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Abstract—Solid state drive (SSD) as a fast storage device
has been playing an important role across many applications
from mobile computing to large distributed systems in recent
years. However, the performance of the SSD can be degraded
tremendously due to the intrinsic properties of NAND-based flash
memory including limited erase cycles and asymmetric write and
erase operations. Previous works separated hot/cold data into
different blocks in order to improve SSD performance. ”Hotness”
is typically defined as the cuamulative update frequencies of pages.
However, we believe that an additional new parameter, average
update time interval, should also be considered into the ”’hotness”
definition associated with the update frequency. Moreover, to
adaptively classify hot/cold data, a machine learning algorithm
is applied to better accommodate the dynamically changed 1/0
access patterns of traces. In this paper, a machine learning (ML)
based SSD management called HAML-SSD is proposed. The
purpose of applying the ML algorithm is to dynamically cluster
the data with similar ”hotness” based on a new definition of
”hotness”. Thus, a two-dimension clustering algorithm is used
for storing the pages categorized into the same cluster within
the same block. Moreover, to obtain reasonable training time,
a specific hardware component called HAML-unit is designed
in the SSD. Finally, the experimental results indicate that the
HAML-SSD decreases the response time around 26.3% - 57.7%
compared to previous works with the evaluation of real traces.

I. INTRODUCTION

With the rapid increase of data volume, the performance
of storage systems becomes crucial. Solid state drive (SSD)
as a fast storage device has become prevalent across various
applications from mobile computing to cloud storage systems.
However, due to the intrinsic properties of NAND-based flash
memory, a solid state drive has a limited number of program-
erase (P/E) cycles. As the technology keeps increasing the
capacity density of SSDs (bits per cell), the number of P/E
cycles keeps decreasing. For example, TLC-SSD (Triple-Level
Cell) starts to wear out after 3K P/E cycles and QLC-SSD
(Quad-Level Cell) only has 1K P/E cycles [1]. Moreover,
since the write and erase operations have different granularity
(pages vs. blocks), SSDs use out-of-place updates with a log-
structure [2]. To release more free space, a SSD has to carry
out the garbage collection to move valid pages in a block to
free spaces and then erase the whole block with invalid pages.
Thus, the garbage collection (GC) migrating valid pages to

free spaces introduces extra writes and causes large overhead
measured by the Write Amplification (WA). The large WA
further aggravates the wear-leveling issue.

Some recent works [3][4][5] investigated new SSD archi-
tectures to improve the performance of SSDs. For example,
Kang et al. [5] reduced the long-tail latency by applying rein-
forcement learning. Kim er al. [3] proposed a new architecture
called autoSSD to maintain a high-level of QoS performance.
However, all these works did not consider the I/O access pat-
terns to SSDs which may cause a large write amplification. To
decrease GC overhead, some researchers [6][7][8] partitioned
the data according to their access patterns. The data with
similar “hotness” are stored in the same blocks in order to
reduce GC overhead. Most of them consider "hotness” only
based on the update frequency of data pages. However, some
other parameters such as time intervals between two adjacent
updates should be considered into the “hotness” and have not
been well investigated by the previous works. Therefore, there
is an opportunity to re-define the ’hotness” based on different
parameters and further improve the performance of SSDs.

In this paper, a new Hotness-Aware Machine Learning
based SSD management, called HAML-SSD, is proposed to
reduce the overhead of GCs in SSDs. We have identified
that in addition to the update frequency, the average update
time interval, which is the average time interval between two
adjacent updates to the same data page, is also critical to define
the “hotness” of a data page. Therefore, both parameters are
used for clustering data with I/O access patterns. Based on
those two factors, data are scheduled to different queues. The
clustering algorithm uses the K-Means algorithm to distinguish
which group/queue data should be allocated to. Meanwhile, a
new machine learning based hardware unit is designed to speed
up the training process in the SSD. The training execution time
with the machine learning hardware unit has the same order
of the latency of the SSD I/O operation which is much faster
than that of a general processor. In the experimental results,
the HAML-SSD is capable of significantly reducing the overall
response time of different traces compared to previous works
while remaining a low hardware overhead.

There are fourfold contributions. (i) In addition to update
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Fig. 1: SSD internal architecture

frequency, a new parameter, average update time interval, is
considered into the hotness definition. (ii) A machine learning
assisted method is proposed to cluster data with similar hotness
in order to reduce the GC overhead of SSDs. (iii) A hardware
unit called HAML-unit is designed to accelerate the machine
learning algorithm in order to achieve reasonable execution
time. (iv) We fully investigate and analyze trade-offs between
different values of design parameters and provide insights for
how to use the HAML-SSD in the future works.

The structure of the paper is as follows. Section II gives
a description of the background of SSDs and the motivation
of this work. The machine learning based algorithm and its
designs are provided in Section III. Section IV shows the
experimental results compared to previous works. Finally, the
conclusion is described in Section V.

II. BACKGROUND AND MOTIVATION
A. SSD Background

Conventional NAND-based SSDs consist of a number of
main components including host interface controller, embed-
ded processor, read/write buffer, flash memory controllers,
NAND flash packages, etc. as seen in Fig. 1. The host interface
controller manages the communication between the host and
the storage device through a well-defined interface such as
PCle or SATA. The SSD controller is designed to manage
internal data placement and implement SSD internal functions
such as wear leveling and garbage collection.

SSD manufacturers typically spread NAND flash packages
across several independent channels. Multiple NAND flash
packages as persistent storage media are located in each
channel. Each NAND flash package contains one or more
dies. A single die consists of multiple planes and a number
of registers for caching I/Os. Each plane contains multiple
blocks. A block is the smallest unit to be erased. Each block
typically consists of 128 or 256 pages. A page is the smallest
unit to perform read and write/program operations. Currently,
a single page has 4KB (or larger) data space and 129-byte
meta-data area for error correct coding.

NAND SSDs have several unique characteristics. First, write
can only change a cell from ’1’ to ’0’. Therefore, a page
cannot be directly updated before the page is erased. Since
the erase operates at the granularity of a block, a whole block
will be erased instead of erasing a page for the page update. To
avoid the large overhead of in-place update, people use out-
of-place update (log-structure) [2] and the address mapping
table to record the mapping relationship between logical page
number (LPN) and physical page number (PPN). Second, each
block has a limited number of program/erase (P/E) cycles.
Once reaching to its threshold, the block starts to wear out
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Fig. 2: Views of different GCs for hotness
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Fig. 3: The distribution of blocks with different percentages
of invalid pages. The key [0% - 20%) indicates the blocks

contain 0% - 20% invalid pages.

and lose data. To avoid the storage device reaching its lifespan
too early, wear-leveling mechanism tries to evenly utilize each
block to make sure all blocks reach their limited P/E cycles
at roughly the same time.

Garbage collection (GC) is the process of reclaiming storage
space from invalid data. As the number of invalid pages
increasing, the SSD does not have enough free space to store
incoming data. Thus, the SSD controller needs to trigger GC
to recycle those invalid pages. During the GC process, the
SSD controller will select a NAND flash block (or a group
of blocks) based on a certain policy (such as the number of
invalid pages or the used P/E cycles). Then, all valid pages in
the erase candidate blocks are read out and are written into
other free space. After doing that, the address mapping table
needs to be updated accordingly and then the candidate blocks
can be erased to release free space. Since garbage collection
mechanism needs to reallocate all valid pages, it causes extra
write operations. To calculate the overhead of extra writes,
Hu et al. [9] defined it as write amplification (WA), which
can be formulated as WA = Vm;l—m A large WA is
introduced by the extra operations, which will degrade the SSD
performance tremendously. In this paper, we use the greedy
algorithm [10] to trigger the GC when the number of available
blocks reduces to a threshold.

B. Motivation

SSDs need to carry out a GC to release/increase free space
which may cause a large migration overhead. To mitigate
the GC overhead, people want to erase the block with the
maximum number of invalid pages. If all pages in one block
are invalid, the WA caused by the GC equals to 1. However,
in a real environment, since the data/pages are accessed
randomly, it is hard to invalidate all pages in one block before
erasing the block. As discussed in the introduction section,
some previous works [6][8][7][11][12] investigated the data
temperature (hotness) to reduce the GC overhead.



TABLE I: Pearson correlation coefficient (r) between update
frequency and average update time interval

prn_1|proj_1|usr_2|prxy_O|proj_O|usr_1 |stg_1|web_2|LUNO
r[-0.03] 0.06 |0.05| 0.17 | 0.14 | 0.03 {0.07 | 0.18 | 0.04

Most of the previous works only defined the hotness by
the update frequency of a data page. However, we have
identified that the average update time interval (UpdateT’)
is also important. As seen in Fig. 2, both two pages (i and
j) in the time period 7' have six updates. If GC happens at
GC2, two pages will have similar temperature, while if GC
happens at GC1, obviously Page; updates more frequently and
thus is hotter than Page;. In addition, we further investigate
the effect of Updatel on the number of invalid pages in
blocks. Fig. 3 presents two examples of the distributions of
blocks with different invalid pages when partitioning data
with/without using UpdateT. Comparing Fig. 3a with Fig. 3b,
the partition using UpdateT (Fig. 3b) has a larger number
of blocks with 60% - 80% invalid pages (black bar) than
that of not using UpdateT (Fig. 3a). At the same time, the
partition using UpdateT also has a larger number of blocks
with 0% - 40% invalid pages (gray and green bars). This
is because two methods using the same traces will have the
same number of updates. Thus, an increase of the number of
blocks with large invalid pages will cause an increase of the
number of blocks with small invalid pages. This is to say, using
UpdateT in addition to update frequency is more efficient
to separate hot and cold data since some blocks stale more
quickly and the other blocks stale more slowly. As a result,
when GCs are triggered, using UpdateT and update frequency
can achieve a lower migration overhead than that of only using
update frequency but not Updatel. We have also calculated
Pearson correlation coefficient [13] between update frequency
and UpdateT for multiple traces. As seen in Table I, most of
traces obtain correlation coefficient r around 0, which means
that these two parameters have a weak correlation relationship.
Therefore, both update frequency and average update time
interval should be considered into the hotness classification.

Moreover, previous works [7][11] used a constant threshold
to partition data pages into hot and cold. However, they failed
to consider that the access patterns of traces are dynamically
changing. For example, if setting threshold to 100, page A
with 5 updates and page B with 110 updates will be separated
into two groups. However, under the constant threshold 100,
a new page C with 99 updates will be grouped with page A
instead of page B. However, it is apparent that page C should
be grouped with page B with similar hotness. In addition,
Fig. 4 presents one example of the distributions of UpdateT
for different traces in one time period. We can find that in
one trace different logical addresses have different UpdateT
values whose range covers from 0 to 7. Further, comparing
among difference traces, the distributions of UpdateT are also
varied. Therefore, the partition based on constant thresholds
cannot efficiently classify hot/cold data. So, the classification
should be adaptively changed based on the I/O access patterns
of traces and more categories may be needed.

Machine learning (ML) as a prevalent technology for clas-
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TABLE II: Execution times of clustering 1000 2-D data with

different clustering algorithms running with python sklearn

K-Means|Mean-Shift [14]|HAC [15][DBSCAN [16]
Complexity | O(n) O(n?) O(n?) (0(n?) (worst)

Execution time| 8.61ms 43.4ms 20.1ms 9.52ms

HAC: Hierarchical agglomerative clustering

DBSCAN: Density-based spatial clustering of applications with noise

2 prxy_0 proj_( 0 usr.

sification is capable of dynamically classifying data access
patterns. Two basic types of ML algorithms can be used for
classification, supervised learning (such as k nearest neighbor
and random forest) and unsupervised learning (such as K-
Means and Mean-Shift). For I/O access patterns of traces in
SSDs, there is no ground truth to indicate which class they
should belong to. Thus, a clustering algorithm as one type of
unsupervised learning methods is a good candidate for this
purpose. There are several types of clustering algorithms and
we investigate them by running on a server. Based on [3]
and our experimental results in Table II, K-Means is simpler,
faster and more flexible than other clustering algorithms and
thus is used in this work. Please note that the other clustering
algorithms are also compatible to the proposed algorithm but
will not be implemented in this paper.

The K-Means clustering is used to dynamically cluster
pages based on the access patterns of traces. However, one of
the drawbacks is its long training time. As seen in Fig. 9, the
experimental result shows that the training time of K-Means
running in a server with 2.4GHz CPU and 8GB memory varies
from around 0.02s to 200s. Compared to the latency (around
ten to hundred microseconds) of I/O operations in SSDs,
such long time latency is not acceptable since it will cause
a long-tail latency and delay the whole application process.
Consequently, this motivates us to design a specific ML-based
hardware to speed up training time. In the following sections,
we introduce how we use ML algorithm to determine the data
hotness. Meanwhile, a low-cost ML hardware unit is proposed
to be integrated in SSD devices. Finally, the investigation about
different design parameters demonstrates the effectiveness of
different parameters.

III. HAML-SSD DESIGN

In this section, a new Hotness Aware Machine Learning
based SSD management (HAML) is introduced. HAML con-
tains two major parts, the machine learning based scheduling
algorithm and the hardware implemented design.

A. Overall architecture

Fig. 5 indicates the overall architecture of the SSD
flash translation layer (FTL). The UpdateF_TBL and Up-
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Fig. 5: SSD internal architecture of HAML-SSD design.

dateT_TBL tables are used to record two parameters (update
frequency and average update time interval) which are used
to cluster data. K-Means unit is the hardware implementation
of the K-Means algorithm. According to the clustering result,
data pages are classified into different clusters (hot, ... warm;,
.. and cold) and the data with similar hotness are assigned
to the same flash queue. The number of clusters is a design
parameter and is set at the beginning of SSD design. A detailed
analysis of the HAML-SSD design is provided in the following
sections. Please also note that two or more data pages in the
same class will have both similar update frequencies and close
average update time intervals.

B. ML Allocation Policy

We first introduce the ML-based data allocation policy. Two
parameters are recorded for data to indicate the data hotness in
this design. The first one is the update frequency (UpdateF),
which is expressed by the number of write accesses during
one time period [11][12]. This is a popular parameter used
in the hybrid and tiered storage systems. The other parameter
is average update time interval (UpdateT’) which indicates
the timing relationship of updates. It is defined by the average
time interval between two consecutive updates in one time
period as seen in Line 20- 24 of Algorithm 1. If there is no
update, UpdateT equals to the time period 7. Therefore, a
larger update time interval value means that the page takes a
longer time to be re-written/updated and thus the page has a
higher probability to be valid during the garbage collection.

Basically, the accumulated information of all pages should
be tracked for clustering. However, assume that the default
page size is 8KB and total SSD capacity is 256GB, more
than 32 million data need to be clustered. For the clustering
algorithm, the execution time is proportional to the number of
inputs. Therefore, with ten-million inputs the execution time
will be extremely long. To reduce the execution time, Xie et
al. [12] used a sampling method to reduce the number of
inputs. But, the sampling cannot accumulate all trace informa-
tion and thus cannot well represent the trace characteristics.
For example, if one sample page has 1 update but other pages
in the same blocks may have 100 updates, the sample page
will misrepresent the other pages in the same block. In this
paper, we split the SSD logical address into smaller contiguous
regions called slices. The SSD records two parameters for each
slice in each time period and uses these collected information
as the clustering dataset.

With those two parameters, we use a two-dimension K-
Means clustering algorithm [17] to cluster data into K clusters.
Those K regions indicate the different hotness of the data pages
or slices. For example, as shown in Fig. 6:
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Hot region: since it has the highest update frequency and the
smallest average update interval time, those data are rewritten
in a very short time and also are updated frequently. Therefore,
among K regions, this region is the hottest region.

Cold region: has the longest average update time interval and
the smallest update frequency. Therefore, blocks in this region
are rarely erased because they do not have many invalid pages.
Warm,; regions: The accumulated average update time inter-
vals and update frequency in Warm; regions are in the middle
of the cold and hot regions. The Warm regions may either have
short update interval time but few number of updates or have a
large number of updates but have a long update interval time.

As explained above, different regions have different levels
of accumulated information. The K-Means algorithm automat-
ically separates them into K clusters. One example of using
6 clusters based on the real experiment is shown in Fig. 7.
Each point stands for one slice (one contiguous logical space).
Cluster 0 and Cluster 5 belong to the Hot region and Cold
region, respectively.

The HAML-SSD scheduling algorithm is shown in Algo-
rithm 1. There are three major functions, HAML-SSD schedul-
ing, monitoring and K-Means clustering. The monitoring pro-
cedure is used to record the update frequency and the average
update time interval of each slice during the time period 7.
The collected UpdateF_TBL and UpdateT_TBL results are
used for training K-Means clustering algorithm. After that,
update frequency and average update time interval in the two
tables are scaled to the same range [0, 512] (hardware design
uses 9-bit values). Finally, the HAML-SSD scheduling assigns
requests to different queues according to their classifications.

To remedy the wear-leveling, two methods are used to
handle that. The first one is that when updates coming the
Hot_Q always selects the free blocks with the lowest erase
counts and the Cold_Q always selects the free blocks with the
highest erase counts. The Warm,; regions randomly select free
blocks between those two extreme values. The other method
is to periodically migrate between hot data in high erase-count
blocks and cold data in low erase-count blocks in order that



Algorithm 1 HAML-SSD Scheduling Algorithm (K clusters)
Input: Reg;
1: procedure HAML-SSD SCHEDULING

2: Compute slice number S; of Reg;
3: if classification[S;] ==0 then
4: Hot_Q <+ Regq;
5: else if classification[S;] == i then
6: Warm; < Req;
7: else
8: Cold_Q + Regq;
9: end
10: procedure MONITORING
11: Record Tstaritime
12: while ¢ <T do
13: Compute slice number S; of Reg;
14: UpdateF_TBL[S;] +=1
15: UpdateT_TBL[S;] += timestampreq; - Tstarttime
16: Tstarttime = timestampreq;
17: if t == T then
18: for i < UpdateT_TBL.size() do
19: if UpdateF_TBL[i] >=1 then
20: UpdateT_TBLIi] = g9 =10
21: else
22: UpdateT_TBLJ[i] = T
23: K-Means(UpdateF_TBL, UpdateT_TBL)
24: for i < UpdateF_TBL.size() do
25: UpdateF_TBL[i] = 0
26: gpdateT_TBL[i] =0
t=
27: end

28: procedure K-MEANS(UpdateF_TBL, UpdateT_TBL)

29: Find Max_slice in UpdateF_TBL

30: Find Max_access in UpdateT_TBL

31: Scale UpdateF_TBL and UpdateT_TBL to the range [0, 512]
32: Training the K-Means Clustering algorithm

33: For slice number S;: classification[.S;] < K-Means results
34: end

all flash pages have similar erase counts.

C. ML Unit Design

K-Means algorithm [18] as one of the unsupervised learning
models has been proven to be an efficient tool for clustering.
However, K-Means clustering algorithm needs multiple itera-
tions to converge, which is time-consuming. In the SSD, the
controller has a limited computation capacity which results
in unacceptable amount of time to finish the training process.
Thus, this limitation motivates us to design a hardware unit to
reduce the training time of K-Means algorithm.

Fig. 8 demonstrates the architecture of the designed hard-
ware. The centroid values are initialized with K values in Fig. 6
(D). There is a static random access memory (SRAM) to
store data in two tables to be clustered. The SRAM data is
read sequentially in each iteration to calculate the Euclidean
distance () to each of the K centroid values. After getting
the distances, we compare them, find the smallest distance
and ascribe the data into that cluster ((3)). In each iteration,
we need to update the centroid values (@). This is done by
accumulating the z-axis and y-axis values of each cluster and
counting the number of data that belongs to the cluster. After
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Fig. 8: The hardware architecture of K-Means.
TABLE III: SSD configuration

ind

SRAM

Q_out
Update | UpdateF_TBL —
| UpdateT_TBL

Parameter Value Parameter Value
physical capacity 300GB # of pages/block 256
Logical capacity 256GB Read latency 20us

Page Size 8KB Program latency 200us

Slice size 100MB (default) | Erase latency 2ms

that, we divide the accumulated values by the number of data
to get the updated centroid values ((3)). The divider is a multi-
cycle divider, which has a small area size. Since there are K
clusters, and each cluster has the centroid of x-axis and y-
axis that needs to be updated. Thus, it requires 2*K division
operations per iteration with the time-multiplexed manner
(©®) to save area. Most of the delay in K-Means algorithm
hardware unit results from distance calculating, clustering and
accumulating. So, the time-multiplexed division manner does
not dramatically delay the whole performance (less than 5%).
Finally, after this training process, the classifier is updated.
The step ((7) is the process that the classifier determines
which flash queue the upcoming update should be assigned
to. Basically, the classifier can be regarded as a mapping table
from LPN to queue number (similar to the mapping table from
LPN to PPN) and can quickly find the corresponding queue
number of each update. In summary, the main concern of K-
Means algorithm is the training process. The overall hardware
cost and the comparisons are provided in Section IV-B.

IV. EXPERIMENTAL RESULTS
A. Environment Setup

In this design, the SSD configuration is listed in Table III.
Assume the physical capacity of the SSD is 300GB and
256GB capacity is addressable by the host system, the over-
provisioning factor is 17%. Given that the slice size is 100MB,
the total number of slices is 2560. The experiments with
varying design parameters (such as slice size and the number
of clusters) are also investigated in Section IV-D to Sec-
tion IV-F. A greedy garbage collection (GC) scheme is used.
The GC activation threshold is set to 128 free blocks. For the
performance evaluation, the SSDsim simulator [19] is used to
evaluate the performance of different algorithms. Two types of
real traces are used, Cambridge MSR traces [20] and Systor’ 17
traces [21]. The default time period is set to 6 hours which
means that the K-Means cluster will be re-trained every 6
hours.

B. HAML-SSD Hardware Implementation

The hardware synthesis result is provided in this section. We
use the Synopsys Design Compiler to synthesize the design



TABLE IV: Trace configurations

Number of 10s (Millions) | Total request size (GB)
Write | Read Write | Read
MSR Cambridge Traces [20]
prm_1 | 2.77 8.46 30.78 181.35
proj_1 | 2.50 21.14 25.58 750.36
usr_2 | 1.99 8.58 26.47 415.28
prxy_0 | 12.14 0.38 53.80 3.05
proj_0 | 3.70 0.53 144.27 8.97
ts_0 1.49 0.32 11.34 4.13
usr_1 | 3.86 41.43 56.13 2079.23
stg_1 | 0.80 1.40 5.99 79.52
wdev_0| 0.91 0.23 7.14 2.75
web_2 | 0.04 5.14 0.78 262.82
Systor’17 [21]
LUNO | 20.65 47.03 350.31 1257.44
LUNI |17.91 49.16 338.89 1456.00
LUN3 | 17.56 50.82 315.06 1323.51

with the TSMC 28nm technology [22]. The clock frequency
is set to 1.3GHz. We compare the latency of the hardware
implementation with the software implementation. For the
software implementation, the K-Means clustering algorithm
is implemented with C++ on a server with 2.4GHz, 24 cores,
16MB cache size and 8GB memory. The reference values of
the power and area are also provided.

First, we investigate K-Means algorithm with 6 clusters,
2560 inputs and 10 iterations. As illustrated in Table V,
the total execution time of the ML-unit design is only 20us
which is similar to a read operation time. In other words, the
execution time of ML-unit is equivalent to inserting one extra
read in one time period (default 6 hours). This shows that the
K-Means clustering execution time of ML-unit has little effect
on the overall performance. To further shorten the training
time, we can either increase transistor gate sizes (trade-offs
between area and delay) or reduce the iteration number of K-
Means algorithm. As illustrated in Fig. 9, the server attains
588ms execution time, which is more than 20,000X slower
than that of the ML-unit. Compared to the server, the controller
in the SSD is even slower and the training time may even reach
to seconds. Thus, if without offloading the K-Means training
to a specific hardware, the ML training process will delay
the original operations and degrade the SSD performance
significantly. Compared to the chip size [23], the area of
HAML-unit is only 0.037% of the chip size. Compared to
the most recent Samsung SSD product [24], the HAML-unit
only costs 0.385% of the whole power.

Moreover, we investigate execution time with different
numbers of clusters (3 to 8) and inputs (640 to 25,600) as
seen in Fig. 9. The maximum execution time of HAML-SSD
with 25,600 inputs is only 197us which is similar to inserting
one write operation in one time period (default 6 hours), while
the server needs 201.7s. Obviously, the delay of 200s for any
operation in SSD is not acceptable. In summary, the hardware
overhead of HAML-unit occupies less than 0.5% of the whole
chip hardware cost and the proposed HAML-SSD obtains
reasonable execution time for the K-Means algorithm.

C. Overall Performance Comparison

We compare HAML-SSD with three previous works. The
HAML-SSD uses 6 clusters which is indicated by HAML-6.

TABLE V: Hardware implementation comparisons (K-Means
with 6 clusters, 2560 inputs and 10 iterations)

Total execution time| Area | Power
(us) (mm?2)| (mW)
HAML-SSD 19.8 0.036 22
Server system 588,484 - -
V-NAND Flash [23] - 97.6 -
Samsung SSD PRO970 [24] - - 5200
[ HAML / others [ 0.0033% [0.037%[O.423%]

103 Server o
102 HAML-SSD —— =——=

— N 2500030600
7 ~———S000—— 1060015000 20000"
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Fig. 9: Execution time comparison with different number of
clusters and inputs
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Fig. 10: Write amplification for different workloads

TABLE VI: Total number of block erases (GCs) for different
workloads

Auto-SSD [3] | ASA-FTL [12] | HOTIS [11] | HAML-6
prn_1 5.7E4+05 3.7E+05 5.4E+05 | 2.6E+05
proj_1 3.5E+05 2.4E+05 2.4E+05 1.6E+05
usr_2 6.5E+05 3.4E+05 4.7E+05 | 2.4E+05
prxy_0 6.5E+05 4.4E+05 3.2E+05 | 2.7E+05
proj_0 5.4E+06 2.9E+06 2.9E+06 1.9E+06

ts_0 2.3E+05 1.1E+05 1.3E+05 | 9.6E+04
usr_1 1.5E+06 8.2E+05 9.3E+05 | 6.4E+05
stg_1 1.2E+05 4.8E+04 1.3E+05 | 4.1E+04
wdev_0 1.3E+05 6.5E+04 5.5E+04 | 4.3E+04
web_2 1.0E+04 4.1E+03 9.7E+03 | 3.6E+03
LUNO 6.8E+06 5.4E+06 4.8E+06 | 3.1E+06
LUNI 5.9E+06 4.3E+06 4.3E+06 | 2.9E+06
LUN3 6.2E+06 4.2E+06 4.7E+06 | 3.7E+06

Auto-SSD [3] is one of the state-of-art works which splits
applications into different queues. HOTIS [11] considers the
long interval hot data and distinguishes between hot and cold
data based on constant threshold values with two clusters.
ASA-FTL [12] uses the K-Means clustering to distinguish
between hot and cold data only based on the update frequency
with K=3. To trigger garbage collections, we precondition
the SSD with sequentially writing the whole drive one time
and then replaying the first half of one trace each time. We
repeat this process for different traces. To evaluate the SSD
performance, the results are obtained based on the second half
of traces. The precondition setup is used for the evaluation of
the following sections as well.

As seen in Fig. 10, the proposed HAML-6 has the least WA
values among all traces. On average, the proposed HAML-
SSD has the WA value about 2.1292 while the Auto-SSD,



[Auto-SSD 772771 ASA-FTL SNy

o2 ¢7 7 F @
Fig. 11: Normalized response time for different workloads

HAML-6 s

1

o
©

o
o

o
»

Normalized response time
o
o

o

LS .
Q‘(\/ d\o\/\g/q‘-ﬁ/éo\/

o 1 &

o 0.8

(%]

c

g 0.6 s
[}

[

S04 N
&

E 0.2 [ usr_2 —=— prxy_0 —— |

= LUN3 —=— proj 0

S 0

3 4 5 6 7 8
Number of clusters

Fig. 12: Normalized response time with varying number of
clusters

HOTIS and ASA-FTL have the WAs of 5.002, 2.959 and
3.553, respectively. Among all traces, HAML-SSD decreases
WAs about 13% - 57.4% compared to previous works, because
the HAML-SSD method uses two dimension parameters to
dynamically cluster data. The classification of hot/cold data
in HAML-SSD performs more precisely than others. As a
result, the erased blocks have fewer valid pages than other
three algorithms and thus the HAML-SSD migrates fewer
valid pages, which leads to the lower WA values. In addition,
we investigate the number of erases for all traces. As seen in
Table VI, on average, the proposed HAML-SSD can reduce the
number of erases by 30.4% - 53% compared to the Auto-SSD,
HOTIS and ASA-FTL, respectively. The lower erase count of
HAML-SSD is because it has the lower WA value and then
results in less data rewriting.

Finally, we simulate the normalized response time based on
SSDsim simulator [25] and the SSD configuration in Table III.
Fig. 11 shows that the proposed HAML-SSD reduces the
response time about 57.7%, 37.1% and 26.3% on average com-
pared to the Auto-SSD, ASA-FTL and HOTIS, respectively.

D. Varying Number of Clusters

In this section, we investigate the effect of the number
of clusters on the performance with the proposed HAML-
SSD scheme. The number of clusters is varied from 3 to 8.
The slice size is set to 100MB and 7" = 6h. Based on the
results in Fig. 12 (only show four typical traces), all traces
can be roughly categorized into two groups. For the first group
(usr_2 and LUN3), the performance of traces is not sensitive
to the number of clusters and the response time is slightly
decreased with the increase of the number of clusters. For the
second group (prxy_0 and proj_0), as increasing the number
of clusters the performance has significant improvement. The
performance improvement from 3 clusters to 8 clusters in the
second group can reach to 2.4X. The reason is that for traces
with different accumulated distributions, a larger number of
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Fig. 13: Normalized response time with varying slice size

clusters has a higher ability to classify a lower number of
cluster distribution. In other words, if one trace has a 3-cluster
distribution, algorithms with more than 3 clusters are also able
to classify the 3 clusters and thus obtain similar results with
that of a 3-cluster algorithm. In contrast, if one trace follows an
8-cluster distribution, algorithms with less than 8 clusters will
not be able to classify the 8 clusters efficiently. According to
the synthesis results in Section IV-B, the execution time is not
changed much as increasing the number of clusters. Therefore,
without any relevant information of traces the number of
clusters should be set to a relatively large value.

E. Performance with Varying Slice Size

The effect of the slice size on the performance is investi-
gated in this subsection. The slice size varies from 10MB to
400MB. Thus, the total number of inputs for K-Means is from
640 to 25600. The number of clusters is set to 6 and 1" = 6h.
We select five typical traces as shown in Fig. 13. Basically, the
traces belong to three groups according to their performance
as varying the slice size. For the first group such as ts_0
and prxy_0, the performance increases with the decrease of
the slice size. The reason is that these traces have obvious
difference in small slice sizes and thus the small slice sizes
provide more accurate accumulation results. For the second
group of traces such as proj_1 and LUNO, those traces are not
sensitive to the slice size and thus the performance is similar
among different slice sizes. Their small variance might result
from the little different accumulation. For the last group of
trace which contains only one trace (web_2), the performance
increases as increasing the slice size. The reason is that this
trace does not have enough update information for small slice
sizes in one time period. As shown in Table IV, web_2 only
has 40000 write I/Os. Therefore, for the large slice sizes,
each slice can accumulate enough information to accurately
represent the characteristics of access patterns of traces. In
summary, considering the overhead of K-Means training and
hardware cost as discussed in Section IV-B, the execution
time of K-Means clustering is proportional to the number of
inputs, which is determined by the slice size. As accumulating
enough trace information, smaller slice sizes might provide
better I/O performance but cause longer execution time. So,
people need to carefully select a proper slice size to balance
the I/O performance and K-Means execution time.

F. Performance with Varying T

We investigate the effect of the time period 7' on perfor-
mance with varying from 1 to 12 hours. The number of clusters



1.6

w . :
£ /
2 1.4

s 12

8 1 :/\ ,._——a—/
=

L o8

E usr_2 —&— LUNO —— ‘

= 0.6 [lprxy 0 —=— LUN3 | . ‘
= 10 12

0 2 4 6 8
Time period T (h)
Fig. 14: Normalized response time with varying T’

is set to 6 and the slice size is set to 100MB. Four typical
traces are used as shown in Fig. 14. Based on the results, the
traces can be categorized into two groups. For the traces in
first group such as usr_2 and prxy_0, the normalized response
time is not sensitive to 7'. The variance between different 7" is
smaller than 20%. The reason is that those traces have similar
update patterns for different 7. As a result, no matter what
T is the HAML-SSD algorithm obtains similar performance.
For the traces in the other group such as LUNO and LUN3,
they obtain obvious difference for different 7". The maximum
difference can reach to more than 40% as seen in Fig. 14. The
reason is that the accumulated access patterns are significantly
changed for different 7". The different distributions cause
different clustering results and thus lead to the performance
difference. The overall trend is that the normalized response
time is increased as increasing 7. This is because the shorter
time period is capable of tuning the clustering algorithm in
time if the access patterns of traces have a dramatic change.
In summary, a shorter time period will cause a larger number
of clustering training and thus there is also a trade-off between
the time period and clustering execution time.
V. CONCLUSION

In this paper, we proposed a HAML-SSD management
to improve the garbage collection efficiency. There are two
parameters considered to cluster data, update frequency and
update time interval. By using two-dimension K-Means clus-
tering algorithm with k=6, HAML-SSD can efficiently classify
data into different clusters. Moreover, to speed up the machine
learning algorithm, a specific HAML-unit is designed in the
SSD and the hardware overhead only occupies less than
0.5% hardware cost. The experimental results indicate that the
HAML-SSD reduces the response time around 26.3% - 57.7%
compared to previous works with running the real traces.
Finally, our investigation about different design parameters can
help people deeply understand design trade-offs.
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