ON THE KINETIC WAVE TURBULENCE DESCRIPTION FOR NLS

T. BUCKMASTER, P. GERMAIN, Z. HANI, J. SHATAH

ABSTRACT. The purpose of this note is two-fold: A) We give a brief introduction into the problem
of rigorously justifying the fundamental equations of wave turbulence theory (the theory of nonequi-
librium statistical mechanics of nonlinear waves), and B) we describe a recent work of the authors
in which they obtain the so-called wave kinetic equation, predicted in wave turbulence theory, for
the nonlinear Schrédinger equation on short but nontrivial time scales.

1. INTRODUCTION

1.1. What is wave turbulence. Wave turbulence can be succinctly defined as the theory of
non-equilibrium statistical mechanics for nonlinear wave and dispersive systems. Untangling this
definition serves to illustrate the rich set of problems addressed by this theory: Statistical mechanics
aims at understanding the long-time behavior of systems with many (possibly infinite) degrees of
freedom, typically by tracking the effective dynamics of some macroscopic quantities obtained by
averaging out some of available (microscopic) degrees of freedom. Equilibrium statistical mechanics
often addresses questions pertaining to isolated systems (no forcing or dissipation), with a focus
on equilibrium steady states or invariant measures. On the other hand, non-equilibrium statistical
mechanics is interested in transient phenomena for isolated systems, like How does the system relax
to its steady state or invariant measure?, as well as steady states of systems that are not isolated,
like those affected by external forcing and/or dissipation.

The statistical mechanics of particle systems is one of the great triumphs of physics in the nineteenth
and twentieth century. It has developed into a highly successful theory whose ideas had a profound
impact both on mathematics, as well as other fields of physics (like quantum mechanics). The
most relevant aspect of this theory for us here is its non-equilibrium version as presented by the
Boltzmann theory. The fundamental outcome of that theory is a kinetic equation governing the
particle distribution function f(t,z,v), which describes the effective dynamics of the density of
particles at space point x, with velocity v at time ¢. This is given by Boltzmann’s celebrated
equation, which has the form

Of +v-Vaof =C(f. f) (1.1)

where C(f, f) is a nonlinear collision term.

The fundamental mathematical question here is to justify this passage from the reversible (in
time) microscopic dynamics of N— particles to the irreversible dynamics of the effective quantity
f(t,z,v). This was first done rigorously in Lanford [18], and later clarified in [15], which allows to
approximate the microscopic density of the N —particles with the solution of the above Boltzmann
equation in the so-called Boltzmann-Grad limit.

Being as fundamental as particle systems, physicists proposed a parallel kinetic theory for wave
systems starting with the work of Peierls [24] in his investigations of solid state physics, as well as
the work of Hasselmann [16, 17] on water waves. In both investigations, a kinetic equation analo-

gous to (1.1) was derived for the corresponding wave system. The subject was later tremendously
1
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invigorated by Zakharov and his collaborators [26] after the discovery of special power-type station-
ary solutions for such kinetic equations, which provided wave-analogs of Kolmogorov’s spectra of
hydrodynamic turbulence. This is one reason why this kinetic theory of non-equilibrium statistical
mechanics of waves came to be called “wave turbulence” (or weak turbulence in some of the lit-
erature). These so-called Kolmogorov-Zakharov spectra predict steady states of the corresponding
microscopic wave system (possibly with forcing and dissipation at well-separated extreme scales),
where the energy cascades at a constant flux through the (intermediate) frequency scales.

We won’t go much into details of these spectra and their implications on the statistical physics
of the dispersive system understudy; for this, we refer to [22, 23] for recent reviews. One should
mention that the wave kinetic equation is of utmost importance in several areas of physics and
engineering. For instance, in oceanography, the relevant kinetic equation is integrated on a daily
basis to perform ocean forecasting.

1.2. The wave kinetic equation. As mentioned above, the fundamental mathematical question
here is to provide a rigorous derivation of the wave kinetic equation from the dispersive PDE de-
scribing the microscopic systems. This means to justify the approximation of the relevant averaged
quantity of the microscopic system by the solution of the kinetic equation assuming well-prepared
initial data. To illustrate the problematic concretely, let us consider the nonlinear Schrodinger
equation as our microscopic dispersive model. A natural starting setting is to consider this equa-
tion on a large box of size L with periodic boundary conditions, which we denote by TdL. The
equation is given by
i — 5=Agv = —|v|?v, x €T} =1[0,L]

v(0,z) = vo(x).
In addition to the parameter L, another parameter that plays a central role in the analysis, is the
characteristic size of the initial data. To track this parameter, we adopt the ansatz v = Au, and
think of v to be uniformly bounded in some relevant norm. The equation satisfied by u is then
given by
i — 5=Apgu = —N|u|*u, z€T}=][0,L]

u(0,z) = up(x).

(NLS)

where
d
Aﬁ = Z 5,83,
i=1

and 8 := (B1,...,B4) € [1,2]%. The case when 3; = 1 for all 1 <4 < d corresponds to the rational
torus, whereas the case when ; are rationally independent is equivalent to working with the usual
nonlinear Schrodinger equation on the irrational torus. This will be the setting where our result
holds. We will denote by ZdL = %Zd, the Fourier dual space of TdL.

Typically in this theory, the initial data are randomly distributed in an appropriate fashion. For
us, we take random initial data of the form

1 ~ Tik-x ~ T w
uo(@) = 7 D (k)™ (k) = /@R, (1.2)
kezd

for some nice (say Schwartz) deterministic function ¢ : R? — [0,00). The phases ¥x(w) are
independent random variables, uniformly distributed on [0, 1]. Notice that with this normalization
of the Fourier transform is chosen so that

luoll 2 ~ 1,



ONSET OF WAVE TURBULENCE FOR NLS 3

and we should remark here that different normalizations of the Fourier transform would yield
different definitions of the kinetic time scale mentioned below', however they are all of course
mathematically equivalent.

Taking the Fourier transform of the equation, and recalling that the Fourier dual of ’]I‘dL is Z LD =
(Z/L)%, we obtain the following equation

o i . :
Weuy, +2mQ(k)ur = 733 Y Uklnik, ke Zi, Qk) =) Bilk)*.
k1—ko+ks=k =1

Filtering by the linear oscillations, one sets the ansatz a(t) = ug(t)e®@*? | to obtain the following
integral equation for ay(t)

ap(t) = af) + s Z g, Ty apy e 282k Rk ks) g (1.3)

0 (k1,k2,k3)e(z4)3
k—ki1+ko—ks=0

The main conjecture of wave turbulence theory is that as L — oo (big box limit) and 2—2 — 0
(weakly nonlinear limit), the mass density

Pk (1) = Elax(t)?

converges to the solution of a kinetic equation. More precisely, it is conjectured that, as L — oo
2
and % — 0, pE(t) ~ p(t, k) as t — oo, where p: R x R? — R, satisfies the wave kinetic equation

2
op = 1T (p), where 71 ~ ({(—S) ,

(WKE)
0(07 k) = ¢(k)
and furthermore
- 1 <—1>1
T(p)(k) = 5(2)6()pk) [T p(ks) | — + dky ... dk
’ (Rfd/)r ’ U” p(k) ;pw» e T
with ,
S =Xk kr,... k) =k+ Y (—1)k;
i=1
3
Q= Q(k k1, ..., k3) = Q(k) + > _(—-1)'Q(k:).
i=1

Several partial or heuristic derivations have been put forward for equations similar to (WKE) [1, 2,
3,12, 10, 13, 19, 21, 25]. However, to the best of our knowledge, there is no rigorous mathematical
statement on the derivation of (WKE) from random initial data. The closest attempt in this
direction is due to Lukkarinen and Spohn [20], who studied behavior of correlations for the Gibbs
invariant measure of the discrete nonlinear Schrodinger equation. We remark that this invariant

measure corresponds to the stationary solution p(k) = m of (WKE).

~

IFor instance, a common normalization in the physics literature is to have f(z) = Ldl/2 f(k)e*™ 7 which
7,4

kezg

would make the kinetic time scale 7 ~ A~* instead of L2412,
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2. THE WAVE KINETIC EQUATION APPROXIMATION

2.1. Formal derivation of the kinetic equation. The starting point is the Fourier space for-
mulation of equation (NLS) given in (1.3).

Step 1: expanding in the data. Noting the symmetry in (1.3) in the variables k; and k3, we obtain
after integrating by parts twice,
ar(t) =ad (2.1a)
)\2 o e—27TitQ(k,k1,k2,k3)

—- o 1
+ T2 ay, ay, a) 2.1b
L k—kﬁ%—kszo Bk 9wk, b, ko, ks) (2.15)

) >\4 o o .0 0 .0 1

— A Q; Q. a; a

L4d 2 ha s The Tk TR 9 Qe K, oo, Ki3)
k—k1+ko—k3=0
k1—k4+ks—ke=0

e—?ﬂ'itﬂ(k,lm,k‘s,kg,k‘z,k;;) -1 e—?witﬂ(kl,k4,k5,k6) -1
— 2.1
2w 2k, Ko, Ko s Ko k) 2 82(Fn, o, o i) (219)
A 0 70,0 70,0 1
tm 2 dhaR ok, 272k, ky, ki, k3)
k—k1+ko—ks=0 ) ’ )
ko—ky+ks—ke=0
e*27’l’it9(k,k1,k4,k5,]€6,k3) -1 e*2ﬂ'itﬂ(k:2,k‘4,k5,k6) -1
— 2.1d
27T'Q(k7k17k47k57k6ak3) QWQ(k27k4ak57k6) ( )
+ {higher order terms}. (2.1e)
where we denoted $2(k, k1, ko, k3, ka, ks) = Q(k)—Q(k1)+Q(k2)—Q(k3)+Q(ks)—Q(k5); we also used
the convention that, if a = 0, 627;;_1 = it, while, if a = b =0, ﬁ <e2;:((l;f;)_1 — 627;:;_1) = —%tQ.

Step 2: Expectation pairing. We now compute E|ag|?, where the expectation E is understood with
respect to the random phases, and we use

0 00 0y_ ) Pk ---Pk, if there exists a permutation v such that k, ;) = ¢;
E(ag, -..agay, ...a; ) = { 0 otherwise.

(for k € Z%, we write ¢, = ¢(k)). Computing E (|ai|?), we see that there are no terms of order

A2, Terms of order A\* can be obtained in different ways: either by pairing the term of order A?,

namely (2.1b), with its conjugate, or by pairing one of the terms of order A*, (2.1c) or (2.1d), with

the term of order 1, namely ag. Overall, this leads to

2N 11 1 1 1 |sin(tr2(k, ki, ko, k3)) |2
Elax|*(t) = o + 715 Pk Pky Phy P —+—} D 22
L Mﬁ%kszo U o bk bk dke ]| w02k K Ko, s)

+ {higher order terms} + {degenerate cases}, (2.2)

where degenerate cases occur for instance if k, ki, ko, k3 are not distinct?. The details of the
computation are as follows:

(1) Consider first E[(2.1b)|> = E(2.1b)(2.1b), and denote ki, ks, ks the indices in (2.1b) and
1, kb, k5 the indices in (2.1b). There are two possibilities:

2Degenerate cases, like higher order terms, have smaller order of magnitude, on the time scales we consider as will
be illustrated in Section ?7.
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o {ki,ks} = {k}|, K5}, in which case ko = kb, and £2(k, k1, k2, k3) = Q2(k, ki, kb, k5).

o (ko = ky or k3) and (kb = k] or k%), in which case 2(k, k1, ko, k3) = Q2(k, K}, kS, k5) = 0.
Overall, we find, neglecting degenerate cases (which occur for instance if k, k1, ko, k3 are not
distinct),
sin(wt()(k, /{?1, kQ, k‘g))

w82k, k1, ka2, k3)

L4d t2 > Okk, O

k1,ks

224
E|(2.1b)|? = T Z Py Phoy P

k—k1+ko—k3=0

onsider next the pairing of a; wit .1c), which contributes e [(2.1¢)d? . e possible
2) Consid h iri f% ith (2.1 hich ib 2ERe [(2.1 2 Th bl
pairings are

L] {k?,k'g} = {]{34,k6}, implying /{73 = k’5, and leading to Q(kl,k4,ki5,k6) = —.Q(k‘,k‘l,k'g,kig),
and Q(k, k?4, ]{35, k6, ]{22, k‘l) =0.

L] (/{:3 = /{32 or k‘) and (k5 = k4 or kG) in which case Q(k), kl, kg, kg) = Q(k)l, k4, k‘5, ]{76) =0

This gives, neglecting degenerate cases,

— 8)\4
2ERe [a(2.1¢)] = T3 %

e

47T2Q(k, k?l, ]452, ]{?3)2

8\t 5
~ Taat > Okbr b

k1,k3
sin(mtQ2(k, ky, ko, k3)) |2
7k, k1, ko, k3)

> bk, tr,Re

k—k1+ko—k3=0

24 1
= 7ad Z Pk Pley Pl Pk [¢1 + %]

k—ki+ko—k3=0

—2mitQ(k k1 ko k) _ 1]

- WtQ > Okbr O

k1,k3

where we used in the last line the symmetry between the variables k1 and k3, as well as the
identity Re(e® — 1) = —2|sin(y/2)|?, for y € R.

(3) Finally, the pairing of af with (2.1d) can be discussed similarly, to yield

sin(mt2(k, k1, ka, kg)) )
t

w2k, b, ko, k) + 7m gmqsm,
1,R3

— 24
2ERe [af (2.1d)] = T Y bk, By
k—k1+ko—k3=0

Summing the above expressions for E|(2.1b)|2, 2ERe [ W (2. 10)] and 2ERe [ W (2. 1d)} gives (2.2).

Step 3: the big box limit L — co. This is the part of the argument that often relies on number
theory. We would like to replace the above sum by an integral similar to that on the R. H. S.
of the (WKE). This is not obvious since the values of {2 may not be equidistributed at the scale

. 2
1/t which appears in the “cutoff” function ’Slnﬁg&(,’;’“lgis’;g))‘ . Assuming that Q(k, ki, ko, k3) is

equidistributed at this scale, one obtains that as L — oo,

11,11 sin(wm(k,kl,kg,kg))’?
Z Pk Pley Pl P Lﬁk . ¢k2 ¢kj 72k, k1, k2, k3)

k—ki1+ko—ks=0

L / 5(E)(k) (k1) (ka) b(k3) [

sin(mtQ(k, k1, ko, k3)) |
dky dko dks.
2k, k1, ko, k3) T

1 B 1 n 1 _ 1 :|
p(k) (k1) o(k2)  o(ks)

The proof of this fact will be discussed briefly in Section 4.
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: 2
Step 4: the large time limit ¢ — co Observe that? i (Snxlif) dr = 7%, so that, in the sense of distri-
butions,

. 2
sm(wtﬂ)‘ ~ t0(£2) as t — 00.
w2

Therefore, as t — oo,

sin(tQ(k, k1, ko, k3)) |

1 1 1 1
> Pk Pl Pho P [ - — = }

k—k1 +kg—kz=0 O o ¢k2 Py 82k, k1, ko, k3)
~ +72d 1 _ 1 1 B 1
2 ootk |55~ i iy ~ | 4 e

=tL*'T (¢, ¢, ).

Conclusion Overall, we find, assuming that the above limits are justified

Elag|*(t) = ér + 22\; T (¢, ¢, ¢) + {lower order terms}. (2.3)
This suggests that the actual time scale of the problem is
1,2
T= o
and that, setting s = f, the governing equation should read
950 =T (9,9, 0) (2.4)

In addition to the number theoretic component of Step 3 above, making such a heuristic derivation
rigorous hinges on making sure that all the remainder terms are indeed lower order compared to
the second term on the R. H. S. of (2.3). This will be the subject of the discussion in Section 3.

2.2. Statement of the result. We now state a rough version of the main result in [6] in dimension
d = 3. For other dimensions, and a more general result involving a larger range of the parameter
A, we refer the reader to [6].

Theorem 2.1. Consider the cubic (NLS) on the three-dimensional torus T3. Assume that the
initial data are chosen randomly as in (1.2) with ¢ € Z(R%). There exists 6 > 0 such that the

following holds for L sufficiently large and A < L%

Elax(t)|” = éx + ;T(qﬁ)(k) + O <L5i> , L°<t<T, (2.5)

2
d . 2.65
where 7= 1 (ﬁ’—g) and T ~ min(L49, L)\Q ).

A few remarks about this result are in order:

e Notice that this is the same as (2.3), except that the time interval [0, 7] where this theorem
holds is shorter than the kinetic time scale. Such a short time interval only allows the
kinetic equation to affect a small change to the initial distribution ¢;. An O(1) change to
¢ would require having T ~ 7.

3This follows from Plancherel’s theorem, and the fact that the Fourier transform of %% is the characteristic

function of [—5=, 5=].
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e The first upper bound on T given by L% is imposed so that the contribution of exact
resonances (corresponding to 2 = 0) is an error compared to the main term (which is an
asymptotic for the so-called quasi-resonances corresponding to Q < T~1). This restriction
is essentially sharp (up to the L° factor).

e The other upper bound 1" < L/Q\fs is not optimal (the optimal being 7 up to Lo losses) can be
motivated as follows. Roughly speaking, for a random field that is normalized to 1 in L*(T4),
its L° norm can be heuristically bounded on average by L~%2. Therefore, regarding the
nonlinearity A%|u|?u as a nonlinear potential Vu with V' = A2|u|? and ||V |z~ < A2L%, one
would hope to control the solution as needed” on an interval [0, 7] provided that TA2LY < 1,
which amounts to T' < /7 ~ V if d = 3. The fact that the result in Theorem 2.1 falls a

bit short of this is a technical which we explain briefly in Section 3.2.

3. FEYNMAN DIAGRAM EXPANSION

One main component of the proof of the above result is the expansion of the solution as an infinite
power series in terms of the initial data. The radius of convergence of this power series is what
exactly dictates the restriction on the time interval [0, 7] in the statement of Theorem 2.1. Let us
start by explaining this power series expansion, and how it can be organized in diagrams (ternary
trees), that are sometimes called Feynman Diagrams. Similar expansions appeared in the work of
Christ [9], but we rely more on the notation of n Lukkarinen-Spohn [20], Section 3.

3.1. Expansion of the solution in the data. Let us start by writing the equation satisfied by

ar(t) in (1.3) as

t
.A2 )
on(®) = af + Ty [ Zala)o)e >0 s
0

where the subscript in &3 indicates that it is a monomial of degree 3. The expansion can be
obtained by integrating by parts on the oscillating factor e 27*?. Doing one integration by parts
gives
t
)‘2 t i)‘Q > t t . —2miT (2
ar(t) = af) + de@ 3(a)(0)Fy + T2 Ps(a)(s)Fyds, Fj:= [ e dr .
0

s

Using the equation for a, we see that 323(@) consists of three monomials of degree 5, and if we
denote on of them by &5, then the integral term consists of three integrals of the type,

in2\? [ .
(L?d> /@5(&)(8)6_2”139F§d5.
0

Another integration by parts gives the quintic expansion, which has three terms of the form
i\’ ix? .
(Lgd> Z5(a)(0)Gp + (LM) /% s)Glds, G = /e‘QMTQFj dr .
S

4As we shall see, this means proving convergence of the Feynman diagram expansion discussed in the following
section.
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Integrating by parts N times, we obtain the expansion to order N given by:

N
ai(t) =Y Tu(t,k)(@?) + Ry 1 (t, k) (@), (3.1)
n=0

where J,, = Y Jne, and each J, ¢ is a monomial of degree 2n + 1 generated by the nth integration
4

by parts. The index £ is a vector whose entries keep track of the history of how the monomial 7, ¢
was generated. Ry, is the remaining time integral.

Each 7, can be represented by a tree similar to Figure 1 below. which we now explain.

level 3 53 — + e k3,1 op=—1 f;g = 1, _(23
level2 S + 0 kyy - 0 kyy e ka3 ly=3, 2
level I s, —| +; ky, - : ky, + ok13 - okl4 + 0_12,5 =2,
level 0 So — +i kyy -ekyy L e kg —e kog :0 kys \to ko,sx.\:o ko7

FIGURE 1. tree of depth 3.

The tree corresponding to [, ¢, is given as follows.

There are n + 1 levels in the tree, the bottom level is the 0" level. Descending from the top to
the bottom, each level is generated from the previous level by an integration by part step. Thus
level j represent the terms present after n — j integration by parts.

kjm denote the wave numbers present in level j, and therefore 1 < m < 2(n — j) + 1.

k;m has a parity o, due to complex conjugation. For m odd or even, o, = +1 or o, = —1
respectively.
ak; if o, = +1
akj,maa'm
ak;,, ifom=-1

For each level j, we associate a number £;, which signals out the wave number k; . which has 3
branches. This is the wave number of the a (or @) that was differentiated by the j* integration
by parts. The index vector £, keeps track of the integration by parts history in the tree for 7, .
The entries ¢, 1 < j < n, are given by

= (01, 0)€{l,....2n— 1} x {1,...,2n— 3} x -~ x {1,2,3} x {1}.

n 1(_1)@—&—1‘

The tree has a signature op = Hj:
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e Transition rules. To go from level j to level 7 — 1, the wave numbers are related as follows
kj,m = k;jfl,m for m < fj
kjm = kj—1,m+2 for £; <m (3.2)
Kje; = kj—1,0; = kj—1001 + Kjo1042

Note that for any 7, Z (n— ] +1( D)™k, o = kp1 = k. The wave numbers at level 0, i.e., those
present in [, ¢, are labeled

k= (ko1,... koons1) € (Z4)2F1,

e At each level j, the derivative of the element with wave number k;,, (due to the integration by
parts), generates a oscillatory term with frequency

2i(k) = (=) (Q(kje,) — Qkj—1,6,) + Qkj_1,6,41) — Qkj_1,6,+2)) ,

j—1
e Integration by parts variables, s = (so, ..., s,) € (RT)"*1; ¢;(s) = Y s, 1 < j < n. This choice
k=0
of variables can be explained as follows. Repeated integration by parts generates terms of the
form

¢ ¢ ¢ t—s0 t—80—-—8n—2
/90(80)/91 s1) / In—1(5n—-1) /go / (so+s1) .. /gn—1(50+"'+8n—1)
0 0 0
which can be written as
n
/ B 90(50)g1(s0 +81) - gn—1(s0 + -+ Sp—1)0(t — s1)
R 1=0

With this notation at hand,
Jo=ay, JTi=51=21b), D=1+ @)+ To b0
1
Jo21) = (2.1d),  To 1) = To,31) = (2 le),

and Figure 1 represents 73 (331). The general formula for 7, ¢ is given by

2n—+1 n n
gt = (P5) 70 ot L o, [ TLeoesom s (13 )ax s
ke(z4)2n+1 Jj=1 (R+)n+7[n:1 0
Here and throughout the manuscript we write
1, k=j
5;;; — ) j‘a
0, k#J,

while §(-) is the Dirac delta.



10 T. BUCKMASTER, P. GERMAIN, Z. HANI, J. SHATAH

t
Finally, we write Ry, (¢, k meg (t, s0; k)(al))dsg, where
0

ZA2 n 2n+1 n - o .
Ry e(t, s0;k)(b) = <Lgd> o¢ 511;1’1 H bro ;.0 / He 2mit j(s)$2; (k)
ke(z4)2n+1 Jj=1 (R+)n j=1

o (t — 50 — z": sz-) ds. (3.4)
1

3.2. Convergence and estimates. The first question to address for such a power series expansion
is its convergence. For this we rely on an iteration scheme that takes advantage of two main facts:

A) Improved Strichartz estimates on irrational tori: These were derived in [11] and yield im-
provements on longer time intervals than those obtained by iterating the time-1 Strichartz
estimates (the latter being optimal on the rational torus). Rather unfortunately, the crucial
Strichartz estimate for us, which is the L}, estimate is suboptimal in [11], which is the why
our time 7 in Theorem 2.1 does not quite reach L3/\2.

B) Improved integrability due to randomization of the initial data, namely that random initial
data allow for better space-time estimates to be propagated for the solution. This fact
is by-now classical, and has appeared in the past few years in many works on dispersive
equations with random data (See for example [7] and references therein).

Now that we have a convergent series for a(t) of Feynman diagrams, we can start computing as
we did in Section 2.1 to obtain:

Elay(t) Z ZE Tt (t, k) T g (t, k)

n,n'>0 £.0
2N 11 1 1 1 |sin(tr2(k, ki, ko, ks3)) |2
S Ok Ply Phy Phes | — — —]
LAd km%kg—o R T, ¢k2 P w2k, k1, ko, k3)
+ Z Z]E jnet]{? /Zl(t ]{7))
n+n’>3 4.0

This leads us to the key estimate on the diagram interactions which is contained in the following
proposition:

Proposition 3.1. Ift < LY then
- t\71
Z ZE(jn,f(ta k)jn’,f/(ta k)) /SS (10gt)2 <\f> E
n+n'=S £, T

Remark 3.2. The trivial estimate would be that

S S E( Gt k) T (6 1)) 5(%)5.

n+n’/=S 0,0

n+n’
Indeed, J 0T, ¢ comes with a prefactor (L)‘—;d) ; the size of the domains where the time integra-

tion takes place is O(t”*”/); and the summation over k and k' is over 2d(n +n' + 1) dimensions,
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half of which are canceled by the pairing, out of which d further dimensions are canceled by the

. o \2 \ , d , AN
requirement that k,1 = k. Overall, this gives a bound (ﬁ) x gt pantn’) — (W) .

Having such an estimate in hand, allows one to prove that the contribution of the higher order
trees is an error term on any time interval shorter than /7.

4. NUMBER THEORETIC RESULTS

Finally, we discuss how one can obtain an asymptotic for the second term on the R. H. S. of (2.2)
that would give the interaction kernel appearing on the R. H. S. of (WKE) as stated in Theorem
2.1. Specifically one needs to derive an asymptotic formula for

sin(wtQ(k, k1, ko, k3)) |

W‘Q(kv kla k?a k?))

G O O o

1 1 1 1 } (4.1)

> Pk Pler Pl P [
kiezd

k—ki1+ko—ks=0
for t and L large. Note that for ¢ finite, it is easy to show that for L large the above sum is
asymptotic to,

2d i . i i o L sin(wt!?(k, k?l, ]{32, k‘g
L / O(E) 0k Pr Prs B [qbk oo Vo T on | w2k ke, ks k)

which is nothing but the Riemann sum formula. However for our problem we need to derive such
formula in the regime where p := tL=2 = O(L%) for some positive power a. In such a regime, the
function (sin(uxr)/z)? behaves like pDirac §(x). In this situation one needs some deep results from
analytic number theory, namely a recent result on pair correlations of generic quadratic forms by
Bourgain [4].

2
) ‘ dkydks dks

Although asymptotic formulas are hard to prove, it is relatively easy to prove sharp upper bounds
on such sums if one is willing to allow a loss of a small power of L, i.e., L€, which we will illustrate
below.

Let us consider®
d
Qn)=> Bmi, n=(n1,...,nq),  Qp,q) = Q(p) — Q) (4.2)
i=1

for generic 8 = (B1,...,8a4) € [1,2]¢, and try to find a sharp upper bound for the lattice points in
the region,

Rz {(p,q) € 2271 [0, 1)* | Qp, q) € [a,8],p # q},

that is bound #Rz = >, 1. The number of such lattice points in intimately related to the
(p.a)ERy
asymptotic of the sum in (4.1) (by replacing the ¢y by characteristic functions of the unit ball and

the cutoff function (sin(ux)/z)* by 1,y)-
First we show that for linear forms, ¢(n) = §-n, the number of lattice points such that a < ¢(n) < b,

are bounded by
#nezZ N[-M M| a<p-n<b= > 1MV (b-a)+1 (4.3)

a<p-n<b
[n|<M

5The quadratic form §2 can be transformed to Q(p, q), see [6]
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This fact is easy to verify using the genericity of § = (81, ..., 84) which implies a lower bound for

¢ whenever 0 < |n| < M,
1

1B-nlZ A d—n
(see for example [8], Chapter VII), and the linearity of ¢(n) which implies an upper bound on the
distence between two lattice point in Ry, i.e., for arbitrary n") # n( e Z4 satisfying a < §-n() < b
and 0 < ‘n(i)‘ <M,
ﬁ S1B- (M —n®)| <b—a.
Consequently by the pigeonhole principle we obtain (4.3).

Using the fact that a < Q(p,q) <b < a < (k) < b, where k; = (p; — ¢;)(pi + qi), and the divisor
bound d(k;) S kf, we obtain

#Ry < L2EA-D7(p — q) 4 LE@DT (4.4)
This upper bound allows us to derive the asymptotic formula for # Ry on a coarser scale, e.g.
b—a = L3. Note hat this is still better then the trivial Riemann sum scale of b — a = O(L?).
Proposition 4.1. Fiz § > 0 sufficiently small, then if L'T* < b—a < L?>7°, we have the asymptotic
formula

# {(p, q) € 2N [0, L1 | Qp,q) € [a, b]} = L*" V(b - a) // 1jg,124(, Y)8dirac(Q(, y)) drdy
R2d
+0 (17— a)) .

The proof of this proposition is a consequence of (4.4) and Poisson summation formula.

To improve on this result to allow b —a = O(L(d_l)f) one needs some deep results from analytic
number theory. In particular, we can generalize the resut of Bourgain in [4] to prove,

Theorem 4.2 (Equidistribution). Fiz e > 0 and let 6 > 0 be sufficiently small. Then for generic
B € [1,2]¢, we have that for any smooth function W : R*¢ — R, compactly supported in a ball of
radius L?, the following holds,

LQ(d—l)—§
>ow (% %) 9(1Q(p,q)) = LQd// W (2, y)g(L*uQ(z, y)) dedy + O <M>
(p,q)iZid R2d

p7q

where 0 < p < L4=17¢,

This allows us to obtain the following asymptotic formula:

Theorem 4.3. For any € > 0, there exists a sufficiently small 6 such that if 0 <t < L€, then,

> tnduh [1 1,1 1} sin(wm(k,kl,@,ks))'?:

- + -
d ¢k‘ ¢k’1 gbkz ¢k‘3 WQ(ka kl) k27 k3)
k’iEZL
k—ki+ko—k3=0

LD / Dk Phey Phey Py [

1 1 1 1
— = — 4+ — — —| 8(X)0(2)dkydky dks + O (L4710
bk Pky ko ¢k3] (2)0(82)dkdkz ks ( )

This proves the validity of the asymptotic formula for the needed long time interval.
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