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Abstract

New national science standards have elevated attention to student performance with a core set of science and engineering
practices, yet guidance about how to assess these practices is only just emerging in the literature. This is particularly true for
the set of engineering design—focused concepts and practices articulated in the Next Generation Science Standards’ (NGSS)
Engineering, Technology, and Application of Science (ETS) standards. In this work, we present a model of student cognition for
assessing student facility with the engineering design practice of optimization. We operationalize this model of cognition within a
set of engineering-focused units for middle school, framed as Virtual Engineering Internships (VEIs). To operationalize the
engineering design practice of optimization within our VEIs, we first broke optimization down into two more specific sub-
behaviors: exploration and systematicity. We then designed metrics that provide evidence of those behaviors and would be
observable given student clickstream data from a digital design tool. We normalized these metrics based on the obtained
distributions from a research trial. We discuss the existing correlations between these behaviors and metrics.

Keywords Learning analytics - Engineering design - NGSS - Optimization - Middle school - Virtual internships

Motivation

Traditional approaches to automatically scorable assessments
are inadequate to meet the demands of recent education re-
forms, which call for performance-based demonstrations of
understanding (National Research Council [NRC] 2012;
NGSS Lead States 2013). The need for more robust assess-
ments is especially salient when attempting to assess science
and engineering practices, because these are patterns of be-
havior that (1) take time to perform and (2) do not lend them-
selves to discrete correct or incorrect answers but rather a
continuum of abilities (Pellegrino et al. 2014). These two as-
pects of engineering design practices make traditional assess-
ments (e.g., multiple-choice items, which are of short duration
and are scored dichotomously) an awkward fit for diagnosing
student facility with engineering design practices. Teachers
need new approaches to assessment that will enable them to
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monitor and support student progress in these complex sci-
ence and engineering practices (Pellegrino et al. 2014).

Extended performance assessments show promise for
assessing complex science and engineering practices
(Wertheim et al. 2016). Previous work has developed models
of student cognition for problem solving within a science con-
text, for example, identifying categories of student perfor-
mance that show qualitative variation (Baxter et al. 1996).
However, performance tasks can be challenging to develop
and use at scale: valid and reliable performance tasks are dif-
ficult to develop and are often time-consuming to administer
and reliably score (Ruiz-Primo and Shavelson 1996;
Shavelson et al. 1991). These challenges are particularly prob-
lematic for the formative use of performance assessments,
when gathering timely information is paramount. Because a
teacher is hard-pressed to evaluate and provide feedback on
the performance of a full class of students at the same time,
teachers must make choices about which students to focus on,
which learning goals to monitor, or how much time to allow
between a student’s performance and formative feedback.

In response to these challenges, a growing number of ef-
forts have emerged to capitalize on the ability of learning
analytics technologies to support assessment of complex
learning goals, and science and engineering practices in par-
ticular (Bennett et al. 2010; Gobert et al. 2013; Quellmalz
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et al. 2012). Digital learning environments, when analyzed
through the unobtrusive methods of learning analytics, allow
students to behave (and be assessed) in more authentic ways
that more closely parallel the true behaviors and practices of
science and engineering (Shavelson et al. 1991). By enabling
automated assessment of complex student performance, learn-
ing analytics offers promise to provide a richer and more im-
mediate picture of student understanding than traditional as-
sessments (Quellmalz and Pellegrino 2009; Serrano-Laguna
et al. 2012). Already, computer-assisted formative assess-
ments have shown to be good predictors of academic perfor-
mance and identifiers of underperforming students
(Tempelaar et al. 2015). The promise of learning analytics is
captured by the Concord Consortium’s question, “Ever wish
you could be at every student’s desk at the same time?”
(Online Assessment, n.d.). The hope of learning analytics is
that automatically analyzing the massive and varied data gen-
erated from student engagement in digital environments will
better illuminate student learning progress and provide infor-
mation in a more timely manner, all without burdening the
teacher with the considerable time required to score perfor-
mance assessments.

For learning analytics to serve in this formative assessment
role, they must provide credible, actionable, and timely infor-
mation to teachers in order to best serve students (Black and
Wiliam 2010). However, while important work has been done
towards this goal, the classroom implementation of learning
analytics technologies is still nascent. Additional research is
needed to (1) inform the design of digital environments so that
they are well-suited to generating evidence of multidimen-
sional understanding; (2) identify specific approaches to ana-
lytics likely to yield useful and credible information for
teachers; and (3) determine ways that information may be
communicated to teachers so that it can inform instructional
decisions (Kuo et al. 2015; Pellegrino et al. 2016).

Background
Engineering Design Practices

Engineering design practices have long been a target of study
(e.g., Marples 1961) and have been defined in a multitude of
ways (Dubberly 2004). Crismond and Adams (2012) pull
from a wide array of engineering design descriptions to pro-
pose a set of nine engineering design strategies, including
Understand the Challenge, Build Knowledge, Generate
Ideas, Represent Ideas, Weigh Options & Make Decisions,
Conduct Experiments, Troubleshoot, Revise/Iterate, and
Reflect on Process. Student engagement with engineering de-
sign has been explored in terms of these strategies within a
digital space (Purzer et al. 2015). Mehalik and Schunn’s
(2007) meta-analysis identified, among the many design
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process elements, three that are most commonly associated
with productive engagement in the design process: Explore
problem representation, Use interactive/iterative design
methodology, and Search the space (explore alternatives).
Similarly, the NGSS and NRC Framework describe three pri-
mary components of engineering design: Defining and
Delimiting an Engineering Problem, Developing Possible
Solutions, and Optimizing the Design Solution.

Improved formative assessment of these highlighted ele-
ments of the engineering design process could support more
effective development of students’ abilities. This could lead to
significant gains in both engagement (Kolodner 1993;
Hammond 1989; Schank 1982, 1999; Kolodner et al. 2003)
and associated science learning for a diverse student popula-
tion (Doppelt et al. 2008). In this work, we will outline a
model of cognition and preliminary learning analytics results
for one of these primary engineering design elements.

Assessment and Learning Analytics

A valid assessment system requires three components: (1) a
model of student cognition (a “student model”); (2) tasks
intended to elicit student actions/evidence towards that model
of cognition (a “task model”); (3) a set of rules for making
sense of that evidence (an “evidence model”) (NRC 2001;
Mislevy et al. 2003). It has been noted that very few assess-
ments reference an explicit model of student cognition
(Brown and Wilson 2011). Thus, we began by developing a
clear model of cognition through carefully examining and
defining the constructs at play within engineering design, fo-
cusing specifically on the practice of Optimization. We chose
a focus on optimization for both theoretical and practical rea-
sons, described in detail in the “Results” section.

Some work has aimed to quantify various aspects of stu-
dent facility with engineering design practices through analy-
sis of student log files. For instance, Vieira et al. (2016) ana-
lyzed student log files from a computer-aided design environ-
ment to determine how many iterations each student per-
formed over the course of their design work, and how system-
atic (vs confounded) each experiment performed was. They
noted that more advanced (“informed”) designers would iter-
ate more and be more systematic in their experimentation.
Similarly, Xie et al. (2014) used time-series analyses to mea-
sure student engagement, detect known gender differences in
design practices, and detect iteration from student log files.

Despite these forays into using process data to provide
evidence of student ability with engineering design practices,
to our knowledge, the literature contains no operationalized
definitions of the engineering design practice of optimization.
We therefore propose an operationalized definition of the en-
gineering design practice of optimization, in the hopes that
this definition will facilitate future discussion, critique, and
eventually consensus regarding the classes of student
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behavioral metrics that contribute to the optimization of an
engineering design.

Methods
Curriculum Context: Virtual Engineering Internships

The study took place in the context of six middle school
Virtual Engineering Internships (VEIs) that are part of an
NGSS-designed K-8 science curriculum, Amplify Science
(Regents of the University of California, 2017). The VEIs
are a special kind of engineering design unit, in which students
take on the role of interns for a fictional engineering firm,
using a web-based workspace modeled after an email applica-
tion, through which the teacher manages students’ interactions
with a “project manager” from the firm. In each VEI, students
apply science ideas to design solutions to a different human-
itarian challenge, set in a particular subfield of engineering
(described in Table 1).

Each VEI consists of ten (45 min) lessons, composed of
three main phases: the research, design, and proposal phases.
During the research phase, students gather background infor-
mation to develop their understanding of the context and sci-
ence of the humanitarian challenge. During the design phase,
students iteratively test design solutions. And during the pro-
posal phase, students write a structured argument/proposal for
their chosen optimal design solution. To iteratively design and
test solutions, students use a digital design tool custom-built
for the VEI. Each VEI’s design tool allows students to simu-
late and test designs, and provides test results, which students
can analyze to figure out the effects of different design
choices. Student log files enable analysis of all interactions
within the design tool. The curriculum elicits both process
data (student log files) and product data (students submit pre-
liminary and then final designs at the end of the middle and
last design-focused lessons, respectively).

This paper will focus on our findings for one VEI, the
Force and Motion VEIL. We will highlight notable differences
between the VEIs in the “Results” section. In the Force and
Motion VEI, students address the unit’s humanitarian chal-
lenge by designing airdropped disaster relief supply pods. In

their design, students must make tradeoffs to minimize cost,
minimize cargo damage, and maximize reusability of the pod
itself. Students must determine (and argue for) their own def-
inition of “optimal” within the tradeoffs afforded by the design
tool. Students utilize the unit-specific digital design tool:
SupplyDrop, which allows students to select the type and
amount of padding to use for their supply pod design, and
add-ons like parachutes or springs (Fig. 1, left). For each de-
sign test, SupplyDrop provides results that include physical
parameters of the impact: impact force, pod mass, and impact
velocity, as well as pod cost, cargo damage, and pod condition
(Fig. 1, right).

Research Trial Design and Participants

We conducted a series of research trials for each of the VEIs in
2018. Teachers were recruited through a call for participants
within a broad national network of districts and schools. This
resulted in a large pool of interested and eligible participants.
From this large pool of potential teachers, we attempted to
select research trial teachers that reflect the diversity of public
schools in the USA, in terms of (1) teacher gender, (2) years of
teaching experience, (3) teacher expertise in teaching engi-
neering and design, (4) grade level (6th, 7th, or 8th grade),
(5) proportion of student English Language Learners, and (6)
proportion of students who qualify for free/reduced lunch.
One notable exception, reflecting a bias in the larger pool of
potential participant teachers, was comfort with technology—
in which most participating teachers rated themselves as “very
comfortable.” Participating teachers were provided with the
assistance resources available through the Amplify Science
curriculum including training videos, step-by-step lesson
guides, and help resources (phone, chat, email, FAQs,
forums).

We performed a power analysis to estimate the number of
research trial students necessary to detect a small effect size of
0.15. Looking for this effect size in a matched sample ¢ test,
with 5% false-positive and false-negative rates (alpha=0.05,
beta=0.05), we needed approximately 580 students.
Assuming a 10% teacher attrition rate and a 25% student
attrition rate, we expanded this number to a target of 860
students per VEI. To recruit this many students, we advertised

Table 1 Science content areas, engineering subfields, and humanitarian challenges of the six Virtual Engineering Internships developed

VEI science content area Engineering subfield

Humanitarian challenge

Force and Motion

Phase Change

Plate Motion

Natural Selection

Earth’s Changing Climate
Metabolism

Mechanical engineering
Chemical engineering
Geohazard engineering
Biomedical engineering
Civil engineering

Food engineering

Designing delivery pods for emergency supplies

Designing portable baby incubators

Designing tsunami warning systems

Designing antibiotics courses to fight drug-resistant malaria
Designing rooftops for sustainable cities

Designing health bars for disaster relief
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Fig. 1 Images of the Force and Motion VEI’s design tool: SupplyDrop, when designing a supply pod (left) and viewing the results of testing a design

(right)

for and selected teachers across the USA who could teach the
VEISs to one hundred students. For the Force and Motion VEI,
we began with 9 teachers and, through attrition, ended with 8
of those teachers successfully completing the research trial.
This resulted in a potential pool of 918 students who complet-
ed the Force and Motion VEI research trial. Our final sample
size was 731—the students from whom we received consent
forms. A post hoc power analysis with this larger sample size
yields a 98% chance of detecting an effect size of 0.15.

Research Questions and Procedures

The research questions we aimed to answer in this study were
the following:

1. Can we discern a model of cognition of the engineering
design practice of optimization?

2. What specific metrics, instantiated in our VEIs and tied
explicitly to this model of cognition, will allow us to mea-
sure student engagement in optimization?

3. Do these metrics capture the variation within the student
population?

4. What patterns do we see in student behavior, as expressed
through these metrics?

The first of these research questions was motivated by
Brown and Wilson’s (2011) observation that very few assess-
ments include an explicit model of cognition. Therefore, we
began by defining the specific behaviors that seem to com-
prise the engineering design practice of optimization. We drew
from multiple sources to help determine these component be-
haviors, including the NGSS description, feedback from a
panel of experts, and insights from numerical techniques of
optimization. We address research question no. 1 in the sec-
tion “Defining Optimization Behaviors.”

The second of these research questions addressed the need
to explicitly define the evidence model that will connect stu-
dent actions in the digital design tool to the component
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behaviors defined in our model of cognition. We address re-
search question no. 2 in the section “Quantitative Metrics of
Optimization Behaviors.”

To address research questions 1 and 2, we drew on methods
outlined by DeBarger et al. (2013), and Evidence Centered
Design’s (Mislevy et al. 2003) explicit statement of a student
model (model of cognition) linked to an evidence model, to
unpack the NGSS’ description of optimization “into a coher-
ent association of learning goals, describe the kinds of tasks
and situations that would elicit those goals, and demonstrate
how particular performances can be interpreted as evidence
for students’ capabilities” (DeBarger et al. 2013, p. 4).

Once these metrics had been defined, a further concern was
that they would not capture substantial variation between stu-
dents and, thus, would not be useful for identifying variation
in students’ facility with the practice of optimization. To ad-
dress this concern, our third research question was aimed at
identifying the amount of variation among students on each of
the metrics. We address research question no. 3 in the sections
“Combining Metric Values” and “Combining Metric Scores
into Behaviors.”

The fourth of these research questions explored correla-
tions between these student behavior metrics. We address re-
search question no. 4 in the section “Correlations among the
Normalized Metric Scores.”

Results
Defining Optimization Behaviors

The NGSS breaks down engineering design into three com-
ponent ideas:

* Defining and Delimiting an Engineering Problem
(ETS1.A)

* Developing Possible Solutions (ETS1.B)

*  Optimizing the Design Solution (ETS1.C)
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We decided to focus on the last of these: Optimizing the
Design Solution, in part because we were confident that the
student log file data would have the depth and variation we
would need to investigate metrics for this construct. We also
see it as a unique aspect of the VEI learning context, with the
rapid test-revise-retest cycles possible within the design tool.
In order to discern a model of cognition of the engineering
design practice of optimization (research question no. 1), we
developed a working/operationalized definition of Optimizing
the Design Solution, breaking this practice down into a set of
more specific behaviors that would count as evidence of stu-
dent facility with optimization. To determine these specific,
constituent behaviors we began with a close reading of the
NGSS Appendix I:

Grades 6-8. At the middle school level, students learn to
sharpen the focus of problems by precisely specifying
criteria and constraints of successful solutions, taking
into account not only what needs the problem is
intended to meet but also the larger context within which
the problem is defined, including limits to possible so-
lutions. Students can identify elements of different solu-
tions and combine them to create new solutions.
Students at this level are expected to use systematic
methods to compare different solutions to see which
best meet criteria and constraints, and to test and revise
solutions a number of times in order to arrive at an
optimal design.

From this, we extracted two initial behaviors that contribute
to optimization: combining elements of different solutions
(combination) and using systematic methods to test and revise
solutions (systematicity). Based on the work of Chan et al.
(2011) and an analysis of numerical optimization algorithms,
we concluded that a third behavior (exploration) was impor-
tant for the practice of optimization as well. We reason that an
engineer must sufficiently explore the possible design space to
truly optimize their design.

While attempting to more precisely define each of these
behaviors, we had difficulty specifying what the combination
feature would look like in our data. Looking at long-form
written student responses, we noted that students often did a
great deal of intentional combining as they worked on their
designs—choosing to use specific materials in future designs
to leverage/mitigate the properties of one material with the
properties of another. But given the limited number of mate-
rials available to students in our design tools, we were unable
to determine unambiguously from the digital design tool data
that students were intentionally combining elements of differ-
ent solutions and not just re-using one of the options random-
ly. Based on this as well as feedback from our panel of experts
in engineering education that downplayed the importance of

the combination feature, we decided to focus on the behaviors
we could appreciably measure. Thus, we focused on two con-
tributing, observable behaviors of optimization: exploration
and systematicity.

We then compared and contrasted exploration and
systematicity with constructs utilized by other researchers
seeking to measure engineering design practices. For exam-
ple, the constructs of Vieira et al. 2017 (generate ideas and
conduct experiments) strongly mirror the exploration and
systematicity behaviors. We found many similarities
between our exploration construct and the metrics employed
by other researchers. For instance, the work of Chan et al.
(2011) and Shah et al. (2003) on ideation in engineering de-
sign, as well as the “breadth of search” metric utilized by
Schauble et al. (1991), strongly mirrors our exploration
construct.

The behaviors we chose to observe thus seem to be consis-
tent with national standards, insights from a panel of engineer-
ing education experts, and previous published work. These
behaviors provided the basis of a model of cognition of the
engineering design practice of optimization, addressing our
first research question (Can we discern a model of cognition
of the engineering design practice of Optimization?).

Quantitative Metrics of Optimization Behaviors

In order to address research question no. 2, we next developed
specific metrics to quantify student engagement with the prac-
tice of optimization, through the constituent behaviors of ex-
ploration and systematicity. Below, we define each of the be-
haviors as combinations of these metrics.

Exploration

Exploration of the available design features is important as a
means to identify the possibilities and limitations of the design
space. Without sufficient exploration, a student’s ability to
optimize is limited by their lack of understanding of the pos-
sibilities available to them. We chose to quantify exploration
in several ways. First, we calculated the fraction of possible
design modifications made, over the course of an investiga-
tion; e.g., they tried adding a parachute, and tried adding flaps,
but did not try adding springs to the bottom of the pod
(fraction_modified). Second, we calculated the fraction of
the design (output) space that a student tested; e.g., they gen-
erated designs with high cost and low cargo damage, but never
designed anything with low cost but higher cargo damage
(fraction_explored). For this fraction explored to be focused
on the most relevant regions of the design space, we per-
formed a k-means grouping on the output variables (cargo
damage, shell condition, and cost) of the final designs of stu-
dents using the commercially available VEIs, and reported the
fraction of these groups that students had generated designs
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within. Third, we calculated the total/cumulative number of
tests that each student performed (test_count).

The three exploration metrics described above are cumula-
tive: they reflect all of the designs a student has generated,
rather than just the designs made during a specific lesson.
We treated exploration as cumulative because, although it is
important to engage in, it is not something we think students
must repeat anew each lesson—an area of the design space,
once explored, remains explored on subsequent design ses-
sions. And tests, once conducted, contribute to the student’s
understanding of the available design space, largely irrespec-
tive of whether those tests occurred during the current or the
previous lesson’s design time.

Systematicity

Given that there are more possibilities for how to design a
solution than can reasonably be tested in the available time,
students must make decisions about how to explore the pos-
sible designs in order to make progress towards an optimal
solution. Being systematic allows students to gain an under-
standing of how certain types of design decisions will affect
their test results, thus enabling design iterations to proceed
more efficiently. We chose to quantify systematicity in several
ways. First, we calculated the average number of categories of
changes (variables changed) made between consecutive tests
(e.g., a student replaced all of their paper padding with metal
foam padding and replaced their large parachute with a small
parachute [2 categories of changes]). We expect that students
exploring systematically will change fewer variables between
consecutive tests. And second, we calculated the average dis-
tance (Euclidean norm) in the normalized design space be-
tween consecutive tests (jump_distance)—the distance be-
tween two consecutive tests’ normalized results. We expect
systematic, iterative exploration of the design space to yield
smaller jumps in the design space, compared with wild explo-
ration or random/unprincipled testing.

We calculated both of these systematicity metrics in a non-
cumulative (lesson by lesson) manner—a student’s behavior
is either systematic or not, independent of their behavior in
previous lessons.

It is important to note that there is a natural tension between
the importance of exploration and the importance of
systematicity. Exploring more widely in the available amount
of time will often appear as less systematic testing, and vice
versa. To navigate this tension and balance the benefits of both
behaviors, we envision that students might begin with an ini-
tial period of more free exploration aimed at determining the
range of possible solutions and generating ideas for promising
areas, followed by a period of increased systematicity of test-
ing aimed at honing an acceptable class of design solutions to
the students’ optimal/final solutions. The system of metric
design that we utilize above—using cumulative metrics for
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the exploration behavior and non-cumulative metrics for the
systematicity behavior—allows us to somewhat naturally ad-
dress this tension. During a later lesson, if students engage in
systematic testing behaviors, and if they have also explored
the design space previously, then they will score high in both
of these behaviors at that point in the VEL

These metrics operationalized our model of cognition of
the engineering design practice of optimization: composed
of two behaviors (exploration and systematicity), which are
each composed of 2-3 quantitative metrics that are measur-
able within our VEI design tool. This addressed our second
research question (What specific metrics, instantiated in our
VEIs and tied explicitly to this model of cognition, will allow
us to measure student engagement in Optimization?).

Combining Metric Values

To make use of the various quantitative metrics described
above, we needed to combine them into the optimization be-
haviors that they contributed to. Because a simple combina-
tion of these values would place undue importance on the
largest values, we normalized them prior to combination. We
normalized each metric’s values by fitting the distribution of
student metric values with either a log-normal or a beta distri-
bution (whichever fitted better, as determined by a
Kolmogorov-Smirnov test) and then used the corresponding
cumulative distribution function (CDF) values. This allowed
us to map any metric value to a monotonically increasing
score between 0 (worst metric values) and 1 (best metric
values) using the fitted distribution’s CDF. This parameteriza-
tion allowed us to effectively differentiate between the student
metric values and allowed us to compare and combine scores
on a normalized scale. In cases where low values of the met-
rics were considered optimal (the systematicity metrics), we
simply used the survival function (one minus the distribution’s
CDF) as the normalized metric score instead of the CDF.
These scores are shown in Figs. 2 and 3 as overlaid lines.
Figure 2 shows the distributions of student actions in the
(cumulative) metrics corresponding to the exploration behav-
ior by the end of the last design-focused lesson:
fraction_modified, fraction explored, and test count. We see
that almost all students have thoroughly explored the range of
input elements by this point in time (fraction_modified), mod-
ifying (to some degree) all of the possible input options. In
reference to our research question no. 3, this metric shows
limited variation between students, and so is not particularly
useful for differentiating students in this VEI. However, we
retain it because, in other VEIs (that have more complex input
elements), fraction _modified shows significant variation.
Meanwhile, student exploration of the resulting categories of
designs (fraction_explored) was much more varied, with some
students coming into contact with nearly all categories of de-
signs, other students coming into contact with very few
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Fig. 2 Distribution of students’ fraction of the input parameters modified
(left), fraction of the design space (output parameter space) tested
(center), and cumulative number of tests (right) by the end of the last

categories of designs, and the majority of students coming into
contact with just over half of the categories of designs.
Looking at the last of these metrics, we see that most students
have performed around 100 design tests by the end of the last
design-focused lesson (test _count), with a few students hav-
ing tested many more times than that.

Turning to the systematicity behavior of students during
only (non-cumulatively) the last design-focused lesson, we
show the student metric value distributions in Fig. 3:
variables changed and jump_distance. In variables changed,
we see that most students changed between one and three
variables (on average) between tests—distributed around the
common behavior of “undoing” a previous change in one
variable and then changing another variable (two variables
changed). Looking at jump_distance, students seem to dem-
onstrate bimodality in how much their changes altered their
resulting designs: one group of students made fairly small
changes to their designs resulting in smaller “jumps” in the
output space (peaking around 0.5), while another group of
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500
test count

0.5 1.0

design-focused lesson in the Force and Motion VEI’s design tool:
SupplyDrop. Normalized metric scores are shown by the fitted lines, with
higher values of all metrics tending towards more complete exploration

students made larger changes to their designs resulting in larg-
er “jumps” in the output space (peaking around 1.3). Further,
over the course of the VEI, students’ average jump_distance
values declined significantly. In the first design-focused lesson
(not shown), the majority of students made larger changes and
51% of students were in the jump_distance =~ 1.3 peak region.
By the last design-focused lesson (shown in Fig. 3), the frac-
tion of students who made larger changes had fallen to 34%,
and the majority of students were instead in the jump_distance
~ 0.5 peak region. This trend extended to other VEIs, but was
not universal. For instance, in the Phase Change VEI, the
distribution of student jump_distance scores was only weakly
bimodal, and the movement to lower values over time was not
statistically significant.

Combining Metric Scores into Behaviors

Each of these sets of metric scores was then combined (geo-
metrically averaged together) to generate an exploration and

Fig. 3 Distribution of students’
average number of variables
changed between tests (left), and
average distance between tests in
the design space/output parameter
space (right) during the last
design-focused lesson in the
Force and Motion VEI’s design
tool: SupplyDrop. Normalized
metric scores are shown by the
fitted lines, with fewer variables
changed and smaller jumps be-
tween tests tending towards being
more systematic
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Fig. 4 Distributions of students’ constituent behaviors (exploration and
systematicity) and overall optimization scores during the last design-
focused lesson in the Force and Motion VEI’s design tool: SupplyDrop.
Vertical lines mark the 25th and 75th percentiles of the distributions of
student performance for each behavior

systematicity behavior score for each student. Figure 4 shows
the resulting distributions of student behavior scores, along
with the resulting combined student optimization scores. The
overall optimization scores are a geometric average of the two
behavior scores. Note that, for these calculations, we chose the
geometric average (product-based) over the arithmetic aver-
age (sum-based) to capture our intuition that serious deficien-
cy in any of the contributing metrics should trigger a lower
combined behavior score, to better highlight room for im-
provement. We see that there is a significant spread in the
distributions of each of the behavior scores, and the resulting
optimization score distribution. This implies that these scores
capture some aspects of the diversity of student performance,
and so likely contain useful information for differentiating
student performances, addressing research question no. 3
(Do these metrics capture the variation within the student
population?).

Correlations among the Normalized Metric Scores

These normalized metric scores allowed us to more easily
identify patterns among the metrics, addressing research ques-
tion no. 4 (What patterns do we see in student behavior, as
expressed through these metrics?). We first looked for rela-
tionships among these normalized metric scores and behaviors
by constructing a correlation matrix (Fig. 5).
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Fig. 5 Correlation matrix of the normalized metric and behavior scores.
Note that higher normalized scores correspond to better performance on
each of these metrics—corresponding to the fitted lines in Figs. 2 and 3

Looking at the correlation matrix, we see several signifi-
cant positive correlations. For example, we see the (mathemat-
ically necessary) high positive correlations between the metric
scores and the behaviors that they contribute directly to (e.g.,
jump_distance and systematicity). We see moderate-high cor-
relation between the three exploration-related metric scores:
fraction_modified, fraction explored, and test count. These
exploration metrics show the understandable correlation that
students who conducted many tests were more likely to vary
more of the possible inputs (“turn all the knobs™) and also to
explore more of the possible output space. We also see a
moderate correlation between the two systematicity metric
scores: variables changed and jump_distance. However, be-
yond these expected correlations, we note the independence of
the metric scores within the exploration and systematicity be-
haviors. We address these independences in the “Discussion”
section.

Discussion

In order to assess the performance of a practice, it is critical to
clearly define the behaviors that represent mastery of that
practice (Mislevy et al. 2003). Accordingly, while “optimiza-
tion” is broadly understood to be a core practice in engineering
design (Mehalik and Schunn 2007; Crismond and Adams
2012; NRC 2012; NGSS Lead States 2013), monitoring and
supporting student development of this practice require a con-
crete picture of what student action optimization entails. This
challenge is magnified with the practice of optimization in
particular in that one must not only know what to look for,
but also when and how to look for it—from an assessment
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perspective, optimization is less an observable feature of a
particular design in isolation, and more a feature of the chang-
es between design iterations, and in relation to the criteria and
constraints of the design problem. Our study advances the
field’s capacity to meet this challenge by presenting an ap-
proach to operationalizing optimization precisely in terms of
the changes between iterations and within the context of the
criteria and constraints of the design problem. Moreover,
through applying this assessment evidence model to a rich
student data set, we have been able to shed light on how
observable sub-components of optimization, such as explora-
tion and systematicity, plays out across a series of student
design iterations.

Our exploration metrics are similar to those of Shah et al.
(2003), who defined ideation within engineering design as
composed of four metrics: novelty, variety, quantity, and
quality. However, we struggled to determine any satisfactory
metrics that correspond to quality within our VEIs, being lim-
ited by ambiguity about how to define a single measure of
quality from a multidimensional optimization problem. Any
design change entails a set of tradeoffs between the different
priorities (e.g., cost versus performance) which one student
may consider an improved design but another student might
consider a worse design. Past work has measured the overall
quality of a multidimensional design solution through expert
determined holistic ratings (Kruger and Cross 2006), but the
variance of such an assessment is substantial and such an
approach is difficult to apply broadly. In cases where the mul-
tidimensional nature of optimization can be reduced to a uni-
dimensional problem (plus design constraints), the quality of a
design solution can be more easily defined. For example, in
their study of the quality of students’ designs of earthquake-
resistant structures, Apedoe and Schunn (2013) were able to
unambiguously quantify the quality of students’ design solu-
tions as the achieved height of a structure, constrained by the
requirement that the structure did not collapse in a test earth-
quake. In cases where such a unidimensional reduction is
intractable, the quality of a design remains difficult to objec-
tively assess.

Despite the difficulty to apply Apedoe and Schunn’s (2013)
definition of quality to more multidimensional problems, their
work gives us insight into which metrics are helpful to im-
provement in students’ design work, and which are less
relevant. Apedoe and Schunn (2013) found that some metrics
are significantly related to success in a design project (metrics
similar to our test_count and fraction_explored), but that other
metrics are uncorrelated with student success (metrics akin to
our variables changed and fraction_modified). It is difficult to
compare our results with these findings, since our design chal-
lenges lack a unique definition of success, and a design solu-
tion that is optimal for one student will likely be suboptimal
for another student given their different prioritizations of the
design criteria. Utilizing a generic (priority agnostic) measure

for design quality, we see no significant correlations between
any of our metric scores and this measure of quality/success.
We retain these additional metrics in our analysis, despite
Apedoe and Schunn’s (2013) findings that they are uncor-
related with student success, because they play an im-
portant role in the scientific mode of experimentation
and may be of interest to teachers and students within
the science classroom.

Our metrics give substantial insight into behavioral patterns
among students in our VEI experiences. Among the correla-
tions shown in Fig. 5, we see some interesting lack of corre-
lation. We also see the independence between behavior
groups, which might suggest that the behaviors we have de-
lineated (systematicity, exploration) and their contributing
metric scores are relatively independent skills from each other.
This is somewhat surprising, as one might imagine that stu-
dents skilled in one of these behaviors might also be prefer-
entially skilled at employing the other. We hypothesize that
middle school students have so little experience with optimi-
zation that such a correlation has not yet developed. Further
study of individuals with intermediate and advanced experi-
ence in engineering design would be useful to determine if this
proposed explanation is accurate.

There is very little previous work investigating the relation-
ship between exploration and systematicity. The natural ten-
sion between these two optimization behaviors, described in
the “Quantitative Metrics of Optimization Behaviors” section,
is particularly important to consider in assessments that en-
compass both of these aspects of engineering design. This
tension must be addressed in some way in order to properly
assess student performance. In this work, we have mitigated
this tension by treating exploration as being composed of cu-
mulative metrics, while treating systematicity as being com-
posed of non-cumulative metrics. This allows exploration that
occurred earlier in the VEI to still “count” on subsequent days
of the investigation, allowing students to transition to a more
systematic style of optimization later in their investigation.
But this initial work invites future studies to delve deeper into
how development of the sub-constructs may best be supported
in students and, importantly, when in the design process to
expect exploratory and/or systematic behaviors. Other ap-
proaches that reconcile the necessarily serial nature of these
two behaviors that contribute to optimization should be
devised.

We would also expect some significant relationships to
exist between the metric scores. For example, looking at the
metric scores that focus specifically on the input parameters
within the correlation matrix, it is somewhat surprising that
the correlation between variables changed and
fraction_modified is not more negative. We might expect that
changing more variables between tests (larger
variables changed metric values, renormalized to lower
variables changed scores) would lead to a larger fraction of
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the input parameters modified (higher fraction _modified
scores). Instead, we find that, among the students who are
changing many variables between tests, many of those chang-
es involve changing the same, limited set of variables between
tests. Similarly, looking at the metric scores that focus on the
results/outputs of design tests, we would expect that larger
shifts between tested designs (larger jump_distance metric
values, renormalized to lower jump_distance scores) would
lead to a larger fraction of the output/design space explored
(larger fraction explored scores). We see some evidence of
this, as this pair of metric scores has a small negative correla-
tion, but it is somewhat surprising that this correlation is not
more negative. We find that, among the students who make
more drastic design changes to their designs between tests,
there is a significant group that are consistently making jumps
to previously explored designs (previously explored regions
of the output parameter space) and failing to fully explore the
design space.

Future Directions
Utilizing and Extending This Work

To leverage this methodology and extend the results presented
here, researchers could measure the above proposed metrics to
compare their observed student performances and cross-
metric correlations in relation to those presented here,
highlighting relevant differences in their engineering design
experiences. Researchers could also propose additional met-
rics (either specific to their educational situations or more
general) and check for correlations between those metrics
and the metrics presented here. In particular, developing ob-
jective and automatically calculable metrics for the quality of
a multidimensional design solution would be highly valuable.

Teachers could leverage these results by making time in
their engineering/design lesson-plans to provide students with
explicit structures and learning experiences focused on useful
strategies highlighted by the model of cognition presented
here, including exploring the design space and systematic
techniques for goal-oriented improvement of a design.

Product developers could leverage these results by making
sure that, as they develop digital engineering design experi-
ences, they design their log files to allow easy capture/analysis
of student behaviors similar to those highlighted by the behav-
iors and metrics presented in this study.

Task Design
We note that giving students explicit freedom to individually
define what type of design they think is optimal is an impor-

tant feature of our units; however, diagnosing student facility
with the practice of optimization is significantly complicated
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by the ambiguity about what a student defines as their optimal
design. Therefore, having more explicit and timely informa-
tion about what type of design students are aiming towards
would be valuable for quantifying student success in the prac-
tices of engineering design and optimization. This kind of
information could be gathered through an in-app priority set-
ting exercise, done periodically throughout the design exper-
imentation phase, in which students rate or prioritize the de-
sign criteria as they submit their designs. Another potential
source of this student-specific goal information (for research
purposes, as opposed to teacher formative assessment) could
come from student think-aloud interviews as they work within
the design tools.

The development of these metrics and the underlying ac-
cess to digital clickstream data has given us significant insight
into student engagement with the engineering design practice
of optimization. There might be differences in the behaviors
incentivized in different types of engineering experiences. For
instance, one could imagine that in design spaces where the
number of input variables is small and those variables only
have a few options each, then the best way to explore the
options is simply to test all of the possible permutations.
Conversely, in design spaces where complete exploration is
obviously impossible, students will need to limit the amount
of exploration they pursue. These two modes of exploration
might benefit from very different types of systematic behavior.
In this vein, future work could focus on the features of the VEI
experiences (such as volume of the design space) that affect
student engagement with optimization behaviors.

Validation

Additional validation work on these metrics and behaviors is
needed to further clarify the relationships between them and to
identify and explore any additional factors not explored here.
For instance, initial discussions with our panel of engineering
education experts led us to investigate an additional contrib-
uting behavior beyond exploration and systematicity: student
responsiveness to feedback. Future work will explore this and
other potential additional contributing behaviors of
optimization.

We are in the process of obtaining a set of expert practi-
tioner ratings of optimization for sets of student behavior, so
that we can determine the level of correlation with the metrics
and behavior scores that we have discussed above. This will
help us build a stronger validity argument for the metrics that
correlate most strongly. Of equal importance, this process of
obtaining expert ratings, and discussing the reasons for those
ratings, will allow us to surface important implicit justifica-
tions that experts are applying, and lead us to a stronger set of
operationalized metrics.

Beyond the metrics presented and explored here, there is
important work that needs to be done to explore additional
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metrics’ contributions to optimization. These explorations
could proceed from a theoretical foundation as pursued in this
work, or from an empirical foundation based on discovery of
predictively powerful patterns in the data. Ideally, future work
would combine these two approaches, leveraging theoretical
foundations to construct information-dense features and then
leveraging machine learning algorithms to search for patterns
among the combination of the raw data and these information-
dense features for unintuitive but predictively powerful new
combinations of features.
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