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ABSTRACT

The typical owl family (Strigidae) comprises 194 species in 28 genera, 14 of which are monotypic. Relationships within
and among genera in the typical owls have been challenging to discern because mitochondrial data have produced
equivocal results and because many monotypic genera have been omitted from previous molecular analyses. Here, we
collected and analyzed DNA sequences of ultraconserved elements (UCEs) from 43 species of typical owls to produce
concatenated and multispecies coalescent-based phylogenetic hypotheses for all but one genus in the typical owl
family. Our results reveal extensive paraphyly of taxonomic groups across phylogenies inferred using different analytical
approaches and suggest the genera Athene, Otus, Asio, Megascops, Bubo, and Strix are paraphyletic, whereas Ninox and
Glaucidium are polyphyletic. Secondary analyses of protein-coding mitochondrial genes harvested from off-target
sequencing reads and mitochondrial genomes downloaded from GenBank generally support the extent of paraphyly
we observe, although some disagreements exist at higher taxonomic levels between our nuclear and mitochondrial
phylogenetic hypotheses. Overall, our results demonstrate the importance of taxon sampling for understanding
and describing evolutionary relationships in this group, as well as the need for additional sampling, study, and
taxonomic revision of typical owl species. Additionally, our findings highlight how both divergence and convergence
in morphological characters have obscured our understanding of the evolutionary history of typical owls, particularly
those with insular distributions.
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Parafilia extendida en la familia tipica de los buhos (Strigidae)

RESUMEN

La familia tipica de los buhos (Strigidae) abarca 194 especies en 28 géneros, 14 de los cuales son monotipicos.
Las relaciones adentro y entre géneros en los buhos tipicos han sido dificiles de discernir debido a que los datos
mitocondriales han producido resultados contradictorios y a que muchos géneros monotipicos han sido omitidos
de los analisis moleculares previos. En este trabajo, colectamos y analizamos secuencias de ADN de elementos ultra-
conservados (EUCs) provenientes de 43 especies de buhos tipicos para generar hipétesis filogenéticas concatenadas
y multi-especies basadas en coalescencia para todos los géneros excepto uno en la familia tipica de los buhos.
Nuestros resultados revelan la presencia de una parafilia extendida en los grupos taxondmicos a través de las
filogenias inferidas usando diferentes enfoques analiticos, y sugiere que los géneros Athene, Otus, Asio, Megascops,
Bubo, y Strix son parafiléticos, mientras que Ninox y Glaucidium son polifeliticos. Los andlisis secundarios de genes
mitocondriales que codifican proteinas obtenidos de lecturas de secuenciacién por fuera del objetivo y genomas
mitocondriales descargados de GenBank generalmente apoyan el grado de parafilia que observamos, aunque existen
algunos desacuerdos a niveles taxondmicos mas altos entre nuestras hipétesis filogenéticas nuclear y mitocondrial.
En general, nuestros resultados demuestran la importancia del muestro de los taxones para entender y describir las
relaciones evolutivas en este grupo, asi como la necesidad de muestreos, estudios y revisiones taxonémicas adicionales
de las especies tipicas de buhos. Adicionalmente, nuestros hallazgos subrayan como la divergencia y convergencia
en los caracteres morfolégicos han dificultado nuestro entendimiento de la historia evolutiva de los tipicos buhos,
particularmente aquellos con distribuciones insulares.

Palabras clave: buhos, convergencia morfoldgica, distribuciones insulares, EUCs, filogendmica, taxonomia
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2 Paraphyly of typical owls

INTRODUCTION

Owls (Strigiformes) are among the most iconic birds, easily
recognizable because of their large eyes, distinctive facial
discs, and “fluffy” plumage. The derived features of owls
enable the unique lifestyle of a nocturnal predator and
are involved in soundless flight (Sarradj et al. 2011, Geyer
et al. 2013), complex inherited vocalizations (Konig et al.
1999), and a sophisticated auditory system (Norberg 1968,
Payne 1971, Konishi 1973). These and other adaptations
have enabled more than 200 owl species (Dickinson and
Remsen 2013) to occupy a diversity of habitats around the
globe from tundra to dense forests (Marks et al. 2018).
The taxonomic and systematic history of owls has been
complex and confusing (reviewed in Sibley and Ahlquist
1972). Early studies of owls separated them into 2 taxo-
nomic groups: the barn owls (Tytonidae, Wetmore 1960;
19 species, Dickinson and Remsen 2013) and the typical
owls (Strigidae, Wetmore 1960; 194 species, Dickinson and
Remsen 2013). This division was proposed during the mid-
1800s (Nitzsch 1840) and supported by numerous morpho-
logical characters (Ridgway 1914, Bock and McEvey 1969).
Subsequent classifications of taxa within Strigidae relied
on characters related to the external ear and facial discs:
Bonaparte (1850) proposed 3 subfamilies within the group
(Figure 1A) while Kaup (1862) suggested 2 (Figure 1B).
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In 1940, Peters reclassified members of the group into 2
subfamilies: Buboninae (21 genera) and Striginae (6 genera;
Figure 1C). Subsequently, several authors (Kelso 1940,
Voous 1964; see also Norberg 1977) found that the external
ear was not diagnostic for all taxa and may be subject to
convergence because of its role in prey location. To avoid
potential bias introduced by these convergent characters,
Ford (1967) used comparative osteological analyses and di-
vided the typical owls into 3 subfamilies: Striginae (scops
and screech owls, 13 genera), Surniinae (hawk owls, 8
genera), and Asioninae (eared owls and relatives, 2 genera;
Figure 1D). These taxonomic designations were adopted
until 2008 (Konig and Weick 2008), when molecular data
began to inform classifications.

Early molecular systematics of a small sample of owl
species (Heidrich and Wink 1998, Wink and Heidrich
2000) used partial cytochrome b sequences to confirm
the monophyly of barn owls and typical owls and re-
solve 2 clades that were broadly consistent with pre-
vious taxonomy: Striginae (Otus+Asio+Bubo+Strix; Kaup
1862) and Surniinae (Glaucidium+Athene+Aegolius+Sur
nia; Kaup 1862, Ford 1967). Subsequent studies analyzed
mitochondrial and nuclear data that included additional
taxa to generate phylogenetic hypotheses, all of which
conflicted with Ford’s subfamily taxonomy based on oste-
ology (Wink et al. 2004, 2008, 2009; Wink 2016). Instead,

(A) Bonaparte 1850 (@) Peters 1940
Morphological classification Morphological analysis
134 taxa external ear charcters
594 taxa
% Ululinae < Barn owls
—=< | Surniinae A Buboninae
H Striginae* —< Striginae
*includes barn owls
(B) Kaup 1862 (D) Ford 1967
Morphological classification Morphological analysis
105 taxa osteological characters
284 taxa
% Surniinae < Barn owls
H Striginae* 4 —< Surniinae
*includes barn owls
< Striginae
A Asioninae

FIGURE 1. Previous hypotheses of Strigidae relationships. Note that although some subfamily names have remained consistent, the

genera comprising these subfamilies have changed throughout time.

(E) Wink et al. 2008 & 2009
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1 mitochondrial & 1 nuclear locus
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*also recovered in Wink et al. 1998/2000/2004

(F) Wink et al. 2016
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Wink et al. (2008) suggested typical owls comprised 3
subfamilies: Ieraglaucinae, Surniinae, and Striginae (which
included Asioninae; Figure 1E). However, in their most
recent study, Wink et al. (2016) disagreed with their pre-
vious findings (Wink et al. 2008, 2009) with respect to the
placement of typical owl subfamilies, reversing the posi-
tion of leraglaucinae and Surniinae (Figure 1F) and the
relationships among genera within subfamilies (Wink et al.
2008, 2009; Wink 2016). As summarized by Kelso (1940),
“the subdivision of the family Strigidae has long been a
source of disagreement”

One of the challenges affecting molecular systematics of
typical owls is the difficulty of obtaining genetic samples
from the many monotypic genera in the family—of 14
monotypic genera (including Mimizuku), 8 at most were
included in previous molecular studies (Wink et al. 2009,
Miranda et al. 2011, Dantas et al. 2016, Wood et al. 2016,
Koparde et al. 2018). The 6 unsampled genera (Uroglaux,
Margarobyas, Xenoglaux, Pyrroglaux, Nesasio, and Jubula)
include species poorly known to science and poorly
represented in biological collections. A more complete un-
derstanding of owl systematics requires inclusion of these
species and the use of techniques that allow us to collect
and analyze genetic data from historical specimens, like
the enrichment of nuclear loci from museum specimen
toepads (McCormack et al. 2015).

Here, we use targeted enrichment and analysis of
ultraconserved elements (UCEs) collected from modern
tissues and historical museum specimens to infer
relationships among species of typical owls (Strigidae), and
we include 6 monotypic genera that have not been used in
previous molecular studies. We analyzed the collected data
using concatenated maximum-likelihood, concatenated
Bayesian, and multispecies coalescent approaches, and
we also analyzed protein-coding regions of whole mito-
chondrial genomes to understand how different molecular
markers may have affected the inference of the evolu-
tionary relationships among members of this family.

METHODS

Taxonomy

Throughout this manuscript, we follow the taxonomy of
Dickinson and Remsen (2013), with the exception of how
we treat Mimizuku/Otus gurneyi. Although Dickinson
and Remsen (2013) used the genus Mimizuku in their tax-
onomy, Miranda et al. (2011) showed that this species is
nested within Otus. As a result, and to make clear that our
findings are similar to those of Miranda et al. (2011), we
have referred to this taxon as Otus (Mimizuku) gurneyi.
We have also followed Dickinson and Remsen (2013) with
respect to the subfamily name Ieraglaucinae, which has
precedence over Ninoxinae (Wink et al. 2008) per ICZN
(1999).
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Sampling and DNA Extraction

Our study included 39 tissue and 7 toepad samples (be-
tween 51 and 115 yr old) from 45 specimens comprising all
but one of 28 Strigidae genera and 1 specimen representing
each of the 2 Tytonidae genera (Table 1). Generally, we
selected samples based on availability from museum
collections and assumed tissue quality, and we preferred to
sample taxa that had not been included in previous molec-
ular phylogenetic studies, when possible. For genera with
more than 4 species, we included samples of 2 or more
taxa. Finally, because Xenoglaux loweryi had not been in-
cluded in previous molecular phylogenies and because
multiple tissue samples were readily available to us, we in-
cluded 2 individuals of this taxon so that we could be more
confident in our phylogenetic placement of this monotypic
genus. Although we received a toepad from Heteroglaux
blewitti (the remaining monotypic genus), we were un-
able to include these data because they appeared to be
contaminated with DNA from another bird. From all other
tissue and toepad samples, we extracted DNA using either
a Qiagen DNeasy Blood & Tissue Kit (Qiagen, Valencia,
California, USA) following the manufacturer’s instructions
(tissues) or a phenol-chloroform protocol (toepads; Tsai
et al. 2019). Because sequence capture of a 1931 specimen
of Margarobyas lawrencii failed to recover any UCEs, we
sampled a 1960 specimen of the same species from which
we were able to recover UCEs. We were able to recon-
struct a partial mitochondrial genome from the off-target
sequencing reads of the 1931 specimen but the same pro-
cedure did not work well with the 1960 specimen. As a
result, we included the 1960 Margarobyas lawrencii spec-
imen in our nuclear UCE results and the 1931 specimen
in our mitochondrial results. We also included data for
the remaining barn owl genus and 3 outgroup taxa (Table
1) that we harvested from existing genome assemblies
using PHYLUCE (Faircloth 2016) following the PHYLUCE
Tutorial IIT guidelines (Faircloth 2015a).

Sequence Capture and Next-Generation Sequencing

Following DNA extraction, we collected sequence data
using targeted enrichment of UCEs (Faircloth et al. 2012).
To prepare tissue samples for targeted enrichment, we used
an ultrasonicator (Qsonica, Newtown, Connecticut, USA)
to shear 65 uL of DNA at 10 ng pL™ to a peak size distri-
bution of 400-600 base pairs (bp). Due to DNA degrada-
tion in the toepad samples, as noted by other researchers
(McCormack et al. 2015, 2017), peak size distribution was
already between 100 and 300 bp, and we did not sonicate
these samples. From both sample types, we prepared dual-
indexed genomic libraries using the KAPA Hyper Prep li-
brary preparation kit at one-half volume (F. Hoffmann-La
Roche AG, Basel, Switzerland) and custom indexes (Glenn
et al. 2019). Following library preparation, we combined 7
to 8 libraries into 6 pools for targeted enrichment, and we
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TABLE 1. Sample information and genomic summary statistics.

J. F. Salter, C. H. Oliveros, P. A. Hosner, et al.

Catalog no./ Average Average
Museum Tissue no./ Read locus  mtDNA  mtDNA
Species /Source  Accession no. Locality pairs UCEs length reads  coverage
Aegolius funereus KU 28868 Mongolia 3,272,796 4,688 896 112,124 413
Apaloderma vittatum Genbank JMFV00000000 Tanzania - 4,753 1,107 - -
Asio clamator UWBM 93240 Honduras 2,587,895 4,788 962 2,861 16
Asio flammeus KU 21727 Kansas, USA 8,166,478 4,671 795 11,125 55
Asio otus KU 15937 Kansas, USA 7,949,210 4,749 851 2,521 10
Athene cunicularia KU 31327 Missouri, USA 3,891,484 4,689 912 34,383 112
Athene noctua KU 21790 Spain 8,139,398 4,653 848 7,504 30
Athene superciliaris FMNH 384685 Madagascar 2,537,748 4,821 964 2,703 11
Bubo cinerascens KU 15360 Ghana 4,713,695 4,709 800 10,795 64
Bubo nipalensis* (1949) FMNH 189733 India 2,384,623 4,760 449 1,262 5
Bubo scandiacus KU 27634 Kansas, USA 4,259,627 4,727 913 5910 36
Ciccaba virgata KU 4964 El Salvador 3,084,402 4,680 836 99,358 612
Falco peregrinus Genbank AKMT00000000 UAE? - 4819 1,113 - -
Glaucidium brodiei AMNH 10781 Vietnam 8,888,820 4,722 859 - -
Glaucidium capense UwBM 104493 Malawi 590,271 4,700 1,086 2,592 1
Glaucidium gnoma KU 29507 Oregon, USA 3,306,411 4,715 926 17,790 64
Glaucidium tephronotum AMNH 12422 Liberia 9,337,613 4,697 867 20,037 92
Haliaeetus leucocephalus Genbank JPRR0O0000000 USA - 4,502 407 - -
Jubula lettii* (1933) FMNH 270520 Cameroon 1,228,395 314 252 551 5
Ketupa ketupu AMNH 9666 Unknown 6,915,649 4,725 895 - -
Lophostrix cristata LSU 40834 Peru 5,971,341 4,690 894 18,858 103
Margarobyas lawrencii* (1931) ~ ANSP 111914 Cuba - - - 874 13
Margarobyas lawrencii* (1960)  LSU 142308 Cuba 576,351 982 240 - -
Megascops albogularis KU 29421 Peru 3,835,053 4,722 876 100,730 535
Megascops asio KU 29844 Missouri, USA 4,436,977 4,719 890 24,476 126
Megascops nudipes LSU 11317 Puerto Rico 4,625,746 4,722 952 3,255 6
Micrathene whitneyi LSuU 38772 Texas, USA 1,210,952 4,791 1,034 3,279 15
Nesasio solomonensis AMNH 6621 Solomon Islands 873,912 4,743 1,062 1,378 8
Ninox boobook KU 10706 Australia 5,637,018 4,692 885 48,692 245
Ninox jacquinoti AMNH 6636 Solomon Islands 3,843,012 4,608 836 8,317 27
Otus (Mimizuku) gurneyi KU 19248 Philippines 7,180,958 4,688 889 6,591 43
Otus elegans KU 10975 Philippines 2,589,384 4,669 910 43,626 324
Otus rufescens KU 17816 Malaysia 2,007,177 4,712 906 29,993 185
Phodilus badius AMNH 10244 Singapore 11,279,405 4,676 865 - -
Pseudoscops grammicus* (1961) DMNH 2203 Jamaica 1,398,677 4,512 329 1,921 8
Psiloscops flammeolus LSuU 20019 California, USA 859,340 4,757 1,021 1,280 8
Ptilopsis granti LACM 115604 Aviary 4,902,354 4,852 682 1,185 7
Pulsatrix melanota KU 18423 Peru 9,769,518 4,683 788 23,846 133
Pyrroglaux podargina KU 23683 Palau 8,508,853 4,694 837 195,768 1419
Sceloglaux albifacies® (1903) AMNH 230260 New Zealand 559,371 2,273 247 - -
Scotopelia peli* (1962) FMNH 262870 Botswana 854,858 4,534 376 6,778 27
Strix aluco KU 6764 England 5,445,075 4,662 881 8,373 49
Strix rufipes KU 11745 Argentina 1,996,628 4,726 9206 20,356 124
Strix varia KU 22621 Florida, USA 6,966,076 4,733 807 55,177 327
Strix woodfordii KU 29079 DRCP 2,092,763 4,701 886 42,293 236
Surnia ulula KU 9490 Minnesota, USA 6,854,350 4,660 855 18,961 76
Tyto alba Genbank JJRD00000000  USA - 4,690 1,094 - -
Uroglaux dimorpha KU 31387 Papua New Guinea 269,946 3,594 416 - -
Xenoglaux loweryi LSU 44203 Peru 2,573,555 4,692 904 42,556 200
Xenoglaux loweryi LSuU 44364 Peru 893,654 4,416 912 8,688 36
*Average (toepad samples) 1,167,046 2,896 315 2,277 12
Average (tissue samples) 4,673,450 4,675 880 28,816 160
Average all samples 4,205,929 4,459 815 25,711 143

* Denotes toepad sample (year collected).

2 United Arab Emirates.
b Democratic Republic of Congo.
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made sure to create separate pools of tissue libraries and
toepad libraries. We enriched each library pool for 5,060
UCE loci using a MYbaits_Tetrapods-UCE-5K kit (Arbor
Biosciences, Ann Arbor, Michigan, USA) following a pro-
tocol (Faircloth et al. 2018) modified from Faircloth et al.
(2012). Following enrichment, we used 16 cycles of PCR
to increase the amount of enriched DNA, and we ran the
amplified, post-enrichment pools on a Bioanalyzer (Agilent
Technologies, Santa Clara, California, USA) to verify peak
size distributions and check for the presence of adapter-
dimer. When necessary, we used additional SPRI bead
cleanups (Rohland and Reich 2012) to remove remaining
adapter dimer. Finally, we quantified pools using a KAPA
qPCR quantification kit (F. Hoffmann-La Roche AG), and
we combined pools together at equimolar ratios prior to
150-bp paired-end (PE150) sequencing using 2 lanes of an
[lumina HiSeq 3000 run (Oklahoma Medical Research
Foundation, Oklahoma City, Oklahoma, USA).

Bioinformatic Processing, Assembly, and Alignment

of UCEs

The sequencing center returned FASTQ sequence data
to us, and we used illumiprocessor (Faircloth 2013), a
wrapper around Trimmomatic (Bolger et al. 2014), to
remove adapter sequences from the data and trim raw
reads for quality. Because some libraries received a larger
number of FASTQ reads than others, we used seqtk (Li
2012) to randomly downsample libraries having more than
2 million cleaned read pairs (i.e. 4 million reads, in total).
We then assembled reads into contigs using PHYLUCE
(Faircloth 2016) and SPAdes (Bankevich et al. 2012). To
check assembled libraries for the correct species identifi-
cation and potential contamination, we ran the PHYLUCE
program match-contigs-to-barcodes (Faircloth 2016)
using a Bubo virginianus COI sequence (NCBI GenBank
EU525335.1) as a reference. We then input extracted
contigs that matched the reference COI to NCBI BLAST
(Johnson et al. 2008) to compare the extracted sequences
to sequences in NCBI GenBank, confirm the identity of
each sample, and check for any contaminating (different
species identity) COI sequences. For the remainder of the
data processing steps, we followed the PHYLUCE Tutorial
I guidelines (Faircloth 2015b): we identified contigs
containing UCE loci by matching contigs to the UCE probe
sequences (Table 1), we aligned UCE loci with MAFFT
7.13 (Katoh and Standley 2013), and we performed in-
ternal trimming of alignments with default parameters in
GBLOCKS 0.91b (Castresana 2000). We removed loci that
were missing data from more than 13 taxa to produce a
75% complete data matrix containing 4,253 UCE loci.

Mitochondrial Genome Assembly and Alignment
We wanted to compare our phylogenetic results from
nuclear UCE loci to prior studies that have primarily
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analyzed data from mitochondrial genes. Because data
from targeted enrichment can include reads from genomic
regions other than those targeted, some of these reads can
be assembled into entire mitochondrial genome sequences
(Picardi and Pesole 2012, Raposo do Amaral et al. 2015).
We used MITObim 1.9 (Hahn et al. 2013), a PERL wrapper
around MIRA 4.0.2 (Chevreux et al. 1999), to recon-
struct mitochondrial genomes from the FASTQ data for
40 of our samples, using a mitochondrial genome of Otus
scops from NCBI Genbank as a reference (Supplemental
Material Table S1). We also downloaded 15 mitochon-
drial genome assemblies representing additional ingroup
and outgroup taxa (Supplemental Material Table S1) from
NCBI GenBank. Then, we used Geneious 6.0.5 (https://
www.geneious.com) to propagate the annotation of the
Otus scops mitochondrial genome to the other assemblies
assuming 54% sequence similarity (the threshold at which
the Geneious live annotation tool identified the protein-
coding genes across all other assemblies), and we extracted
13 mitochondrial protein-coding genes from each mito-
chondrial genome assembly (Supplemental Material Table
S1). We aligned each extracted gene independently using
the Geneious Aligner with default parameters in Geneious
6.0.5, trimming poorly aligned edges where necessary, and
we concatenated all 13 protein-coding gene alignments
using Sequence Matrix 1.7.8 (Vaidya et al. 2011).

Concatenated UCE Phylogenies

For the UCE dataset, we analyzed the unpartitioned,
concatenated data matrix using both maximum likelihood
(ML) and Bayesian inference (BI) approaches. For the ML
analysis, we used ExaML 3 (Kozlov et al. 2015) with the
GTRGAMMA model to perform 20 searches for the op-
timal ML tree and 100 bootstrap replicate analyses, and we
reconciled the best ML tree with the bootstrap replicates
using Sumtrees 3.3.1 (Sukumaran and Holder 2010) with
default parameters and the option to output support values
as percentages. For the BI analysis, we used ExaBayes 1.5
(Aberer et al. 2014) with the GTRGAMMA model to
sample 4 independent runs of 2 Markov chains each for 2
million generations. After discarding the first 10% of gen-
erations as burn-in, we assessed convergence between the
runs by ensuring that the average standard deviation of
split frequencies between the sampled trees was <0.5%, the
effective sample size of all parameters across the combined
log files was >200, and the potential scale reduction factor
of all parameters across all runs was <1.1. We used the
consense program in ExaBayes to produce a 50% majority-
rule consensus tree with 10% burn-in.

Coalescent-Based UCE Phylogenies

Because UCE data are collected from putatively inde-
pendent, nuclear loci, we used 2 coalescent species tree
estimation methods to account for heterogeneous gene/
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locus histories. First, we used PHYLUCE (Faircloth 2016)
to perform site- and locus-wise resampling (Seo 2008)
of the 75% data matrix and generate 100 bootstrapped
subsets of this data matrix. Then, we used RAxML 8.2.8
(Stamatakis 2014) with the GTRGAMMA model and GNU
Parallel 3+ (Tange 2011) to infer gene trees for each UCE
locus in the bootstrapped subsets, and we used PHYLUCE
to sort the resulting gene trees among resulting subsets.
Finally, we input each bootstrapped subset of loci into
ASTRAL-III 5.6.1 (Zhang et al. 2017) using GNU Parallel
3+ (Tange 2011) to infer species trees from all 100 subsets
of multilocus bootstraps, and we generated a majority
rule consensus tree from the 100 bootstrapped trees using
Sumtrees 3.3.1 (Sukumaran and Holder 2010) with default
parameters other than enabling the options to output sup-
port values as percentages and collapse nodes having less
than 70% support.

We also analyzed the UCE data using SVDquartets
(Chifman and Kubatko 2014), which is a coalescent ap-
proach (Wascher and Kubatko 2019) that does not rely
on gene tree estimation, which can be error prone (Roch
and Warnow 2015). Specifically, we used RAxML 8.2.8
(Stamatakis 2014) to generate 100 bootstrap replicates
from our concatenated UCE alignment and PAUP* 4.0a161
(Swofford 2002) to generate quartet trees by singular value
decomposition. We then used the max-cut-trees method
in Quartet MaxCut 3.0 (Snir and Rao 2012) to infer spe-
cies trees from quartet trees, which we summarized using
Sumtrees 3.3.1 (Sukumaran and Holder 2010).

Mitochondrial Genome Phylogeny

Because the mitochondrial dataset was smaller and be-
cause partitioning mitochondrial data is straightforward,
we used the rcluster search algorithm with unlinked
branch lengths in PartitionFinder2 2.1.1 (Lanfear et al
2017) to select an appropriate partitioning scheme and
nucleotide substitution models for the data (Lanfear et al.
2014). Specifically, we tried partitioning the data by gene,
as well as by codon position within each gene, and we ul-
timately selected a 15-partition scheme that accounted
for codon position (AIC, score 392503.159647, log-
likelihood -194180.089966). We then used RAxML 8.0.19
(Stamatakis 2014) with the GTRGAMMA model to per-
form 100 searches for the optimal ML tree, perform boot-
strap replicate searches using the autoMRE option, and
reconcile the best tree with the bootstrap replicates.

RESULTS

Recovery of UCEs and Mitochondrial Genomes

We obtained an average of 4.6 million read pairs from tissue
samples (range: 269,946—11,279,405 reads) and 1.1 million
read pairs from toepad samples (range 358,877-2,384,623)
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(Table 1). After downsampling libraries, we used these
reads to assemble an average of 142,107 contigs per
tissue sample (mean length = 880 bp) and 29,071 contigs
per toepad sample (mean length = 315 bp). Among the
assembled contigs, we identified an average of 4,675 UCE
loci from tissue samples and 2,896 UCE loci from toepad
samples (Table 1). We enriched a total of 4,325 UCEs
shared by at least 36 ingroup and outgroup taxa, producing
a GBLOCKS-trimmed, concatenated, 75% complete data
matrix containing 2,034,468 characters and 99,241 parsi-
mony informative sites. Two toepad samples, Jubula lettii
and Margarobyas lawrencii, underperformed during en-
richment, and we recovered fewer than 1,000 UCE loci
from each (Table 1). Although it was sequenced from
a recently collected tissue sample, Uroglaux dimorpha
yielded the lowest number of read pairs and a short average
contig length consistent with the toepad samples (Table
1). To examine the effects of including/excluding subop-
timal samples on our results, we also produced a filtered,
concatenated, GBLOCKS-trimmed 75% complete data ma-
trix excluding all toepad samples and Uroglaux dimorpha,
which included 4,642 UCE loci; 3,181,795 characters; and
245,724 parsimony informative sites.

We were able to use off-target reads and MitoBim to re-
construct mitochondrial genomes for 40 of the 45 taxa, in-
cluding 5 toepad samples—one from which we were unable
to recover UCEs (Table 1). The mitochondrial genomes we
assembled from tissue samples had an average coverage of
156X while mitochondrial genomes we assembled from
toepad samples had an average coverage of 12X (Table
1). Because samples with low coverage are prone to as-
sembly problems (Hubisz et al. 2011), we excluded mi-
tochondrial assemblies where coverage was lower than
5X. After extracting and aligning genes from the 40 mi-
tochondrial genomes we assembled, as well as 15 mito-
chondrial genome assemblies that we downloaded from
NCBI GenBank, we created a 97% complete data matrix
from 13 protein-coding mitochondrial gene alignments
across 55 taxa to produce a concatenated alignment of
11,366 characters and 5,999 parsimony informative sites
(Supplemental Material Table S1).

Concatenated UCE Phylogenies

ML and BI analyses of our concatenated UCE data
produced identical, highly supported phylogenetic
hypotheses of relationships among the sampled lineages
(Figure 2A; see Supplemental Material Figure S1 for
branch lengths). These concatenated analyses resolve
barn owls and typical owls as reciprocally monophyletic
and suggest that typical owls comprise 2 sister clades,
which we have labeled Clades A and B (Figure 2A). Clade
A comprises (1) a small Australasian group, tribe Ninoxini
(Weick 2006), containing Uroglaux dimorpha of New
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FIGURE 2. Cladogram of 46 owls (44 typical owls, 2 barn owls) inferred with (A) maximum likelihood (ML) and Bayesian inference (BI)
analyses and (B) SVDquartets analysis of 4,235 nuclear ultraconserved element loci. ML and Bl analyses produced identical topologies.
Taxa in bold represent monotypic genera. Rounded gray boxes bracketing species names denote typical owl tribes: Ninox. = Ninoxini,
Aeg. = Aegolini, Puls. = Pulsatrigini. All nodes received 100% bootstrap support / Bayesian posterior probability (BPP) unless otherwise
labeled (ML bootstrap support/BPP). Nodes with <70% support have been collapsed, and pink branches and dotted lines indicate
conflicting relationships. See Supplemental Material Figure S1 for a phylogram of the same relationships.

Guinea (monotypic) as sister to a clade of Sceloglaux
albifacies of New Zealand (monotypic) and Ninox boobook
of Australasia, and (2) a larger clade that includes the pre-
viously unsampled, monotypic Margarobyas lawrencii of
Cuba as sister to a group of taxa that are known as sub-
family Surniinae (Wink et al. 2008). Interestingly, our
results confirm previous supposition that Xenoglaux
loweryi belongs within Surniinae (as presented in Wink
et al. 2008) and strongly suggest Glaucidium brodiei is

sister to a clade comprising Micrathene whitneyi and
Xenoglaux loweryi rather than forming a clade with other
species of Glaucidium.

Clade B corresponds largely to a group of taxa known as
Striginae (Wink et al. 2008). Within this group we resolve
a clade of Otus relatives (tribe Otini, including Pyrroglaux
podargina; Wink et al. 2008) sister to the remainder of
taxa within the subfamily. This remaining group includes
a clade of Ptilopsis granti + Asio relatives (tribe Asionini;
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Wink et al. 2008) sister to a large clade containing spe-
cies in tribes Bubonini, Megascopini, Pulsatrigini, and
Strigini—the membership of which our results corrobo-
rate Wink et al. (2008). Novel relationships that we recover
are resolution of Jubula lettii as sister to tribe Bubonini (cf.
coalescent results, below) rather than tribe Strigini (Weick
2006, Wink et al. 2008), and the placement of Margarobyas
lawrencii within Surniinae rather than tribe Otini (Weick
2006, Wink et al. 2008).

To examine the effects of suboptimal samples in our
analyses, we also inferred an ML tree without the toepad
samples or Uroglaux dimorpha, which resolves the same
backbone topology as Figure 2 with improved support,
particularly within tribe Bubonini (Supplemental Material
Figure S2).

Coalescent-Based UCE Phylogenies

Our results from SVDQuartets generally agree with our
concatenated analyses except that this analysis resolves
Uroglaux dimorpha as sister to all other Strigidae,
Margarobyas lawrencii as sister to Australasian tribe
Ninoxini, and Jubula lettii as sister to all remaining
lineages within Striginae (Figure 2B). Our results from
the coalescent-based program ASTRAL-III diverge much
more from our concatenated and SVDQuartets analyses
(Supplemental Material Figure S3). However, support for
many of these different relationships was low, and many
of the taxa from which we collected toepad sequence data
were pulled toward the root of the tree—a pattern that
can result as an artefact of including short UCE contigs
assembled from toepad data in some coalescent-based
analyses (Hosner et al. 2016, Moyle et al. 2016). Because
of the problems associated with including toepads in
ASTRAL analyses, we focus our discussion of coalescent-
based results on the SVDQuartets tree.

Mitochondrial Genome Phylogeny

Our ML phylogeny of 13 protein-coding regions extracted
from 55 mitochondrial genome assemblies (Supplemental
Material Figure S4) differs substantially from our concatenated
and coalescent (SVDQuartets) analyses of nuclear DNA,
while largely agreeing with topologies previously resolved
using a combined 2-gene mito-nuclear dataset (Wink et al.
2008, 2009). Specifically, we recover a clade “C” sister to
Clades A and B that roughly corresponds to leraglaucinae
(Wink et al. 2008, 2009). Clade A comprises the Surniinae,
and the relationships among the taxa in this group do not
differ from our concatenated and coalescent analyses of UCE
data. Similarly, within Clade B, the mitochondrial analyses
resolve a clade of Otus relatives (tribe Otini, including
Pyrroglaux podargina; Wink et al. 2008) sister to remaining
taxa within Striginae, and the mitochondrial data mirror the
UCE results by resolving Ptilopsis granti + Asio relatives (tribe
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Asionini; Wink et al. 2008) sister to the remaining species
in tribes Bubonini, Megascopini, Pulsatrigini, and Strigini
(note, however, the reversed positions of Asio clamator and
Pseudoscops grammicus). The major differences between the
mitochondrial and UCE data occur among the relationships
we resolve for these remaining tribes: rather than recovering
Jubula lettii + tribe Bubonini as sister to a clade comprising
Megascopini, Pulsatrigini, and Strigini, the mitochondrial
data suggest that tribe Megascopini is sister to an unre-
solved group that includes tribes Pulsatrigini, Jubula lettii +
Bubonini, and Strigini.

DISCUSSION

Previous phylogenetic studies of typical owls have differed
demonstrably in resolution of relationships among clades
(Figure 1) and placement of lineages. Some of these
contrasting results reflect differences in the types of mor-
phological characters or genetic data analyzed, whereas
others can be attributed to incomplete overlap in taxon
sampling. Here, we tried to overcome several of these
difficulties by collecting and analyzing thousands of
ultraconserved nuclear loci from 43 Strigidae species that
represent all but one of the 28 genera within the group.

The topologies we recover from concatenated and
SVDQuartets analyses of thousands of nuclear UCE loci
are well resolved and stable between analytical paradigms,
although they differ, at several levels, from existing
hypotheses of Strigidae relationships inferred from fewer
loci. At the subfamily level, we recover 2 main clades of typ-
ical owls that we have designated Clade A and Clade B, and
which generally correspond to hypotheses of relationships
within Strigidae proposed by Wink et al. (2008, 2009;
see below). It is important to note that the placement of
Uroglaux dimorpha within Clade A in our concatenated
results conflicts strongly with the placement of Uroglaux
dimorpha as sister to Clades A and B in our coalescent-
based analyses. We regard the position of Uroglaux
dimorpha as uncertain, and this discrepancy could be
caused by the amount of data missing between Uroglaux
dimorpha and its putative sister lineage(s)—a problem
that has been observed elsewhere (Oliveros et al. 2019). To
better understand this problem, future empirical studies
of this group should use higher-quality samples from this
taxon, and future simulation studies should investigate the
impact of missing data on SVDQuartets analyses.

Within Clades A and B, the concatenated and
SVDQuartets results recover topologies that generally
support higher-level taxonomic designations of typical owl
tribes described in previous studies such as Weick (2006)
and Wink et al. (2008, 2009). However, at the genus level,
our results suggest that a number of generic names are
problematic with respect to current taxonomy (Dickinson
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and Remsen 2013), as demonstrated by the paraphyly of
Athene, Otus, Asio, Megascops, Bubo, and Strix and the
polyphyly of Ninox and Glaucidium. As we observed with
Uroglaux dimorpha, it is important to note that Jubula
lettii appears in 2 very different positions between our
concatenated and coalescent-based results, making it hard
to determine whether this lineage is sister to all remaining
taxa within Clade B or whether Jubula lettii should be in-
cluded in tribe Bubonini.

Although our concatenated and coalescent-based
SVDQuartets analyses largely agree, comparison of these
topologies with the species tree inferred using ASTRAL
was difficult. This was due to poor resolution of the
ASTRAL tree and the fact that most of the taxa having
data generated from toepads were placed in uncertain phy-
logenetic positions. The poor resolution of the ASTRAL
species tree is not entirely surprising for the following
reasons: (1) we recovered fewer loci from low-quality
DNA extracts, and ASTRAL species tree reconstruction
can be negatively affected by having too few loci (Shekhar
et al. 2018); (2) DNA extracts from low-quality sources
like toepads or degraded tissues produce relatively short
contigs that can lead to gene tree estimation error and poor
resolution of the species tree (Roch and Warnow 2015,
Hosner et al. 2016, Moyle et al. 2016); and (3) the inclusion
in alignments of short DNA sequences for some taxa with
longer DNA sequences from others (i.e. “type-II” missing
data) can produce inaccurate species trees (Hosner et al.
2016, Sayyari et al. 2017), sometimes pulling tips having
missing data erroneously toward the root (Moyle et al.
2016). For example, the sequence data we collected from
a degraded tissue sample of Uroglaux dimorpha and 6
toepad samples of other taxa assembled to mean contig
lengths ~562 bp shorter (95 CI: 330 + 64 bp) than the mean
contig length we observed for UCE contigs assembled from
tissues (95 CIL: 892 + 24 bp; Supplemental Material Figure
S3, Table 1). When analyzing these data using ASTRAL,
samples having fewer loci and shorter contig assemblies
were pulled toward the root of the ASTRAL species tree
(Supplemental Material Figure S3), although support
for these relationships was low. Because SVDQuartets
analyzes quartets of concatenated alignments as input,
SVDQuartets should be affected to a smaller degree by the
inclusion of degraded or historical samples having a large
number of short contigs relative to gene tree reconciliation
approaches (Hosner et al. 2016), and we have focused on
the SVDQuartets results. As noted above, future simula-
tion studies would help quantify the circumstances under
which SVDQuartets performs optimally.

When we compare results from thousands of nuclear
loci (Figure 2) to those we inferred from 13 protein-coding
mitochondrial genes (Supplemental Material Figure S4),
we corroborate some of the findings reported by earlier
studies (Figure 1; Wink et al. 2008, 2009; Wink 2016).
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For example, our mitochondrial analysis recovers “Clade
C) (Margarobyas, Sceloglaux, and Ninox) that is sister to
Clades A+B and largely corresponds to the typical owl sub-
family leraglaucinae (Figure 1E; Wink et al. 2008, 2009;
Wink 2016). Within Clades A and B, the mitochondrial
analysis recovers relationships among and within most of
the tribes that are similar to the results from thousands
of nuclear DNA loci, although notable differences exist
in the positions of tribes Bubonini and Megascopini and
the branching order of lineages within tribes Otini and
Asionini. The mitochondrial analyses also generally sup-
port the results from our nuclear DNA analyses, which
suggest that Athene, Otus, Asio, Megascops, Bubo, and Strix
are paraphyletic, while Ninox and Glaucidium are polyphy-
letic, although some of the taxa that we used and some of
the placements of these taxa are different in the mitochon-
drial topology. Although the potentially conflicting evolu-
tionary histories we observe between mitochondrial and
nuclear DNA topologies are interesting and reflect patterns
observed in other studies (Zarza et al. 2016, Platt et al. 2018),
we place more weight on the concatenated and coalescent
topologies we inferred from thousands of putatively inde-
pendent nuclear loci (Figure 2) vs. results generated from
the single evolutionary history encoded in the mitochon-
drial genes we used (Supplemental Material Figure S4).

Subfamily Relationships

Throughout this paper, we have generally ignored sub-
family taxonomy and referred to Clades A, B, and C in
our phylogenetic results to reduce confusion. However,
these clade designations sometimes correspond with tra-
ditional typical owl subfamily taxonomy. For example, in
our concatenated UCE analysis, we recover Clade A, which
includes Uroglaux dimorpha and generally corresponds to
subfamilies Surniinae + Ieraglaucinae. Ford (1967) thought
these 2 subfamilies should be lumped (“Surniinae”)
based on osteological evidence. Our coalescent-based,
SVDQuartets analysis makes interpreting exact member-
ship of Clade A more complicated, however, because we
resolved Uroglaux dimorpha as a representative of a group
that is sister to Clades A+B. Moving beyond the exact
membership of Clade A, both concatenated and coales-
cent analyses resolve the membership of Clade B, which
generally corresponds to subfamily Striginae as recognized
by Wink et al. (2008) and Dickinson and Remsen (2013).
Importantly, neither concatenated nor coalescent-based
analyses of thousands of nuclear loci recover Clade C
(comprising Margarobyas, Ninox, and Sceloglaux) as sister
to Clades A+B (Wink et al. 2008, 2009) or Clade A as sister
to Clades B+C (Wink 2016). The conflicting evidence from
mitochondrial data (Wink et al. 2008, 2009; Wink 2016)
and a dearth of clear osteological evidence (Ford 1967) sug-
gest that further genetic and morphological investigation
is needed to verify the subfamily status of leraglaucinae.
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Novel Relationships among Typical Owls

Above, we have focused on a number of higher-level
results suggested by our concatenated and coalescent phy-
logenetic hypotheses, although many of the difficulties
inferring high-level relationships among typical owls are
recapitulated within and among typical owl genera and
species. Below, we have provided additional detail relative
to a number of interesting results at the genus and species
levels.

Sceloglaux. Our concatenated and coalescent-based
analyses (as well as our concatenated mitochondrial data)
confirm previous mitochondrial analyses that placed the
extinct New Zealand endemic Sceloglaux albifacies within
a clade containing Ninox species (Wood et al. 2016). These
results are consistent with the biogeography of these spe-
cies, given the primarily Australasian distribution of the
genus Ninox and the fact that Sceloglaux albifacies was a
New Zealand endemic.

Uroglaux. Our concatenated nuclear DNA results sug-
gest that Uroglaux dimorpha of New Guinea is sister to
Ninox boobook + Sceloglaux albifacies (Ninox + Sceloglaux,
hereafter) consistent with the biogeography of these spe-
cies and previous speculation regarding the phylogenetic
affinities of Uroglaux (Weick 2006, Wink et al. 2008).
However, the differences we observed in the placement
of Uroglaux dimorpha between our concatenated and
coalescent-based topologies suggest that increased taxon
sampling and/or the inclusion of higher-quality DNA
extracts are needed to definitively establish whether
Uroglaux dimorpha (1) is sister to all remaining typical owl
lineages, (2) is sister to the clade of Ninox + Sceloglaux, or
(3) may be nested within the Ninox + Sceloglaux clade.

Margarobyas. Sequence capture from 2 Margarobyas
lawrencii specimens was suboptimal, possibly due to the
age of the specimens and/or means of preservation. Even
after collecting additional sequencing reads for each
sample, we enriched zero UCE loci from the 1931 specimen
and 982 UCEs from the 1960 specimen. Additionally, the
982 UCE loci from the second sample were short, having
a mean locus length of 240 bp (Table 1). Although the
exact placement of Margarobyas lawrencii differs between
our concatenated and coalescent analyses, both analyses
strongly suggest that Margarobyas lawrencii is a member
of Clade A, contradicting previous supposition that
Margarobyas lawrencii was closely related to Megascops
nudipes (Sclater and Salvin 1868, Olson and Suarez 2008),
a taxon we recover deeply nested within Clade B.

Micrathene and Xenoglaux. One of the most surprising
results of these analyses is our confirmation of a close re-
lationship between Glaucidium brodiei, Micrathene
whitneyi, and Xenoglaux loweryi. These results support
an idea initially proposed by O’Neill and Graves (1977) in
their description of Xenoglaux based on shared similarity of
skeletal, morphological, and plumage characters, and they
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better resolve earlier mito-nuclear analyses that sampled
fewer taxa and genetic loci and placed Micrathene sister
to Aegolius, Athene, Surnia, and Glaucidium (Wink et al.
2008). Although our resolution of the relationships among
Glaucidium, Micrathene, and Xenoglaux differs from
earlier findings, the relationships we resolve are supported
across the concatenated, SVDQuartets, and ASTRAL
analyses of UCE data (Figure 2, Supplemental Material
Figure S3). This result is also supported in our mitochon-
drial analysis (Supplemental Material Figure S4), using a
Glaucidium brodiei mitochondrial genome sequence from
NCBI GenBank (Supplemental Material Table S1).

The close relationship between Glaucidium brodiei,
Micrathene, and Xenoglaux suggests that these species
may be relicts of a once-widespread lineage of owls. Similar
biogeographic patterns have been observed in passerine
birds, such as superfamily Bombycilloidea, which arose
during the early Miocene (~20 MYA; Oliveros et al. 2019)
and includes monotypic families endemic to Hispaniola,
Sulawesi, and the Hawaiian archipelago, as well as species-
poor Mesoamerican and panarctic families (Fleischer et al.
2008, Spellman et al. 2008, Oliveros et al. 2019). Time-
calibrated analyses and expanded taxonomic sampling of
owls will help elucidate biogeographic hypotheses of how
this clade formed and may uncover additional members of
this lineage.

Ninox jacquinoti. All analyses of nuclear and mito-
chondrial data recover Ninox jacquinoti of the Solomon
Islands in a clade of Athene species within tribe Surniini.
There is some precedent for this result: a recent analysis of
24 species of Ninox from Wallacea using 2 mitochondrial
and 5 nuclear genes included Ninox jacquinoti and Athene
superciliaris as outgroups, and the authors found Ninox
jacquinoti was more closely related to Athene superciliaris
than to the ingroup Ninox species (Gwee et al. 2017).
Athene superciliaris, a Madagascar endemic, was once
placed in Ninox, until analysis of cytochrome b and RAG-1
genes suggested that it was nested within the Athene clade
(Wink et al. 2008). Our analyses confirm these findings.
Interestingly, Ninox jacquinoti was originally described
as a member of Athene (Bonaparte 1850), and it is un-
clear when or why it was assigned to Ninox (Peters 1940).
Because our analyses suggest Ninox jacquinoti is a member
of the genus Athene and because we resolve Ninox as pol-
yphyletic, future studies should thoroughly sample all
proposed taxa in Ninox and Athene.

Pyrroglaux and Otus (Mimizuku). All analyses of nu-
clear and mitochondrial data suggest that Pyrroglaux
podargina is a member of tribe Otini. In the original
species description of Pyrroglaux podargina, Hartlaub
and Finsch (1872) placed the species in Noctua (Ninox),
describing it as “one very indifferent specimen” most sim-
ilar to Noctua (Ninox) ochreacea of Sulawesi. Pyrroglaux
podargina was elevated to the genus Pyrroglaux by

The Auk: Ornithological Advances 137:1-15, © 2019 American Ornithological Society

020z IsnBny | uo yjojoute Juelg Aq | GGE/9G/0202N/1L/ L€ L/AIPIME M NE/WOS"dNO"OlWapEDE//:SdRY WOl) PAPEOjUMOQ


https://academic.oup.com/auk/article-lookup/doi/10.1093/auk/ukz070#supplementary-data
https://academic.oup.com/auk/article-lookup/doi/10.1093/auk/ukz070#supplementary-data
https://academic.oup.com/auk/article-lookup/doi/10.1093/auk/ukz070#supplementary-data
https://academic.oup.com/auk/article-lookup/doi/10.1093/auk/ukz070#supplementary-data

J. F. Salter, C. H. Oliveros, P. A. Hosner, et al.

Yamashina (1938), who noted its close affinity with Otus,
although Yamashina concluded that it deserved monotypic
status because of several morphological traits, including
lack of ear tufts, reduced facial disks, reduced number of
rectrices, and bare tarsi and toes. Our analyses suggest that
Pyrroglaux podargina is an Otus species, and its unusual
morphological features may have evolved under intense
drift and selective pressure(s) after its ancestors reached
the Palau Archipelago. This scenario is similar to that
of Otus (Mimizuku) gurneyi. Formerly placed in its own
genus, Mimizuku (Hachisuka 1934), due to its large size,
mitochondrial data subsequently showed that Mimizuku
gurneyi was nested within the Otus clade and that gigan-
tism evolved once this species reached the Philippines
(Miranda et al. 1997, 2011). Our analyses confirm this
placement of Otus (Mimizuku) gurneyi.

Nesasio and Pseudoscops. Our concatenated and
SVDQuartets results strongly suggest that the mono-
typic Nesasio and Pseudoscops are nested within Asio. In
his description of Nesasio, Peters (1937) discussed the
parallels between Nesasio solomonensis of the Solomon
Islands and Pseudoscops grammicus of Jamaica, noting that
both species show enlarged bills and feet, shorter wings,
and emarginated primaries when compared with main-
land species of Asio. Peters used this comparison to argue
that Nesasio solomonensis and Pseudoscops grammicus
were insular forms derived from widespread Asio species.
However, in a detailed analysis of skeletal anatomy, Olson
(1995) noted similarities between Pseudoscops grammicus
and Rhinoptynx clamator, a widespread species from
southern Mexico to Argentina, and he used these data to
place Rhinoptynx clamator in the previously monotypic
genus Pseudoscops. Olson (1995) used cranial morphology
to suggest that these species and Nesasio solomonensis were
relictual forms of a once widespread Asioninae lineage.
Subsequent mitochondrial analysis suggested Pseudoscops
clamator was nested within Asionini (Wink et al. 2004),
and Pseudoscops clamator was renamed Asio clamator,
leaving the monotypic status of Pseudoscops grammicus in
question, once again. Supporting Peter’s (1937) hypothesis,
our analyses demonstrate that all 3 species are nested
within Asionini, although Asio clamator and Pseudoscops
grammicus are not sister taxa, as once thought (Olson
1995).

Jubula. Likely due to the challenges associated with
capturing a sufficient number of nuclear loci from a
single, relatively old (1933; Table 1) toepad, we are un-
able to resolve relationships of Jubula lettii. Although both
concatenated UCE and concatenated mitochondrial data
suggest that Jubula lettii is a member of tribe Bubonini,
our SVDQuartets result strongly conflicts with this place-
ment (Figure 2) and our ASTRAL topology does not pro-
vide additional clarification (Supplemental Material Figure
S3). The SVDQuartets placement for Jubula should be
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interpreted cautiously, as noted above, because the sen-
sitivity of quartet-based analyses to a small number of
low-quality DNA sequences has not been well tested.
There is some precedent for the placement of Jubula
lettii within Bubonini, although the taxonomic history
of Jubula is muddy. In his description, Biittikofer (1889)
noted plumage similarities between Jubula lettii and Bubo
(Lophostrix) cristata and assigned Jubula lettii to Bubo.
Reichenow (1900) later moved it to Lophostrix, until it
was placed in its own genus, Jubula, on the basis of “pe-
culiarly long and shaggy plumage” (Bates 1929). Although
both our concatenated and coalescent-based results con-
tradict the hypothesis of affinity between Jubula lettii and
Lophostrix cristata, further sampling of additional Jubula
specimens and members of Bubonini are needed to resolve
relationships of this taxon.

Taxonomic Recommendations

Based on our results, we suggest several changes to cur-
rent Strigidae taxonomy. Within Clade A, we propose
transferring Ninox jacquinoti to Athene and subsuming
Sceloglaux within Ninox, as suggested by Wood et al.
(2016). Within Clade B, we propose Pyrroglaux and
Mimizuku (Miranda et al. 1997, Miranda et al. 2011) be
subsumed within Otus, and Nesasio and Pseudoscops be
subsumed within Asio. Our findings support those of pre-
vious authors (Wink et al. 2008, 2009; Wink 2016) who
have suggested subsuming both Scotopelia and Ketupa
within Bubo. Similarly, we agree that Ciccaba should be
subsumed within Strix (Marks et al. 2018). Consistent with
previous findings (Dantas et al. 2016), our results sup-
port a sister relationship between Psiloscops flammeolus
and the Puerto Rican endemic Megascops nudipes outside
the remaining Megascops species. Using mitochondrial
data, Dantas et al. (2016) found the divergence between
Psiloscops + Megascops nudipes and the rest of Megascops
to be ~20 million yr old but refrained from proposing tax-
onomic changes for Megascops nudipes until sequence
data from Margarobyas lawrencii could be included.
Megascops nudipes and Margarobyas lawrencii were once
considered conspecific (Olson and Suarez 2008), but in
light of our results showing that Margarobyas is not closely
related to this group, we suggest that Megascops nudipes
be transferred to Psiloscops. Given the genetic, morpho-
logical and behavioral distinction of Glaucidium brodiei
from its closest living relatives, Micrathene and Xenoglaux,
we propose that Glaucidium brodiei be transferred from
Glaucidium to a different genus. The generic name
Taenioptynx was applied to Glaucidium brodiei by Kaup
(1848) and appears to have priority. Recently, Glaucidium
brodiei has been split into multiple species (Gwee et al.
2019), thus Glaucidium brodiei and those presumed closely
related taxa (no genetic data were included in the proposed
split) should be included in Taenioptynx.
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Morphology Obscures Owl Evolutionary History

One of the broad patterns evident in our results is the strong
effect of island colonization in owls—of the 12 monotypic
genera of typical owls currently recognized, 7 of these spe-
cies have insular distributions (Sceloglaux, Pyrroglaux,
Mimizuku, Nesasio, Pseudoscops, Margarobyas, and
Uroglaux). These island species were placed in mono-
typic genera due to pronounced morphological differ-
entiation from mainland species of owls, although our
results and other molecular analyses (Miranda et al. 1997,
2011; Wood et al. 2016) suggest that at least 5 of these
species (Sceloglaux, Pyrroglaux, Mimizuku, Nesasio, and
Pseudoscops) are actually nested within larger genera and
do not warrant monotypic status. The contrast between
molecular vs. morphological results highlights the strong
effects of colonization in promoting morphological diver-
gence in owls, and they suggest that owls are another ex-
ample of convergence toward the “island syndrome” (Adler
and Levins 1994) observed in other insular bird species
(Wright and Steadman 2012, Wright et al. 2016), which is
characterized by larger body size, longer legs, and reduced
flight morphology.

In contrast to this pattern, our results also highlight
the power of morphological convergence to obscure
relationships among owls and the potential for genetic
data to uncover hidden diversity in this group. Our study
includes just 22% of the described species of typical owls,
yet our results identify 2 species (Glaucidium brodiei and
Ninox jacquinoti) that are miscategorized at the genus level;
strikingly, both of these taxa were previously thought to be
part of larger species complexes based on morphology and
biogeography (Marks et al. 2018). These findings under-
score the importance of comprehensive taxonomic sam-
pling (Zwickl and Hillis 2002) in future molecular studies
of owls, which may identify new species within established
clades and profoundly affect our understanding of the evo-
lutionary history of this group.

Conclusions

Here, we inferred a phylogeny for typical owls by sam-
pling thousands of nuclear loci from all but one of the 28
described genera that comprise the Strigidae. By com-
bining enrichment of UCE loci from tissues with recent
techniques for collecting DNA sequence data from avian
toepads, we were able to include 6 rare, monotypic genera
that have not been included in previous molecular analyses.
Our results suggest typical owls comprise 2 major sister
clades that generally correspond to subfamilies Surniiniae
as described by Weick (2006) and Striginae as described
by Wink et al. (2008), and verify membership of typical
owl tribes that have been previously described. At a finer
scale, results across our expanded taxon sample suggest
that as many as 8 typical owl genera are not monophyletic
with respect to current taxonomy (Dickinson and Remsen
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2013), including Ninox, Glaucidium, Athene, Otus, Asio,
Megascops, Bubo, and Strix, affecting the taxonomy of as
many as 177 of the 194 described species of typical owls.
Furthermore, with limited sampling at the species level, our
study likely underestimates the prevalence of paraphyly and
polyphyly within typical owls; increased sampling within
genera will likely reveal further examples. These findings
also demonstrate how morphology can sometimes obfus-
cate evolutionary relationships (Hedges and Sibley 1994),
the importance of taxon sampling (Zwickl and Hillis 2002),
and the need for taxonomic revision within Strigidae.
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