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It has long been recognized that cancer cells exploit lipid metabo-
lism to fuel their proliferative demands and support oncogenic 
signalling. Notably, alterations in lipid metabolism, including 

the uptake of lipids and/or synthesis of fatty acids, not only are rec-
ognized hallmarks of cancer but also commonly occur in diverse 
pathologic states such as fatty liver disease and metabolic syn-
drome, underscoring the importance of understanding this meta-
bolic process1. De novo fatty acid synthesis in particular has gained 
substantial traction as a targetable pathway, following observations 
that overexpression of FASN, which encodes fatty acid synthase 
and catalyses the formation of long-chain fatty acids, and ACACA, 
which encodes acetyl-CoA carboxylase alpha and acts directly 
upstream of FASN, are associated with decreased survival rates for 
numerous solid malignancies2–6. Efforts to develop and translate 
small-molecule inhibitors of FASN (for example, TVB-2640) have 
helped to validate this enzyme as a targetable liability in cancer7,8, 
and have led to several clinical trials (for example, NCT02223247, 
NCT02948569, NCT03179904 and NCT02980029). Given that 
metabolic pathways are highly buffered to cope with environmen-
tal change, genetic-screening approaches are a powerful strategy to 

reveal metabolic regulatory mechanisms that underscore metabolic 
redundancy, cross-talk and plasticity9,10. An understanding of how 
cells adapt to perturbation of de  novo fatty acid synthesis could  
help to identify new targetable vulnerabilities that may inform new 
therapeutic strategies or biomarker approaches.

Mapping GI networks provides a powerful approach for identify-
ing the functional relationships between genes and their correspond-
ing pathways. The systematic exploration of pairwise GIs in model 
organisms has revealed that GIs often occur among functionally 
related genes, and that GI profiles organize a hierarchy of functional 
modules11,12. Thus, GI mapping has become an effective strategy for 
identifying functional modules and annotating the roles of previ-
ously uncharacterized genes. Model-organism GI mapping has also 
provided insight into the mechanistic basis of cellular plasticity or 
phenotypic switching that occurs as cells evolve within their envi-
ronments13,14. Accordingly, the insights gained through systematic 
interrogation of GIs have fuelled considerable interest in leveraging 
these approaches for functionally annotating the human genome.

Recent technological advances using CRISPR–Cas enable the 
systematic mapping of GIs in human cells15,16. Here, we explore 
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ized gene C12orf49 (which we call LUR1) in regulation of exogenous lipid uptake through modulation of SREBF2 signalling in 
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genome-wide GI screens within the context of human ‘query' 
mutant cells defective in de novo fatty acid synthesis. We system-
atically mapped genome-wide GI profiles for six genes involved in 
lipid metabolism, revealing cellular processes that pinpoint genetic 
vulnerabilities associated with defects in de  novo fatty acid syn-
thesis. In particular, negative GIs with known fatty acid synthesis 
genes tend to identify other genes that are associated with this pro-
cess, including a previously uncharacterized gene called chromo-
some 12 open reading frame 49 (C12orf49, which we name LUR1), 
which appears to function as a regulator of exogenous lipid uptake. 
Collectively, our data support the strategy of systematically map-
ping digenic interactions by using knockout (KO) query cell lines 
for identifying buffering mechanisms for a given biological process 
(such as lipid metabolism).

Results
Systematic identification of GIs for de novo fatty acid synthesis. 
De novo fatty acid synthesis is a multi-step enzymatic process that 
converts cytosolic acetyl-CoA, malonyl-CoA and NADPH to pal-
mitate. Palmitate can be used directly or can be further elongated 
and/or undergo desaturation to form alternative lipid species. To 
systematically identify GIs associated with this metabolic process, 
we performed genome-wide CRISPR screens in co-isogenic cell 
lines that were either wild type (WT) or deficient in FASN, an 
enzyme involved in de novo fatty acid synthesis that is frequently 
overexpressed in malignancies6,17 (Fig. 1a). We chose the human 
near-haploid cell line HAP1 as a model system, given the relative 
ease of generating KO mutations in this background18. We first vali-
dated our clonal FASN-KO cells by confirming loss of FASN protein 
levels by western blot (Extended Data Fig. 1a). We also performed 
targeted metabolite profiling of our parental HAP1 and FASN-KO 
cells, which revealed a significant increase in the FASN substrate 
malonyl-CoA in the FASN-KO cells, demonstrating their suit-
ability as a model system for defective de novo fatty acid synthesis 
(P = 0.029; Extended Data Fig. 1b).

To map FASN GIs, we performed genome-wide CRISPR screens 
using the sequence-optimized TKOv3 guide RNA (gRNA) library19 
in both the FASN-KO query cell line and control WT HAP1 cells, and 
we compared the relative abundance of individual gRNAs between 
the screen start (T0) and end (T18) time points (Fig. 1a,b). The rela-
tive abundance of gRNAs targeting each of ~18,000 protein-coding 
genes in WT cells provides an estimate of single-mutant fitness, 
whereas the relative abundance of gRNAs in a query mutant cell 
line provides an estimate of double-mutant fitness. Because mutant 
phenotypes can strongly depend on culture conditions20 and most 
standard cell-culture medium contains supra-physiological nutri-
ent levels that could mask phenotypic effects of perturbing certain 
metabolic pathways, we performed our screens utilizing medium 
conditions containing the minimum amounts of glucose and gluta-
mine required to sustain proliferation of HAP1 cells (termed ‘mini-
mal medium’; Extended Data Fig. 1c and Methods).

We developed a quantitative GI (qGI) score that measures the 
strength and significance of GIs by comparing the relative abun-
dance of gRNAs in a given query mutant cell line to the relative 
abundance of gRNAs targeting the corresponding genes in an 
extensive panel of 21 genome-wide WT HAP1 screens (Fig. 1b and 
Methods). In this context, negative interactions are identified as 
genes whose corresponding gRNAs exhibit significantly decreased 
abundance in a mutant KO background relative to that in the con-
trol WT HAP1 cell line, whereas positive interactions reflect genes 
with increased gRNA abundance in a mutant cell line relative to that 
in the parental line. The qGI score represents mean-summarized 
gRNA-level interactions after removal of disagreeing reagents  
(Fig. 1b and Methods).

We performed three independent genome-wide, GI screens using 
our FASN-KO query mutant cell line. Because GIs rely on accurate 
measurement of single- and double-mutant phenotypes, we first 
examined the reproducibility of our single- and double-mutant fit-
ness measurements (Methods). We observed a strong agreement of 
single-mutant fitness effects (LFC) among 21 WT HAP1 replicate 

Fig. 1 | Genome-scale identification of digenic interactions with FASN. a, Schematic of the identification of GIs in co-isogenic HAP1 cell lines. FASN-KO 
and WT parental cells were infected with a lentiviral genome-wide CRISPR gene KO library (TKOv3), and gRNA abundance was determined using Illumina 
sequencing of gRNA sequences amplified from extracted genomic DNA from the starting cell population (T0) and end time point (day 18, T18) of the 
screen. b, Schematic outline for scoring qGI across co-isogenic query cell lines. First, the log2(fold change) (LFC) for each gRNA, comparing sequence 
abundance at the starting (T0) and end time point (T18), in a given query KO or WT cell population was computed. The differential LFC for each gRNA 
was then estimated by comparing its LFC in WT and query KO cells. A series of normalization steps and statistical tests were applied to these data to 
generate gene-level qGI scores and FDRs (Methods). The LFC scatterplot (bottom left graph) visualizes differential fitness defects in specific query KO 
and WT cells, whereas the volcano plot (bottom right graph) visualizes qGI scores for a specific query. c, Replicate analysis of gene loss-of-function 
fitness phenotypes in FASN screens. Scatterplots of LFC associated with perturbation of 17,804 individual genes derived from a query FASN-KO mutant 
screen conducted in triplicate. Reproducibility of fitness effects was determined by measuring the Pearson correlation coefficients (r) between all 
possible pairwise combinations of FASN-KO replicate screens. d, Evaluation of FASN qGIs. qGI scores were measured by comparing the LFC for every 
gene represented in the TKOv3 gRNA library in a FASN-KO cell line with those observed in a WT cell line, as described. Scatterplots show FASN GIs (qGI 
scores) derived from all possible pairwise combinations of three biological replicate screens. r was based on comparison of all qGI scores (r shown in 
grey, calculated on all the grey and purple data points in the scatterplots), or only GIs that exceed a given significance threshold (|qGI| > 0.5, FDR < 0.5) in 
both screens (purple). e, Validation of FASN negative GIs. Bar plots depict the ratio of WT and FASN-KO (2 independent clones, c1 and c2) cells carrying 
a gRNA targeting SLCO4A1, LDLR or C12orf49, all of which showed a negative interaction with FASN, compared with a gRNA targeting AAVS1 (intergenic 
control). Experiments were performed with three independent gRNAs targeting each GI screen hit. All data are represented as means ± s.d.; n = 3 (LDLR) 
or 4 (SLCO4A1, C12orf49) biologically independent experiments; P values are from one-way analysis of variance (ANOVA) (Kruskal–Wallis test). f, FASN 
negative and positive GIs. A scatterplot illustrating the fitness effect (LFC) of 450 genes in a FASN-KO versus WT parental HAP1 cell line, which exhibited 
a significant GI in at least 2 out of 3 FASN-KO replicate screens (|qGI | > 0.5, FDR < 0.5). Negative (blue) and positive (yellow) FASN GIs are shown. Node 
size corresponds to the mean absolute qGI score derived from three biologically independent replicate screens. Genes with mean absolute qGI score > 1.5, 
as well as selected negative interactions involving genes with established roles in lipid metabolism, are indicated. The inset is a scatterplot of the fitness 
effect (LFC) of all 17,804 genes targeted by the TKOv3 gRNA library in a FASN-KO cell line versus a WT parental HAP1 cell line. The colour indicates 
the density of genes. g, Enrichment for Gene Ontology (GO) molecular function, GO bioprocesses and Reactome terms among genes that exhibited a 
significant negative GI with FASN (significant in at least 2 FASN replicates, |qGI | > 0.5, FDR < 0.5). The number of genes overlapping a particular term 
and term size are indicated next to each bar. The greyscale colour legend for P values is indicated on the right; P values were calculated using gProfileR69. 
h, Schematic depicting the function of selected FASN negative interactions known to be involved in lipid uptake and homeostasis pathways (red), vesicle 
transport (black) and glycosylation (blue).
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screens (r > 0.87) (Extended Data Fig. 1d) and double-mutant fit-
ness effects derived from independent FASN-KO replicate screens 
(r > 0.89) (Fig. 1c). Moreover, all three FASN screens robustly distin-
guished a set of reference essential genes from non-essential genes 
(Extended Data Fig. 1e,f).

The identification of qGI scores depends on comparison of 
single-mutant fitness measurements in a WT HAP1 cell screen and 
double-mutant fitness measurements in a query mutant screen, 
both of which have inherent variability associated with them; there-
fore, the reproducibility of qGIs is expected to be more challenging 
than the measurement of either single- or double-mutant fitness 
phenotypes. Indeed, modest agreement was observed between qGI 
scores of the three FASN-KO replicate screens prior to filtering  
for significant interactions (pairwise r = 0.29 to 0.44) (Fig. 1d).  
The pairwise correlation between replicate screens increased  

substantially when we considered GIs found to be significant  
(|qGI| > 0.5; false-discovery rate (FDR) < 0.5) in at least one 
(r = 0.52–0.69) or two (r = 0.86–0.94) FASN-KO replicate screens 
(Fig. 1d, Extended Data Fig. 1g,h and Supplementary Table 1).

Leveraging all three FASN-KO replicates, we developed a repro-
ducibility score that measures each gene’s contribution to the cova-
riance within two replicate screens and summarizes the resulting 
values across all available screen pairs (replicate 1–2, 1–3, 2–3) 
(Methods and Supplementary Table 1). This analysis confirms that 
both the strongest positive and negative qGI scores were highly 
reproducible across independent screens (Extended Data Fig. 1i).  
In particular, the most reproducible negative GIs with FASN were 
interactions with SLCO4A1, PGRMC2, LDLR, RABL3 and C12orf49 
(Extended Data Fig. 1i and Supplementary Table 1). We tested three 
of these top five strongest negative GIs by independent validation 
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assays and confirmed all three by examining WT and FASN-KO 
HAP1 cells expressing gRNAs against SLCO4A1, LDLR and 
C12orf49 (Fig. 1e and Extended Data Fig. 1j).

To generate an aggregate set of FASN GIs, we mean-summarized 
qGI scores across the three replicate screens (Fig. 1f and 
Supplementary Table 2). At a pathway level, significant negative 
GIs (qGI < −0.5; FDR < 0.5) with FASN were strongly enriched 
for genes annotated with roles in protein glycosylation, vesicle 
transport and cholesterol metabolism (FDR < 0.05) (Fig. 1g and 
Supplementary Table 3). In the global yeast genetic network, 
negative GIs often connect functionally related genes11,21, and we 
observed a similar general trend for the FASN negative GIs. For 
example, the FASN negative GIs included genes with established 
roles in the uptake, transport and breakdown of low-density lipo-
protein (LDL), a major extracellular source of lipids, including 
the LDL receptor (LDLR) itself and its coreceptor adaptor protein 
(LDLRAP1). We also observed negative GIs between FASN and the 
transcription factor SREBF2, which controls expression of LDLR, 
as well as SCAP, MBTPS1 and MBTPS2, all of which are important 
in the activation and nuclear translocation of SREBF2 upon cho-
lesterol depletion (Fig. 1h). Moreover, we observed negative GIs  
with additional lipid metabolic processes, such as cholesterol 
biosynthesis (ACAT2), with genes functioning in long-chain 
fatty acid activation and β-oxidation (ACSL1, ACSL3) and with 
vesicle-trafficking genes (RAB18, RAB10, RAB1A, RABGEF1, 
RAB3GAP2 and RAB3GAP1) (Fig. 1h and Extended Data Fig. 
1k), as well as a positive GI with the stearoyl-CoA desaturase gene 
(SCD), the product of which catalyses the rate-limiting step in the 
biosynthesis of monounsaturated fatty acids. SCD acts downstream 
of FASN in the elongation and desaturation of fatty acids, and loss 
of SCD seems to be buffered by the upstream perturbation of fatty 
acid synthesis (Supplementary Table 2).

The FASN screen highlighted an enrichment for genes function-
ing in protein N-linked glycosylation (for example, ALG3, ALG8, 
ALG9, ALG12, MOGS, DOLPP1, PRKCSH, MGAT2) (Fig. 1g,h and 
Extended Data Fig. 1k). Interestingly, the hexosamine biosynthetic 
and N-linked glycosylation pathways have been implicated in facili-
tating lipid accumulation from environmental sources through 
direct modulation of N-glycan branching on fatty acid transport-
ers, possibly explaining the strong GIs we observed22. N-linked gly-
cosylation is also known to have an important role in the activity 
of LDLR and activation of the SREBP transcriptional programs, 
providing a potential explanation for the interaction between loss 
of FASN and the glycosylation pathway23,24. Currently, we cannot 
exclude the notion that glycosylation of additional targets may play 
a role in the adaptation to loss of de novo fatty acid biosynthesis; 
nonetheless, our data highlight a role for N-linked glycosylation in 
fatty acid biosynthesis. Finally, we observed a significant negative 
GI between FASN and SLCO4A1 (qGI < −1.84; FDR < 5.34 × 10−6; 
Fig. 1f and Extended Data Fig. 1i). SLCO4A1 encodes a member 
of the organic anion-transporting polypeptides (OATPs), which 
can transport a wide range of structurally unrelated compounds, 
including hormones, bile acids and lipid species (prostaglandins)25. 
Which of these compounds may buffer loss of FASN and how they 
might do so, or whether SLCO4A1 may be involved in the transport 
of additional metabolites, await further investigation. In summary, 
these results suggest that, in the absence of cell-autonomous de novo 
fatty acid synthesis, cells depend on uptake and breakdown of lipids 
from the environment or the synthesis of sterols. Furthermore, our 
data illuminate the genetic determinants of how proliferating cells 
rewire to meet the demand for lipids.

Expanding the GI landscape of de  novo fatty acid synthesis. 
To better understand the GI landscape of de novo fatty acid syn-
thesis, we next performed pooled genome-wide CRISPR screens 
using the TKOv3 library in five additional co-isogenic cell lines 

harbouring genetic KO of genes that exhibited significant nega-
tive GIs with our FASN-KO query, including LDLR, C12orf49 and 
SREBF2 (qGI < −0.5; FDR < 0.5; Supplementary Table 2), as well as 
two genes that did not show a negative GI with FASN, including 
SREBF1, which regulates the expression of FASN and other de novo 
fatty acid synthesis genes, and ACACA, which functions in the same 
pathway and immediately upstream of FASN (Fig. 2a)6,17,26. Each 
of these five query gene screens was performed in technical trip-
licate (that is, parallel cultures from a common infection). Because 
these GI screens were performed under the same conditions that we  
used for the FASN-KO screens, we applied the same confidence 
threshold on the derived qGI scores (|qGI| > 0.5, FDR < 0.5; 
Methods) (Fig. 2b–f, Extended Data Fig. 2a,b and Supplementary 
Table 2). At this confidence threshold, we estimated a per-screen 
FDR of ~0.3 and a false-negative rate of ~0.6 (Methods and 
Extended Data Fig. 1l). Overall, 169 (36%, P < 2 × 10–55) and 69 
(49%, P < 2 × 10–9) of the genes that interacted with FASN in 2 or 3 
screens, respectively, also interacted with at least 1 of the 5 queries 
(Fig. 2g and Supplementary Table 2).

We next analysed the functional enrichment across all GIs iden-
tified by our query screens related to fatty acid synthesis. Although 
we did not detect strong functional enrichment among the posi-
tive GIs in our dataset, we observed a clear fivefold enrichment 
of negative GIs for genes annotated to functionally relevant path-
ways, which were defined by the metabolism-focused HumanCyc 
standard27 (Extended Data Fig. 2c). We further quantified enrich-
ment for pathways annotated at different levels of the HumanCyc 
database hierarchy, including gene sets corresponding to general 
metabolic reaction categories, sub-categories and finally specific 
metabolic pathways (Supplementary Table 4). At the most general 
level of the HumanCyc pathway hierarchy, negative GIs from all six 
genome-wide screens were most enriched for genes annotated to 
the biosynthesis and macromolecule-modifications pathway cat-
egories (Fig. 3a). Through further analysis of these terms at a more 
specific level of the HumanCyc hierarchy (the subcategory level), we 
found that genes exhibiting negative GIs were associated with func-
tions related to the roles of our six query genes, including fatty acid, 
lipid and carbohydrate biosynthesis (Fig. 3b and Extended Data 
Fig. 3a). At a more refined level of functional specificity within the 
fatty acid and lipid biosynthesis pathway, we found that each query 
gene was associated with a significant enrichment for negative GIs 
with functionally related genes of distinct pathways (P < 0.05). For 
example, the LDLR GI profile includes negative GIs with genes in 
the cholesterol/epoxysqualene biosynthesis pathway (HMGCS1, 
MSMO1, HMGCR, FDFT1, NSDHL, HSD17B7, SQLE, HSD17B7, 
ACT2, SQLE, LSS), and the ACACA, LDLR and SREBF2 GI profiles 
include negative GIs with fatty acid elongation and biosynthesis 
pathway genes (FASN, ACACA, OXSM) (Fig. 3c,d). Notably, the 
FASN GI profile, and to a lesser extent the ACACA and LDLR GI 
profiles, revealed negative GIs with pathways and genes involved 
in N-glycosylation initiation (ALG6, ALG13, ALG11, ALG1, ALG2, 
ALG8, ALG5, ALG3, ALG12, ALG9), processing (MOGS, PRKCSH), 
dolichol monophosphate mannose synthase activity (DPM2, 
DPM3, DPM1) and glycan transfer (STT3A, STT3B) (Fig. 3c,e and 
Supplementary Table 4).

Our survey of GIs related to perturbation of de novo fatty acid 
synthesis or exogenous fatty acid uptake pathways provided unique 
insight into the genetic regulation of these processes. Specifically, 
for the SREBF2 screen, although we observed negative GIs with 
lipid-uptake genes, such as LDLR and LDLRAP1 (Fig. 3f and 
Supplementary Table 2), none were observed with the cholesterol 
biosynthesis pathway (Figs. 2d and 3d). This observation is consis-
tent with SREBF2 being the predominant transcriptional regulator 
of cholesterol homeostasis26, as its perturbation does not further 
reduce cellular fitness in cells deficient in cholesterol biosynthesis. 
In addition, we detected a strong positive GI between SREBF2 and 
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TFAP2C (Fig. 2d). Indeed, the TFAP2 transcription factor family 
has recently been proposed to be a ‘master’ regulator of lipid droplet 
biogenesis28, and as such our data suggest that reduced sequestra-
tion of lipids into lipid droplets may benefit SREBF2-KO cells by 
mitigating lipid starvation.

In contrast, SREBF1 did not show enrichment for GIs for 
either the cholesterol or fatty acid synthesis pathways (Fig. 3c and 
Supplementary Table 2). Instead, this query was found to show only 
a strong reciprocal negative GI with its paralog SREBF2, highlight-
ing the functional redundancy between the paralog pair (Fig. 2e  
and Supplementary Table 2), and suggesting that SREBF2 may  
regulate some of the transcriptional targets of SREBF1, as pre
viously described26,29. Furthermore, the imbalanced number of GIs  

between SREBF1 and SREBF2 may point towards asymmetric para-
log evolution, whereby duplicated genes gain or lose functional 
roles at different rates while maintaining partially redundant func-
tions, a process that has been previously observed in yeast and 
human cells30–32.

A new role for C12orf49 in lipid biosynthesis. One of the stron-
gest negative GIs identified in both the FASN and the ACACA  
profiles involved the uncharacterized gene C12orf49, suggesting 
that this gene may have a role in lipid metabolism (Figs. 1f and 
2c and Supplementary Table 2). C12orf49 is a 23.5-kDa protein 
that is part of the UPF0454 family of uncharacterized proteins. It  
contains an amino-terminal transmembrane sequence, a single 
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Fig. 2 | Querying five additional lipid metabolism genes for digenic interactions. a, Schematic diagram showing key steps in fatty acid metabolism. The 
genes encoding the proteins mediating these key steps, which are also query genes for GI screens described in the main text, are labelled in red. b–f, 
Volcano plots showing qGI scores and associated significance (−log10(P value)) for the 17,804 genes targeted by the TKOv3 gRNA library in the LDLR-KO 
(b), ACACA-KO (c), SREBF2-KO (d), SREBF1-KO (e) and C12orf49-KO (f) screens. Coloured dots indicate genes that meet the standard threshold of |qGI | > 
0.5 and FDR < 0.5; positive GIs are indicated in yellow and negative GIs in blue. The dot size is proportional to both qGI and FDR, calculated as described 
in the Methods. Genes with |qGI| > 1.5, as well as selected top negative GI hits associated with lipid metabolism, citrate synthesis and transport, are 
indicated. g, Heat map showing overlapping GIs across the six interrogated queries. Heat map displaying genes (x axis) with significant interaction with 
FASN across all three FASN replicate screens and at least one additional screened query gene (y axis) (|qGI | > 0.5, FDR < 0.5). Positive and negative qGI 
scores are indicated in yellow and blue, respectively. The FASN qGI is represented as the mean qGI from the three FASN screens (same data as in Fig. 1f). 
The green bar above the heat map indicates the number of screens, out of the five screens in LDLR, ACACA, SREBF1, SREBF2 and C12orf49-KO backgrounds, 
in which a significant GI was measured (|qGI| > 0.5, FDR < 0.5).
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uncharacterized DUF2054 domain of approximately 200 amino 
acid residues, 14 conserved cysteines (three of which are annotated 
to form cytosine–cytosine dimers) and a predicted glycosylation 
site33 (Extended Data Fig. 4a). In some plant proteins, the uncharac-
terized UPF0454 is found in juxtaposition with a glycosyltransferase 
domain, and thus may be targeted into the lumen of the endoplas-
mic reticulum (ER) or Golgi34. By extension, the bulk of C12orf49 
protein may reside in the lumen of the ER or Golgi. In addition, 
C12orf49 is ubiquitously expressed across tissues and cell lines 
(http://www.proteinatlas.org)35. Notably, expression of C12orf49 is 
associated with differential prognoses on univariate analysis of The 
Cancer Genome Atlas data across multiple tumour types, includ-
ing kidney, breast, liver and sarcoma36 (Extended Data Fig. 4b–e; 
P < 0.05), which further motivated us to study the functional role of 
this previously uncharacterized gene.

GIs derived from a genome-wide screen using a C12orf49-KO 
query cell line further supported a role for this gene in lipid  

biogenesis. Consistent with the results described above, C12orf49 
showed a strong negative GI with both FASN and ACACA (Fig. 2f). 
C12orf49 also showed negative GIs with LDLR, ACSL1 (encoding 
acyl-CoA synthase), SLC25A1 (encoding mitochondrial citrate 
transporter), SCD and SREBF2, further supporting a role for this 
gene in fatty acid biosynthesis (Fig. 2f). Consistently, C12orf49 
negative GIs were enriched for genes involved in fatty acid metabo-
lism, cholesterol biosynthesis and additional metabolic pathways 
(FDR < 0.05) (Fig. 4a and Supplementary Table 3). Moreover, as 
observed for the FASN GI profile, C12orf49 negative GIs involved 
genes functioning in vesicle-mediated trafficking and endocyto-
sis, including RAB3GAP2, RABIF, RAB18, VPS18, VPS419 and 
VPS39 (Supplementary Table 2). Furthermore, many of the genes 
that showed a negative GI with C12orf49 also had negative GIs 
with other query genes in our lipid metabolism panel (for example, 
LDLR, ALG3, ASCL1, MBTPS2, SLC25A1, PDHA1), supporting the 
functional relatedness of these genes (Fig. 4b,c and Extended Data 
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Fig. 4f–h). Thus, our lipid metabolism GI map strongly implicates 
C12orf49 as having a functional role in lipid metabolism.

To further confirm the predictions about C12orf49’s func-
tion based on our HAP1 GI data, we examined publicly available 
data from the 19Q2 DepMap release and observed that C12orf49 
is essential for fitness in 120 out of 563 cell lines, with the high-
est dependencies observed for lung, ovarian, pancreatic, colon 
and bile-duct origins37,38. Other genes that shared similar cell 
line essentiality profiles to that of C12orf49 included SREBF1, 
SREBF2, MBTPS1, SCAP, SCD and ACSL3 (Fig. 4d and Extended 
Data Fig. 4i). The association of C12orf49 with lipid metabolism 
genes was corroborated by a pathway enrichment analysis of the 
co-essentiality profiles, which revealed strong enrichment for genes 
annotated to ultra-long-chain fatty acid biosynthesis (Fig. 4e and 
Extended Data Fig. 4j). Furthermore, we found that cell lines that 
depend on C12orf49 had missense mutations more frequently in 
FASN (FDR < 20%). Interestingly, germline variants in C12orf49 
have been reported to associate with serum lipid abnormalities in 
high-density lipoprotein (HDL) in a multi-ancestry cohort of the 
Million Veteran Program, further supporting a role for this gene 
in lipid metabolism39. Overall, these observations support a new 
function for C12orf49 in lipid metabolism that is conserved across 
diverse cell types.

C12orf49 is a previously unrecognized regulator of lipid uptake. 
Given that FASN-deficient cells have a strong dependency on exo
genous lipid uptake, we hypothesized that C12orf49 might have a 
role in this biological process. To explore this, we measured uptake 
of labelled LDL particles, which represent one of the major sources 
of extracellular lipids, upon serum starvation across several HAP1 
KO lines. As expected, loss of LDLR resulted in abolishment of LDL 
staining, whereas FASN-KO cells displayed increased uptake of 
exogenous lipid (Fig. 5a and Extended Data Fig. 5a). In contrast, 
loss of C12orf49 caused a significant reduction of LDL uptake, 
which was rescued by the exogenous expression of C12orf49 (P 
= 0.004; Fig. 5a and Extended Data Fig. 5a). This phenotype was 
also observed in SREBF1- and SREBF2-deficient cells. Notably, this 
reduction of LDL was not secondary to a generalized impairment in 
receptor-mediated endocytosis, as loss of C12orf49 did not impair 
uptake of labelled transferrin (Extended Data Fig. 5b). We further 
confirmed a strong reduction in LDL uptake in C12orf49-KO cells 

upon lipoprotein starvation (Extended Data Fig. 5c). Overall, these 
results support the hypothesis that C12orf49 participates in lipid 
homeostasis through regulation of lipid uptake.

To investigate why C12orf49 is required for optimal LDL 
uptake, we performed proximity-dependent biotinylation of pro-
teins coupled to mass spectrometry (BioID) to reveal the physical 
neighbourhood in which C12orf49 resides. Because the C12orf49 
single predicted N-terminal transmembrane domain may direct the 
carboxy-terminal DUF2054 domain into the lumen of the secretory 
pathway, leaving the N terminus facing the cytoplasm, BioID-MS 
was performed separately with both N- and C-terminal miniTurbo 
BirA*-tagged C12orf49 open reading frames (ORFs) expressed in 
HEK293 cells. Proximity-based labelling with the N-terminal con-
struct captured proteins localizing to various cellular compartments, 
including the ER, Golgi apparatus, plasma membrane and cytosol, 
whereas the C-terminal miniTurbo construct revealed a strong 
enrichment of proteins localizing to the ER lumen (Fig. 5b and 
Supplementary Table 5). Furthermore, the BirA* ligase fused to the 
N-terminus captured proximal interactions that are enriched for pro-
teins functioning in cholesterol biosynthesis and vesicle-mediated 
ER–Golgi transport, whereas the C-terminus-labelled proteins 
enriched for functions related to protein glycosylation (Extended 
Data Fig. 5d and Supplementary Table 6).

To study the subcellular localization of C12orf49, we performed 
immunofluorescence analysis under normal and serum-starved 
conditions, considering that SREBPs, the master regulators of lipid 
homeostasis, are known to travel between the ER and Golgi in 
response to lipid deprivation26,40. Under normal growth conditions 
(with serum), C12orf49 containing a C-terminal V5 tag (C12orf49–
V5) was localized throughout the ER–Golgi network (Fig. 5c), con-
sistent with our BioID results. Strikingly, C12orf49–V5 accumulated 
in the Golgi apparatus under serum starvation, as demonstrated  
by co-staining with GOLGA2, a Golgi membrane marker protein 
(Fig. 5c). These data thus suggest that localization of C12orf49 is 
regulated in a growth-condition-dependent manner, involving 
shuttling between the ER and the Golgi apparatus.

To gain insight into potential protein interactions of C12orf49, 
we further explored our BioID data performed under normal and 
serum-starved conditions (Extended Data Fig. 5e). Although 1,688 
proteins passed the high-confidence criteria (≤1% Bayesian FDR) 
against our negative controls across the four tested conditions  

Fig. 5 | C12orf49 shuttles between the ER and Golgi, and regulates lipid uptake through modulation of SREBP2 processing. a, Bar plots showing 
the results of LDL-uptake assays in the indicated cells using the Dil-LDL probe. All data are represented as means ± s.d.; n = 4 (SREBF1, SREBF2), 6 
(LDLR, WT + C12orf49-V5, C12orf49 + C12orf49-V5) or 8 (WT, FASN, C12orf49) independent biological replicates; P values are from one-way ANOVA. 
b, Left, Schematic outlining proximal protein capture using BioID mass spectrometry analysis (upper panel) and analysis of subcellular localization of 
C12orf49 BioID preys (lower panel). Right, Bar plots depicting the fraction of proteins localizing to indicated cellular compartments for preys captured 
with N-terminal (grey) or C-terminal (black) miniTurbo-tagged C12orf49 in HEK293 cells. The inset shows a schematic representation of the predicted 
topology and orientation of C12orf49 with respect to the cytoplasm and ER. c, Immunofluorescence microscopy analysis of C-terminal V5-tagged 
C12orf49 in HAP1 cells under the normal (left) or serum-starved (right) growth condition. C12orf49–V5 localization is shown in green, GOLGA2 is a 
marker of the Golgi apparatus and shown in red and DAPI (blue) marks the nuclei. Scale bars, 10 µm. Data are representative of two independent biological 
replicates. d, Scatterplot displaying the specificity of detected preys captured with BioID. Average spectral counts of preys captured in proximity to 
N-terminal miniTurbo BirA-tagged C12orf49 exposed to serum starvation are plotted against their specificity across hundreds of baits listed in the Human 
Cell Map BioID dataset (https://humancellmap.org/)41 (left). The inset shows a comparison of the average spectral counts for preys involved in the 
regulation of SREBPs across the different miniTurbo-tagged constructs (N- and C-terminal tags) and growth conditions (normal (+FBS) and serum  
starved (–FBS)) (right). Bayesian FDR (BFDR) was calculated using SAINTexpress62 v3.6.1. Data are representative of three biologically independent 
experiments. e, Bar plots indicating fragments per kilobase of transcript per million reads mapped (FPKM) expression values from RNA-sequencing data 
for LDLR and LDLRAP1 in WT, C12orf49-KO and SREBF2-KO cells under normal and serum-starved growth conditions. All data are represented as means ± 
s.d.; n = 3 independent biological replicates. f, Bar plot of relative messenger RNA expression of LDLR across HAP1 WT, FASN-KO and C12orf49-KO cells. 
All data are represented as means ± s.d.; n = 3 independent biological replicates; P values from one-way ANOVA. g, Western blotting analysis of SREBP2, 
LDLR and β-actin levels across the indicated HAP1 co-isogenic KO cell lines cultured in the presence of FBS or exposed to overnight serum (left panel) 
or lipoprotein (middle panel) withdrawal and a short re-feeding period (indicated by the − and + symbols). Unprocessed full-length (FL) and processed 
C-terminal SREBP2 products are indicated. The same analysis was repeated in HEK293T cells (right panel). Prior to protein extraction, HEK293T cells 
were stably transduced with lentiviral Cas9 and gRNA expression cassettes, selected and cultured for 4 d. Data are representative of three independent 
biological replicates.
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(Supplementary Table 5), distinguishing between specific proximity  
partners versus the general footprint of the ER–Golgi neighbour-
hood is challenging. To do this, we leveraged a recently generated 
reference map of a human cell (https://humancellmap.org/)41,  
containing 192 BioID experiments in HEK293 cells, and compared  

our quantitative profiles with those of these baits. This revealed 
high-specificity interactions with the master lipid homeostatic 
transcription factor, SREBF2, in addition to SREBF1, SCAP and 
MBTPS1 (Fig. 5d). Notably, GIs were also observed between 
C12orf49 and SREBF2, as well as the SREBF2-regulatory protease 
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genes MBTPS1 and MBTPS2 and the major SREBF2 transcriptional 
target LDLR. Further, similar to C12orf49, SREBF2 is known to traf-
fic to the Golgi upon serum starvation, is cleaved and subsequently 
translocated to the nucleus and then activates the transcription of 
genes regulating lipid homeostasis26,40. Given this, we hypothesized 
that C12orf49 could have a role in the activation of the SREBF2.

To investigate a role for C12orf49 in the regulation of SREBF2, 
we performed RNA-sequencing experiments under normal and 
serum-starved conditions across HAP1 WT, C12orf49-KO and 
SREBF2-KO cells (Supplementary Table 7). As expected, serum 
starvation resulted in the induction of a cholesterol biosynthetic 
transcriptomic signature in HAP1 WT cells, but not in SREBF2-KO 
cells (Fig. 5e and Extended Data Fig. 6a,b). In C12orf49-KO cells, 
we observed a SREBF2-mediated transcriptional response similar to 
that of WT cells, suggesting that C12orf49 is not absolutely required 
for the activation of SREBF2 upon serum starvation (Fig. 5e and 
Extended Data Fig. 6a,b). However, we did notice a trend of lower 
expression of cholesterol biosynthesis and LDL-uptake genes in 
C12orf49-KO cells, which was confirmed by analysis of LDLR levels 
by quantitative reverse-transcription PCR (qRT–PCR) and western 
blot (Fig. 5f,g). To more directly test the hypothesis that C12orf49 
regulates SREBF2 processing, we performed western blots to assess 
cleavage of SREBF2 into its active form following serum and lipid 
starvation. This demonstrated a clear decrease in overall SREBF2 
expression and its processing in C12orf49-deficient versus WT HAP1 
and HEK293T cells, a phenotype that was not rescued by inhibition 
of the proteasome (Fig. 5g and Extended Data Fig. 6c), confirming 
the requirement of this gene for optimal SREBF2 activation.

In summary, our unbiased GI screens and transcriptomic, 
proteomic and biochemical investigations reveal a new role for 
the uncharacterized gene C12orf49 in the maintenance of lipid 
homeostasis. Our data indicate that C12orf49 localizes in a 

growth-condition-dependent manner throughout the ER–Golgi 
network, in parallel with SREBF2, and is required for full SREBF2 
activation as a major lipid homeostasis transcription factor (Fig. 6). 
On the basis of our findings, we suggest that C12orf49 be named 
LUR1 for its role in lipid uptake regulation.

Discussion
The systematic mapping of GIs in model organisms such as yeast has 
provided a detailed view into the functional organization of eukary-
otic cells42. Recent advances in CRISPR-based genome-engineering 
technologies provide a path for similar systematic GI studies in 
human cells43–48. Here, we apply genome-wide CRISPR-based fitness 
screens using query mutant HAP1 cell lines to systematically map 
GIs with a focus on lipid metabolism. Our data revealed a strong 
interaction between de novo fatty acid synthesis and lipid-uptake 
processes, highlighting a system that balances synthesizing lipids 
intracellularly with their uptake from the extracellular environment. 
More generally, this analysis confirms that relatively strong negative 
GIs identify functionally related genes, mapping a functional wiring 
diagram for a particular cellular process.

We screened a FASN-mutant query cell line multiple times 
and identified highly confident negative GIs, many of which were 
involved in lipid metabolism. Perturbation of de  novo fatty acid 
synthesis has been suggested to be a prominent cancer therapeutic 
approach, and multiple compounds targeting FASN are currently 
being tested in clinical trials; for example, TVB-2640 is a FASN 
inhibitor that is being tested in solid tumours in phase 2 trials, and 
both fatostatin and betulin are inhibitors of the SREBP–SCAP inter-
action in preclinical development6,49. Because single-agent therapies 
often lead to emergence of resistance and tumour relapse, it makes 
sense to pursue therapeutic targets that are synergistic with FASN 
inhibition. Thus, the strong GIs detected in our FASN screen may 
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be informative for future investigations of combinatorial targets or 
biomarkers to treat diseases that would benefit from disruption of 
de novo fatty acid biosynthesis.

Our focused GI landscape related to de novo fatty acid biosynthe-
sis provides unique insight into the genetic dependencies required 
for response to perturbation of lipid metabolism. Several pathways 
emerge as being most commonly utilized to adapt to perturbations, 
including those involved in alternative fatty acid and cholesterol bio-
synthesis processes, as well as lipid uptake. Interestingly, although 
our screens revealed strong negative GIs between de novo fatty acid 
synthesis and uptake of LDL, we failed to detect interactions with 
transporters of fatty acids. This may be a consequence of the genetic 
redundancy inherent among the SLC27A (FATP) fatty acid trans-
porter family50. As previously shown in yeast31, functional redun-
dancy between paralogs can mask GIs associated with perturbation 
of a single gene of a duplicated pair, highlighting an important  
need for systems targeting multiple genes to survey complex GIs 
involving more than two genes48. Nonetheless, our data suggest a 
strong functional relationship between de novo fatty acid synthe-
sis and glycosylation, and may involve a mechanism wherein cells 
modify the FATP transporters through N-glycosylation, thereby 
enhancing lipid uptake, as suggested by Ryczko et  al.22 As such, 
this pathway serves as an obvious focal point for not only ongo-
ing mechanistic investigation, but also therapeutic development for 
anti-cancer strategies targeting de novo fatty acid synthesis.

Genome-wide GI profiling revealed an important role for LUR1 
(C12orf49) in lipid uptake. Interestingly, analysis of the DepMap 
data revealed that LUR1 is essential in the same set of cancer cell 
lines that depend on lipid-biosynthesis-related genes for viability,  
including SREBF1, MBTPBS1, SCAP and SCD. Similarly, two recent 
studies identifying co-functional gene clusters support a func-
tional role for LUR1 in lipid metabolism across diverse genetic 
backgrounds51,52. Furthermore, genome-wide association studies in  
large cohorts have found LUR1 variants linked to abnormal HDL 
profiles39, neuroticism53–55 and body height54, all phenotypes that 
could have root causes in lipid metabolism defects.

In summary, we present an unbiased and genome-wide approach 
for uncovering genetic vulnerabilities related to lipid metabolism in 
human cells, which led us to identify a function for LUR1 in regu-
lating SREBF2 activity (Fig. 6). Our GI profiles for de  novo fatty 
acid synthesis and related lipid-uptake genes provide a resource  
for studying metabolic rewiring and disease phenotypes linked to 
lipid metabolism. We also demonstrate the power of systematic GI 
profiling using query mutants in a co-isogenic cell line, an approach 
that can be applied to other bioprocesses and expanded to begin 
generating more comprehensive GI maps for human genes.

Methods
Cell culture. Human HAP1 WT cells were obtained from Horizon Genomics 
(clone C631; sex, male with lost Y chromosome; RRID: CVCL_Y019). The 
following HAP1 gene-KO cell lines were obtained from Horizon: FASN 
(HZGHC003700c006, used for GI screening; HZGHC003700c011, used for hit 
validation), ACACA (HZGHC004903c002), LDLR (HZGHC003978c007), SREBF1 
(HZGHC001361c012) and SREBF2 (HZGHC000683c004). All gene-KO cell lines 
were confirmed to carry the expected out-of-frame insertions or deletions by 
Sanger sequencing of PCR products. HAP1 cells were maintained in low glucose 
(10 mM), low glutamine (1 mM) DMEM (Wisent no. 319-162-CL) supplemented 
with 10% FBS (Life Technologies) and 1% penicillin–streptomycin (Life 
Technologies). This culture medium is referred to as ‘minimal medium'. Cells were 
dissociated with trypsin (Life Technologies) and all cells were maintained at 37 °C 
and 5% CO2. Cells were regularly monitored for mycoplasma infection.

HAP1 KO cell line generation. The HAP1 C12orf49 gene-KO cell line was 
constructed by first cloning a gRNA targeting C12orf49 (Supplementary Table 8)  
into the pX459v2 backbone (Addgene no. 62988), which was modified to carry 
the same restriction overhangs as the pLCKO vector (Addgene no. 73311). 
Then, 350,000 HAP1 WT cells were seeded into a 6-well plate, and 24 h later, 
cells were transfected with a mix of 2 µg pX459v2 plasmid carrying a gRNA, 
6 µl X-treme Gene transfection reagent (Roche) and 100 µL Opti-MEM media 

(Life Technologies). Twenty-four hours after transfection, cells were selected in 
medium containing 1 µg mL–1 puromycin for 3 d, and single cells were sorted onto 
96‐well plates by manual seeding of a single-cell suspension at 0.6 cells per well. 
Following amplification of cells from individual wells, genomic DNA was extracted 
with Extracta DNA Prep (Quanta Bio), Sanger sequencing was performed across 
the gRNA target sites following PCR amplification and successful gene KO was 
identified following sequence analysis.

Library virus production and multiplicity of infection determination. For 
CRISPR library virus production, 8 million HEK293T cells were seeded per 15-cm 
plate in DMEM containing high glucose, pyruvate and 10% FBS. Twenty-four 
hours after seeding, the cells were transfected with a mix of 8 µg lentiviral 
lentiCRISPRv2 vector containing the TKOv3 gRNA library19 (Addgene no. 
90294), 4.8 µg packaging vector psPAX2, 3.2 µg envelope vector pMD2.G, 48 µl 
X-treme gene transfection reagent (Roche) and 1.4 mL Opti-MEM medium (Life 
Technologies). Twenty-four hours after transfection, the medium was replaced 
with serum‐free, high-BSA growth medium (DMEM, 1.1 g per 100 mL BSA, 
1% penicillin–streptomycin). Virus-containing medium was collected 48 h after 
transfection, centrifuged at 1,500 r.p.m. for 5 min, aliquoted and frozen at −80 °C.

For determination of viral titres, 3 million HAP1 cells seeded in 15-cm plates 
were transduced with different dilutions of the TKOv3 lentiviral gRNA library 
along with polybrene (8 µg mL–1), in a total of 20 mL medium. After 24 h, the 
virus-containing medium was replaced with 25 mL of fresh medium containing 
puromycin (1 µg mL–1), and cells were incubated for an additional 48 h. Multiplicity 
of infection (MOI) of the titrated virus was determined 72 h post‐infection by 
comparing percentage survival of puromycin-selected cells with that of cells that 
were infected but not selected with puromycin (puro-minus controls).

Pooled CRISPR dropout screens. For pooled CRISPR dropout screens, 3 million 
HAP1 cells were seeded in 15-cm plates in 20 mL of specified medium. A total 
of 90 million cells were transduced with the lentiviral TKOv3 library at a MOI of 
~0.3, such that each gRNA was represented in about 200–300 cells. Twenty-four 
hours after infection, transduced cells were selected with 25 mL medium 
containing 1 µg mL–1 puromycin for 48 h. Cells were then collected and pooled, and 
30 million cells were collected for subsequent gDNA extraction and determination 
of the library representation at day 0 (that is, T0 reference). The pooled cells were 
then seeded into three replicate plates, each containing 18 million cells (>200-fold 
library coverage), which were passaged every 3 d and maintained at >200-fold 
library coverage until T18. Genomic DNA pellets from each replicate were 
collected at each day of cell passage.

Preparation of sequencing libraries and Illumina sequencing. Genomic DNA 
was extracted using the Wizard Genomic DNA Purification Kit (Promega). 
The gDNA pellets were resuspended in TE buffer, and the concentration was 
estimated by Qubit using double-stranded DNA (dsDNA) Broad Range Assay 
reagents (Invitrogen). Sequencing libraries were prepared from 50 µg of the 
extracted gDNA in two PCR steps, the first to enrich gRNA regions from the 
genome, and the second to amplify gRNA and attach Illumina TruSeq adapters 
with i5 and i7 indices, as described previously, using staggered primers aligning 
in both orientations to the gRNA region (Supplementary Table 8)56. Barcoded 
libraries were gel purified, and final concentrations were estimated by qRT–PCR. 
Sequencing libraries were sequenced on an Illumina HiSeq2500 using single-read 
sequencing and were completed with standard primers for dual indexing with 
HiSeq SBS Kit v4 reagents. The first 21 cycles of sequencing were dark cycles, 
or base additions without imaging. The actual 36-base read begins after the 
dark cycles and contains 2 index reads, in which i7 is read first, followed by the 
i5 sequences. The T0 and T18 time point samples were sequenced at 400- and 
200-fold library coverage, respectively.

Construction of colour-coded lentiCRISPRv2 vectors for co-culture assay. The 
colour-coded lentiCRISPRv2 vectors were derived from the lentiCRISPRv2 vector 
(Addgene no. 52961) by inserting mCherry (Addgene no. 36084) or mClover3 
(Addgene no. 74236) open reading frames between the Cas9 and PuroR expression 
cassette. To this end, the lentiCRISPRv2 vector was digested with BamHI, PCR 
products coding for the respective fluorescent protein flanked by T2A and P2A 
self-cleaving peptides were ligated into the vector using Gibson assembly. The two 
forward primers (Supplementary Table 8) were used at a 1:0.1:1 (P233:P234:P235) 
ratio in the same PCR reaction with the reverse primer (primers bind to both 
fluorescent proteins mCherry and mClover3).

Validation of GIs using co-culture assays. For validation of GIs, HAP1 parental 
and gene-KO clones were transduced with colour-coded lentiCRISPRv2 vectors 
targeting either an intergenic site in the AAVS1 locus (negative control), or a 
specific target gene hit (for example, LDLR). Each gene was targeted with three 
independent and unique gRNAs. Twenty-four hours after transduction, cells were 
selected with 1 µg mL–1 puromycin for 48 h and seeded for co-culture proliferation 
assays as follow: 50,000 of green (for example lentiCRISPRv2-mClover3 AAVS1 
gRNA) and red (for example lentiCRISPRv2-mCherry hit gene gRNA) cells were 
mixed (total, 100,000 cells) in a 6-well plate in both colour orientations for both 
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parental and gene-KO cells. Cells were passaged every 4 d until day ~12 (T12). 
Cells were trypsinized, washed and stained for dead cells using Zombie NIR 
(BioLegend). The relative proportions of red and green cells in the co-culture 
were assessed using an LSR Fortessa or X20 flow cytometer (BD Bioscience). 
The relative ratio of Hit:AAVS1 was calculated and averaged for the three 
gene-targeting guides and two-colour orientations.

LDL- and transferrin-uptake assay. For uptake experiments with labelled probes, 
150,000 HAP1 cells were seeded in a 12-well plate. After 48 h, cells were serum 
starved or deprived of lipoprotein overnight in minimal medium (described 
above) complemented with 0.3% BSA (BioShop) or lipoprotein-deprived FBS 
(MilliporeSigma no. S5394) instead of standard FBS, respectively. After 16 h, cells 
were labelled with Dil-LDL (Invitrogen no. L3482), pHrodo Red LDL (Invitrogen 
no. L34356) or pHrodo Red Transferin (Invitrogen no. P35376) at 2 µg mL–1 (1:500) 
in minimal medium plus 0.3% BSA for 15 min at 37 °C. Cells were washed in PBS, 
trypsinized and stained with 7-AAD (BioLegend no. 420404) or Zombie NIR 
(BioLegend no. 423105) cell viability solution at 25 ng mL–1 (1:2,000) for 5 min 
at room temperature. Staining was measured using an LSR Fortessa or X20 flow 
cytometer (BD Bioscience). The gating strategy is outlined in Extended Data Fig. 7.

Proximity-based labelling of proteins captured with mass spectrometry. 
BioID-MS analysis was performed essentially as described previously57, with 
minor modifications. In brief, HEK293 Flp-In T-REx lines expressing inducible 
N- or C-terminal miniTurbo-FLAG-tagged C12orf49 open reading frames were 
generated58. Five (for normal growth condition) and 12.5 (for serum-starvation 
condition) million cells were seeded on 15-cm plates, and after 24 h, cells were 
treated with 1 µg mL–1 tetracycline to induce expression of baits. Twenty-four hours 
later, 50 µM biotin was added for labelling of proximal proteins for 3.5 h. Cell 
pellets were collected and lysed in RIPA lysis buffer (50 mM Tris-HCl pH 7.5, 
150 mM NaCl, 0.1% (wt/vol) SDS, 1% NP-40, 1 mM EDTA, 1 mM MgCl2; 0.5% 
deoxycholate and Sigma protease inhibitors were added right before cell lysis) at 
a 1:10 (g:mL) ratio, and were sonicated 3 times for 5 s with 2-s breaks. Then, 1 µL 
per sample TurboNuclease (BioVision) and 1 µL per sample RNAse (Sigma) were 
added, and samples were incubated at 4 °C for 30 min; 20% SDS was added to bring 
the sample’s final SDS concentration to 0.25%, and samples were mixed well and 
centrifuged at 14,000 r.p.m. (Microfuge) for 20 min at 4 °C. The supernatant was 
added to streptavidin resin (pre-washed with lysis buffer) using 30-µL bed volume 
and was rotated at 4 °C for 3 h. Beads were washed after binding as following: (1) 
1 × 1 mL of 2% SDS buffer (2% SDS, 50 mM Tris-Hcl pH 7.5); (2) 1 × 1 mL of lysis 
buffer; (3) 1 × 1 mL of HEK293 lysis buffer (with 0.1% NP-40); and (4) 3 × 1 mL of 
50 mM ammonium bicarbonate (made fresh). After purification of biotinylated 
preys using streptavidin sepharose, samples were digested on beads using trypsin. 
Samples were separated by liquid chromatography and analysed by tandem mass 
spectrometry (LC–MS/MS) on a AB Sciex TripleTOF 5600 mass spectrometer.

The LC–MS/MS setup consisted of a TripleTOF 5600 (SCIEX) equipped 
with a nanoelectrospray ion source connected in-line to an AS-2 Nano-HPLC 
system (Eksigent Technologies). The fused silica column (10 cm × ID 75 µm, OD 
360 µm) had an integrated emitter tip prepared in-house using a laser puller (Sutter 
Instrument Co.). The column was packed with ~10 cm of C18 resin (Reprosil-Pur, 
3.5 µm, Dr.Maisch HPLC). Next, 5 µL sample was loaded onto the column using 
the autosampler at 400 nL min–1, and the LC delivered the organic phase gradient 
at 200 nL min–1 over 90 min (2–35% acetonitrile with 0.1% formic acid). The MS 
instrument was operated in data-dependent acquisition mode with 1-MS scan 
(250 ms; mass range, 400–1,250 m/z) followed by up to 20 MS/MS scans (100 ms 
each). Only candidate ions between 2 and 4 charge states were considered, and 
ions were dynamically excluded for 15 s with a 50-mDa window. The isolation 
width was 0.7 m/z, and the minimum threshold was set to 250. Between sample 
injections, 2 blank samples were injected (0.1% formic acid), each with 3 rapid 
gradient cycles at 300 nL min–1 over 60 min. Before another sample was injected, 
system performance was verified with a 30-min BSA quality control run, and a 
30-min BSA mass-calibration run.

Raw files (.WIFF and.WIFF.SCAN) were converted to an MGF format and 
to an mzML format using ProteoWizard (v3.0.4468) and the AB Sciex MS Data 
Converter (v1.3 beta), as implemented within ProHits59. For human samples, the 
database used for searches consisted of the human and adenovirus sequences in 
the RefSeq protein database (version 57). The database was supplemented with 
‘common contaminants' from the Max Planck Institute (http://141.61.102.106:8080/
share.cgi?ssid=0f2gfuB) and the Global Proteome Machine (http://www.thegpm.
org/crap/index.html), and with commonly used epitope tags. The search databases 
consisted of forward and reverse sequences (labelled ‘gi 9999' or ‘DECOY'); in 
total, 72,481 entries were searched for the human database. Spectra were analysed 
separately using Mascot (2.3.02; Matrix Science) and Comet (2018.01 rev.4) with 
trypsin specificity and up to two missed cleavages; deamidation (Asn or Gln) 
and oxidation (Met) were selected as variable modifications. The fragment mass 
tolerance was 0.15 Da, and the mass window for the precursor was ±35 ppm 
with charges of 2+ to 4+ (both monoisotopic mass). The resulting Comet and 
Mascot results were individually processed by PeptideProphet and combined into 
a final iProphet output using the Trans-Proteomic Pipeline (TPP; Linux version, 
v5.2.1-dev Flammagenitus, Build-201906251008-exported). TPP options were as 

follows: peptide prophet were --minprob 0.05 --ppm --decoy DECOY --nonparam 
--accmass --expectscore --decoyprobs; and iProphet options were --nonsp --nonrs 
--nonsi --nonsm --nonse. All proteins with a minimal iProphet probability of 0.95 
and 2 unique peptides were used for analysis.

Data processing and analysis was performed within the ProHits LIMS60 
searched against the RefSeq human and adenovirus database, version 57, forward 
and reverse. Mascot and Comet search results were jointly analysed using the 
iProphet component of the Trans Proteomic Pipeline61.

High-confidence interactions were determined by scoring bait samples 
against negative control samples (6 runs of miniTurbo-FLAG-EGFP) using 
the statistical tool SAINTexpress62 v3.6.1 with default parameters. Preys with a 
SAINT score (FDR) of <1% were considered high-confidence hits. To calculate 
specific enrichment of preys against a reference dataset, we leveraged the 
humancellmap.org, a compendium of 192 BioID baits profiled in HEK293s41. 
Each SAINTexpress-filtered list was uploaded to the ‘Analyze' module of the 
humancellmap, and processed using default options. Default specificity plots 
(calculating the specific enrichment of spectral counts for a prey with a bait against 
that across the entire database) were generated within the humancellmap site and 
visualized in ProHits-viz59.

Western blotting. HAP1 and 293T cells were lysed in buffer F (10 mM Tris pH 
7.05, 50 mM NaCl, 30 mM sodium pyrophosphate, 50 mM NaF, 10% glycerol, 
0.5% Triton X‐100) and centrifuged at 14,000 r.p.m. for 10 min. The supernatant 
was collected, and protein concentration was determined using Bradford 
reagent (Bio-Rad). Next, 10–30 µg protein was resolved on 4–12% Bis‐Tris gels 
(Life Technologies) and transferred to Immobilon‐P nitrocellulose membrane 
(Millipore) at 66 V for 90 min. Subsequently, proteins were detected using 
anti-FASN (1:2,000, Abcam no. ab128870), anti-SREBP2 (1:250, BD Biosciences 
no. 557037), anti-LDLR (1:250, Abcam no. ab52818), anti-GAPDH (1:10,000, 
Santa Cruz no. 166574) and anti-β‐actin (1:10,000, Abcam no. ab8226) antibodies 
and proteins were visualized on X‐ray film using Super Signal chemiluminescence 
reagent (Thermo Fisher Scientific) and Western Lightning ECL Pro (PerkinElmer). 
Scans of uncropped western blots are provided in Source Data for Fig. 5 and 
Extended Data Figs. 1 and 6.

Immunofluorescence. Cells were seeded on cover slips and fixed with 
4% paraformaldehyde in PBS for 10 min at room temperature. Cells were 
permeabilized with 1% NP-40 in antibody dilution solution (PBS, 0.2% BSA, 0.02% 
sodium azide) for 10 min and blocked with 1% goat serum for 45 min. Cells were 
incubated with anti-V5 (1:250, Abcam no. ab27671) and anti-GOLGA2 antibodies 
(1:250, Sigma no. HPA021799) for 1 h at room temperature. Subsequently, cells 
were incubated with Alexa Fluor 488 goat anti-mouse (1:500, Invitrogen no. 
A-11001) or Alexa Fluor 647 anti-rabbit antibodies (1:500, Invitrogen no. A-21245) 
and counterstained with 1 µg mL–1 DAPI (Cell Signaling Technology no. 4083S) for 
45 min in the dark. Cells were visualized by confocal microscopy (Zeiss LSM 880).

RNA sequencing. Sample preparation. HAP1 WT cells and C12orf49- and 
SREBF2-KO cells were cultured in minimal DMEM for 48 h and either control 
treated or serum starved for 4 h, as indicated. Each cell line was cultured and 
processed in three biological replicates. RNA was extracted using the RNeasy 
Kit (Qiagen), according to the manufacturer’s instructions. Eighteen total RNA 
samples were DNase-treated using RNase-free DNase Set (Qiagen no. 79254). 
Samples were submitted for mRNA-Seq at the Donnelly Sequencing Centre at 
the University of Toronto (http://ccbr.utoronto.ca/donnelly-sequencing-centre). 
RNA was quantified using Qubit RNA BR (Thermo Fisher Scientific no. 
Q10211) fluorescent chemistry, and 1 ng was used to obtain the RNA Integrity 
Number (RIN) using the Bioanalyzer RNA 6000 Pico kit (Agilent Technologies 
no. 5067-1513). The lowest RIN was 9.5; the median RIN score was 9.8. Then, 
1,000 ng per sample was processed using the NEBNext Ultra II Directional RNA 
Library Prep Kit for Illumina (New England Biolabs no. E7760L) and included 
poly(A) enrichment using NEBNext Poly(A) mRNA Magnetic Isolation Module 
(New England Biolabs no. E7490L), fragmentation for 15 min at 94 °C prior to 
first-strand synthesis, and 8 cycles of amplification after adapter ligation. For each 
purified final library, 1 µL top stock was run on an Agilent Bioanalyzer dsDNA 
High Sensitivity chip (Agilent Technologies no. 5067-4626). The libraries were 
quantified using the Quant-iT dsDNA high-sensitivity (Thermo Fisher Scientific 
no. Q33120) and were pooled at equimolar ratios after size adjustment. The 
final pool was run on an Agilent Bioanalyzer dsDNA High Sensitivity chip and 
quantified using NEBNext Library Quant Kit for Illumina (New England Biolabs 
no. E7630L). The quantified pool was hybridized at a final concentration of 400 pM 
and sequenced paired-end on the Illumina NovaSeq6000 platform using a S2 
flowcell at 2 × 151-bp read lengths.

Data processing. Samples were mixed to obtain an average of 35 million clusters 
that passed filtering. Reads shorter than 36 bp on either read 1 or read 2 were 
removed prior to mapping. Reads were aligned to reference genome hg38 
and Gencode V25 gene models using the STAR short-read aligner (v2.6.0a)63. 
Approximately 80% of the filtered reads mapped uniquely, and the read counts 
from each sample, computed by STAR, were merged into a single matrix using R.
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Differential expression. Differentially expressed genes were identified using the 
Bioconductor packages limma (v3.32.10) and edgeR (v3.24.3). The read-count 
matrix was filtered using the filterByExpr() function using default parameters. 
Principal-components analysis was performed to examine the main treatment 
effects, and to exclude the presence of confounding batch effects, using the base R 
function prcomp(). Samples were normalized using calcNormFactors(method = 
‘TMM’) from edgeR and log2-transformed using voom(). Next, a design matrix was 
specified to fit coefficients for the CRISPR knockouts and presence or absence of 
FBS, and an interaction term to examine differences in the FBS effect in the mutant 
backgrounds. Differentially expressed genes were extracted using topTable() with 
log2(fold change) > 0.58 and adjusted P < 0.05.

qRT–PCR analysis. HAP1 WT, FASN-KO and C12orf49-KO cells were cultured 
in minimal DMEM for 48 h and either control treated or serum starved for 4 h, 
as indicated. RNA was extracted using the RNeasy Kit (Qiagen), according to the 
manufacturer’s instructions. RNA was converted into complementary DNA using 
the cVilo master mix (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. The cDNA was amplified and quantified by qPCR using a Bio-Rad 
CFX96 real-time PCR detection system (Bio-Rad) and using the Maxima SYBR 
Green PCR master mix (Thermo Fisher Scientific) according to manufacturer’s 
instructions. Transcript levels were normalized to GAPDH (see Supplementary 
Table 8 for primer sequences).

Metabolite profiling. HAP1 WT and FASN-KO cells were cultured in minimal 
medium for 3 d. Cells were washed twice in warm PBS and subsequently flash 
frozen on liquid nitrogen. Cells were scraped in chilled extraction solvent (40% 
acetonitrile:40% methanol:20% water, all high-performance liquid chromatography 
(HPLC) grade), transferred to clean tubes and shaken for 1 h at 4 °C, and were 
subsequently centrifuged at 4 °C at 14,000 r.p.m. for 10 min. The supernatants were 
transferred to a clean tube and dried in a SpeedVac, then stored at −80 °C until 
MS analysis. Samples were reconstituted in water containing internal standards 
[D7]glucose and [13C,15N]tyrosine and were subjected twice to HPLC (Dionex 
Corporation) for positive- and negative-mode analysis using a reverse-phase 
column (Inertsil ODS-3, 4.6-mm internal diameter, 150-mm length and 3-µM 
particle size). In positive-mode analysis, the mobile-phase gradient ramped from 
5% to 90% acetonitrile in 16 min, remained for 1 min at 90% and then returned to 
5% acetonitrile in 0.1% acetic acid over 2 min. In negative mode, the acetonitrile 
composition ramped from 5% to 90% in 10 min, remained for 1 min at 90% and 
then returned to 5% acetonitrile in mobile phase (0.1% tributylamine, 0.03% acetic 
acid and 10% methanol). The total runtime in both the positive and negative 
modes was 20 min, the samples were maintained at 4 °C and the injection volume 
was 10 µL. An automated washing procedure was included before and after each 
sample to avoid any sample carryover.

The eluted metabolites were analysed at the optimum polarity in MRM mode 
on an electrospray ionization (ESI) triple-quadrupole mass spectrometer (AB Sciex 
5500 Qtrap). The MS data-acquisition time for each run was 20 min, and the dwell 
time for each MRM channel was 10 ms. Mass spectrometric parameters were as 
previously published64. Metabolite peak areas were determined using Multiquant 
software (SCIEX), normalized to internal standard in each mode yielding an 
area ratio and then further normalized to total cell number for each sample; 
malonyl-CoA levels were further normalized to those in WT cells.

Guide mapping and quantification. FASTQ files from single-read sequencing 
runs were first trimmed by locating constant sequence anchors and extracting the 
20-bp gRNA sequence preceding the anchor sequence. Pre-processed paired reads 
were aligned to a FASTA file containing the TKOv3 library sequences using Bowtie 
(v0.12.8), allowing up to 2 mismatches and 1 exact alignment (specific parameters: 
-v2 -m1 -p4 --sam-nohead). Successfully aligned reads were counted and merged 
along with annotations into a matrix.

Scoring of quantitative GIs with the qGI score. To identify and quantify GIs, 
genome-wide CRISPR–Cas9 screens were performed using the TKOv3 gRNA 
library in HAP1 co-isogenic cell lines. Co-isogenic KO query cell lines were 
obtained from Horizon Genomics (see ‘Cell culture’) or were generated by 
introducing mutations in target genes of interest (see above) in the parental 
HAP1 cells, which we consider to be WT. The TKOv3 library contains 71,090 
gRNAs that target ~18,000 human protein-coding genes, most of them 
with four sequence-independent gRNAs19. To quantify GIs, LFCs between 
read-depth-normalized gRNA abundance in the starting population (T0) and 
at the end point (T18) were computed. Matched T0 measurement assured that 
differences between screens during library infection and puromycin selection 
would not result in false-positive GIs. Matched T0 were stabilized using the median 
across many T0 measurements (common T0), and those two estimates were 
combined in a weighted fashion to minimize correlation between GI scores and 
residual T0 (matched T0 – common T0).

gRNA-level residual scores were derived for a given genetic background by 
estimating a non-interacting model between LFC values in this background and 
21 WT HAP1 backgrounds. To do so, for each WT-KO screen pair, the population 
of LFC values were M-A-transformed, which contrasts the per-gRNA LFC 

difference (M) with per-gRNA mean (A). A LOESS regression was fitted, which 
was additionally locally stabilized by binning the data along A, and considered 
equal bin sizes and equal numbers of data points in every bin. For each gRNA, 
this resulted in 21 residual scores, which represent the contrasts of a given KO 
with the 21 WT HAP1 screen. Under the assumption that GIs are sparse and that 
experimental artefacts such as batch effects would introduce additional signal 
into the population of residual values, we computed a weighted mean of its 21 
residual scores by giving a higher weight to WT HAP1 screens with lower absolute 
residual mean of all 71,000 gRNAs. We refer to the resulting value for each gRNA 
as the ‘guide-level' GI score. Those guide-level GI scores were further normalized. 
First, locally defined shifts towards negative or positive scores were identified and 
normalized on the basis of genome location of the target genes. Next, to remove 
unwanted effects that would arise from screen-to-screen variability, we quantified 
guide-level GI scores for each of the 21 WT HAP1 screens by contrasting a 
given WT screen with the remaining WT screens (as described for the KO–WT 
comparison above). Patterns that explain substantial variance among these 
WT guide-level GI scores are likely to correspond with unwanted experimental 
artefacts. To remove these artefacts from the GI data, we performed singular value 
decomposition (SVD) on guide-level GI scores of the HAP1 WT screens only. We 
then projected guide-level GI scores onto the left singular vectors, and subtracted 
the resulting signal from the GI scores.

Finally, we computed gene-level GI scores. First, gRNAs were excluded when 
their guide-level GI profile disagreed with those of the remaining gRNAs against 
the same gene. Specifically, the mean within-gene guide-level GI profile Pearson 
correlation coefficient was computed, which we call the gRNA quality score (QS) 
and a per-gene quality score (gQS) was computed using the median of the gRNA 
QS for a given gene. For each gene, we tested three criteria and excluded the gRNA 
with the lowest QS, if true. First, a gQS above a selected threshold (th1) indicated 
that sufficient signal was present in the guide-level GI profiles. Second, a difference 
between the lowest QS and the gQS above a selected threshold (th2) indicated 
sufficient within-gene disagreement. Third, a QS of the gRNA with the lowest QS 
for a given gene below a selected threshold (th3) indicated a lack of gene-specific 
signal. On the basis of these criteria, we excluded a gRNA for 648 out of the 17,804 
genes. All remaining guide-level GI values per gene were mean-summarized, 
and their significance was computed using limma’s moderated t-test followed by 
Benjamini–Hochberg multiple-testing correction.

Screen reproducibility analysis. Reproducibility of the gRNA library screening 
data in FASN-KO cells was tested across three independent screens (referred to 
as A, B and C). The three screens were started from independent infections with 
lentivirus packaged gRNA library and performed as described above. To assess 
reproducibility of fitness effects, a LFC quantifying the drop out between T0 
(after puromycin selection) and T18 (end point) was computed for each gene by 
mean-summarizing the respective four gRNA LFC values (the TKOv3 library 
targets each gene with four gRNAs). The Pearson correlation coefficients (PCCs) 
were computed between LFC values of all three pairs of independent replicates.

Our experiments were designed to quantify fitness-effect differences due to the 
introduction of a specific mutation into an otherwise isogenic background (that 
is, GIs). To assess reproducibility of GIs, PCCs were computed between qGI values 
of all pairs of independent replicates. Although we assessed screen reproducibility 
primarily at the gene level, we also computed the gRNA-level GI PCC between the 
replicates as reference (Extended Data Fig. 1g).

To test reproducibility of genes, each gene’s contribution to the covariance 
between a pair of FASN-KO screens was computed and divided by the product of 
s.d. of both given screens. The resulting three pairwise (for replicates A–B, A–C, 
B–C) gene-level scores were mean-summarized to a FASN qGI reproducibility score.

Reproducibility analysis of FASN interactions. We used an Markov chain Monte 
Carlo (MCMC)-based approach to measure the reproducibility of FASN GIs. 
Specifically, we first independently scored the three independent FASN replicate 
screens and applied an FDR threshold of FDR 50% to generate positive and 
negative GI profiles for each of the three screens. MCMC was then used to jointly 
infer false-negative and false-positive rates, as well as a binary consensus FASN 
GI profile (separately for positive and negative GI). Then, using this consensus 
profile as a standard for evaluation (assuming pairs with posterior probability 
of interaction of >0.5 as positives), we measured precision and recall statistics 
(averaged across the three screens) at two different cut-offs: a ‘standard’ cut-off 
(absolute qGI score > 0.5 and FDR 50%) and a ‘stringent' cut-off (absolute qGI 
score > 0.7; FDR 20%).

Precision–recall analysis. To control quality of genome-wide gRNA screens, 
gene-level fitness effects were estimated by computing a LFC quantifying  
the drop out between T0 (after puromycin selection) and T18 (end point) for each 
gene and mean-summarizing the respective four gRNA LFC values (the TKOv3 
library targets each gene with four gRNAs). Gold-standard essential (reference) 
and non-essential (background) gene sets were taken from Hart et al.65 and 
Hart et al.19. Per screen, the separation between reference and background genes 
according to the LFC values was assessed by computing precision over true  
positive statistics.
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Functional evaluation of GIs. To calculate the enrichment of metabolic GIs in 
different functional standards, we separated the metabolic GIs in two different 
sets: all (background) GI scores and high-confidence (reference) GI (FDR < 0.5; 
|qGI | ≥ 0.5). Then we calculated the fold enrichment of the reference set against 
the background set in a particular functional standard. First, we computed the 
overlap of metabolic GI pairs as co-annotations in the standard. Then, we divided 
the overlap density of the background set into the overlap density of the reference 
set to determine the fold enrichment. Once we got the fold enrichments, we 
calculated P values on the actual overlap counts of the reference and background 
sets according to hypergeometric tests. We used four different functional 
standards: Human functional network66, GO biological processes67, Pathway 
(Canonical pathways from ref. 68) and HumanCyc27.

Gene ontology enrichment analysis. GO enrichment analyses for the FASN and 
C12orf49 GI screen, RNA sequencing and the BioID experiments were performed 
using the gProfileR R package (v 0.7.0) using the GO-Bioprocesses, GO-Molecular 
Function and Reactome pathway standards69. For the GI screens, enrichment 
analysis was performed for significant negative GIs (qGI < −0.5; FDR < 0.5) and 
enriched pathways (P < 0.05; minimum term (gene set) size, 3; maximum term size, 
100) with a similarity of >50% were collapsed using the Cytoscape Enrichment 
Map function (v 3.5.1), with the AutoAnnotate plugin (v1.3) used to find pathway 
themes. For RNA sequencing, GO enrichment was performed as described above 
for differentially expressed genes (see ‘RNA sequencing’), and enriched pathways 
(P < 0.01) with a similarity > 75% were collapsed. For the BioID experiments, 
GO-Cellular compartment, and KEGG standards were also included in the 
analysis. Enrichment analysis was performed for significant hits (FDR < 0.01), 
and enriched pathways (P < 0.05) with a similarity of >70% were collapsed. For 
pathways with at least five collapsed terms, the mean percentage overlap of hits 
within the theme were visualized on a bar plot.

Co-occurrence of missense mutations and gene essentiality. Starting from 
the DepMap (19Q2) dataset, we first filtered down to a subset of cell lines (523) 
that had no more than 1,000 called missense mutations. Among this set, we 
identified the subset of cell lines (6 total) that exhibited dependency on C12orf49 
(dependency scores threshold of <−1.0). Then, for each gene with at least 
one missense mutation with the candidate cell lines, we tested for association 
between the presence of a missense mutation in the corresponding gene and 
the dependency on C12orf49, using the hypergeometric distribution to assess 
significance and Benjamini–Hochberg multiple-testing correction. For FASN 
mutations, we observed 30 cell lines with at least 1 mutation with FASN, and 3 of 
this set were also dependent on C12orf49 (out of 6) (FDR = 18.9%).

Statistical analysis. For all experiments, the number of technical and/or biological 
replicates is listed in the Figure legends or text. Unless otherwise indicated, 
statistical significance was assessed via one- or two-way ANOVA with Fisher’s least 
significant difference test. Statistical analyses were performed using GraphPad 
Prism 8 (GraphPad Software) or the R language programming environment.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The datasets generated and analysed in this study are included in the manuscript. 
The raw FASTQ files for the sequencing data are available upon request and have 
also been deposited to the Gene Expression Omnibus (https://www.ncbi.nlm.nih.
gov/geo/): RNA-sequencing data, GSE147770; CRISPR screen sequencing data, 
GSE148627. All mass spectrometry data have been deposited to the MassIVE 
repository (https://massive.ucsd.edu/ProteoSAFe/static/massive.jsp) and assigned 
the accession number MSV000085005. The ProteomeXchange accession is 
PXD017719. Descriptions of the analyses, tools and algorithms are provided in 
the Methods and the Reporting Summary. Custom code for generating gRNA 
counts from FASTQ files and code for generating qGI scores is available on GitHub 
(https://github.com/csbio/metabolicGIN). Source data for Fig. 5 and Extended 
Data Figs. 1 and 6 are presented with the paper.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Validation of FASN-KO cells and genetic interactions screens. a, Western blot depicting FASN and β-Actin levels in HAP1 parental 
wildtype (WT) and FASN-KO cells. Representative data from three biologically independent experiments. b, Bar plot depicting malonyl-CoA levels in 
HAP1 WT and FASN-KO cells as detected by mass spectrometry-based metabolite profiling, normalized to parent HAP1 WT cells. Data are represented 
as means ± standard deviation; n = four biologically independent experiments; two-tailed Mann Whitney U test. c, Growth curves of HAP1 WT cells 
depicting relative cell numbers over 3 days, plotted as a function of glucose concentration in mM, in either 0.5 mM (blue), 1 mM (red), 1.5 mM (yellow), 
or 2 mM (black) glutamine. d, Histogram showing a frequency distribution of all pairwise Pearson correlation coefficients for LFC values (T0/T18) of the 
21 WT HAP1 screens. e, Precision–recall curves for the three CRISPR replicate screens in HAP1 FASN-KO cells using the reference core essential gene set 
(CEG2) defined in Hart et al., 201719. f, Fitness effect (log2 fold-change, LFC) distributions for reference core essential (CEG2) and non-essential gene sets 
defined in Hart et al., 201719 across the three FASN-KO query screens. g, Agreement of gRNA-level genetic interaction scores with FASN. Scatter plots show 
all possible pairwise combinations of three biological replicate screens. The Pearson correlation coefficient (r), based on comparison values for 70,152 
gRNAs. h, Agreement of FASN quantitative genetic interactions (qGIs). Scatter plots show gene-level FASN genetic interactions (qGI scores) derived from 
all possible pairwise combinations of three biological replicate screens. The Pearson correlation coefficient (r), based on comparison of all qGI scores (r 
shown in grey, calculated on all the grey and purple data points in the scatter plots), or only genetic interactions that exceed a given significance threshold 
(|qGI| > 0.5, FDR < 0.5) in either one screen (logic OR; purple). i, Scatter plot showing reproducibility scores as a function of qGI scores for a single 
FASN-KO screen (replicate A). Pairwise reproducibility of a qGI score was calculated by computing the contribution of each of the 17,804 genes to the 
covariance between a pair of screens divided by the sum of standard deviations. The reproducibility score represents the sum of those values across the 
three pairwise comparisons. Five genes with highest reproducibility scores and the most negative qGI scores with the FASN-KO screen (replicate A) are 
labelled. j, Establishing the AAVS1 target locus as a good negative control site in HAP1 WT and FASN-KO cells. Schematic depicting co-culture validation 
assays (upper panel). Parental WT and FASN-KO cells were stably transduced with color-coded gRNA expression vectors carrying an intergenic control 
or screen hit-targeting gRNA. Color-coded cells are mixed at an equal ratio, cultured over two weeks and the relative proportion of green and red cells was 
quantified by flow cytometry. Control co-culture experiments performed in parallel to the validation of hit genes depicted in Fig. 1e as indicated above each 
barplot (lower panel). Bar plots are depicting the color ratio of cells carrying two colour-coded gRNAs targeting AAVS1 (intergenic control) across WT 
and two FASN-KO clones as indicated. Experiments were performed with three independent gRNA targeting AAVS1 and using both color orientations. All 
data are represented as means ± standard deviation; n = three (LDLR) or four (SLCO4A1, C12orf49) biologically independent experiments. k, Scatter plots 
reproducibility scores as a function of qGI scores for the negative genetic interaction hits depicted in Fig. 1h functioning in lipid uptake and homeostasis 
(red), vesicle transport genes (black) and glycosylation (blue). l, Precision and recall values for GIs with FASN measured at the standard (|qGI| > 0.5, FDR 
< 0.5) and stringent (|qGI| > 0.7, FDR < 0.2) thresholds. Precision and recall values were computed using an MCMC-based approach (see Methods).
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Extended Data Fig. 2 | Quality control of genetic interaction screens for fatty acid synthesis-related query genes. a, Precision-recall curves 
distinguishing the reference core essential gene set (CEG2) defined in Hart et al., 201719 and a non-essential gene set in CRISPR screens in five HAP1 
knockout query cell lines (LDLR, C12orf49, SREBF2, ACACA, SREBF1-KO). b, Fitness effect (LFC) distributions for reference core essential (CEG2) and 
non-essential gene sets defined in Hart et al., 201719 across CRISPR screens in five HAP1 KO cell lines (LDLR, C12orf49, SREBF2, ACACA, SREBF1). c, Bar 
plot of enrichment of co-annotation as defined by the Human Functional Network, Gene Ontology Bioprocesses (BP), HumanCyc or and aggregation of 
pathway standards (including REACTOME, KEGG or BIOCARTA) for genetic interactions identified across all six query genome-wide screens (FASN, LDLR, 
C12orf49, SREBF2, ACACA, SREBF1). Enrichment was tested using a hypergeometric test. See methods for details of analysis.
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Extended Data Fig. 3 | Pathway enrichment analysis of genetic interactions for fatty acid synthesis-related query genes in additional HumanCyc 
sub-categories. a, Dot plot of normalized pathway enrichment values for aggregate GIs across the six query genes (FASN, C12orf49, LDLR, SREBF2, ACACA, 
SREBF1) with sub-categories from HumanCyc are indicated. A GI is identified for a query-library pair if the |qGI| > 0.5 and FDR < 0.5. Enrichment for 
positive (yellow) and negative (blue) GI is tested inside Glycan Pathways and Generation of precursor metabolite and energy HumanCyc branches using a 
hypergeometric test. Enrichment with p-value < 0.05 are blue (negative GI) and yellow (positive GI). Dot size is proportional to the fold-enrichment in the 
indicated categories and specified in the legend.
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Extended Data Fig. 4 | See next page for caption.
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Extended Data Fig. 4 | Overview of C12orf49, cancer associations, and functional correlates. a, Cartoon of C12orf49 protein sequence features and 
domains. b–e, Kaplan Meier survival plots displaying univariate analysis of TCGA data across multiple tumor types including kidney, breast, liver and 
sarcoma for C12orf49 high vs. low expressing tumor tissue (www.kmplot.com)36. Patient numbers at risk (n) are indicated below each plot; two-sided 
logrank test. f-h, GI overlap between the 17,804 C12orf49 and SREBF2, SREBF1 and ACACA qGI scores shown as pairwise scatter plots with C12orf49 as 
function of SREBF2 (f), SREBF1 (g) and ACACA (h). A common negative GI is called if it is significant (qGI < -0.5, FDR < 0.5) in both screens (indicated in 
blue). The top 10 strongest common GIs and lipid metabolism genes are labelled. i, Profile similarity of C12orf49 across genome-wide DepMap CRISPR/
Cas9 screens. Similarity was quantified by taking all pairwise gene-gene Pearson correlation coefficients of CERES score profiles across 563 screens 
(19Q2 DepMap data release). The distribution of 17,633 CERES profile similarity is plotted as a quantile-quantile plot, and the top 18 most similar out of 
17,633 genes are labelled. Genes associated with lipid metabolism are indicated in red. j, Pathway analysis of C12orf49 profile similarity. C12orf49 profile 
similarity scores for all 17,634 genes represented in the DepMap were mean-summarized by pathway as defined in the HumanCyc standard27. Tendencies 
towards pathway-level similarity (co-essentiality) and dissimilarity (exclusivity) with C12orf49 were tested using a two-sided Wilcoxon rank-sum test with 
multiple-hypothesis correction using the Benjamini and Hochberg procedure.
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Extended Data Fig. 5 | Regulation of LDL uptake and LDLR expression by C12orf49. a, Bar plots showing the results of a low density lipoprotein (LDL) 
uptake assay across the indicated HAP1 cell lines using pHrodo-LDL probe. All data are represented as means ± standard deviation; n = two (SREBF1, 
SREBF2) or three (WT, FASN, LDLR, C12orf49, WT + C12orf49-V5, C12orf49 + C12orf49-V5) biologically independent experiments; one-way ANOVA.  
b, Bar plots showing the results of a transferin uptake assay across the indicated HAP1 cell lines using pHrodo-Transferin probe. All data are represented 
as means ± standard deviation; n = two (SREBF1, SREBF2) or three (WT, FASN, LDLR, C12orf49, WT + C12orf49-V5, C12orf49 + C12orf49-V5) biologically 
independent experiments; one-way ANOVA. c, Bar plots showing the results of a low density lipoprotein (LDL) uptake assay across the indicated in 
lipoprotein-deprived HAP1 cell lines using Dil-LDL probe. All data are represented as means ± standard deviation; n = two biologically independent 
experiments. d, Pathway enrichment analysis of BioID preys captured with N-terminal (top panel) or C-terminal (bottom panel) miniTurbo-tagged 
C12orf49 under normal growth conditions using the GO molecular function, biological process, cellular compartments, KEGG and Reactome standards. 
Terms for significantly enriched gene sets (p < 0.05, maximum term size 105) are indicated and bars depict mean percentage overlap with the indicated 
term. Numbers next to each bar indicate the mean overlap and term sizes, respectively. The greyscale color legend for p-values is indicated on the right. 
P-values were calculated using gProfileR69. e, Barplots depicting the number of proteins localizing to indicated cellular compartments for preys captured 
with N-terminal (grey) or C-terminal (black) miniTurbo-tagged C12orf49 in 293 cells under serum-starvation.
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Extended Data Fig. 6 | RNAseq and western blot analysis in response to serum or lipoprotein starvation and upon inhibition of the proteasome. a, Gene 
ontology enrichment analysis of genes upregulated under serum starvation in HAP1 wildtype (WT), C12orf49 or SREBF2-KO cells using GO molecular 
functions, GO bioprocesses and Reactome standards. Gene sets with overlapping members have been merged and bars depict mean percentage overlap 
with the indicated term. Numbers next to each bar indicate the mean overlap and term sizes, respectively. The greyscale color legend for p-values 
is indicated on the right; p-values were calculated using gProfileR69. b, Boxplots depicting mean expression and induction of genes assigned with the 
indicated term across HAP1 WT, C12orf49 and SREBF2-KO cells under normal (+FBS) and serum-starved (-FBS) conditions; n = three biologically 
independent experiments, two-tailed student’s t test. Boxes show IQR, 25th to 75th percentile, with the median indicated by a horizontal line. Whiskers 
extend to the quartile ± 1.5 x IQR. c, Western blotting analysis of SREBP2, LDLR and β-Actin levels across the indicated HAP1 co-isogenic knockout cell 
lines in response to overnight lipoprotein withdrawal (-) and a short refeeding period (-/+) in presence or absence of the proteasomal inhibitor MG132 
(10µM MG132 for 5 hours) as indicated. Unprocessed full length and processed C-terminal SREBP2 products are indicated. Representative data from two 
biologically independent experiments.
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Extended Data Fig. 7 | Gating strategy for flow cytometry experiments. Gating strategies for flow cytometry experiments for a, co-culture assays and 
b, LDL/Transferrin uptake assays. In all cases the following steps were taken: 1. Forward scatter area (FSC-A) vs. side scatter area (SSC-A) were used to 
separate cell events from debris. 2. Forward scatter height (FSC-H) vs. forward scatter width (FSC-W) was used separate single cells from aggregates. 
3. Forward scatter area (FSC-A) vs. viability stain (7AAD/B695-40 or Zombie NIR/R780-60) was utilized to gate live cells. For co-culture assays, gating 
scheme for separating GFP/B530-30 vs RFP/YG610-20 positive cells including steps 1-3 are shown in panel (a). For Dil-LDL/YG585-15 quantification, 
marker-positive live cells were quantified relative to unstained controls following steps 1-3 as displayed panel (b).
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