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Abstract—Prostate cancer (PCa) is a common, serious form
of cancer in men that is still prevalent despite ongoing
developments in diagnostic oncology. Current detection
methods lead to high rates of inaccurate diagnosis. We
present a method to directly model and exploit temporal
aspects of temporal enhanced ultrasound (TeUS) for tissue
characterization, which improves malignancy prediction. We
employ a probabilistic-temporal framework, namely, hidden
Markov models (HMMs), for modeling TeUS data obtained
from PCa patients. We distinguish malignant from benign
tissue by comparing the respective log-likelihood estimates
generated by the HMMs. We analyze 1100 TeUS signals
acquired from 12 patients. Our results show improved
malignancy identification compared to previous results,
demonstrating over 85% accuracy and AUC of 0.95.
Incorporating temporal information directly into the models
leads to improved tissue differentiation in PCa. We expect
our method to generalize and be applied to other types of
cancer in which temporal-ultrasound can be recorded.

Keywords—Image guided diagnosis, Hidden Markov models,
Time-domain analysis, TRUS-guided biopsies, Tissue char-
acterization.
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INTRODUCTION

Prostate cancer (PCa) is the most commonly diag-
nosed form of cancer in men, second only to skin
cancer. The number of new cases in the USA alone
during 2019 is estimated at 174,650." A definitive
diagnosis is obtained through histopathology analysis
of prostate-tissue specimen collected during core nee-
dle biopsy under trans-rectal ultrasound (TRUS)
guidance after initial clinical-assessment.” Some cen-
ters use magnetic resonance (MR) and MR-TRUS
fusion for guiding biopsies.”**® TRUS-guided biopsies
often lead to a high rate (~ 40%) of false negatives for
cancer diagnosis.”’ Extensive heterogeneity in mor-
phology and pathology of PCa are challenging factors
for accurate diagnosis and grading of the disease.*
While improved PCa screening has reduced mortality
rates by 45% over the past two decades,™® inaccurate
diagnosis and grading lead to an increase in repeat
biopsies, over-diagnosis and over-treatment.'*'® Over-
aggressive treatment of PCa patients results in a de-
cline in their quality of life.

For indolent PCa, such aggressive treatment should
be avoided, as watchful waiting and active surveillance
have proven effective as disease management options.>
Accurate identification and grading of lesions and their
extent—especially using affordable, readily accessible
technology such as ultrasound—can, therefore, signif-
icantly contribute to appropriate effective treatment.
To achieve this, methods must be developed to guide
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clinicians during biopsies to target regions with high
risk of being malignant. The task of differentiating
malignant tissue from its surrounding tissue is referred
to in the literature as tissue typing or characterization.

Different imaging modalities have been employed
for tissue characterization including ultrasound-based
techniques,>'>!417-20 magnetic resonance
sequences.”>*® Despite the low resolution of ultra-
sound images, ultrasound-based techniques have the
advantage of using a low-cost technology that is al-
ready integrated into standard diagnostic procedures.
Temporal enhanced ultrasound (TeUS) is a novel
ultrasound-based imaging technique, where a sequence
of ultrasound frames is captured by sonicating tissue
over a short period of time, without intentionally
moving the tissue or the ultrasound probe. We propose
to improve the differentiation between malignant and
benign prostatic tissues by capturing the temporality of
the data using Hidden Markov models (HMMs). Our
approach characterizes the distinct temporal signatures
of echo-response from malignant and benign tissues
and uses the identified signatures to detect malignancy.

Previous research on TeUS utilized frequency-do-
main analysis and classifiers such as support vector
machines, deep belief networks and others.>'*!” In our
recent studies, we have proposed to directly represent
the temporality of TeUS and employ it to reach more
accurate tissue-typing,'?° and showed preliminary
results when applied to a small dataset.

Here we present in detail our stochastic approach
for directly representing the temporal aspects of TeUS,
through HMMs,** while applying it to a larger number
of patients and increased amount of available data.
Importantly, this approach allows us to assess the
impact of model parameters on the clinical translation
of TeUS. Probabilistic temporal modeling, particularly
HMMs, have been applied to a wide range of clinical
data such as time dependent physiological process,®*"
and disease-risk progression over time.'"'> We apply
our method to differentiate between malignant vs.
benign prostate tissue and demonstrate its utility,
showing improved performance compared to the state-
of-the-art.

Employing parsimonious models that have a rela-
tively small number of parameters for TeUS-based
characterization facilitates efficient real-time imple-
mentation that can be integrated into current clinical
procedures while avoiding major interruption to the
diagnostic workflow. We investigate the impact of
several design decisions involved in modeling via
HMMs on tissue typing performance and discuss how
the choice of model parameters affects the classifica-
tion outcome. We also provide a statistical comparison
of our outcome with previous results reported by Im-
ani et al.,'” who used spectral features and applied
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support vector machines on the same TeUS signals,
without explicitly modeling the temporality of the data
as we do here. This comparison further demonstrates
the value of such temporal modeling.

The rest of the paper is organized as follows: Sect.
“Materials and Methods” describes TeUS data and its
representation; it also presents the tissue-characteri-
zation framework; Sect. “Results” explains our
experiments and results demonstrating the effective-
ness of the method, and Sect. ““Discussion” provides a
discussion and concludes by outlining future work.

MATERIALS AND METHODS

Data Collection

TeUS signals record tissue-response to prolonged
sonication in comparison with conventional US
imaging standards. These responses consist of reflected
ultrasound echointensity values. Echointensities vary
over time due to changes in the microstructure of
scatterers (cell nuclei) induced by external or internal
vibrations such as pulsation.’ TeUS signals have been
shown to carry tissue-specific information relayed by
the patterns of change in echointensity over time.'”
Fig. 1 shows ultrasound image-frames collected from
prostate sonication (each frame is referred to as a radio
frequency (RF) frame). The boundary of the prostate
is encircled in a solid line (white); the red solid dots
indicate the same location within the prostate over
time, while the blue dotted arrows point to the corre-
sponding echo intensity values. The sequence of echo
intensities obtained from the same point within the
prostate over time forms the TeUS signal (bottom of
Fig. 1). We partition each RF-frame into a grid of
smaller regions, each as wide as the specimen-collec-
tion needle (16 gauge = 1.65 mm).'*?*' Each window
in the grid is referred to as a region of interest (ROI)
and comprises multiple RF values. We use the same
dataset as Imani et al.'* to ensure a valid comparison
between our results and those described in their pre-
vious work. The RF-frame size is 55 x 50 mm, cor-
responding to 1276 RF values in the axial direction
and 64 RF values in the lateral direction. Accordingly,
we adopt the same ROI size 1.7 x 1.7 mm,> which
corresponds to 44 RF samples in the axial direction
and 2 RF lines in the lateral direction.

The image data consists of in vivo RF-frames
gathered from 12 PCa patients who have undergone
radical prostatectomy. The study was approved by the
institutional research ethics board and informed con-
sent was obtained from all participants. Prior to the
surgery, 128 RF-frames recorded at a rate of 77
frames/sec along the parasagittal plane, were gathered



Sequential Stochastic Modeling of Temporal Ultrasound

Lateral

Thme Palnts

n T 20

FIGURE 1. (a) Ultrasound RF-frames collected from a prostate-cancer patient over time. A grid divides each frame into ROls. The
solid red arrows point to ROIs labeled as malignant, while the dashed green arrows point to ROls labeled as benign. (b) The
corresponding echointensity values; the solid red dots indicate the same location across multiple frames. (c) The time series, TeUS

signal for this location is shown at the bottom.

from each patient using a side-firing transrectal probe
(BPL9-5/55 transrectal probe, Analogic, MA, USA)
with 6.67 MHz central frequency. The data was
acquired as a fan of 2D ultrasound RF time series
using a 2° rotational interval between consecutive
spatial slices, for approximately 2 s per angle. A grid
was overlaid on each of the frames and ROIs were
obtained as described above. To create the ground
truth for malignant vs. benign regions, we used
wholemount histopathology information.

Following prostatectomy, the tissues were imaged
using MRI, then analyzed through high resolution
microscopy; two clinicians assigned (in consensus) the
appropriate labels to the ROIs within each slice.”"'
The registration of ultrasound images and high-reso-
lution histopathology images is a challenging proce-
dure, where MR was used as an intermediary
modality.”'> A multi-step registration process, in
which MRI images are used as an intermediate step,”'
was employed to overlay the labeled histopathology
images on the in vivo ultrasound frames (see Ref. 12 for
additional details). Figure 2 serves as visualization of
the various registration steps needed to overlap the
histopathology demarcations on the in vivo ultrasound
slices. Figure 2a is a depiction of the intersection of
between the ultrasound imaging planes (parasagital

planes) and the histopathology cross-sections. Fig-
ure 2b shows the ultrasound label-map where the
prostate is segmented and the intersection lines of
histopathology cross-sections are shown as oblique
lines along with a registered malignant demarcation
shown as white colored pixels and red-encircled. Fig-
ure 2¢ is an example of an ex vivo MRI image with
visible fiducials serving as points of reference to reg-
ister histopathology demarcations on ex vivo MR.
Figure 2d is an example of histopathology cross-sec-
tion, where black is used to demarcate the malignant
region and encircled in red. This malignant demarca-
tion corresponds to the red-encircled region on the US
label-map. This registration overlays true pathology
labels on each ROI, indicating whether it is malignant
or benign. ROIs with other non-malignant annotations
such as Benign Prostatic Hyperplasia (BPH) were not
included in the analysis. The ROI selection was guided
by the availability of ground truth label. Figure I
shows several examples of labeled ROIs. Benign ROIs
were chosen from areas with no histopathology
demarcation, and with a safe margin of > 5 mm away
from malignancy and other conditions. The malignant
ROIs were picked from demarcations that were clini-
cally-significant (= 0.5 cm?) and appeared in consecu-

tive slices.
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FIGURE 2. (a) 3D representation of the prostate volume along with a parasagital ultrasound image, acquired using a transrectal
probe, in addition to a histopahology image. The figure shows the intersection of both imaging planes, a line where ground truth
annotations are used to label ROls. (b) Ultrasound label-map showing the histopathology cross-sections. (c) Ex vivo MR of the

prostate with visible fiducials. (d) Histopathology slices with malignant demarcation. The registered malignant demarcation
encircled in red on the histopathology slice is also shown on US in (b).

(c)

Data Representation

Each ROI in our dataset is represented as a time-
series, in which each value summarizes the ROI status
at a specific time ¢. To produce a single value summary
of an ROI at a time-point ¢, we average the 88 RF
values within each grid-window in a single frame
recorded at the corresponding time ¢. The total number
of ROIs selected from the 12 patients is 1100, where
263 are malignant and 837 are benign. Table 1 sum-
marizes the distribution of ROIs among the 12
patients. Notably, for patients 9-12, only benign ROIs
were selected for analysis due to lack of clinically-sig-
nificant malignant regions. For each ROI, R,, a 128-
long time series, Ry, = R ,..., R} . iscreated, where y
indicates the malignancy ldbel assigned to the ROI (y
€{m,b}; m for malignant, b for benign), and x indicates
the ordinal number of the ROI, in the range
1 < x < 263for malignant ROIs, and 1 < x < 837 for
benign ROIs. Each point R, in the series corresponds
to the average intensity of that ROI in the RF-frame
recorded at time 7, where 1 < ¢ < T, and T = 128. We
note that while the number of patients is relatively low,

BIOMEDICAL
ENGINEERING
SOCIETY

the total number of ROIs per patient is significantly
high (see Table 1), thus providing sufficient data to
support effective model-learning.

Since we are interested in capturing the patterns of
echointensity changes over time, we map the series
associated with each ROI, R), to its respective first-
order difference series, i.e. the sequence of value-dif-
ferences between pairs of consecutive time-points.
Training HMMs that are based on discrete observation
symbols rather than on continuous values typically
leads to more accurate models with fewer parameters
and—more importantly—easily interpretable mod-
els.”” The latter is particularly advantageous in com-
puter-assisted diagnosis. Hence, we opt for discrete
HMMs and represent each TeUS signal as a sequence
of distinct observation-values. Since the difference
series consist of real-valued numbers, we further
quantize the series by placing the values into M
equally-spaced bins, where the values in the lowest bin
are all mapped to 1, while those at the top-most bin are
mapped to M. The resulting set of observations thus
consists of bin numbers (1,...,M). In our experi-
ments, we varied the number of bins, M, from 10 to 50,
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TABLE 1. The distribution of malignant and benign ROIs over patients.
Patient Number 1 2 3 4 5 6 7 8 9 10 11 12 Total
Number of ROIls Malignant 42 17 64 29 35 18 28 30 0 0 0 0 263
Benign 42 17 61 29 35 18 29 30 71 254 62 189 837

where the smaller the number of bins—the more lossy
the representation is.

The sequence obtained by quantization is denoted
Rj‘\’,' = Oy,,...,0y, ,, where each O, is the quantized
difference in echointensity (Rf;w -R,),1<0, <M,
and 1 <t < T — 1. In our experiments, we compare the
classification performance of HMMs while varying the
number of bins used for quantization. The quantized
signals are utilized as training and test data for build-
ing the models, which are used to distinguish between
tissue types as described in the next subsection.

Probabilistic Modeling

HMMs are often used to model temporal sequences
where the generating process is unknown and exhibits
variation and noise.'" A simplifying assumption
underlying the use of HMMs is the Markov property,
namely, that the state of the generating process at a
given time-point depends only on the state at the pre-
ceding point, conditionally independent of all other
time points. The states underlie the estimated hidden
stochastic-process that emits the observed values in the
modeled sequences. An adequate number of states is
important to capture both recurrence and variation in
patterns along the time series. A model thus requires a
sufficient number of states to relay the information
conveyed by the sequence. The states, in turn, are
associated with distinct emission probability distribu-
tions.

An observation corresponds here to the difference in
tissue response values recorded in between two con-
secutive RF-frames and quantized as discussed above.
The set of binned echointensity-difference values are
the observation symbols that make up the model’s
alphabet. We assume that the generating process of
these echointensity-difference values is unobservable
and we estimate it using the observations in the first-
order-difference TeUS signals. The size of the alphabet
is the number of available observation symbols, here
bins. The number of symbols reflects the level of detail
the data representation preserves. Here, we hypothe-
size that the patterns of change in echointensity over
time are the source of tissue-specific information rep-
resented by TeUS.

Formally, an HMM Aconsists of a set of NV states,
S ={s1,...,sn}, an alphabet, V' = {v;,..., vy}, of M

observations, an N x N stochastic matrix, 4, gov-
erning the state transition probabilities, an N x M
stochastic-emission matrix, B, denoting the probability
of observing v,, at s;, and an N-dimensional stochastic
vector, I1, that determines the probability to start the
process at state s;. Given a sequence of observations,
O =01,02,...,0128, a model A is learned from the se-
quence by optimizing the parameters, 4, B, and I, to
maximize log[Pr(0|2)], the probability of the obser-
vations O given the model /—whose set of parameters
are denoted as 0. Given a training set of signals (R'),
the learning process aims to find the set of parameters
0" that maximizes the likelihood of the training set,
such that:

Pr(R'|0") = arg mgx(

11 Pr(R;|9>>, (1)

1<x<X

where 1 < x < X and X is the total number of ROIs in
the training set.

The optimization is done using the Expectation
Maximization (EM) method known as the Baum-
Welch algorithm.?* In our experiments, we fix IT such
that: ny = Pr(state; = 51) =1, and 1; = 0, Vj # L.
Hence, s, is always the first state.

To learn a model, its parameters are initialized, and
then iteratively updated until convergence, in accor-
dance with the EM algorithm. We initialize the model
parameters based on clustering the values within all of
the training sequences being modeled into N clusters
cl,...,cy, Where N corresponds to the number of
states in the model. Here, clustering is done using K-
means, with K = the number of states.

Tissue Characterization Framework

To characterize tissue samples as either benign or
malignant, we learn two HMMs—A/,,, for series of
malignant tissues, and Ap for series of benign tissues.
An alternative possible approach is to model both
types of tissues through a single HMM, while setting a
likelihood threshold to determine the tissue-class. The
latter approach requires much empirical analysis to
determine both the model parameters and the proper
threshold. We thus adopt a two-HMM approach to
adequately capture the difference in echointensity
pattern. We use supervised learning to optimize the
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model parameters, where the training and test data
consist of the TeUS signals corresponding to the ROIs
that were labeled as malignant and benign (described
in “Data Representation”). Using the training set of
malignant ROIs, we learn 1), while /g is built using
the training set of benign ROIs. For every test-se-
quence, ROl,¢,, a log probability is assigned by each
of the models Ag and /A, and defined as
log(Pr(ROleg,|Ac)), and ¢ € {M,B}. This measure
indicates how likely the model is to have generated the
time-series. The differentiation between benign and
malignant tissue is based on the pattern of change
between various echointensity ranges and it is deter-
mined by the log-probability calculated by the HMMs
using the transition and emissions probabilities. Class
label Cieg,, assigned to ROl,, is assigned by the
model that generates the maximum log probability,
that is:

Ciest; = argmax(log(Pr(ROI e, | Ac))), (2)
ce{M,B}

where 1 <i< L, and L is the number of test-ROls.

The HMMs used here are all ergodic, consisting of
N states and M observations. We assessed the perfor-
mance of the models while varying the number of
states (7 values: 2-8 states) and the alphabet sizes
(5values:10, 20, .. ., 50).

Cross-validation and Performance Evaluation

To train each model, we use a leave-one-patient-out
cross-validation framework, to account for the non-
independence of ROIs selected from the same patient.
We leave-out all the ROISs selected from one patient to
be used for testing, and we use the ROIs of the
remaining patients for training. We partition each ROI
set of TeUS signals (malignant for 4, benign for 1)
into training and test sets. In each cross-validation run,
the ROIs of one of the 12 patients are left-out as a test-
set, while the ROIs of the other 11 patients are used to
train the HMM. In each cross-validation iteration a
pair of models, a malignant Z,; and a benign /g, is
trained on the data obtained from the 11 patients and
tested on the dataset associated with the left-out pa-
tient.

To assess our method’s performance, we apply each
of the trained models (each trained over ROI time-
series obtained from 11 of the patients) to assign labels
to the test data (the ROIs of the left-out 12th patient).
We then calculate the average accuracy, sensitivity and
specificity of the assigned labels with respect to the
ground-truth, where:

BIOMEDICAL
ENGINEERING
SOCIETY

4 of correctly classified ROIs

aceuracy = #total - ROIs
sensitivity = # correctly classified malignant ROIs
# of malignant ROIs v
specificity — 2 correctly classified ROIs
p y # of benign ROIs

3)

To report diagnostic performance, we also plot the
receiver operating characteristic (ROC) curves and
calculate the Area Under the Curve (AUC) for each of
the 8 patients, who contributed malignant and benign
ROIs to the dataset (Fig. 5). The ROC curves are
generated using the log odds ratio (denoted log(OR))
that is the log of the ratio of the likelihood value from
models of benign signals and that from models of
malignant signals. Log(OR) greater than a classifica-
tion-threshold of one indicates a prediction of a benign
label which is equivalent to Cis; = B in Eq. (2). To
generate an ROC curve for a left-out patient, we first
normalize the log(OR), calculated for every test ROI,
to have values € [0, 1] and a classification-threshold of
0.5. We then plot the true positive rates (sensitivity) vs.
false positive rates (1-specificity) calculated for various
classification-thresholds with values ranging between
zero and one.

To employ our system in practice, we provide the
physician performing the biopsy with ultrasound
images overlaid with colormaps, where the latter
highlight areas that are more likely to be cancer, and
should be targeted during biopsy. The color of each
ROI in the colormap (see Fig. 6) is determined by the
log odds ratio. The log(OR) reflects the confidence of
the label prediction. When the difference between the
probabilities, generated by both HMMs, is very small,
the log(OR) is approximately zero reflecting a very low
confidence in labeling. The more different the proba-
bilities are the higher is the confidence in the assigned
label and the further away from zero is the log(OR).
The range of log(OR) is calculated for the TeUS sig-
nals in each test set and mapped to a spectrum of
colors ranging from blue for negative values, green/
yellow for values close to zero, and orange/red for the
positive values.

RESULTS

As noted above, we experimented with seven dif-
ferent values for the number of states, N, (2 < N <38),
and five values for alphabet size, M (from 10 to 50).
For each combination of N and M, the structure of the
HMMs are learned through 12 cross-validation itera-
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tions, where in each iteration the ROIs of one of the 12
patients are left-out for testing, while the ROIs of all
other patients are used for training. Twelve pairs of
models are therefore trained for each combination of N
and M, one pair per cross-validation iteration. We
compared the outcome of the 35 (7 x 5) experiments to
select the HMMs showing best performance while
prioritizing parsimonious models, (i.e. those that use
fewer parameters, while retaining the same level of
performance).

Table 2 shows the resulting percent-accuracy values
for the 35 experiments. The topmost average accuracy
values, shown in boldface in Table 2, were attained by
HMMs comprising 4 states and 40 observations
(85.35%), 6 states and 10 observations (85.15%), and 5
states and 50 observations (85.06%). These three val-
ues are not statistically significantly different from one
another. However, the models comprising 6 states and
10 observations are the most parsimonious, thus we
select them to generate the colormaps and ROC curves
shown in Figs. 5 and 6.

A graphical representation of the pair of HMMs
that have 6 states and 10 observations (the most par-
simonious model with classification accuracy of
85.15%) is shown in Fig. 3, to help in visualizing the
classification process. Figure 3 shows the pair of 6-
state HMMs, where the left one was trained on time-
series obtained from malignant ROIs while the one on
the right was trained on benign signals. The transition
probabilities are shown on the edges while emission
probabilities for each state are shown as histograms.
The figure shows that in both models, each state is
characterized by its own markedly distinct observation
distribution. The clear distinction between the two
models means that TeUS signals of malignant ROIs
has patterns of changes different than those of benign
ROIs.

Table 3 lists the accuracy, sensitivity, specificity and
AUC attained by the most parsimonious models (6-
states and 10-observations) for the patients in our
dataset. Notably, as no clinically malignant regions
were originally identified in patients P9-P12 (see “Data
Representation” and Table 1), no corresponding
malignant ROIs are available and as such the sensi-
tivity and AUC values are not shown for these
patients. Compared to previously published results
reporting an average accuracy of 80% on the same
dataset,'? the values shown in Table 2 all indicate im-
proved performance. Notably, not all the differences
between previous results and those reported in the
tables are statistically significant, due to variability in
performance across different patients. Statistically
significant increase in accuracy with respect to previ-
ously published results (p-values < 0.05, one tailed
Mann—Whitney—Wilcoxon test), was attained by the 3-

state HMMs with 30 and 40 observations, the 4-state
HMMs with 40 observations, and the 7-state models
with 10 observations. The performance of the model
with 5 states and 50 observations was further improved
by noise injection, where accuracy reached 85.6% with
an AUC of 0.95 (this improvement is also statistically
significant, p-value < 0.04).

To show that the models captured the difference
between the patterns of echointensity changes of be-
nign and malignant tissues, we compare the emission
probabilities of the malignant HMM with those of the
benign model. For this comparison, we plot the max-
imum emission probabilities of both HMMs for each
observation symbol, regardless of the emitting state. In
Fig. 4, the solid red bars show the maximum emission
probability per observation for the malignant model
and the diagonally striped blue bars for the benign
model. The plot clearly shows that the benign model
assigns higher probabilities than the malignant HMM
to the first 4 observations as well as to the eighth one
(negative echointensity differences < — 3; positive
values between 5 and 7, see the tissue characterization
framework for details).

To demonstrate the trade-off between sensitivity
and specificity for the most parsimonious HMM (6
states and 10 observations), we plotted ROC curves
and calculated AUC values. Figure 5 shows the ROC
curves for 8 patients from whom malignant and benign
ROIs were taken. All of the curves lie well above the
diagonal line, indicating a balanced trade-off between
true positives and true negatives. The curve closest to
the diagonal shows the performance of testing the
ROIs of patient P8, who has the lowest sensitivity. The
poorer performance for this patient is likely due to
higher registration errors between the ultrasound data
and histopathology labels. It should be noted that all
of the patients in our data went through prostatectomy
as part of their clinical-care plan. It is possible that
some of the false positives, are not entirely erroneous
as TeUS might have relayed information about
malignancy outside of the histophathology cross-sec-
tions.

To visualize the labeling results on the ultrasound
images, we generated colormaps for each RF-frame by
color-coding the ratio of log probabilities calculated by
the models. Figure 6 shows examples of RF-frames
obtained from the 12 patients. Two versions of the
same RF-frame are displayed; images on the left show
histopathology cross-sections and labeled ROIs se-
lected for analysis, whereas the images on the right
show the corresponding colormaps based on the
probability values assigned by the HMMs. Each ROI
is assigned a color reflecting the log-odds ratio calcu-
lated for its respective time series (see Cross-validation
and Performance Evaluation). Only a few ROIs have
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TABLE 2. Tissue-classification accuracy along with standard deviation (in parentheses) for HMMs as a function of varying state
number and alphabet size.

Number of states

Alphabet size 2 3 4 5 6 7 8

10 82.28 (10.7) 82.62 (13.2) 82.81 (11.04) 83.67 (10.5) 85.15 (10.5) 84.67* (10.4) 83.11 (8.8)
20 83.23 (11.3) 83.63 (10.9) 83.52 (9.9) 83.26 (10.5) 83.08 (10) 84.92 (11.1) 84.12 (9.7)
30 84.45 (10.8) 84.9* (11) 83.07 (11.4) 82.73 (11.2) 84.57 (10.1) 84.32 (10.8) 84.8 (10.9)
40 84.64 (10.1) 84.63 (10.7) 85.35* (9.7) 84.35 (11.2) 83.74 (9.8) 84.45 (10.8) 84.78 (9.3)
50 83.54 (11.9) 83.72 (10.1) 82.72 (10.3) 85.06 (10.7) 83.34 (10.4) 83.26 (8.8) 84 (9.9)

The three highest accuracy values are shown in boldface. Asterisks indicate values that are statistically significantly higher than the state-of-

the-art on the same dataset.
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FIGURE 3. A graphical representation of the HMMs that have 6 states, 10 observations, and an accuracy of 85.15%. (a) The HMM
learned from malignant ROIs, and (b) the HMM trained on benign ROIs. Nodes represent states. Edges are labeled by transition
probabilities; Emission probabilities are shown to the right of each model. Edges with probability < 0.2 are not shown. This
figure demonstrates the distinct emission and transition probabilities learned by each of the models.

ground truth labels shown in the corresponding images
on the left-hand side. The sparsity of true labels is due
to the slicing protocol adopted for whole-mount
histopathology analysis. Our method assigned labels to
all the ROIs within the boundaries of the prostate
(with or without ground-truth) and assigned them
colors accordingly. The color-maps are therefore used
to inspect the overall patterns of prediction for ROIs
without true labels. They help in comparing our pre-
dictions to the known statistics about the frequency of
malignancy occurring in each of the prostate zones.
The colormaps of RF-frames from patients P1-P7
match the true-annotations almost perfectly. The col-
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ormap associated with patient P8 shows more false
negatives, which agrees with the performance measures
shown in Table 3. As for patients P9—P12, the col-
ormaps show few false positives compared to the true
labels (shown to the left of each colormap) showing no
malignant ROIs. It should be noted though that
patients P9-P12 went through prostatectomy due to
cancerous samples in their biopsies. Hence, it is pos-
sible that some of what appear to be false positives are
actually frue positives, and the TeUS has indeed re-
layed correct information about malignancy outside
the histopathology cross-sections used for denoting the
ground truth.
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TABLE 3. Classification performance using 6-state HMMs
with an alphabet size of 10.

Accuracy Sensitivity Specificity AUC
P1 92.9 100 85.7 0.99
P2 82.4 70.6 941 0.96
P3 89.6 79.7 100 0.98
P4 96.6 93.1 100 0.99
P5 91.4 100 82.9 0.99
P6 94.4 88.9 100 1
P7 84.2 78.6 89.7 0.92
P8 7.7 53.3 90 0.83
P9 97.2 - 97.2 —
P10 85.4 - 85.4 -
P11 74.2 - 74.2 -
P12 61.9 - 61.9 -
Average 85.15 83 88.4 0.95
The symbol “—* denotes missing sensitivity and AUC values.

These values cannot be calculated for patients P9—P12 since all
ROls for those patients were benign (see Table 1). The bottom row
provides the average along each measure, calculated over the
values shown; Sensitivity and AUC are averaged only over patients
P1-P8, while all other measures are averaged over P1-P12.
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FIGURE 4. Maximum emission probabilities per observation
(irrespective of the emitting state) for each of the malignant
(solid red) and benign (striped blue) HMMs. This figure shows
which model, malignant or benign, has a higher emission
probability for each symbol in the alphabet regardless of the
emitting states.

DISCUSSION

Image-guided detection of prostate cancer draws a
significant amount of research interest. In this paper,
we introduced stochastic models to improve the
detection and stratification of PCa using TeUS, an
innovative ultrasound-based imaging technology. We
explicitly captured the temporal aspect of tissue-re-
sponses to prolonged sonication through HMMs. Our
results show that ROIs of malignant tissues go through
a different state sequence in comparison with the ROIs
of benign tissue. These findings are in concordance
with Bayat et al.’s study reporting that TeUS captures
the micro-structure of tissues. They identified the
dominant phenomenon governing the interactions
between TeUS and the scanned tissue as micro-vibra-
tions of 1-2Hz frequency (related to pulsation)3. Hence

1 : »
7’
I '
J # =
e
0.8 S
7
4
4
7’
> 06 L +5P1-AUC=0.99
;g _),,;’ g .7 —P2-AUC=0.96
g ) > P3- AUC =0.98
g ’
0.4 ’ L —P4 - AUC = 0.99
A —P5 - AUC=0.98
* —P6-AUC=1
0.2 M
- P7- AUC = 0.92
'
2 —P8- AUC = 0.83
o I° «=Overall - AUC = 0.95
0 0.2 0.4 0.6 0.8 1
1- Specificity

FIGURE 5. ROC Curves showing the performance per-
patient of the respective HMM-trained while leaving out the
ith patient data and used to predict the ROI labels of that left-
out patient. The AUC value for each of the ROC curves is
shown in the legend. The bold red curve indicates the overall
performance, summarizing the trade-off between sensitivity
and specificity while assigning the ROI labels for all eight
patients.

incorporating the temporal nature of the signals in
TeUS models enables the HMMs to capture the peri-
odicity of micro-vibrations affecting the microstruc-
ture of tissues, and in turn, causing changes in
echointensity.

Our models lead to a statistically significant
improvement in prostatic-tissue classification, showing
that the time-domain of TeUS carries informative
data. As demonstrated by accurate differentiation
between malignant and benign TeUS signals, the
models capture tissue-specific patterns of echointensity
changes. Thus our HMMs effectively represent the
different temporal signatures of malignant vs. benign
tissue.

To facilitate a seamless clinical translation with
minimal interruption to current diagnostic procedures,
we investigated the effect of model parameterization on
the classification outcome. We determined the most
parsimonious models through comparing the perfor-
mance of HMMs varying in number of states and
alphabet size. The adequate number of states and
alphabet is specific to the data being modeled, since the
structure of an HMM is related to the patterns and
motifs available in the training sequences. To gener-
alize these findings beyond our data, the HMMs need
to be trained on TeUS signals from more patients.
Parsimonious models can be efficiently implemented
for real-time applications; thus, using them can sup-
port clinical deployment of TeUS. Our results indicate
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<FIGURE 6. Colormaps of the RF-frames overlaid with
malignant/benign pathology labels obtained for each of the
patients. For each patient, the left image shows the
histopathology cross-section (shown in oblique lines with
white regions denoting histopathology demarcations) along
with the selected ROls per patient (red asterisks for malignant
ROIls and blue ones for benign), while the right image shows
the color-maps based on the HMM probability assignments.
Shades of red indicate higher malignancy while blue indicates
lower malignancy.

that the captured temporal patterns help differentiate
between malignant and benign TeUS time series, where
the best achieved accuracy was 85.6% along with an
AUC of 0.95. These results improve over previously
published results (80% accuracy and an AUC of 0.93),
where our accuracy (85.6%) is statistically significantly
larger than the one reported by Imani et al. (p-value <
0.04).'> Despite this improvement, we had false posi-
tives reflected in Table 3 and Fig. 6. Possible reasons
for the poorer performance are ROI mislabeling,
higher registration errors, or over-fitting the training,
where test data exhibits different patterns of changes
than the training set.

The colormaps, shown in Fig. 6, reveal a color
pattern, where colors encoding malignancy is often
present at the top of the RF-frames and colors repre-
senting benign regions appear at the bottom. This
pattern may be attributed to multiple factors. The top
of the images are in the peripheral zone of the prostate,
closer to the rectum, where there is much higher chance
of having cancerous lesions. More than 75% of pros-
tate cancer arise in the peripheral zone whereas ~ 20%
appear in the transitional zone and only 5-8% in the
central zone.?>* It is important to note that after data
collection, we became aware that inconsistent depth-
dependent time-gain compensation was applied during
imaging. This inconsistency might have also affected
the color patterns shown in Fig. 6. For future work, we
are planning to adopt a transfer learning technique,
where we incorporate in our models knowledge
acquired by other models trained on signals collected
while using appropriate time-gain compensation.

Our findings show that TeUS is a promising imag-
ing technique. The generated cancer likelihood maps
can be used for patient-specific targeting during pros-
tate biopsies and increase the yield of this procedure
for detecting clinically significant prostate cancer.
Since TeUS is based on conventional ultrasound, it is
cost effective, widely available and accessible, and
requires a minimal amount of training for practition-
ers.

Our study is a first step toward using HMMs to
model TeUS signals, where a large number of ROIs
(1100) is used for adequate modeling using HMMs

despite the relatively small number of patients. As
additional high-quality data becomes available, we
plan to increase the number of patients, and include
anatomical-data indicating the zones from which ROIs
are selected. We expect our method to be applicable to
other types of cancer where ultrasound is part of
conventional diagnostic workflow such as breast and
liver to assist in more accurate and timely detection of
disease.
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