), we wish to find u = Rj(λ)g, depending meromorphically

on λ so that uj ∈ L2(R+, sinhn r dr) for Imλ 0 and

−∂2
r − n coth r ∂r +

µ2
j

sinh2 r
− λ2 − n2

4
u = g. (2)
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We start by reducing to a hypergeometric equation using the variable σ = cosh2(r/2)
−1

.
Under this change, r → 0 corresponds to σ ↑ 1, while r → ∞ corresponds to σ ↓ 0. In terms
of σ, equation (2) becomes

−σ2(1 − σ)∂2
σ − (1 − n) − 3 − n

2
σ σ∂σ +

σ2µ2
j

4(1 − σ)
− λ2 − n2

4
u = g. (3)

Both 0 and 1 are regular singular points for this equation, which has indicial roots given by

α± =
n

2
± ıλ at σ = 0,

β± = −n− 1

4
± 1

2

s
n− 1

2

2

+ µ2
j at σ = 1.

The requirement that u ∈ L2(R+, sinhn r dr) for Imλ 0 corresponds to requiring that

u(σ) ∼ σ
n
2
−ıλ

as σ ↓ 0 and that

u(σ) ∼ σ−n−1
4

+ 1
2

q
(n−1

2 )
2
+µ2j

as σ ↑ 1.
We now factor out the desired indicial behavior from u and define the function v by

u = σα(1 − σ)βv,

where α = n
2
− ıλ and β = −n−1

4
+ 1

2

q
n−1

2

2
+ µ2

j are the preferred indicial roots above.

Making this substitution yields the following equation for v:

g = −σα+2(1 − σ)β+1v00 − σα+1(1 − σ)β (1 − n+ 2α) − σ 2α + 2β − n− 3

2
v0

− σα(1 − σ)β α(α− 1) + (1 − n)α + λ2 +
n2

4
v

− σα+1(1 − σ)β−1 β(β − 1) +
n+ 1

2
β −

µ2
j

4

+ σα+1(1 − σ)β 2αβ + α(α− 1) + β(β − 1) − n− 3

2
(α + β) −

µ2
j

4
v.

The exponents α and β were chosen precisely so that the new equation would have 0 as an
indicial root at both 0 and 1 (i.e., so that the middle two terms would vanish). In other
words, after dividing by −σα+1(1 − σ)β, v must satisfy

− g

σα+1(1 − σ)β
= σ(1 − σ)v00 + [1 − n+ 2α] − σ 2α + 2β − n− 3

2
v0

− 2αβ + α(α− 1) + β(β − 1) − n− 3

2
(α + β) −

µ2
j

4
v.
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Plugging in the values of α and β yields the following equation for v:

−gσ−α−1(1 − σ)−β = σ(1 − σ)v00 +

(1 − 2ıλ) − σ

2 − 2ıλ+

s
n− 1

2

2

+ µ2
j

 v0

− 1

2
− ıλ

1

2
− ıλ+

s
n− 1

2

2

+ µ2
j

 v. (4)

Equation (4) is an inhomogeneous hypergeometric equation with parameters a, b, and c
given by

c = 1 − 2ıλ,

a+ b = 1 − 2ıλ+

s
n− 1

2

2

+ µ2
j ,

ab =
1

2
− ıλ

1

2
− ıλ+

s
n− 1

2

2

+ µ2
j

 .

In particular, we have that

a =
1

2
− ıλ, b = a+ s,

c = 2a, s =

s
n− 1

2

2

+ µ2
j .

For generic a, b, and c, the solution u1 of the homogeneous equation (i.e., equation (4)
with g = 0) that is regular at σ = 0 is given by

u1(σ) = F (a, b, c;σ),

while the solution u2 that is regular at σ = 1 is given by

u2(σ) = F (a, b, a+ b+ 1 − c; 1 − σ),

where F (a, b, c; z) denotes the standard hypergeometric function with parameters a, b, and
c. In general, these two solutions are linearly independent and one can compute their Wron-
skian using standard facts about hypergeometric functions and Kummer’s connection for-
mula [DLMF, 15.10.17]:

W [u1, u2](σ) =
Γ(c− 1)Γ(a+ b− c+ 1)

Γ(a)Γ(b)
(1 − c)σ−c(1 − σ)c−a−b−1.

This yields the following formula for the solution of equation (4) that is regular at both 0
and 1:

v(σ) =
Γ(1

2
− ıλ)Γ(1

2
− ıλ+ s)

Γ(1 − 2ıλ)Γ(1 + s)
− u1(σ)

Z σ

1

g(ρ)u2(ρ)ρc−α−2(1 − ρ)1+a+b−c−β−1 dρ

+ u2(σ)

Z σ

0

g(ρ)u1(ρ)ρc−α−2(1 − ρ)1+a+b−c−β−1 dρ .
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Here the exponents are given by

c− α− 2 = −1 − n

2
− ıλ,

1 + a+ b− c− β − 1 =
n− 1

4
+

1

2

s
n− 1

2

2

+ µ2
j .

Multiplying v by σα(1 − σ)β finishes the proof.

2.1. Connection to Past Resolvent Computations. The resolvent formula in Propo-
sition 4 allows us to quickly recover a formula for the resolvent on hyperbolic space. The
resolvent on Hn+1 is a two-point function and so its integral kernel Kλ(z, z

0) depends only
on the distance between z and z0. It thus suffices to consider the case where the pole is at
the origin (and so only the first integral is relevant). As the delta function is spherically
symmetric, only the zero mode on the cross-section (Sn) contributes to the formula and so we
should multiply our formula by 1/(2π) to account for the eigenfunction. Accounting for the
natural scaling for the delta function on hyperbolic space then yields an expression matching
those in the literature (see, e.g., the work of Guillarmou–Mazzeo [GM12, Section 3.1]).

3. Locating the resonances

We handle resonances on a case by case basis using the structure of the hypergeometric
and Gamma functions in the expression for the resolvent. Since the Gamma functions will
play a dominant role in our discussion, we note that Gamma functions have simple poles at
the non-positive integers, which we denote here by Z−. This motivates the following case
by case analysis. The main observation (noted in standard special functions texts [DLMF,
15.2.2]) is that the function

1

Γ(c)
F (a, b, c; z)

is entire in a, b, and c.

3.1. c /∈ Z−. When c /∈ Z−, the hypergeometric functions occurring in the resolvent formula
in Proposition 4 are regular. Hence, the only possible poles occur due to the Γ prefactors.
Since it is impossible for a to be a negative integer since c = 2a, we have two remaining
scenarios.

(1) c /∈ Z−, b /∈ Z−, a /∈ Z−:
No resolvent poles: In this case, the Γ function pre-factor for the resolvent

has no poles, and since none arise from the hypergeometric functions (see Formula
(15.2.1) from [DLMF]), there are no poles.

(2) c /∈ Z−, b ∈ Z−, a /∈ Z−:
Resolvent poles: In this case b is a pole of the Gamma function. We see that

this pole is non-removable as we can easily see that the hypergeometric functions in
the resolvent formula are non-zero.

3.2. c ∈ Z−. When c ∈ Z−, we must work a bit harder and examine the interplay between
the parameters a, b, and c. Because the function 1

Γ(c)
F (a, b, c; z) is entire in a, b, and c, the

poles must arise as poles of Γ(a)Γ(b). This leads naturally to four scenarios.



8 DEAN BASKIN AND J.L. MARZUOLA

(1) c ∈ Z−, b /∈ Z−, a /∈ Z−:
No resolvent poles: The numerator Γ(a)Γ(b) does not have poles here, so there

is no resonance in this case.
(2) c ∈ Z−, b /∈ Z−, a ∈ Z−:

No resolvent poles: The apparent pole arising from Γ(a) is in fact removable.
Indeed, the power series expansion [DLMF, 15.2.1]

Γ(a)Γ(b)

Γ(c)
F (a, b, c; z) =

∞X
k=0

Γ(a+ k)Γ(b+ k)

Γ(c+ k)k!
zk

and the fact that c = 2a ≤ a show that the resolvent is regular here.
(3) c ∈ Z−, b ∈ Z−, a /∈ Z−:

No resolvent poles: As in the previous case, the resolvent has a removable
singularity; the same power series expansion (and the fact that c ≤ b) shows that the
pole is removable.

(4) c ∈ Z−, b ∈ Z−, a ∈ Z−:
Resolvent poles: In this case, we again see that (Γ(a)/Γ(c))F (a, b, c; z) has a

removable singularity at a. However, as can be seen once again from Formula (15.2.1)
of [DLMF], the pole of Γ(b) is a pole of the resolvent. That it is a true pole (and not
a removable singularity) follows from the observation that the power series of

Γ(a)

Γ(c)
F (a, b, c; z)

is non-zero.

Having understood all cases, we can now finish the proof of the main theorem.

Proof of Theorem 1. We start by fixing an eigenvalue µ2
j on the cross-section and setting

s =

s
n− 1

2

2

+ µ2
j .

The only possible resonances for this eigenvalue occur when

b =
1

2
− ıλ+ s = −k ∈ Z−,

i.e., for

λ = −ı 1

2
+ k + s .

If s ∈ 1
2

+ N and λ as above, then we must have

ıλ = s+
1

2
− b ∈ N,

and so c ∈ Z− but a /∈ Z−. This is a case above in which the resolvent has a removable pole
and so there is no resonance arising from this µ2

j .

Suppose now that s /∈ 1
2

+ N and λ is as above. Note that we must then have

ıλ = s+
1

2
− b /∈ N,

and so c ∈ Z− if and only if a ∈ Z−. In both of these cases we end up with a resonance.
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4. Examples

4.1. Resonances for Hn+1. In this section we recover the calculation of the location of
resonances on hyperbolic space. In this case we have that the cross-section Y is Sn with its
standard round metric. The associated eigenvalues are given by

µ2
j = j(j + n− 1),

with multiplicities

mj =
n+ j − 2

n

2j + n− 1

j
,

where n+j−2
n

is the binomial coefficient.
We then have that s

n− 1

2

2

+ µ2
j = j +

n− 1

2
.

If n is even, then n−1
2

is a half integer and the conclusion of Theorem 1 tells us that odd-

dimensional hyperbolic spaces have no resonances. On the other hand, if n is odd, then n−1
2

is an integer so that even-dimensional hyperbolic spaces have resonances precisely at

λj = −ı 1

2
+
n− 1

2
+ j .

This recovers the well-known calculation of the resonances of hyperbolic space.

4.2. Resonances in the presence of a conic singularity. Let us now take n = 1 so that
X is a surface with (potentially) an isolated conic singularity. This means that

a =
1

2
− iλ,

b =
1

2
− iλ+ µj.

Let HC(S1
ρ) denote the hyperbolic cone of radius ρ > 0, defined as the product manifold

HC(S1
ρ) = R+ × R 2πρZ , equipped with the metric g(r, θ) = dr2 + sinh2 r dθ2. This is

an incomplete manifold which is locally isometric to H2 away from the conic singularity and
hence hyperbolic there. (In the case of the Euclidean cone (g(r, θ) = dr2 + r2 dθ2), see, for
example, works of the second author and collaborators [BFHM12, BFM11].) Recall from
above, that our methods for computing resonances suggest that we should see resonances at

λ = −i µj +
1

2
− ik, k ∈ N.

In this case, the spectrum of −∆ρ is easily described and we have

µ2
j ∈ σ(−∆ρ) = {0,

1

ρ2
,

4

ρ2
,

9

ρ2
, . . . },

the spectrum of the Laplacian on a circle with circumference 2πρ. Thus, we observe that in
such a case we have resonances for

λ = −i 1

2
+
j

ρ
− k



10 DEAN BASKIN AND J.L. MARZUOLA

for j ∈ N and k = 1, 2, 3, . . . . In particular, we observe that for cone angles much larger
than 2π (ρ 1), there are resonances much closer to 1

2
than in the setting without a conic

singularity, whereas for small cone angles ρ < 1, the resonances introduced here occur at
much larger values.
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