
Low-complexity Proximal Gauss-Newton Algorithm
for Nonnegative Matrix Factorization

Kejun Huang
Department of CISE
University of Florida

kejun.huang@ufl.edu

Xiao Fu
School of EECS

Oregon State University
xiao.fu@oregonstate.edu

Abstract—In this paper we propose a quasi-Newton algorithm for
the celebrated nonnegative matrix factorization (NMF) problem. The
proposed algorithm falls into the general framework of Gauss-Newton
and Levenberg-Marquardt methods. However, these methods were not
able to handle constraints, which is present in NMF. One of the key
contributions in this paper is to apply alternating direction method of
multipliers (ADMM) to obtain the iterative update from this Gauss-
Newton-like algorithm. Furthermore, we carefully study the structure of
the Jacobian Gramian matrix given by the Gauss-Newton updates, and
designed a way of exactly inverting the matrix with complexity O(mnk),
which is a significant reduction compared to the naive implementation
of complexity O((m + n)3k3). The resulting algorithm, which we call
NLS-ADMM, enjoys fast convergence rate brought by the quasi-Newton
algorithmic framework, while maintaining low per-iteration complexity
similar to that of alternating algorithms. Numerical experiments on
synthetic data confirms the efficiency of our proposed algorithm.

Index Terms—nonnegative matrix factorization, Gauss-Newton, prox-
imal algorithm, alternating direction method of multipliers, low-
complexity

I. INTRODUCTION

Nonnegative matrix factorization, or NMF for short, is a powerful
data analysis tool for signal processing and machine learning [1].
First popularized by Lee and Seung [2] by showing its capability of
“learning the parts of objects” in computer vision, NMF has found
numerous applications by providing meaningful and interpretable
results, including blind source separation [3], [4], hyperspectral un-
mixing [5], [6], topic modeling [7], [8], [9], and community detection
[10], [11], to name just a few. In terms of model identifiability,
NMF has been shown to be essentially unique under the “sufficiently
scattered” condition [12], [13], which explained the wide applicability
of NMF.

Computationally, NMF is shown to be NP-hard [14]. Most existing
NMF algorithms start by formulating an optimization problem using
the least-squares loss between the data matrix X ∈ Rm×n and the
product of the two factor matrices W ∈ Rm×k and H ∈ Rn×k with a
target rank k as follows

minimize
W ≥0,H≥0

X −WH>
2
F . (1)

Since (1) is non-convex, there is no algorithm that guarantees to
optimally solve it in polynomial-time. The prevailing method is to
update the two factors W and H in an alternating fashion. Fixing one
of the factors, problem (1) with respect to the other factor becomes
a nonnegative least-squares problem, which is convex, but does not
admit a closed-form solution. Some well-known examples include:
• Multiplicative update (MU). Lee and Seung [15] proposed to

iteratively minimize an auxilirary function that majorizes the

X. Fu is supported in part by the National Science Foundation under Project
NSF ECCS-1608961, ECCS 1808159, III-1910118, and the Army Research
Office (ARO) under Proejct ARO W911NF-19-1-0247.

nonnegative least-squares loss, which results in a low-complexity
closed-form update;

• Hierarchical alternating least squares (HALS) updates the
factors column by column [16];

• Alternating projected gradient (APG) goes one projected
gradient step for each of the factor updates [17]; an accelerated
version was proposed by taking extrapolations [18];

• Alternating nonnegative least squares with active set method
(ANLS-AS) or block principal pivoting (ANLS-BPP). To
solve the nonnegative least-squares sub-problems exactly, clas-
sical methods like the active-set algorithm and block principal
pivoting were applied in an alternating fashion [19], [20];

• Alternating optimization with alternating direction method
of multipliers (AO-ADMM). It turns out that nonnegative least-
squares can be solved with essentially the same computational
complexity as its unconstrained version using ADMM, even
though it does not admit a closed-form solution; the resulting
AO-ADMM algorithm is not only efficient but also flexible in in-
corporating other kinds of constraints/regularizations seamlessly
[21].

For the plain NMF problem of minimizing (1), the literature shows
that ANLS-BPP [20], APG with extrapolation [18], and AO-ADMM
[21] give the best emprical performance.

A few attempts have been made on designing “all-at-once” algo-
rithms to update the two factors simultaneously. The simplest one
is perhaps the projected gradient algorithm for the entire problem,
which was investigated in the original APG paper [17] and reported
to work inferior than the alternating version. ADMM was also applied
to the entire problem rather than the convex sub-problems [22], [23];
however, ADMM for non-convex problems is not even guaranteed
to monotonically decrease the loss, and in practice do perform less
stably than alternating updates.

In this paper, we propose to explore a Gauss-Newton-like algorithm
for NMF, which also falls into the “all-at-once” update-rule category.
To the best of our knowledge, this classical quasi-Newton algorithm
has not been applied to NMF due to two reasons: on the one
hand, there are in total (m + n)k variables, and a second-order
algorithm without exploiting problem structures would result in a per-
iteration complexity of O((m + n)3k3), which is prohibitive for most
practical problem sizes; on the other hand, the original Gauss-Newton
algorithm was designed for unconstrained nonlinear least-squares,
with the premise that unconstrained linear least-squares problems are
easy to solve, whereas in NMF there are nonnnegativity constraints.

Contributions. We propose a Gauss-Newton-like algorithm called
NLS-ADMM for NMF, which resolves the two aforementioned
challenges that hinder the use of such algorithms for NMF. We start
by writing out explicitly the highly structured Hessian-approximation

given by the Gauss-Newton method, and show that it can be inverted
with complexity O(mnk) by exploiting the structure. Notice that
the complexity is significantly lower than directly inverting with
complexity O((m+n)3k3), and is in fact in the same order as a single
factor update. There is also no additional memory overhead in storing
the Hessian-approximation, thanks again to the nice structures. The
nonnegativity constraints are handled by the use of ADMM, so that all
the problem structures exploited in solving the unconstrained problem
can be seamlessly applied here, with the flexibility of incorporating
not only nonnegativity but also a variety of constraints/regularizations
with efficient projection/proximity operators.

Related works. The closest work is the use of Gauss-Newton and
its proximal version, Levenberg-Marquardt, to the canonical polyadic
decomposition (CPD) for tensors [24], [25]. It has been shown that
the Hessian approximation exhibits similar structures to that of the
matrix case [26]. However, because of the subtle differences, people
have not been able to bring down the per-iteration complexity down
to that of a single factor update like this paper. Furthermore, their
ways of handling nonnegativity constraints are either squaring the
variables or addition log-barriers to the objective function. However,
both approaches destroy the structure of the Hessian approximation
for efficient inversion, unless an indirect method like the conjugate
gradient method is used [24]. In addition, these approaches are not
amendable for other kinds of constraints/regularizations.

II. PROPOSED ALGORITHM

A. General framework: NLS-ADMM

Before we introduce the general algorithmic framework for our
proposed algorithm, we briefly review the general idea of Gauss-
Newton and Levenberg-Marquardt algorithm. Details can be found
in many textbooks, e.g. [27].

Consider the (unconstrained) nonlinear least-squares problem

minimize
z

‖ f (z)‖2 , (2)

where f (z) is a vector of nonlinear functions with respect to the
variable z.

The Gauss-Newton algorithm is an iterative heuristic for solving
(2). At iteration t when the update is at zt , we first take a linear
approximation of f (z) at zt as

f (z) ≈ f (zt) + J f (zt)(z − zt),

where J f (zt) is the Jacobian matrix of f at zt , which we will
simplify its notation as J t in the sequel, with its (p, q)-th entry defined
as

[J t]p,q =
[
J f (zt)

]
p,q
=
∂ fp
∂zq
(zt).

The update rule of Gauss-Newton is therefore

zt+1 = arg min
z
‖ f (zt) + J t (z − zt)‖

2 . (3)

If J t has full colum-rank, then the update (3) has a closed form
xt+1 = zt − (J

>
t J t)

−1J>t f (zt). In the vicinity of the solution, Gauss-
Newton shows super-linear convergence rate.

There are some short-comings of Gauss-Newton. It is not a descent
algorithm, so if the initialization is not close to the optimal solution,
it may take some iterations to even start decreasing the loss function.
Furthermore, if J t does not have full column-rank, which indeed
often happens in practice, the update rull (3) is not even well-defined.

A remedy is to add a proximal term to (3), leading to the Levenberg-
Marquardt algorithm

zt+1 = arg min
z
‖ f (zt) + J t (z − zt)‖

2 + λt ‖ z − zt ‖
2. (4)

With the help of the proximal term, the update rule is always well
defined xt+1 = zt − (J

>
t J t + λt I)

−1J>t f (zt). Furthermore, one can
adaptively change the value of λt to guarantee monotonic decrease
of the loss function. One effective approach, which we adopt in this
paper, is as follows: if the new update does not decrease the loss, then
double λt and re-calculate the update; otherwise, accept the update
and let λt+1 = λt/2.

To incorporate constraints to the variable z, say z ∈ Z, we propose
to keep the general form of Levenberg-Marquardt update as

zt+1 = arg min
z∈Z
‖ f (zt) + J t (z − zt)‖

2 + λt ‖ z − zt ‖
2. (5)

We know that the constrained least-squares problem does not admit
a closed-form solution in general. However, it can be efficiently
calculated via the following ADMM iterates:

z̃ ← zt −
(
J>t J t + (ρ + λt)I

)−1 (
J>t f (zt) + ρ(zt − z + u)

)
z ← ProjZ (̃z + u) (6)

u ← u + z̃ − z

where z̃ is an auxiliary variable subject to the additional constraint
z̃ = z, u is the scaled version of its Lagrange multiplier, ρ is some
positive scalar, and we assume that the projection onto the set Z is
easy to evaluate. For convex problems, ADMM always converges
to a global solution, although the convergence rate may depend on
the choice of ρ. Details on ADMM can be found in [28]. Once we
find an accurate enough update of zt+1 per (5) via ADMM, all the
other steps remain the same as the classical Levenberg-Marquardt
algorithm.

B. Efficient inversion of the Jacobian Gramian

In the context of NMF, we rearrange the variables and nonlinear
functions as follows

z =

[
vec(W)
vec(H)

]
, f (z) = vec(WH>− X).

As we can see from the key computational steps in (6), the com-
putationally heaviest step is to calculate the inverse of the Jacobian
Gramian. Since z ∈ R(m+n)k , a naive implementation would require
O((m + n)3k3) flops to compute the inverse, which is prohibitive in
most practical cases.

In the supplementary material of [26], the Cramer-Rao bound
for matrix factorization was derived. It turns out that replacing the
ground-truth W and H with the current update W t and H t is exactly
the Jacobian Gramian, which is highly structured. To further simplify
notations, we drop the subscript t when deriving the inverses, and we
have [26]

J =
[
H ⊗ Im Cnm(W ⊗ In)

]
,

J>J =

[
H>H ⊗ Im (Ik ⊗W)Ckk (Ik ⊗ H)>

(Ik ⊗ H)Ckk (Ik ⊗W)> W>W ⊗ In

]
,

where ⊗ denotes the Kronecker product and Cnm is a special
permutation matrix called the commutation matrix, which has the
property that Cnm vec(S) = vec(S>) for all S ∈ Rm×n, and
Cpm(S ⊗T) = (T ⊗ S)Cqn for all T ∈ Rp×q . We will also make use
of the property of the Kronecker product that (S⊗T)−1 = S−1⊗T−1.

It was shown in [26] that J>J is rank-deficient, which necessitates
the use of Levenberg-Marquardt by adding a proximal term. Denote

γ = ρ+ λt , our task here is to efficiently invert the matrix J>J + γI .
Notice that γI = γI ⊗ I with appropriate sizes, (J>J +γI)−1 is equal
to [

(H>H + γIk) ⊗ Im (Ik ⊗W)Ckk (Ik ⊗ H)>

(Ik ⊗ H)Ckk (Ik ⊗W)> (W>W + γIk) ⊗ In

]−1
. (7)

We now invoke the block-wise inversion formula[
A1 A2
A>2 A3

]−1
= (8)[

(A1 − A2A
−1
3 A>2)

−1 −A−1
1 A2(A3 − A>2A

−1
1 A2)

−1

−A−1
3 A>2(A1 − A2A

−1
3 A>2)

−1 (A3 − A>2A
−1
1 A2)

−1

]
.

The upper-left block of (7) equals to(
(H>H + γIk) ⊗ Im−

(Ik ⊗W)
(
H>H ⊗ (W>W + γI)−1

)
(Ik ⊗W)>

)−1
.

Then we invoke the matrix inversion lemma to further simplify the
upper-left block of (7) as

(H>H + γIk)
−1 ⊗ Im +

(
(H>H + γIk)

−1 ⊗W
)
× (9a)(

(H>H)−1 ⊗ (W>W + γI) − (H>H + γI)−1 ⊗W>W
)−1

(9b)

×

(
(H>H + γIk)

−1 ⊗W
)>
. (9c)

As we can see, this matrix is highly structured with the use of
Kronecker product and a small k×k matrix inversion (H>H+γIk)−1,
except for the matrix inversion in (9b), which is a k2 × k2 matrix.

It turns out that (9b) can stil be efficiently calculated with com-
plexity O(k3) by using the eigen-decompositions of W>W and H>H .
Denote their eigen-decompositions as

W>W = QW ΛWQ>W , H>H = QHΛHQ>H, (10)

then (9b) equals to

(QH ⊗ QW)

(
Λ−1
H ⊗(ΛW+γI)−(ΛH+γI)

−1⊗ΛW

)−1
(QH ⊗ QW)

>.

The matrix inverse in the middle is a k2 × k2 diagonal matrix, so the
overall complexity is dominated by the eigen-decompostion of two
k × k matrices (10) with O(k3) flops. In fact forming these matrices
takes O(mk2) and O(nk2) flops respectively, so that the computations
of eigen-decompositions are amortized.

Due to symmetry, the lower-right block of (7) can be similarly
calculated by inter-changing W and H in (9). Finally, according
the block-wise inversion formula, the off-diagonal blocks are simply
some additional matrix multiplications, again with nice Kronecker
structures and small-sized matrix inversions (W>W + γI)−1 and
(H>H + γI)−1.

The reader may notice that we never counted the computational
complexity of calculating the Kronecker product of two matrices.
This is because the Kronecker product is never explicitly calculated
in our implementation—in the sequel we will see that by using
another useful property of the Kronecker product (B>⊗ A) vec(S) =
vec(ASB), we manage to reduce the per-iteration complexity of this
Gauss-Newton-like method down to O(mnk).

C. NLS-ADMM for NMF

Now we apply the previous result to the context of NLS-ADMM
for NMF, with key computations shown in (5). Let us first calculate
J>t f (zt), which equals to

J>t f (zt) =

[
H>t ⊗ Im

(W>t ⊗ In)Cmn

]
vec(W tH

>
t − X)

=

[
vec(W tH

>
tH t − XH t)

vec(H tW
>
tW t − X>W t)

]
.

Partition the dual variable u in (6) as [vec(UW)
> vec(UH)

>]>

with UW ∈ Rm×k and UH ∈ Rn×k . Define

Ŵ = W tH
>
tH t − XH t + ρ(W t −W + UW),

Ĥ = H tW
>
tW t − X>W t + ρ(H t − H + UH),

then

J>t f (zt) + ρ(zt − z + u) =

[
vec(Ŵ)
vec(Ĥ)

]
.

Partition (J>t J t + γI)
−1 into four blocks with appropriate sizes, then(

J>t J t + γI
)−1 (

J>t f (zt) + ρ(zt − z + u)
)
=

[
G1 G2
G>2 G3

] [
vec(Ŵ)
vec(Ĥ)

]
.

We start by calculating G1 vec(Ŵ), where G1 is equal to (9). First(
(H>tH t + γIk)

−1 ⊗ Im

)
vec(Ŵ) = vec

(
Ŵ (H>tH t + γIk)

−1
)
,(

(H>tH t + γIk)
−1 ⊗W t

)>
vec(Ŵ) = vec

(
W>tŴ (H

>
tH t + γIk)

−1
)
.

Now let KW = W>tŴ (H
>
tH t + γIk)

−1, and define a k × k matrix S
with its (i, j)-th value equal to

S(i, j) =
(
λW (i) + γ
λH (j)

−
λW (i)

λH (j) + γ

)−1
,

where λW (i) denotes the i-th eigenvalue of W>W and λH (j) denotes
the j-th eigenvalue of H>H . Then(
(H>H)−1 ⊗ (W>W + γI) − (H>H + γI)−1 ⊗W>W

)−1
vec(KW)

= vec
(
QW

(
S ∗ Q>WKWQH

)
Q>H

)
,

where ∗ denotes matrix Hadamard product, i.e., element-wise multi-
plication. This part is then multiplied by (H>H + γIk)−1 ⊗ W , and
we obtain G1 vec(Ŵ). Reverse the role of W and H , G3 vec(Ĥ) can
be similarly calculated.

Finally, let H = G3 vec(Ĥ), we have

G>2 vec(Ŵ)

= −
(
(W>W + γIk)

−1 ⊗ In

)
(Ik ⊗W)Ckk (Ik ⊗ H)>vec(H)

= − vec
(
W (H

>
H)(W>W + γIk)

−1
)
.

Similarly, one can calculate G2 vec(Ĥ) by reversing the role of W
and H , and(

J>t J t + γI
)−1

[
vec(Ŵ)
vec(Ĥ)

]
=

[
G1 vec(Ŵ) + G2 vec(Ĥ)
G3 vec(Ĥ) + G>2 vec(Ŵ)

]
.

The overall algorithm is summarized in Algorithm 1.

Algorithm 1 NLS-ADMM for NMF

1: initialize W and H
2: ρ = 1
3: repeat
4: W>W = QW ΛWQ>W
5: H>H = QHΛHQ>H B eigen-decomposition
6: FW = XH, FH = X>W
7: Z̃W = W, Z̃H = H,UW =UH =0 B initialize ADMM
8: repeat
9: Ŵ ← WH>H − FW + ρ(W − ZW + UW)

Ĥ ← HW>W − FH + ρ(H − ZH + UH)

10: KW ← W>Ŵ (H>H + γIk)
−1

KH ← H>Ĥ(W>W + γIk)
−1

11: KW ← QW

(
S ∗ Q>WKWQH

)
Q>H

KH ← QH

(
(1/S) ∗ Q>HKHQW

)
Q>W

12: W ← Ŵ (H>H + γIk)
−1 +WKW (H

>H + γIk)
−1

H ← Ĥ(W>W + γIk)
−1 + HKH (W

>W + γIk)
−1

13: Z̃W ← W −W + H(W
>
W)(H>H + γIk)

−1

Z̃H ← H − H +W (H
>
H)(W>W + γIk)

−1

14: ZW ← [Z̃W + UW]+

ZH ← [Z̃H + UH]+

15: UW ← UW + Z̃W − ZW

UH ← UH + Z̃H − ZH

16: until convergence
17: if ‖X −WH>‖2F < ‖X − ZW Z>H ‖

2
F then

18: ρ← 2ρ B re-calculate the update
19: else
20: W ← ZW

H ← ZH B accept the update
21: ρ← ρ/2
22: end if
23: until convergence

III. NUMERICAL EXPERIMENTS

We conclude the paper by conducting some experiment on syn-
thetic data to showcase the fast convergence rate of the proposed
NLS-ADMM for NMF. All experiments are conducted in MATLAB
2018b on an iMac Pro with 10 Xeon processers and 32GB memory.
We compare with two baseline algorithms, AO-ADMM [21] and APG
with extrapolation [18], both being reported to work the best in a lot
of cases.

We let m = 100, n = 150, k = 10, and randomly generate the
ground-truth factors W and H from uniform distribution between
[0, 1]. Then the data matrix X = WH> is constructed. Although there
is no noise, it is known that finding an exact factorization is relatively
hard because the factors are not identifiable (since they are all dense)
[12].

A typical convergence plot is shown in Figure 1. Indeed, even
though we have greatly reduced the per-iteration complexity of NLS-
ADMM, every iteration still takes longer time than that of AO-
ADMM and APG; but thanks to the exploitation of second-order
information in the loss function, NLS-ADMM is able to escape the
swamp effect, which often happens in alternating-type algorithms.
The result is not surprising as it resembles the cases people have
observed in CPD when alternating optimization is compared with
quasi-Newton methods—alternating least-squares (ALS) sometimes
gets stucked at a non-critical point for a very long time, whereas
Gauss-Newton or Levenberg-Marquardt is able to quickly converge

0 0.1 0.2 0.3 0.4 0.5

time/seconds

10
-10

10
-5

10
0

10
5

||
X

-W
H

||2

NLS-ADMM

AO-ADMM

APG

Fig. 1: One instance of convergence comparison on synthetic data.

TABLE I: Averaged performance of NMF algorithms

Algorithms ‖X −WH>‖2F run time iterations

NLS-ADMM 2.18 × 10−8 1.1375 23.23

AO-ADMM 0.0108 7.4724 42019

APG 0.0099 10.9181 65035

to a global minimum with super-linear convegence rate [24]. It is
interesting to see that by using ADMM to solve the constrained
nonlinear least-squares problem, such good convegence property still
exists.

The above experiment setting is randomly repeated 100 times and
the averaged performances are shown in Table I. As we can see
again, NLS-ADMM is able to obtain remarkably accurate solution
with shortest amount of run time and very small number of iterations.

IV. CONCLUSION

This paper serves as the first attempt to apply the algorithmic
framework of Gauss-Newton / Levenberg-Marquardt for the widely
used nonnegative matrix factorization (NMF) problem. There are
two notable contributions when applying this seemingly simple idea.
The first resolves the challenge of how to properly handle the
nonnegativity constraints on the latent factors, which is an important
feature of NMF, but cannot be handled by the original Gauss-
Newton framework. Our solution is to solve a constrained least-
squares instead in each iteration, using alternating direction method
of multipliers (ADMM). Another challenge is the high per-iteration
complexity to naively solve a (constrained) least-squares problem due
to the “all-at-once” update nature of Gauss-Newton. By carefully
exploiting the structure of the Jacobian Grammian, we managed to
bring down the per-iteration complexity to the same order of that
of an alternating optimization algorithm such as AO-ADMM and
APG. Numerical experiments on synthetic data shows the superior
convergence rate compared to the state-of-the-arts.

For future work, we notice that it is still taking many ADMM
iterations for each GN updates, especially at the beginning stage.
An even faster algorithm to solve the constrained least-squares sub-
problem would greatly accelerate the proposed proximal Gauss-
Newton algorithmic framework. It is also possible to extend the
framework for constrained tensor factorization. However, to the best
of our knowledge, there has not been a direct method of inverting
the Jacobian Grammian matrix with complexity similar to an ALS
step. A more in-depth study is required to make it work for tensors.

REFERENCES

[1] X. Fu, K. Huang, N. D. Sidiropoulos, and W.-K. Ma, “Nonnegative ma-
trix factorization for signal and data analytics: Identifiability, algorithms,
and applications,” IEEE Signal Processing Magazine, vol. 36, pp. 59–80,
2019.

[2] D. D. Lee and H. S. Seung, “Learning the parts of objects by non-
negative matrix factorization,” Nature, vol. 401, no. 6755, p. 788, 1999.

[3] P. Smaragdis, C. Fevotte, G. J. Mysore, N. Mohammadiha, and M. Hoff-
man, “Static and dynamic source separation using nonnegative factor-
izations: A unified view,” IEEE Signal Processing Magazine, vol. 31,
no. 3, pp. 66–75, 2014.

[4] X. Fu, W.-K. Ma, K. Huang, and N. D. Sidiropoulos, “Blind separation
of quasi-stationary sources: Exploiting convex geometry in covariance
domain,” IEEE Transactions on Signal Processing, vol. 63, no. 9, pp.
2306–2320, 2015.

[5] W.-K. Ma, J. M. Bioucas-Dias, T.-H. Chan, N. Gillis, P. Gader, A. J.
Plaza, A. Ambikapathi, and C.-Y. Chi, “A signal processing perspective
on hyperspectral unmixing: Insights from remote sensing,” IEEE Signal
Processing Magazine, vol. 31, no. 1, pp. 67–81, 2014.

[6] X. Fu, K. Huang, B. Yang, W.-K. Ma, and N. D. Sidiropoulos, “Robust
volume minimization-based matrix factorization for remote sensing and
document clustering,” IEEE Transactions on Signal Processing, vol. 64,
no. 23, pp. 6254–6268, 2016.

[7] S. Arora, R. Ge, Y. Halpern, D. Mimno, A. Moitra, D. Sontag, Y. Wu,
and M. Zhu, “A practical algorithm for topic modeling with provable
guarantees,” in International Conference on Machine Learning, 2013,
pp. 280–288.

[8] K. Huang, X. Fu, and N. D. Sidiropoulos, “Anchor-free correlated
topic modeling: Identifiability and algorithm,” in Advances in Neural
Information Processing Systems, 2016, pp. 1786–1794.

[9] K. Huang, X. Fu, and N. Sidiropoulos, “Learning hidden Markov models
from pairwise co-occurrences with application to topic modeling,” in
International Conference on Machine Learning, 2018, pp. 2073–2082.

[10] J. Yang and J. Leskovec, “Overlapping community detection at scale:
A nonnegative matrix factorization approach,” in ACM International
Conference on Web Search and Data Mining. ACM, 2013, pp. 587–596.

[11] K. Huang and X. Fu, “Detecting overlapping and correlated communities
without pure nodes: Identifiability and algorithm,” in International
Conference on Machine Learning, 2019, pp. 2859–2868.

[12] K. Huang, N. D. Sidiropoulos, and A. Swami, “Non-negative matrix
factorization revisited: Uniqueness and algorithm for symmetric decom-
position,” IEEE Transactions on Signal Processing, vol. 62, no. 1, pp.
211–224, 2013.

[13] X. Fu, K. Huang, and N. D. Sidiropoulos, “On identifiability of non-
negative matrix factorization,” IEEE Signal Processing Letters, vol. 25,
no. 3, pp. 328–332, 2018.

[14] S. A. Vavasis, “On the complexity of nonnegative matrix factorization,”
SIAM Journal on Optimization, vol. 20, no. 3, pp. 1364–1377, 2009.

[15] D. D. Lee and H. S. Seung, “Algorithms for non-negative matrix
factorization,” in Advances in Neural Information Processing Systems,
2001, pp. 556–562.

[16] A. Cichocki and A.-H. Phan, “Fast local algorithms for large scale
nonnegative matrix and tensor factorizations,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences,
vol. 92, no. 3, pp. 708–721, 2009.

[17] C.-J. Lin, “Projected gradient methods for nonnegative matrix factoriza-
tion,” Neural Computation, vol. 19, no. 10, pp. 2756–2779, 2007.

[18] Y. Xu and W. Yin, “A block coordinate descent method for regularized
multiconvex optimization with applications to nonnegative tensor fac-
torization and completion,” SIAM Journal on Imaging Sciences, vol. 6,
no. 3, pp. 1758–1789, 2013.

[19] H. Kim and H. Park, “Nonnegative matrix factorization based on alter-
nating nonnegativity constrained least squares and active set method,”
SIAM Journal on Matrix Analysis and Applications, vol. 30, no. 2, pp.
713–730, 2008.

[20] J. Kim and H. Park, “Fast nonnegative matrix factorization: An active-
set-like method and comparisons,” SIAM Journal on Scientific Comput-
ing, vol. 33, no. 6, pp. 3261–3281, 2011.

[21] K. Huang, N. Sidiropoulos, and A. P. Liavas, “A flexible and efficient
algorithmic framework for constrained matrix and tensor factorization,”
IEEE Transactions on Signal Processing, vol. 64, no. 19, pp. 5052–5065,
2016.

[22] Y. Xu, W. Yin, Z. Wen, and Y. Zhang, “An alternating direction
algorithm for matrix completion with nonnegative factors,” Frontiers of
Mathematics in China, vol. 7, no. 2, pp. 365–384, 2012.

[23] D. Hajinezhad, T.-H. Chang, X. Wang, Q. Shi, and M. Hong, “Non-
negative matrix factorization using ADMM: Algorithm and convergence
analysis,” in IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2016, pp. 4742–4746.

[24] L. Sorber, M. Van Barel, and L. De Lathauwer, “Optimization-based
algorithms for tensor decompositions: Canonical polyadic decomposi-
tion, decomposition in rank-(Lr , Lr , 1) terms, and a new generalization,”
SIAM Journal on Optimization, vol. 23, no. 2, pp. 695–720, 2013.

[25] A.-H. Phan, P. Tichavsky, and A. Cichocki, “Low complexity damped
Gauss-Newton algorithms for CANDECOMP/PARAFAC,” SIAM Jour-
nal on Matrix Analysis and Applications, vol. 34, no. 1, pp. 126–147,
2013.

[26] N. D. Sidiropoulos, L. De Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Transactions on Signal Processing, vol. 65,
no. 13, pp. 3551–3582.

[27] S. Boyd and L. Vandenberghe, Introduction to Applied Linear Algebra:
Vectors, Matrices, and Least Squares. Cambridge University Press,
2018.

[28] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends® in Machine learning, vol. 3,
no. 1, pp. 1–122, 2011.

