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In this paper, we show that solutions to ordinary differential equations
describing the large-population limits of Markovian stochastic epidemic
models can be interpreted as survival or cumulative hazard functions when
analysing data on individuals sampled from the population. We refer to the
individual-level survival and hazard functions derived from population-
level equations as a survival dynamical system (SDS). To illustrate how
population-level dynamics imply probability laws for individual-level
infection and recovery times that can be used for statistical inference, we
show numerical examples based on synthetic data. In these examples,
we show that an SDS analysis compares favourably with a complete-data
maximum-likelihood analysis. Finally, we use the SDS approach to analyse
data from a 2009 influenza A(H1N1) outbreak at Washington State University.
1. Introduction
Despite their ubiquity in modern epidemiology, mathematical models of epi-
demics suffer many theoretical and practical drawbacks. Due to the need for
mathematical tractability, such models often ignore important characteristics
of disease transmission patterns and the underlying populations. This often
leads to poor predictions. During the SARS epidemic of 2002–2003, the
number of cases in China was predicted to reach 30 000 during the first four
months of the epidemic. In fact, there were fewer than 800 cases reported
during that time [1]. A more recent example is the Centers for Disease Control
and Prevention (CDC) prediction of the 1 400 000 cases of Ebola in West Africa
during 2013–2016 outbreak [2,3]. Although the CDC team did indicate that
their prediction was the ‘worst-case scenario’, the inaccuracy of this upper
bound prediction has highlighted the need for better mathematical models of
epidemics and their control.

A typical challenge in the problem of epidemic control is how to relate the
global, population-level dynamics of infection transmission to local, individual-
level intervention (e.g. vaccination). This dichotomy is reflected in two distinct
approaches to modelling epidemiological processes. Agent-based models cap-
ture individual-level histories of infection and removal. By contrast,
ecological models look at the population at an aggregate level, keeping track
of summary statistics such as the counts of susceptible, infected and recov-
ered/removed individuals. Although both agent-based and ecological models
are routinely used in practice and in the literature, the two scales of analysis
are almost always considered separately [4].
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Table 1. List of symbols.

symbol meaning

β infection rate

γ recovery rate

ρ fraction of initially infected population

τ final size of the epidemic

T end of observation period

R0 basic reproduction number

Si(t), Ii(t), Ti(t) indicator functions taking value 1 if at time t, i

is, respectively, susceptible, infected or

removed and 0 otherwise

S(t), I(t), R(t) numbers of susceptible, infected and recovered

individuals at time t

Ti,I, Ti,R the times of infection and recovery of i

TI, TR the times of infection and recovery of a randomly

chosen individual

W the infectious period, i.e. W := TR− TI
fτ the density of TI conditional on TI <∞
gτ the density of TR
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Figure 1. SDS interpretation of the SIR curves. The St curve is the survival
function for time to infection: St ¼ P(TI . t) where TI is the time at
which an individual moves from the susceptible to the infected compartment.
The Rt curve, upon multiplication with R0, gives the corresponding cumu-
lative hazard. Finally, the convolution of the infection time TI and the
infectious time TR (time spent in the infected compartment) is given by
the It curve, after adjustment for the initial infecteds. Parameter values:
β = 2, γ = 0.5 with initial condition S0 = 1, I0 = 0.05 and R0 = 0. (Online
version in colour.)
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The Kermack–McKendrick model [5] is the most funda-
mental example of an ecological model. It assumes the
population is segregated into susceptible (S), infected (I)
and recovered/removed (R) compartments. The time evol-
utions of the population proportions in compartments
(denoted by St, It and Rt) are described by the following
well-known system of ordinary differential equations (ODEs):

_St ¼ �bStIt,

_It ¼ bStIt � gIt

and _Rt ¼ gIt:

9>>>=
>>>;

(1:1)

Here, β and γ are the infection and recovery rates, respect-
ively. Solutions to equation (1.1) are often called the
susceptible–infected–recovered (SIR) curves (figure 1). The
law of mass action has been implicitly assumed, so any infec-
tious individual can infect any susceptible individual. The
ODEs model in equation (1.1) averages out individual
dynamics, so it does not capture the stochastic fluctuation
of epidemic processes in real life. In particular, the practical
problems of applying equation (1.1) to data are:

1. Population size. Since the quantities in the SIR equations
are proportions, it is not immediately clear how to apply
them to real epidemics, which occur in finite susceptible
populations. Moreover, the size of the population is
often unknown.

2. Likelihood. Since the SIR equations are deterministic, we
cannot write a likelihood for epidemic data without
further, often ad hoc, statistical assumptions about the
form of the likelihood function.

3. Aggregation over individuals. The SIR model represents
the mean-field equations for (scaled) population counts,
aggregating out individual characteristics.
4. Aggregation over time. The real data are typically aggre-
gated not just over the population but also over observed
time periods, leading to interval censoring1 that cannot be
easily incorporated into the SIR equations.

In this paper, we show that simple algebraic manipulation
of the SIR equation (1.1) uncovers a precise probability law
for the individual transitions between compartments. We
refer to this interpretation of the solutions of equation (1.1)
as a survival dynamical system (SDS). This new interpret-
ation allows us to apply tools from survival analysis to
population-level epidemic data. It directly addresses the
first two problems listed above, and it lays a theoretical foun-
dation for addressing the latter two problems. We focus on
Markovian mass-action SIR models in this paper, but the
SDS approach generalizes to non-Markov and network-
based epidemic models.

The rest of the paper is structured as follows. First, we
briefly review the relevant background on mathematical mod-
elling in epidemiological literature. In §2, we make the SDS
interpretation of the SIR equation (1.1) precise. In §3, we
show how this approach can be used for statistical inference
and compare the performance of estimators based on SDS like-
lihoods to those based on standard complete-data likelihoods.
In §4, we use an SDS likelihood to analyse 2009 influenza
A(H1N1) outbreak data from Washington State University.
Finally, we conclude the paper with a brief discussion in §5.
Additional mathematical preliminaries, statistical inference
results and other material are provided in the appendices. A
list of symbols used in the paper is provided in table 1.
1.1. Individual level: agent-based
susceptible–infected–recovered model

Suppose we have n susceptible and m infectious individuals
initially. Infectious individuals infect susceptible individuals,
who change state from susceptible to infected. Infected indi-
viduals recover after an exponential infectious period. All
infectious contacts and recoveries are assumed independent
of each other. For the i-th individual, define the process Si



Algorithm 1.1. Pseudocode for the Sellke construction.

1: Assume you have initially m infectives and n susceptibles. Arrange

all n susceptibles according to the order statistics

Q(1) < � � � < Q(n) of an iid random sample from EXPONENTIAL(1)

2: Simulate mþ n infectious periods yi as iid sample from

EXPONENTIAL(γ)

3: Calculate L(t) ¼ b

n

Ð t
0 I(u)du with removal times from Step 2 for

initial infectives

4: for i ¼ 1, 2, . . . , n do

5: Calculate ti ¼ inf {t: Q (i) . L(t)}.

6: If ti < 1 then

7: Change i-th susceptible to infective

8: Set removal time ri ¼ ti þ yi for i

9: Update L(t) with new infection and removal times

10: else

11: Stop and break loop

12: end if

13: Set i ¼ i þ 1.

14: end for
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such that Si(t) = 1 if he or she is in the susceptible compart-
ment at time t and Si(t) = 0 otherwise. Similarly, define the
processes Ii for the infected compartment and Ri for the
recovered compartment. Naturally, Si(t) + Ii(t) +Ri(t) = 1. For
time T∈ (0, ∞), we assume that the process {(Si(t), Ii(t), Ri-

(t))}i=1,…,n+m; t∈[0,T] is a continuous-time Markov chain
(CTMC). For notational convenience, we have labelled the
initial susceptible individuals 1, 2,…, n and the initial infec-
tious individuals n + 1, n + 2,…, n +m. Then the random time
change representation of a CTMC (see [6, ch. 6, pp. 326–328],
[7, eqn 5.2, ch. 5, p. 41] and [8, eqn 1.8, ch. 1, p. 11]) allows us
to write, for each i∈ {1,…, n +m},

Si(t) ¼ Si(0)� Yi

 ðt
0

b

n
Si(s)

Xnþm

j¼1

I j(s) ds

!
,

Ii(t) ¼ Ii(0)þ Yi

 ðt
0

b

n
Si(s)

Xnþm

j¼1

I j(s) ds

!
� Zi

 ðt
0
gIi(s) ds

!

and Ri(t) ¼ Zi

 ðt
0
gIi(s) ds

!
,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1:2)

where Y1, Y2,…, Yn+m and Z1, Z2,…, Zn+m are independent
unit-rate Poisson processes. Models of this form are often
called agent-based models in the literature [9,10].

An intuitive explanation behind the random time change
represetation in equation (1.2) is as follows: consider indi-
vidual i who is initially susceptible. He or she will change
status from susceptible to infected as soon as one of the
infected individuals make an infectious contact. Because
infected individuals make infectious contacts independently,
the amount of time the i-th individual will remain suscep-
tible has an exponential distribution with rate
n�1b

Pnþm
j¼1 I j. Once infected, he/she cannot be infected

again. Therefore, the jump of the local process Si from 1 to
0 can be equivalently described by the jump of the process
Yi(
Ð t
0 n

�1bSi(s)
Pnþm

j¼1 I j(s) ds), where Yi is a unit-rate Poisson
process. Note that when the local process Si jumps from 1
to 0, the process Ii also jumps from 0 to 1. When i is in
infected status, he/she will recover after an exponentially
distributed amount of time with rate γ. Therefore, the
jump of the local process Ii from 1 to 0 can be equivalently
described by the jump of Zi(

Ð t
0 gIi(s) ds), where Zi is a unit-

rate Poisson process. Similar arguments give the equation
for the local process Ri. The random time change represen-
tation in equation (1.2) for the entire ensemble {(Si(t), Ii(t),
Ri(t))}i=1,…,n+m; t∈[0,T] follows from these considerations.

An equivalent construction of the agent-based model in
equation (1.2) was proposed by Sellke [11]. Let Ti,I denote
the amount of time i remains susceptible, provided he or she
was susceptible initially. Given the history of the infection pro-
cess I(s) ¼Pmþn

j¼1 I j(s) up to time t, the conditional probability
that individual i remains susceptible until time t is given by

P(Ti,I . t j (I(s))s[[0,t]) ¼ exp �b

n

ðt
0
I(s) ds

� �
: (1:3)

Therefore, to each susceptible individual i, we can assign an
independent EXPONENTIAL(1) random variable Qi and change
his/her status from susceptible to infected when

Qi . L(t) :¼ b

n

ðt
0
I(s) ds:

Once a susceptible individual gets infected, he or she
recovers after an infectious period that follows an
exponential distribution with rate γ. If we denote the recov-
ery time of the i-th individual by Ti,R, it follows
immediately from equation (1.2) that Ti,R − Ti,I and Ti,I are
independent and Ti,R − Ti,I has an exponential distribution
with rate γ. Symbolically,

Ti,R � Ti,I ? Ti,I and Ti,R � Ti,I � EXPONENTIAL(g): (1:4)

The fate of an individual is entirely described by the stat-
istical distributions given in equations (1.3) and (1.4). The
Sellke construction can also be derived using a statistical
representation of agent-based models under the law of
mass action based on contact intervals [12,13]. In this
case, the contact interval distribution is EXPONENTIAL(β).

These considerations lead to algorithm 1.1 for simulating
the process in equation (1.2), which is known as the Sellke con-
struction [7,14,15]. It can be easily verified that algorithm 1.1
is equivalent to simulating the system in equation (1.2).
1.2. Population level: ecological susceptible–infected–
recovered model

The simplest way to derive an ecological model from the
agent-based model in equation (1.2) is via lumping or aggre-
gation of states. When the aggregation of states is strongly
lumpable [16,17] (also see appendix A), the resulting aggre-
gated process remains Markovian for any choice of the
initial distribution. For the SIR process, let X :¼ {S, I, R}
denote the state space of each individual. Then, Xnþm is the
state space of the ensemble of individual-based Si, Ii, Ri

processes. Define the macro-level processes

S(t) ¼
Xnþm

i¼1

Si(t), I(t) ¼
Xnþm

i¼1

Ii(t) and R(t) ¼
Xnþm

i¼1

Ri(t), (1:5)



)
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which keep track of the total counts of susceptible, infected

and recovered individuals. Let L :¼ nþmþ 2
2

� �
. Partition

Xnþm into X1, X2, . . . , XL such that any two states in each
X l produce the same counts for S(t), I(t), R(t), for l = 1,
2,…, L. It is easy to see that the Markov chain
described in equation (1.2) is (strongly) lumpable with
respect to the partition {X1, X2, . . . , XL} (see [10,17,18]).
That is, the lumped process (S, I, R) is also Markovian
for any choice of the initial distribution. Therefore, we
can write

S(t) ¼ S(0)� Y

 ðt
0

b

n
S(s)I(s) ds

!
,

I(t) ¼ I(0)þ Y

 ðt
0

b

n
S(s)I(s) ds

!
� Z

 ðt
0
gI(s) ds

!

and R(t) ¼ Z

 ðt
0
gI(s) ds

!
,

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1:6

where Y and Z are independent unit-rate Poisson
processes. This system can be simulated using the Doob–
Gillespie algorithm (see algorithm B.1 in appendix B).

This ecological model is convenient in that it is amenable
to asymptotic analysis. Indeed, for very large populations, we
can approximate the scaled stochastic SIR dynamics by a
system of ODEs [19,20]. This is sometimes called mean-field
or fluid limit of the Markov jump process. For our SIR
system in equation (1.6), the scaled process (Sn, In, Rn) :=
(S/n, I/n, R/n) satisfies

Sn(t) ¼ Sn(0)� 1
n
Y

 
n
ðt
0
bSn(s)In(s) ds

!
,

In(t) ¼ In(0)þ 1
n
Y

 
n
ðt
0
bSn(s)In(s) ds

!
� 1
n
Z

 
n
ðt
0
gIn(s) ds

!

and Rn(t) ¼ 1
n
Z

 
n
ðt
0
gIn(s) ds

!
:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(1:7)

By virtue of the Poisson law of large numbers (LLN) [6],
which asserts that n−1 V(nt)≈ t for a unit-rate Poisson process
V when n is large, the processes in equation (1.7) converge to
the solution of the following system of ODEs as n→∞ and
m/n→ ρ∈ (0, 1):

_st ¼ � bstit, _it ¼ bstit � git and _rt ¼ git: (1:8)

These are identical to the Kermack–McKendrick ODEs in
equation (1.1). The introduction of ρ is convenient because
it sets s0 = 1, i0 ¼ r and r0 = 0. The rate of convergence to
this LLN ODEs limit can be computed using sample path
large deviations principle (LDP) of the Markov process in
equation (1.7). Standard tools from [21–23] as well as
related results from [24–26] can be borrowed for this
purpose.
2. Survival dynamical systems
The ODEs in equation (1.8) that describe the large-population
limit of the ecological SIR model can be given an agent-based
probabilistic interpretation. It is convenient to rewrite
equation (1.8) as follows:

st ¼ exp �b

ðt
0
iu du

� �
¼ exp (�R0rt),

it ¼ re�gt �
ðt
0
_sue�g(t�u) du

and rt ¼ g

ðt
0
iu du,

9>>>>>>>>>=
>>>>>>>>>;

(2:1)

where R0 ¼ b=g is the basic reproduction number. Here, the
first two equations are obtained by partially solving the
ODEs system using the integrating factor (first equation)
and variation of parameter (second equation) methods.

In the limit of a large population, the time of infection TI

of a randomly chosen susceptible individual has the survival
function

P(TI . t) ¼ st ¼ exp (�R0rt): (2:2)

This is a direct analogue of equation (1.3) where the stochastic
quantity n�1

Ð t
0 I(u) du is replaced by its deterministic limitÐ t

0 iu du from equation (2.1). Similarly, R0rt ¼ b
Ð t
0 isds may

be thought of as the cumulative hazard and bit as the
hazard function of the random variable TI. This hazard is
sometimes called the force of infection. In the limit of large n,
the units become independent due to the phenomenon
known as mean-field independence or propagation of chaos
[27–29].

Because TI is an improper random variable, its survival,
cumulative hazard and hazard functions are also improper.
The probability that TI =∞ equals s∞, which is the limiting
proportion of individuals who remain susceptible. Setting
s∞ = 1− τ and τ = r∞− ρ where r∞ is the limiting proportion
of recovered individuals, we see that τ must satisfy the
deterministic final size equation

1� t ¼ exp (�R0(tþ r)): (2:3)

The final size equation is a contraction map, so it is amen-
able to numerically efficient fixed-point iteration schemes.
Because 0 ≤ τ < 1, we may interpret τ as the probability
that TI <∞. Given that TI <∞, its conditional survival
function is

~st ¼ st � (1� t)
t

(2:4)

and its probability density is

ft(t) ¼ � _st
t
: (2:5)

Let TR be the time of removal of an infected individual
who is infected at time TI (with TI < TR), and let

~it ¼ it � r exp (� gt) (2:6)

be the infected proportion of the population excluding the
remaining initial infecteds. From equations (2.1) and (2.5),
we obtain

g~it
t

¼
ðt
0
ft(u) ge�g(t�u) du: (2:7)

Because ft(u) is a density function, the right-hand side
above is a convolution of the conditional density fτ of TI



susceptible (S)

infected (I) recovered (R) 

never infected

with probability t: TI ~ ft (t)

TR ~ gt (t)

with probability 1 – t

Figure 2. SDS derived from SIR equation (1.1). To each individual, we assign random variables TI and TR specifying his/her infection and recovery times, respectively.
The laws of TI and TR are given by equations (2.5) and (2.8).
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and the (exponential) density of TR − TI, the infectious
period. It follows that the right-hand side quantity

gt(t) ¼ g~it
t

(2:8)

is itself a density of the variable TR, which is the sum of
the independent random variables TI and TR − TI. Note
the analogy of this result with equation (1.4). Let us
denote the infectious period by the random variable
W := TR − TI. These considerations give us algorithm 2.1
for simulating individual histories in the SIR model. See
figure 2 for a pictorial representation of the idea.
Algorithm 2.1. Pseudocode for simulating a single SDS trajectory.

1: Calculate (st , it , rt ) as given by equation (1.8)

2: With probability 1� t, where t is given by equation (2.5), leave

the unit in S state forever. With probability τ move to Step 3

3: Simulate infection time TI � ftðtÞ where the density ft(t) is given
by equation (2.5)

4: Independent of TI , simulate infectious period

TR � TI � EXPONENTIAL(g)

5: Record the pair (TI , TR).
Analysing timepoints (TI, TR) according to algorithm 2.1
addresses all four issues of macro SIR model in equation
(1.1) described in §1. Algorithm 2.1 no longer requires the
population size (problem 1). Generation of individual trajec-
tories according to algorithm 2.1 allows us to specify a
likelihood function (problem 2), account for differences in
individual characteristics (problem 3), and overcome issues
with censoring or interval-based data (problem 4). Algorithm
2.1 brings us back from ecological to agent-based models and
completes a conceptual ‘micro-macro-micro’ loop. The SDS
interpretation has similarities with symbolic dynamical systems
[30–32].

3. Parameter estimation
Under the stochastic agent-based SIR model equation (1.2) or
its aggregated ecological version in equation (1.6), the vector
of parameters of interest is θ = (β, γ, ρ) with m = I(0) = ρn. The
parameter τ is expressible in terms of θ via equation (2.3). The
size of the initial susceptible population (n) is usually
unknown and may be considered a nuisance parameter.
The estimation of this nuisance parameter is often proble-
matic, and popular methods such as profile likelihoods do
not always yield good estimates. In order to address this pro-
blem, we propose a likelihood based on the SDS
interpretation of the SIR model in equation (1.1) that does
not require n (although n still may be estimated, see algor-
ithm 4.1 in §4). Before going into the details of SDS
likelihood, we describe the exact likelihood based on the
Doob–Gillespie algorithm (see algorithm B.1 in appendix
B). To emphasize the utility of the SDS likelihood, we com-
pare its performance to an exact likelihood that is given the
correct value of n.

3.1. Exact (Doob–Gillespie) likelihood
Assume we observe a total of z = zI + zR events (ki, ti)

z
i¼0 at

times 0 < t1 < · · · < tz = T where ki [ {I, R} denotes the type of
event. Of these events, zI are infections and zR are removals.
Put X(t) = (S(t), I(t), R(t)). Then, following algorithm B.1,
the exact log-likelihood for θ is

‘1(u j X(t)t[[0,T]) ¼
Xz
i¼1

log (lki (X(ti)))�
ðT
0
[lI(X(t))þ lR(X(t))] dt

¼ zI log (b)þ zR log (g)þ
X
i:ki¼I

log (S(ti)=n)

þ
Xz
i¼1

log (I(ti))�
ðT
0

b

n
S(t)I(t) dt�

ðT
0
gI(t) dt,

(3:1)

where the last two integrals may be also written as finite
sums. It is important to note that the above likelihood is con-
ditional on the initial value X(0) = (n, ρn, 0), which we assume
to be known. From equation (3.1), the maximum-likelihood
estimate (MLE) for β and γ can be derived as

b̂ ¼ nzIÐ T
0 S(t)I(t) dt

and ĝ ¼ zRÐ T
0 I(t) dt

: (3:2)

Because we know the population size n and the trajectory
X(t)t∈[0,T ] when using the exact likelihood, the parameter
ρ = n−1 I(0) is also known exactly.

3.2. Survival dynamical system likelihood
Following the discussion in §2, an approximation of the exact
likelihood function ℓ1(θ) in equation (3.1) can be obtained
from equation (1.3) by replacing the process n−1 I(u) with
its asymptotic limit i (as n→∞) and considering the individ-
ual trajectories as independent. Since we let n→∞, the exact
value of the initial size of the susceptible population is no
longer needed.
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Assume we randomly sample N +M individuals of
whom N are initially susceptible and M initially infected.
We observe these N +M individuals up to the cut-off
time T and record their infection or recovery times. Sup-
pose K out of the N initially susceptible individuals get
infected at times t1, t2,…, tK and L of them recover by
time T. Pair each infection time ti with the corresponding
duration of infectious period wi if the individual recovers
by time T. If the individual does not recover by time T,
pair ti with the censored recovery period wi = T − ti.
Among the M initially infected individuals, suppose ~L
individuals recover by the cut-off T at times e1, e2, . . . , e~L.
Then, following algorithm 2.1, we have the following
SDS likelihood:

‘2(u j {ti, wi}
K
i¼1, {e j}

~L
j¼1) ¼ (N � K) log (sT)þ

XK
i¼1

log (tft(ti))

þ (Lþ ~L) log (g)� g
XK
i¼1

wi þ
X~L
j¼1

e j þ (M� ~L)T

0
@

1
A, (3:3)

where, as described in §2,

ft(t) ¼ bt�1it exp (�R0tt), st ¼ exp (�R0rt),

and τ = r∞ − ρ satisfies equation (2.3). In the next section,
we evaluate the performance of the SDS likelihood from
equation (3.3) in MLE and Markov chain Monte Carlo
(MCMC) implementations.
3.3. Bayesian estimation using Markov chain Monte
Carlo

In order to construct a posterior distribution for θ, we assign
gamma priors to the parameters β, γ and ρ:

b � GAMMA (ab, bb),

g � GAMMA (ag, bg)

and r � GAMMA (ar, br):

9>=
>; (3:4)

The positive quantities aβ, bβ, aγ, bγ, aρ and bρ are appropri-
ately chosen hyper-parameters. The posterior distribution of
θ is obtained by Bayes’ rule: it is proportional to the product
of the likelihood function given in equation (3.3) and the
three priors above.

Unfortunately, the posterior distribution of the SDS like-
lihood cannot be written in closed form. Even if a
conditional posterior distribution is obtained, any closed-
form expression for the probability density function
would require solutions st, it, rt to equation (2.1), which
are themselves functions of θ. Thus, we cannot employ a
generic Gibbs sampler method [33,34], and we need a
more efficient updating algorithm than the standard Metro-
polis–Hastings algorithm. Here, we adopt the robust
adaptive metropolis (RAM) algorithm [35,36], which
adapts the tuning constant and the variance–covariance
matrix of the proposal distribution to maintain a consistent
acceptance ratio in the Metropolis steps, which helps
achieve good mixing of the chain. The variance–covariance
matrix is updated during the MCMC iterations. In algor-
ithm B.2, in appendix B, we provide pseudocode for
implementing an MCMC procedure for drawing posterior
samples using RAM.
3.4. Simulation study
The SDS likelihood presented in the previous section has sev-
eral theoretical advantages. Two of the main advantages are:
(a) it does not require knowledge of the number of initially
susceptible individuals n and (b) it works with partial data
in that it requires trajectories of only a randomly chosen
sample of individuals. Nevertheless, the SDS likelihood is
based on an LLN approximation of a large population, so it
is important to evaluate the accuracy of this approximation.
In this section, we compare the accuracy of the inference
based on the SDS likelihood (without n) to that of the exact
likelihood (with n). Though the comparison is deliberately
unfair in that exact value of n and full data trajectories are
supplied only to the exact likelihood, our objective is to see
how much worse the inferences from the SDS likelihood are
due to the approximation error as well as lack of n and full
data trajectories. The data used for parameter inference are
generated according to algorithm 1.1.

We compare three different inference methods:

1. Method 1 uses the Doob–Gillespie likelihood given in
equation (3.1) and calculates MLE according to equation
(3.2).

2. Method 2 also uses the Doob–Gillespie likelihood given in
equation (3.1), but implements an MCMC scheme with
the priors listed in equation (3.4) to infer θ. Because of con-
jugacy of the gamma priors, the posteriors are also
gamma distributions [33]. In particular, they are given by

b j (X(t)t[[0,T]) � GAMMA nzI þ ab,
ðT
0
S(t)I(t) dtþ bb

� �

and g j (X(t)t[[0,T]) � GAMMA zR þ ag,
ðT
0
I(t) dtþ bg

� �
:

3. Method 3 uses the SDS likelihood given in equation (3.3)
and follows the MCMC procedure described in algorithm
B.2.

For all MCMC-based methods, we constrain the proposed
values of ρ in the MCMC iteration steps so that ρ remains
within (0, 1) and satisfies equation (2.3). We have a total of
18 simulation scenarios based on combinations of the
following:

— Three values of θ = (β, γ, ρ): θ1 = (2.0, 0.5, 0.05), θ2 = (2.0,
1.0, 0.05) and θ3 = (1.5, 1.0, 0.05) yielding R0 equal to 4,
2 and 1.5, respectively.

— Two cut-off times T. Since the epidemic curve sees an
exponential growth phase near the beginning, one often
runs into problems such as overestimation of the size of
the outbreak if inference is done using data collected
when the epidemic is at or just before its peak. In order
to see the impact of the censoring time T, we choose
two cut-off times. One cut-off time is chosen around the
half-time of the epidemic duration (near the peak of
the infection process) and another one towards the end.
The chosen values of T in our simulation set-up are 3
and 9 for θ1, 3 and 7 for θ2, and 3 and 6 for θ3. See
figure 8 for the SIR curves for different parameter
values and cut-off times. The vertical line in each plot
represents the cut-off time.

— Three values of the size of the susceptible population n:
102, 103 and 104.
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For each of the 18 scenarios, we generate 100 sets of synthetic
epidemic data using algorithm 1.1. Each generated dataset has
n + n × ρ rows (one for each individual in the epidemic) and
two columns (one for TI and one for TR). To ensure the prior dis-
tributions in our Bayesian inference are uninformative, we set
ai = i × 0.01 and bi = 0.01 for i = β, γ and ρ. ForMethod 2, we gen-
erate 1000 samples without any burn-in phase or thinning
because Monte Carlo simulations are sufficient. For Method 3,
we iterated the MCMC procedures 11 000 times. The first 1000
iterations are removed as burn-in. After burn-in, every 10th iter-
ation is stored as a posterior sample. In total, 1000 posterior
samples are used for estimation. For the Bayesian methods (i.e.
Method 2 and Method 3), we estimate the parameters β, γ and
ρ by taking the means of 1000 posterior samples.

Figure 3 summarizes the numerical results of the par-
ameter setting θ1. Figure 4 shows the results of the
parameter setting θ2, and figure 5 shows the results of the
parameter setting θ3. In addition to the parameter estimates
(posterior means), error bars (1.96 s.d.) are also provided.
These figures show that Method 3 based on the SDS likeli-
hood fares well against Methods 1 and 2 based on the exact
likelihood. Barring minor exceptions, Method 3 yielded accu-
rate estimates for all three parameters β, γ and ρ even for
relatively small values of n. The results for n = 102 are particu-
larly encouraging. Tables 2 and 3 show that the mean
squared error (MSE) decreases with increasing n across all
three methods. As expected, the quality of inferences for
the large cut-off time settings is better than that for the
small cut-off time settings.

Since ρ is assumed known for Methods 1 and 2, it is esti-
mated only in Method 3. Figures 3c, 4c and 5c show that the
quality of estimation is sometimes poor when n is small. Note
the n = 102 case in particular. Nevertheless, it is estimated
accurately when n is moderately large.
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Further numerical results and explanations are provided
in appendix C. Method 3 seems to have a slightly larger
variance than the other two methods. Even though visual
inspection suggests that Method 3 achieves comparable
performance against Method 2 and Method 3, a more
objective criterion would be useful. Such a criterion
should take into account both the biases and the MSE of
the methods. For instance, information criteria such as the
focused information criterion [37] can be used for this pur-
pose. However, our intention here is not to find which
method performs the best, but rather to find how the
approximate SDS likelihood performs against the exact like-
lihoods. Since figures 3–5 and the additional results in
appendix C provide satisfactory evidence in favour of
Method 3 and give adequate insight into its performance,
we do not perform any further comparative analysis.
Instead, we apply the SDS likelihood to a real dataset in
the next section.

4. Data analysis
In the autumn of 2009, a new strain of influenza spread around
the world after its initial outbreak in the state of Veracruz,
Mexico in April 2009. The influenza A(H1N1)pdm09 virus
was a triple reassortment of bird, swine and human flu viruses
further combined with a Eurasian pig influenza virus [38].
Unlike most strains of influenza, this influenza A(H1N1)
virus did not disproportionately infect adults older than 60
years, and it spread easily among young, healthy adults. This
feature of the virus resulted in multiple outbreaks of the disease
on college campuses across the continental USA. An outbreak
on the campus of Washington State University (WSU) in
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Pullman, Washington began in late August 2009, upon the
return of students for the autumn semester. Over a period of
slightly more than three months, almost 2300 students were
seen at the campus health centre with influenza-like illnesses
that were treated as influenza A(H1N1) infections.2

Figure 6 shows daily counts of new infections for 105
days beginning on 22 August 2009. The counts were obtained
directly from the cases of ‘influenza-like illness’ among stu-
dents who visited or called the WSU Student Health
Services seeking care. In our statistical analysis, the collected
daily counts were considered as records of ‘new infectives’.
This particular dataset is interesting because it was obtained
from an approximately closed population. The WSU campus
is located in a town with a large student population (around
18 000 students) and a relatively small resident population
(around 9000 residents). The location is relatively remote,
with an average population density of only eight households
per square mile in the surrounding rural areas.

As discussed in an earlier analysis of this dataset [38],
these data may have been subject to both over-reporting
and under-reporting: Some students may have assumed
they had H1N1 when they had other influenza-like illnesses,
while some students infected with H1N1 may not have
sought medical care. However, such misreporting was con-
sidered to be relatively minor compared to the overall
counts in the dataset [39]. This dataset was analysed earlier
using a stochastic SIR model with parameters estimated
using both likelihood-based and least-squares methods.
Here, we re-analyse it using the SDS likelihood, emphasizing
its multilevel nature by showing how the shape of the epi-
demic curve reflects changes in risk of infection in students
who were susceptible.



Table 2. Summary of the numerical results for the longer cut-off times. Here, the values of T are 9 for θ1, 6 for θ2 and 7 for θ3 such that T is near the end
of the epidemic process (also see figure 8). Method 3 yields accurate estimates without requiring knowledge of the size of the susceptible population n. Values
in italics indicate the results corresponding to the best performing method.

β γ
ρ

n statistics Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 Method 3

β = 2 104 Avg. 2.0067 2.0067 2.0032 0.5002 0.5002 0.4980 0.0492

(MSE) (0.00046) (0.00046) (0.00082) (0.00002) (0.00002) (0.00004) (0.00001)

γ = 0.5 103 Avg. 2.0033 2.0033 1.9868 0.4996 0.4997 0.4974 0.0521

(MSE) (0.00334) (0.00334) (0.00883) (0.00024) (0.00024) (0.00028) (0.00014)

ρ = 0.05 102 Avg. 2.0433 2.0432 1.8890 0.5055 0.5055 0.4950 0.0636

(MSE) (0.04238) (0.04236) (0.07655) (0.07502) (0.00284) (0.00230) (0.00178)

β = 2 104 Avg. 2.0026 2.0007 2.0000 1.0003 0.9999 1.0002 0.0501

(MSE) (0.00046) (0.00044) (0.00101) (0.00012) (0.00013) (0.00013) (0.00001)

γ = 1 103 Avg. 1.9942 1.9942 2.0027 0.9961 0.9960 0.9963 0.0505

(MSE) (0.00489) (0.00489) (0.01151) (0.00107) (0.00108) (0.00172) (0.00015)

ρ = 0.05 102 Avg. 2.0002 2.0005 1.8997 1.0425 1.0431 1.0056 0.0702

(MSE) (0.06295) (0.0628) (0.14231) (0.02772) (0.02748) (0.03915) (0.00402)

β = 1.5 104 Avg 1.5003 1.5003 1.5016 0.9992 0.9993 1.0024 0.0497

(MSE) (0.00037) (0.00037) (0.00078) (0.00018) (0.00018) (0.00022) (0.00002)

γ = 1 103 Avg. 1.4940 1.4941 1.4911 1.0094 1.0092 0.9957 0.0493

(MSE) (0.00362) (0.00362) (0.00615) (0.00180) (0.00177) (0.00245) (0.00014)

ρ = 0.05 102 Avg. 1.4126 1.4127 1.3362 1.1211 1.1199 1.0090 0.1087

(MSE) (0.0796) (0.07962) (0.15705) (0.10955) (0.10715) (0.04502) (0.01313)

Algorithm 4.1. Estimation of joint posterior distribution of
u ¼ ðb; g; rÞ and n.

1: Initiate u ¼ (b, g, r) from the prior distribution and set n ¼ k.

2: repeat

3: Generate new r and ‘R value based on independent sample of

recovery times wi � gg(s) s ¼ 1, . . . ,k.

4: Perform Metropolis-Hastings step for the target conditional

distribution of (ujn) using the complete log-likelihood
‘0 ¼ ‘I þ ‘R.

5: Calculate t based on the current value of u using formula (2.3)

6: Sample the conditional distribution of (nju) by drawing
n � NEGBINOM(k,t).

7: until convergence
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The density of the infection time (conditional on TI <∞) is
given by ft(t) ¼ �_st=t (see equation (2.5)). Consequently, for
the collection of n individuals at risk out of which k are
seen to be infected at times t1 < � � � < tk < T where T <∞ in
the observation time horizon (i.e. censoring time), we have
the log-likelihood function for infection times

‘I(t1, . . . , tkju, n) ¼ (n� k) log sT þ
Xk
i¼1

log ft(ti),

where θ = (β, γ, ρ) is the vector of free parameters, with τ being
an implicit function of θ according to equation (2.3). Note that
the above likelihood is conditional on the number of individ-
uals at risk n, which is also typically unknown, and that the
value 0≤ k≤ n is a random variable. In particular, if T is suf-
ficiently large, we have approximately k � BINOMIAL(n, t).
Note that this implies in particular that if we do not know
the value of n but have observed k, a reasonable estimate of
the former is k/τ. In general, to impute a value of n, we
could take n � NEGBINOM(k, t), the negative binomial distri-
bution. Conditionally on the value of k the (unobserved)
recovery likelihood is then the usual log likelihood for the
exponential survival model. Assuming r individuals have
recovered after infectious periods w1 < · · · <wr < T, we have

‘R(w1, . . . , wrju, k) ¼ (k � r) logHg(T)þ
Xr
i¼1

log hg(wi),

where Hg(�) and hg(�) are, respectively, the survival function
and the probability density function of the exponential distri-
bution with rate γ. Averaging the infectious periods used in
the previous analysis [38,39], we assume here that the
recovery times have an exponential distribution with mean
γ−1 = 5.5 days (see also [40,41]), so γ was not estimated. The
complete log-likelihood conditional on the population size
n, the parameters and observables is then

‘0(t1 . . . , tk, w1, . . . , wrju, n) ¼ ‘I(t1, . . . , tkju, n)
þ ‘R(w1, . . . , wrju, k):

Based on this SDS likelihood, algorithm 4.1 may be used
for obtaining the posterior distributions of the parameters θ
and n given the WSU dataset.



Table 3. Summary of the numerical results for the shorter cut-off times. Here, we fix T = 3 so that the epidemic process is near its peak at T (also see figure
8). Method 3 yields accurate estimates without requiring knowledge of the size of the susceptible population n. Values in italics indicate the results
corresponding to the best performing method.

β γ
ρ

n statistics Method 1 Method 2 Method 3 Method 1 Method 2 Method 3 Method 3

β = 2 104 Avg. 2.0443 2.0443 2.0009 0.4996 0.4996 0.5010 0.0494

(MSE) (0.00221) (0.00221) (0.00082) (0.00006) (0.00006) (0.00007) (0.00001)

γ = 0.5 103 Avg. 2.0041 2.0040 2.0134 0.5034 0.5033 0.4956 0.0506

(MSE) (0.00545) (5.44670) (0.00940) (0.00067) (0.00067) (0.00053) (0.00012)

ρ = 0.05 102 Avg. 2.0101 2.0100 1.8631 0.5059 0.5069 0.5004 0.0700

(MSE) (0.07191) (7.19654) (0.10753) (0.00669) (0.00677) (0.00962) (0.00240)

β = 2 104 Avg. 2.1991 2.1991 2.0086 0.9981 0.9982 0.9992 0.0490

(MSE) (0.04083) (0.04083) (0.00124) (0.00031) (0.00031) (0.00023) (0.00002)

γ = 1 103 Avg. 1.9989 1.9989 1.9958 1.0037 1.0036 0.9932 0.0507

(MSE) (0.00751) (0.00751) (0.00945) (0.00210) (0.00210) (0.00214) (0.00013)

ρ = 0.05 102 Avg. 1.9979 1.9980 1.8553 1.0499 1.0474 0.9973 0.0912

(MSE) (0.08047) (0.08043) (0.22925) (0.11915) (0.11203) (0.07570) (0.00939)

β = 1.5 104 Avg 1.5713 1.5713 1.5044 1.0037 1.0036 1.0001 0.0492

(MSE) (0.00804) (0.00804) (0.00118) (0.00046) (0.00046) (0.00036) (0.00001)

γ = 1 103 Avg. 1.5091 1.5091 1.5073 1.0079 1.0080 0.9935 0.0521

(MSE) (0.00794) (0.00794) (0.00945) (0.00381) (0.00381) (0.00396) (0.00016)

ρ = 0.05 102 Avg. 1.4398 1.4398 1.2439 1.1220 1.1192 1.0020 0.1435

(MSE) (0.10451) (0.10461) (0.24216) (0.16303) (0.15773) 0.06412) (0.02082)
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Figure 6. Daily new infection counts from WSU H1N1 outbreak. (Online ver-
sion in colour.)

Table 4. The values of posterior parameter estimates and their credibility
bounds based on the hybrid Gibbs sampler given the WSU data in figure 6.

parameter MAP 90% credibility

n 7051 (6602, 7581)

β 0.1887 (0.185, 0.196)

ρ 0.0423 (0.04, 0.045)

R0 1.06 (1.04, 1.09)
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The results of applying algorithm 4.1 to the WSU dataset
are summarized in table 4 and in figure 7. As in previous sec-
tions, independent, non-informative gamma priors were used
for θ. The uniform (improper) prior was used for n. The maxi-
mum a posteriori estimate (MAP) of the effective population
size (population at risk) was found to be n = 7051. This is
much smaller than the value of approximately 18 000 (total
WSU student body) assumed in the previous analyses
[38,39]. Consequently, the MAP value of R0 � 1:06 is slightly
smaller than that obtained in the previous analysis, and the
SDS-based MAP for ρ is substantially larger than other esti-
mates of the initially infected. Contrary to previous analysis
[39], these values suggest that the high peak of an epidemic
in early days of the academic year was not caused by high
infectivity among newly infected students but rather by a
high number of already infected individuals (high value of
ρ). This point was already made in [38].
5. Discussion
In this paper, we present a new way of using classical SIR-
type epidemic models for statistical inference. Our method
addresses all four problems identified in §1. Indeed, par-
ameter estimation based on the SDS likelihood (described
in §3) does not require the effective population size n, addres-
sing problem 1. The SDS likelihood, being a direct
consequence of the SDS interpretation of the SIR equation
(1.1), provides a principled way of specifying a likelihood
function from epidemiological field data where the effective
population size is unknown but large, addressing problem
2. Although we do not explicitly illustrate this here, the inde-
pendence of individuals’ contributions to the SDS likelihood
also addresses the problem of aggregation over individuals
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(problem 3) and over time (problem 4). Moreover, due to its
product form, the SDS likelihood method is easier to
implement and analyse than methods based on partially
observed CTMC (e.g. the Doob–Gillespie likelihood).

The SDS method allows a novel approach to the monitor-
ing of epidemics. Instead of longitudinally counting the
number of infections, a random sample of individuals can
be monitored continuously for changes in their health
status. This is akin to a sentinel sensor network. Similar
ideas have been routinely explored in communication net-
works literature in computer science (e.g. network probing
and monitoring) [42]. The use of individual-level longitudinal
data rather than counts allows much greater flexibility in esti-
mating the effects of covariates (e.g. vaccination status) on
infectiousness and susceptibility, and it extends easily to
non-Markov transmission models.

Using the SDS likelihood, it typically suffices to have
much smaller sample of transition data than other inference
methods such as the exact likelihood method. Due to the
asymptotic independence of infection and recovery times of
individuals (see §2), the SDS likelihood takes a particularly
simple form, facilitating a convenient implementation of a
suitable MCMC scheme. We have made our code implemen-
tation of the SDS likelihood and MCMC scheme publicly
available [43].

The SDS framework proposed here can be readily
extended to accommodate a wide class of compartmental
models with some partial ordering among compartments.
The classical SIR model has been chosen here as an important
example to illustrate the ideas underpinning SDS likelihoods.
Indeed, the machinery developed in the present paper goes
beyond compartmental SIR models, and it can be applied
to more general epidemic processes as well as to many
compartmental models arising in physics and chemistry. In
particular, we believe SDS likelihoods can be applied to cer-
tain subclasses of chemical reaction network models in
which the individual species molecules can be tracked as
they undergo chemical reactions.

In many studies of epidemiological field data, the effec-
tive population size is assumed to be very large. For
instance, a total population size of 106 was assumed in
[44,45]. Our method is particularly appropriate for such set-
tings. For smaller populations, knowledge of the rate of
convergence of the scaled processes to the LLN limit is crucial
for assessing the quality of inference based on the SDS likeli-
hood. Therefore, to fully evaluate the appropriateness of the
SDS approximation, one should first establish an LDP for
the scaled process of interest. This is particularly important
for small-scale epidemics. Even though our numerical results
are encouraging for values of n as small as 100, quantifying
the rate of convergence will be useful. Although we did not
consider an LDP in this paper, we believe that the standard
techniques [21–23,25,26,46] can be applied for this purpose
in our context.

Another direction of future investigation will be to con-
sider network-based systems and non-Markovian systems.
For many epidemiological scenarios, the mass-action
assumption is untenable. Several network-based models
have been proposed in recent times [47–49]. Asymptotic
study of those models in the form of various large-graph
limits has also been done [50–52]. Therefore, extending our
method to network-based models appears to be a natural
next step.
Data accessibility. This article has no additional data.



Algorithm B.1. Pseudocode for Doob–Gillespie algorithm.

1: Initiate (S(0), I(0), R(0))
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2: Assume you have the process value (S(t), I(t), R(t)) at t � 0

3: Calculate rates lI(t) ¼ bS(t)I(t)=n and lR(t) ¼ g I(t)

4: Set next transition time Dt as EXPONENTIAL(lI(t)þ lR(t))

5: Select transition type (infection or recovery) as

BERNOULLI
lI(t)

lI(t)þ lR(t)

� �

6: Update (S(t0), I(t0), R(t0)) at t0 ¼ t þ Dt and go to Step 2.

048
Endnotes
1A random variable is said to be interval-censored when it cannot be
observed exactly and is only known to lie within an interval.
2In fact, as described in [39], for the first 10 days of the outbreak, all
suspected cases were tested and laboratory-confirmed to be H1N1,
after which all cases were considered H1N1.
3There is also a notion of weak lumpability in the theory of Markov
processes.
Algorithm B.2. MCMC for drawing posterior sample using RAM method.

1: Initialize (b,g, r) and the variance-covariance matrix of proposal

distribution

2: repeat ▹ adjust for burn-in etc.

3: Draw candidate samples of ðb; g; rÞ from the proposal

distribution

4: Solve equation (1.8) and store the solutions at the observed

infection times t1, t2, . . . , tK
5: Perform one step of the Metropolis algorithm and determine

whether the candidate samples are accepted

6: Perform one step of the RAM method to update the variance-

covariance matrix of the proposal distribution

7: until convergence.
Appendix A. Mathematical background
A.1. Lumpability of a Markov chain
Consider a CTMC Ct on a state space Y :¼ {1, 2, . . . , K} for a
finite positive integer K. Given a partition {Y1, Y2, . . . , YM} of
Y, define the process ~Ct such that ~Ct :¼ i whenever Ct [ Yi,
for i = 1, 2,…, M. The original CTMC Ct is said to be strongly
lumpable with respect to the partition {Y1, Y2, . . . , YM} of Y
if the process ~Ct is also a CTMC for every choice of initial dis-
tribution of Ct. The process ~Ct is often called the aggregated
or the lumped process. Intuitively, lumpability is the property
that disjoint sets of states can be identified by representative
states such that the induced stochastic process on the repre-
sentative states (which we call the aggregated or lumped
process) is also Markovian for every choice of initial distri-
bution of the original CTMC. In our individual-level model
described in §1.1, the representative states are given by the
partition {X1, X2, . . . , XL} of the state space Xnþm. The repre-
sentative states then correspond to the population counts S(t),
I(t), R(t).

The (strong) lumpability3 of a CTMC can also be
described in terms of lumpability of a linear system of
ODEs. Consider the linear system _y ¼ yA, where A = ((ai,j))
is a K ×K matrix (representing the transition rate or the infini-
tesimal generator matrix of the corresponding CTMC on state
space Y).

Definition A.1 (lumpability of a linear system [10,18]). The
linear system _y ¼ yA is said to be lumpable with respect to a
partition {Y1, Y2, . . . , YM} of Y, if there exists an M ×M
matrix B = ((bi,j)) satisfying Dynkin’s criterion (i.e. if
bi,j ¼

P
l[Y j

au,l ¼
P

l[Y j
av,l for all u, v [ Yi ). The matrix B

is often called a lumping of A. The following is immediate:
if B is a lumping of A, then there exists an K ×M matrix V
such that AV =VB.

Refer to [16,17,53] for further reading and numerous
characterizations of Markov chain lumpability.
Appendix B. Additional pseudocode
For the sake of completeness, we provide some additional
pseudocode for implementing popular statistical procedures.
The first pseudocode is for simulating trajectories of a CTMC
following the well-known Doob–Gillespie algorithm.
The MCMC procedure for drawing posterior samples
using the RAM algorithm can be implemented by the follow-
ing pseudocode.
Appendix C. Additional numerical results
Here, we provide additional numerical results. In particular,
we show the posterior plots and crucial diagnostic statistics
for the MCMC methods.

The cut-off times are chosen based on figure 8. The idea is
to study the impact of censoring on the quality of inference.
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Figure 9. The posterior distributions of the Method 3 estimators of β, γ and ρ based on the SDS likelihood for the smaller cut-off time (T = 3). The left-hand
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For each parameter setting, we chose two cut-off times: one
near the peak of the epidemic and one near the end of the epi-
demic. The vertical lines in figure 8 indicate the smaller cut-
off time for each of the three settings of the parameter values.

Our numerical results are summarized in tables 2 and 3.
For the longer cut-off times, table 2 provides a summary of
the simulation results for the three parameter settings and
different initial numbers of susceptibles n. Here, the values
of T are 9 for θ1, 6 for θ2 and 7 for θ3. In each case, the epi-
demic is almost at its end by time T (figure 8). The first
three columns show estimates of β from Methods 1, 2 and
3. Similarly, the next three columns show estimates of γ. The
last column shows Method 3 estimates of ρ (recall that ρ is
known exactly for Method 1 and Method 2). The rows of the
table are divided into three parts corresponding the parameter
settings θ1, θ2 and θ3. Each of the three parts is further subdi-
vided into the three different susceptible population sizes n =
102, 103 and 103. Finally, in each cell, we show the average of
100 posterior means and the MSE of parameter estimators.
As we can see, Method 3 based on the SDS likelihood yields
accurate estimates for all three parameters β, γ and ρ even
for relatively small values of n (see the results for n = 102).

Whereas table 2 considers data collected until a T near the
end of an epidemic, table 3 considers data with cut-off T = 3
that is close to the peak of an epidemic. (See figure 8 for a
visualization of the SIR curves corresponding to these three
parameter settings truncated at T = 3 by a vertical line.) The
table formats are identical. Since the inference is based on
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heavily truncated data, the MSE in table 3 are higher than
those in table 2. Also, the sharp decrease in MSE with increas-
ing n in table 2 is less pronounced in table 3. Nevertheless, the
estimates obtained are still quite accurate. Also, the MSE for
Method 3 are slightly better than those of Method 1 or
2. Interestingly, the parameter ρ is accurately estimated by
Method 3.

In figures 9 and 10, we show the posterior distributions of
the Method 3 estimators of β, γ and β based on the SDS like-
lihood. To avoid repetition, we show only two posterior
plots: figure 9 shows results for the parameter setting θ1
under the smaller cut-off time, and figure 10 shows results
for the parameter setting θ2 under the larger cut-off time.
As shown in tables 3 and 2, the variances of the posterior
distributions shrink drastically as we increase n from 102 to
103. We do not show the posterior distributions for the n= 104

case because it does not provide any additional insights into
the quality of the inference procedure except for the fact that
the posterior variance further reduces.

Finally, figure 11 shows additional diagnostic statistics for
the MCMC implementation of Method 3. We show the thinned
trace of a single Markov chain for n = 102 and 103. As expected,
the chain mixes faster when n = 103 than when n= 102 because
Method 3 is based on an LLN of the scaled Poisson processes
keeping track of the population counts. As before, we omit the
n = 104 case. For completeness, we consider the third parameter
setting θ3 in figure 11. The Markov chains also converge for the
other parameter settings (not shown).
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