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Machine-Learned Computational Models Can Enhance the Study
of Text and Discourse: A Case Study Using Eye Tracking to Model
Reading Comprehension
Sidney K. D’Mello, Rosy Southwell, and Julie Gregg

Institute of Cognitive Science, University of Colorado Boulder

ABSTRACT
We propose that machine-learned computational models (MLCMs), in which
the model parameters and perhaps even structure are learned from data,
can complement extant approaches to the study of text and discourse.
Such models are particularly useful when theoretical understanding is
insufficient, when the data are rife with nonlinearities and interactivity,
and when researchers aspire to take advantage of “big data.” Being fully
instantiated computer programs, MLCMs can also be used for autonomous
assessment and real-time intervention. We illustrate these ideas in the
context of an eye movement–based MLCM of textbase comprehension
during reading along connected text. Using a dataset where 104 partici-
pants read a 6,500-word text, we trained Random Forests models to predict
comprehension scores from six eye movement features. The models were
highly accurate (area under the receiver operating characteristic curve =
.902; r = .661), robust, and generalized across participants, suggesting
possible use in future studies. We conclude by arguing for an increased
role of MLCMs in the future of discourse research.

Introduction

Camilla: “You, sir, should unmask.”
Stranger: “Indeed?”
Cassilda: “Indeed it’s time. We have all laid aside disguise but you.”
Stranger: “I wear no mask.”
Camilla: (Terrified, aside to Cassilda.) “No mask? NO MASK! [emphasis added]
(Chambers, 1985)

This short dialog from “The King in Yellow and Other Horror Stories” by Robert W. Chambers
illustrates the power of discourse in the hands of a gifted writer. In just 33 words Chambers presents
a complex narrative involving three characters embedded in a rather macabre interaction with
surprise and impending terror. His brevity teases our fascination, temping us to imagine what
came before this strange meeting and what horror might occur next. Indeed, the power of discourse
is not in the words themselves but in what lies beneath.

Given the complexity of discourse, which increases by orders of magnitude when moving from
written prose to spoken dialogs and even further for multiparty conversations, it might seem foolish
to suggest that computational methods can contribute anything of value beyond crunching data. But
this is exactly what we are suggesting. More so, it is precisely in contexts of immense complexity
where their merits truly lie—in a computer’s ability to efficiently sift through and identify non-
obvious patterns in vast quantities of data. We argue that computational methods are
a complementary and, in some cases, essential companion to existing approaches to studying

CONTACT Sidney K. D’Mello sidney.dmello@colorado.edu 594 UCB, Boulder, CO 80309, USA.
© 2020 Taylor & Francis Group, LLC

DISCOURSE PROCESSES
2020, VOL. 57, NOS. 5–6, 420–440
https://doi.org/10.1080/0163853X.2020.1739600

https://crossmark.crossref.org/dialog/?doi=10.1080/0163853X.2020.1739600&domain=pdf&date_stamp=2020-05-21


discourse, including qualitative analyses, code-and-count methods, reaction time studies, eye track-
ing, brain imaging, experimental methods, and so on. The secret is in the type of computational
method advocated: machine-learned computational models (MLCMs). We illustrate these points in
the context of a case study involving the use of an eye-gaze–based MLCM of text comprehension
during reading.

What Is an MLCM?

A model is a representation of a thing (Frigg & Hartmann, 2018), be it a phenomenon (e.g., reading
comprehension; McNamara & Magliano, 2009), data (e.g., reading times; A. C. Graesser et al., 1980),
or a theory (e.g., landscape model of reading; Van den Broek et al., 1999). Models can be physical
(e.g., robotic model of eye movements; Villgrattner & Ulbrich, 2010), symbolic (e.g., equations
governing saccadic control; Tatler et al., 2017), or a fictional entity like the phonological loop in
Baddeley’s working memory model (Baddeley, 1992). A computational model is a specific type of
model whose representations are in silico, that is, performed on a computer or simulated by
a computational device. An MLCM is a computer model learned from data or experience. Simply
put, it is a program learned from data (Domingos, 2012). As we elaborate below, the degree and type
of learning involved distinguishes MLCMs from “traditional” models and computer programs.

An MLCM has three main components: (1) a structure, such as an equation, a decision tree, an
artificial neural network, or a graph; (2) feature representations, which pertain to higher order
abstractions of data (e.g., fixation durations extracted from raw gaze points in eye tracking); and (3)
parameters (or coefficients or weights) and (optionally) hyperparameters, which control the learning
process itself. For example, in the following linear regression model, comprehension = 5 × total
reading time + 2, the equation is the model, comprehension is the outcome (predicted variable), total
reading time is the feature, 5 and 2 are the parameters, and there are no hyperparameters. Generally,
learning an MLCM from a dataset consists of adjusting the model parameters until the discrepancy
between predicted and target values is minimized.

Table 1 provides a coarse-grained comparison of different computational models along a number
of dimensions. The key distinguishing feature between the MLCMs (last three rows) versus tradi-
tional computational models (first row) is that the latter are more or less mathematical realization of
a theory. They have a fixed structure, fixed feature representations, set parameters, and no learning.
The parameters might, and probably should, be obtained from prior data, but they seldom change.
Models of eye movements during reading, such as E-Z Reader (Reichle et al., 2003) and SWIFT
(Engbert et al., 2005), are pertinent examples of such models. Traditional computational models are
theory-heavy and data-light, whereas MLCMs are data-heavy and their theoretical commitments
vary but are not as extensive as traditional models.

Table 1. Comparison of different types of computational models.

Structure
Feature

Representations
Parameters/
Coefficients

Functions
Learned

Theoretical
Commitments

Data
Required Model Type Examples

Fixed Fixed Fixed None Most Fewest Mathematical
models

EZ Reader; SWIFT

Fixed Fixed Learned Linear
classifiers

More Fewer Standard
regression
modeling

Generalized linear models
(e.g., linear and logistic
regression)

Fixed Fixed Learned Linear and
nonlinear

Fewer More Standard
machine
learning

Random forest; support
vector machines; shallow
neural networks

Fixed Fixed/learned Learned Very
complex
nonlinear
functions

Fewest Most Deep neural
learning

Convolutional neural
networks; long short-term
memory neural networksa

aAlthough subsumed under deep learning methods, these models can be considered shallow if only a single hidden layer is used.
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The simplest MLCMs are standard regression models, such as linear and logistic regressions, and
their variants (e.g., ridge regression). Multicollinearity and model fitting concerns with these models
often preclude the use of too many features for a given size of training dataset; they typically have
a handful (usually under 10) of prespecified features whose coefficients are learned from data. Given
the small number of parameters to be learned, this approach requires some but not a substantial
amount of data (a few hundred cases). The advantage of regression models lies in their simplicity
and interpretability, but they are limited in their ability to model more complex data (such as
nonlinear interactions among features). In contrast, standard machine learning methods, such as
neural networks, support vector machines (Cortes & Vapnik, 1995), and Random Forest (Breiman,
2001) can model nonlinearities and interactions in the data. Describing each of these types of model
in detail is beyond the scope of the present article, but see Mitchell (1997) and Witten and Frank
(2005) for a primer on machine learning. These models typically have tens to a few hundred features,
so they require more data (several hundred to a few thousand cases) to reliably estimate the
parameters. Standard machine learning models can be judiciously constructed to be consistent
with theory but to a lesser extent than standard regression models. This is because there are many
more free parameters to fit, and these parameters themselves determine the nature of the interaction
between features and/or the nature of the function mapping features to outcomes.

Deep neural learning or deep learning (Goodfellow et al., 2016; Le Cun et al., 2015) is a different
class of models that have gained prominence over the past decade. These models are constructed by
combining multiple “layers” of artificial neural networks, consisting of an input layer, one or more
“hidden” (intermediate) layers, and an output layer, where hidden layers learn useful intermediate
representations of the data by combining input features. These deep neural networks can model
extremely complex phenomena. They are also capable of representation learning in that they can
learn features themselves by extracting patterns from raw data instead of requiring prespecification
of features like in the other modeling approaches. Deep learning models are extremely complex with
the number of free parameters in the tens to hundreds of thousands, so they require copious
amounts of training data and their interpretability is low. They also have very few theoretical
commitments and are basically very powerful prediction machines. As Table 1 illustrates, there is
a tradeoff between theoretical commitments, explanation versus prediction, and the amount of data
needed to train viable models. In most cases we recommend experimenting with standard regression
modeling and standard machine learning as these two approaches appropriately balance these
tradeoffs.

A curious reader might ask what distinguishes standard regression models, which are extensively
used in virtually all areas of science, from an MLCM regression model. The traditional case focuses
on the significance of the model coefficients, whereas the MLCM approach focuses on the accuracy
of the model predictions to “new” data. Thus, the former approach favors explanation and descrip-
tion of the entire dataset, whereas the latter favors prediction; see Yarkoni and Westfall (2017) for
a detailed discussion on this issue and an enthusiastic call for psychology to engage in more
predictive modeling. From a methodological standpoint, instead of building a model on the entire
data set and examining p values of the coefficients and perhaps the goodness of fit, the MLCM
approach constructs the model from a subset of the data and then computes fit statistics on the held-
out data, a process called cross-validation. This process lessens the extent to which the model is
influenced by the idiosyncrasies of individual data points (i.e., overfitting), ensuring the model is
capturing general patterns across observations (where “observations” in the context of a discourse
MLCM might be readers, texts, or utterances).

How MLCMs can enhance the study of discourse

Before delving into the potential benefits of MLCMs, let us address a common criticism that
machine learning is an atheoretical fishing expedition that produces spurious results. Although it
is easy to find examples where this criticism applies, rejecting the entire field on these grounds is no
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different from rejecting all experimental approaches to the study of discourse based on the existence
of confounded experiments (which are abundant) and careless (or unethical) data analysis methods
(e.g., p-hacking; Head et al., 2015). It is similar to rejecting qualitative approaches as being
insufficiently rigorous or thought experiments as they are not scientific.

We believe it is more productive to develop well-designed MLCMs that are scientifically rigorous
and useful computational tools. In our view well-designed MLCMs of discourse should be adequately
grounded in theory but should not be overly constrained by theory. This is because discourse is
complex: Although our understanding of it is growing, it is still limited. Many of our theories apply
only to particular contexts, and computational instantiations of theory are likely to fail when taken out
of controlled experimental paradigms into the messiness of the real world. An MLCM is probably not
needed if a phenomenon is sufficiently understood that it can be computationally instantiated with high
fidelity under realistic conditions. Instead, an MLCM is most beneficial when there is some theoretical
understanding but not enough to instantiate a mechanistic model of the theory.

What can an MLCM do? It can guide theory by determining whether the right ingredients are in
place or if something fundamental is missing. All things considered, a model that fails to generalize
or generate accurate predictions might suggest some missing components. For example, Bartlett
et al. (2014) aimed to model expressions of pain from facial movements automatically extracted from
video. They found that the temporal dynamics of the facial expressions were critical in discriminat-
ing real from posed expressions of pain. Similarly, an MLCM can ascertain which features are more
important than others and what minimalistic feature set is sufficient to model the phenomenon of
interest. Using the same example, a single facial movement, mouth opening, provided the most
information in that the duration and variance of mouth openings and the interval between
consecutive mouth openings was lower for faked versus genuine pain expressions. The structure
of the model itself can provide insights into how the various components interact, for example, when
one component moderates, often nonlinearly, the influence of another on the outcome prediction.

Finally, an MLCM is a computational tool that can be used for measurement, to provide feedback,
to drive reflection, and for intervention. For example, Jensen et al. (2020) developed an MLCM that
automatically assessed the quality of teacher discourse in real-world classrooms. They used the
model to provide feedback to teachers to help them improve their discourse. D’Mello, Mills et al.
(2017) and Mills et al. (in press) used a previously developed eye-gaze–based MLCM of mind
wandering during reading (Faber et al., 2018) to deliver real-time interventions consisting of
comprehension questions and self-explanations aimed at re-engaging attention and correcting any
comprehension deficits associated with mind wandering.

We have developed multiple MLCMs that use linguistic, paralinguistic, behavioral, and physio-
logical signals with the goal of understanding and/or facilitating cognitive, noncognitive, socio-
affective-cognitive, and life outcomes. Such work includes a range of discourse scenarios: rhetorical,
expository, pedagogical, dialogic, and collaborative discourse collected in individual, small group,
multiparty, and human–computer interactions in the lab and in the wild (e.g., Bosch & D’Mello, in
press; Bosch et al., 2016; D’Mello & Graesser, 2010; Faber et al., 2018; Grafsgaard et al., 2018; Hutt
et al., 2019; Kelly et al., 2018; Stewart et al., 2019; Stone et al., 2019). We have also used these models
for assessment (Faber et al., 2018; Jensen et al., 2020) and real-time intervention (Aslan et al., 2019;
D’Mello, Mills et al., 2017; Mills et al., in press). We have provided descriptions and tutorials of the
MLCM approach along with examples in different research areas, specifically measurements of
emotion (D’Mello et al., 2018) and engagement (D’Mello, Dieterle et al., 2017). In the remainder
of this article we illustrate the use of MCLMs to the study of discourse by presenting an unpublished
study where we developed an MLCM of reading comprehension from eye movements.

Illustrative example: modeling reading comprehension from eye movements

Reading for understanding is a complex process that requires low-level text processing; active
construction and maintenance of representations, retrieval, and integration of information from
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long-term memories; and generation of predictions and inferences (A. Graesser et al., 1994; Kintsch,
1988; Lesgold & Perfetti, 1978; Rayner et al., 2012). With this in mind, accurately measuring reading
comprehension is critical to understanding the real-time dynamics of text processing, such as
whether and when readers generate elaborative inferences about the text (e.g., A. Graesser et al.,
1994; McKoon & Ratcliff, 1992) or whether readers are attending to text at all (e.g., Feng et al., 2013).

Reading comprehension is typically assessed using comprehension questions presented alongside
or after the text. These questions can take various forms (multiple choice, short response, self-
explanation) and can assess comprehension at different levels, for example, probing factual content
from the reading (textbase-level) or deeper, inference-level understanding of the text (McNamara &
Magliano, 2009). Here, we examine the question of whether an MLCM of eye movements can
generate accurate, real-time, and generalizable predictions of comprehension during reading. This
knowledge, in turn, would contribute to theories of eye movements during reading, and the model
itself can be used to assess reading comprehension as it unfolds or to trigger interventions when
signs of comprehension difficulty emerge.

Background and research linking eye movements and reading comprehension

Given that reading requires processing of fine-grained visual stimuli (i.e., letters and words), eye
movements are fundamentally linked to the cognitive processes underlying reading. Decades of
research has capitalized on this insight, termed the eye–mind link (Just & Carpenter, 1976), by using
eye tracking to investigate how readers extract coherent and even rich representations of meaning
from these abstract visual stimuli. This research has demonstrated that eye movements are sensitive
to text properties from the word to text levels, including word frequency (Inhoff & Rayner, 1986),
lexical and syntactic ambiguity (Duffy et al., 1988; Frazier & Rayner, 1987), and text difficulty
(Rayner et al., 2006), and has made great strides toward characterizing how eyes move during
reading generally (see Rayner, 2009; Rayner & Reichle, 2010 for reviews). However, in spite of
decades of progress in understanding how the eyes move during reading, limited research has
leveraged these insights to measure comprehension in real time.

Why might this be the case? One reason is that existing work has struggled to establish consistent
links between comprehension and eye movement features. For instance, 10% to 25% of eye move-
ments are regressive to an earlier part of the text (Rayner et al., 2012). These regressions have long
been interpreted as a corrective response when the reader has difficulty integrating the current word
with prior context (Frazier & Rayner, 1987; Meseguer et al., 2002). However, some studies positively
link regressions with accurate comprehension (Inhoff et al., 2018; Metzner et al., 2016; Schotter et al.,
2014), whereas others show null (Christianson et al., 2016; Wallot et al., 2015) or even negative
(Kemper et al., 2004) associations. Relatedly, longer fixation durations have been linked to both
effortful reading (Rayner et al., 2006) and its opposite, mind wandering (Faber et al., 2018). On this
point, research also suggests that people self-report rereading the previous one or two lines of text
after a mind-wandering episode (Varao-Sousa et al., 2017), likely reflecting re-engagement with the
text in an attempt to repair comprehension. Thus, although both re-engagement and mental-model
repair may involve regressing to earlier parts of the text, repair might also occur covertly (i.e.,
resolved in working memory), typically resulting in longer fixation durations but not necessarily
a regression (Meseguer et al., 2002).

Why is establishing consistent links between eye movements and comprehension so challenging?
One possibility is that eye movements primarily reflect local text processing (e.g., word identifica-
tion, syntactic parsing), which is almost always successful in skilled readers, and thus does not
predict later comprehension. Another possibility, however, is that mappings between eye movements
and comprehension may not be consistent because they are influenced by reader- and text-specific
factors. Thus, the same eye movement features may reflect different cognitive processes in different
contexts. For instance, longer fixations may reflect mind-wandering (Faber et al., 2018; Foulsham
et al., 2013), which is a negative predictor of comprehension (D’Mello, 2019; Randall et al., 2014),

424 D’MELLO ET AL.



but may alternatively signal efforts to repair inaccurate or poor-quality text representations, pre-
sumably leading to better comprehension outcomes (Frazier & Rayner, 1982). There are also
inconsistencies in the literature. For example, some studies found fewer fixations associated with
mind-wandering (Bixler & D’Mello, 2016; Faber et al., 2018, in press; Smilek et al., 2010), whereas
others found the opposite, which might be attributable to methodological differences (Faber et al., in
press).

Can an MLCM help resolve the lack of consistency between eye movements and comprehension
outcomes? The answer relies on the observation that unique eye movement signatures may emerge
when multiple features are considered in conjunction, whereas consistent mappings might not be
evident when eye movement features are considered individually, as in most studies. For instance,
although longer fixations may indicate either mental model repair or mind-wandering, the two could
be differentiated using other features (e.g., number of fixations and regressions). Further, processes
underlying successful comprehension (e.g., motivation, attention) fluctuate over time and may alter
corresponding eye movements. When skimming or mind-wandering, for instance, eye movements
exhibit less systematic correspondence with the underlying text compared with focused reading
(Foulsham et al., 2013; Reichle et al., 2010). Thus, examining multiple features in context of one
another, in particular those that capture alignment between eye movements and the text, could
illuminate systematic relationships between eye movements and comprehension. Here, we test
whether an MLCM can capture these complex relationships.

Previous work on MLCMs of comprehension during reading

Research in the human–computer interaction domain has developed MLCMs of reading compre-
hension, assessed alongside or immediately after reading short passages, from eye-movement
features. For example, Copeland et al. (2014) (also see Copeland & Gedeon, 2013) recorded
participants’ eye movements while they read a nine-slide (~400 words per slide) tutorial on
conducting a web search. They trained artificial neural networks to predict performance on quiz
(comprehension) questions presented alongside or immediately after each slide from slide-level eye
movement features (number of fixations, mean fixation duration, total text fixation duration,
number of regressions, regression fixation proportion, mean forward saccade length) and eye
movement–derived features (these included the ratios of number/duration of fixations to words
and answer-seeking behavior, which was defined by saccades between the texts and the questions
when the two were side by side). This approach yielded accurate predictions of performance on quiz
questions, although comparisons with chance were not reported. See Copeland et al. (2015, 2016) for
additional studies that further investigate factors that influence prediction accuracy (e.g., text
difficulty and whether or not the text was in the reader’s first language).

Other studies have examined whether MLCMs of eye movements can be used to predict general
language skill. For example, Martinez-Gomez and Aizawa (2014) examined whether participants’
level of understanding, as well as English language skill, could be predicted based on their eye
movements during reading. Participants read two short (~450 word) educational texts while their eye
movements were recorded. They answered eight questions to assess their understanding after each
text. Random forest models with leave-one-participant-out cross-validation (see below) yielded
significantly above-baseline (p < .001; ~50% error reduction) predictions of binarized (high vs.
low) text understanding, where the baseline consisted of simply always predicting the majority class.
Notably, eye movement features were more discriminative than linguistic features in these models.
However, models predicting continuous comprehension scores performed at chance levels. The
researchers also obtained above-baseline (p = .015) performance when training an MLCM to predict
participants’ English skill as measured by their scores on standardized English tests (Test of English
for International Communication or Test of English as a Foreign Language). Similarly, using support
vector machines, Lou et al. (2017) could discriminate high versus low literacy participants with
80.3% accuracy (as assessed by a Chinese standardized test similar to the Scholastic Aptitude Test;
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baseline accuracy was not reported for comparison) using text-mapped eye-movement features (e.g.,
fixation times on section headers).

Although these studies provide encouraging evidence that MLCMs of eye movements could be
plausibly used for diagnosis and intervention in the face of reading difficulties, there are some important
limitations to consider. If eye movement–based models are to serve as a viable mechanism for
monitoring comprehension, they must be able to generate accurate predictions for previously unseen
individuals. However, only a few studies have examined generalizability of models to new readers by
using person-independent cross-validation, which entails testing models on data from participants not
used for model training. Specifically, the model reported in Copeland and Gedeon (2013) showed poor
performance on held-out participants. Remaining work used data-point-level cross-validation
(Copeland et al., 2014, 2015), as opposed to participant-level cross-validation, which has been acknowl-
edged as a limitation (Copeland, 2016). Data-point-level cross-validation means that features at the level
of individual observations (e.g., single pages) are randomly held out of the training data, but as a result
the same participant’s data, albeit from different pages, will recur in the training and test partitions,
potentially jeopardizing the generalizability of the resulting model. Participant-level cross-validation,
where model performance is assessed using data from participants who did not appear in the training
data, is required to demonstrate that the model generalizes to unseen participants.

Further, while the model in Martinez-Gomez and Aizawa (2014) successfully predicted the
comprehension levels for the best and worst performers, they excluded data from participants
with intermediate comprehension levels, which are possibly the more difficult cases. Their validation
method also did not ensure generalizability to new participants. Whereas Lou et al. (2017) did use
appropriate participant-level cross-validation, they focused on predicting binarized (high vs. low)
literacy skills not comprehension outcomes. Thus, existing models have only been able to make very
coarse-grain predictions about new participants using eye movements. This could be useful for
diagnostic purposes but may not provide sufficient granularity to inform theory or to deploy real-
time interventions during reading.

Design considerations for a gaze-based MLCMs of reading comprehension

Our aim was to examine whether eye movements can be used to train an MLCM of reading
comprehension in a way that is generalizable across readers. The choice of our modeling approach
was guided by theory and empirical research on eye movements during reading (cited above) and
was based on a number of design considerations. First, we know that relationships between eye
movement features and comprehension can be interactive, that is, features may have different
relationships with comprehension depending on reader- and text-specific factors. There is also the
conflicting goal of balancing prediction accuracy with model explainability (Molnar, 2019) and
generalizability. With these considerations in mind, we selected Random Forest (Breiman, 2001)
for our classifier. This is a classifier architecture based on decision trees. A decision tree can be
thought of as a flowchart describing possible paths to a decision based on binary decisions
determined by the values of particular features, where the outcome of each decision defines which
“branch” to progress to next (e.g., if number of fixations < 5, then look at number of regressions).
Decision trees capture nonlinearity and interactivity between features in an interpretable fashion. For
instance, a decision tree could “branch” based on number of regressions being greater or lesser than
some threshold amount and make different predictions about comprehension accuracy based on
other features within each branch (e.g., few regressions could predict accurate comprehension with
short vs. long reading times, i.e., the branching factor). Decision trees are relatively interpretable
because their structure consists of a sequence of readable “if, then” rules. A random forest consists of
an ensemble of different decision trees, each using random subsets of training examples selected with
replacement for each tree (called bagging), and within each tree random subsets of features at each
branch point. Due to these properties, random forests are more likely to generalize: by randomly
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leaving out fractions of the full dataset, both in terms of features and training examples, the final
model comprising the full “forest” is less prone to overfit to the data.

Second, to ensure that the learned relationships generalize to “new” readers, we applied a person-
independent cross-validation technique by testing the model using data from held-out participants
who were not used in model training. If the learned relationships are too specific to the training
participants (i.e., the model is overfit), then the model will perform poorly when generating
predictions for previously unseen readers. However, if performance on the held-out participants
is high, this would indicate generalization to new readers, albeit with data collected in similar
contexts.

Third, we restricted our choice of eye gaze features to six that we largely based on prior literature.
This was an important design consideration to balance the tradeoff between alignment with theory and
allowing room for new discovery. We intentionally selected a smaller feature set so that the resultant
models could be interpreted and to avoid the criticism of engaging in unbridled exploration. Further,
for this approach to be applicable to real-world applications (i.e., eye movement–based interventions), it
would need to be easily applied to new texts and robust to routine eye-tracking errors. To this end we
focused on global eye movement features (e.g., number of fixations and mean fixation duration on
a page) that are less affected by calibration errors, less reliant on positional information (e.g., which
word is fixated), and do not need to be mapped to local text properties (e.g., the frequency of a fixated
word). Our final set of features included the number of fixations, mean fixation duration, regression
fixation proportion, mean saccade length, horizontal saccade proportion, and fixation dispersion.

Fourth, we aimed for the model to be fine-grained in that it can predict comprehension on
individual items. Thus, rather than predicting passage- or person-level differences in comprehension
(e.g., Copeland & Gedeon, 2013; Lou et al., 2017; Martinez-Gomez & Aizawa, 2014), we predicted
comprehension at the page level (where a page refers to the text presented on a computer screen).
Generating page-level predictions would allow for real-time automated assessment of comprehen-
sion, which could be used to deploy interventions and to study comprehension processes on-line.

In what follows we discuss the steps toward building the aforementioned MLCM, beginning with
collection of training data for machine learning. This entailed interrupting the reader with online
comprehension assessments, a required step to collect training data to build the model. If successful,
the model can then be used to generate the assessments for new readers without interruptions,
summarized as follows:

Training (eye gaze features + comprehension scores) → computational model
Deployment (eye gaze features + computational model) → comprehension scores

Introduction

Data

We leveraged data from a previous eye-tracking study that collected assessments of reading com-
prehension during a computerized reading task (D’Mello, Mills et al., 2017). At the time of writing,
the eye-tracking data collected in this study were not previously published.

Participants

Participants were 104 students at a private Midwestern university in the United States who
participated in exchange for course credit. Participants signed a written informed consent form
before participating, and the study was approved by the university’s Institutional Review Board.
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Materials and procedure

Participants read a 6,500-word excerpt from a book about the surface tension of liquids, Soap
Bubbles and the Forces which Mold Them (Boys, 1895). The excerpt was taken from the first 35 pages
of the book and was modified to remove images and associated references in text, which were not
necessary for comprehension. The text was divided into 57 pages (screens; 115 words average per
screen) and presented on a computer screen in 35-point Courier New font. Sentences but not words
could be split across page boundaries. Left and right eye movements were recorded using the Tobii
TX300 (Tobii Pro, Stockholm, Sweden) remote eye tracker sampling at 120 Hz. Head position was
unrestrained, so participants could select a comfortable position for reading. Reading was self-paced,
and participants advanced through the text one page at a time via a key press. However, they could
not return to a previously read page.

Comprehension was assessed during reading using four-option multiple-choice questions that
tapped page-specific, textbase-level (i.e., factual) content of the text. Below is an example of
a sentence of text and associated comprehension assessment.

Text: “Plateau in his famous work, Statique des Liquides, quotes a passage from a book by Henry
Berthoud, to the effect that there is an Etruscan vase in the Louvre in Paris in which children are
represented blowing bubbles from a pipe.”

Question: “The suggestion that there is an Etruscan vase in the Louvre that depicts children
blowing bubbles from a pipe was put forth by:”

Choices: (a) Lord Rayleigh; (b) Van der Mensbrugghe; (c) Millais; (d) Plateau [correct answer].
Questions could occur after reading any of the 57 pages (apart from the first 2), but the number of

questions (M = 15, SD = 4) and exact pages on which questions appeared differed by participant.
There were two groups of participants in this study, and whether a question was asked on a given
page was determined as follows. For the experimental group the computer interface presented
comprehension questions as determined by another eye movement–based MLCM of mind wander-
ing (Faber et al., 2018). This mind-wandering MLCM uses eye movement features to generate
a probability that the participant is currently mind-wandering. If this probability exceeded
a threshold, this triggered the reading interface to display a comprehension question. A different
set of yoked-control participants received identical interventions to the experimental participants
(i.e., comprehension questions occurring on the same pages, irrespective of mind-wandering).
Participants were allowed to advance if they answered the first two questions correctly or after
the second question regardless. Participants were given the option to reread the preceding page
before answering the second question (only data from the first read of a page were included in
analyses). Our present focus is training an MLCM to predict accuracy on the first comprehension
question on a page from eye gaze recorded during the first read of that page.

Participants completed a post-test with 38 questions from the same pool immediately after
reading, which averaged 34 minutes after reading began. These questions are not analyzed here as
the current work focuses on modeling comprehension during reading.

Modeling approach

Figure 1 depicts an overview of the modeling approach, which focused on training and validating
supervised machine learning models that predict comprehension from eye movements. We exam-
ined differences in eye movement features and comprehension across conditions (intervention vs.
yoked control). No significant differences were observed, so we merged across conditions to obtain
the maximum amount of data for machine learning and to improve model generalizability. We also
modeled these conditions separately to ascertain whether the mind-wandering intervention con-
founded the link between eye movements and comprehension (i.e., whether the comprehension
MLCM performance varied by experimental condition).
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Eye movement features

Eye data from both eyes were averaged and then fixations and saccades estimated using a dispersion-
based fixation filter from Open Gaze and Mouse Analyzer (Voßkühler et al., 2008). Fixations were
defined as consecutive eye movement samples within a range of 57 pixels (approximately 1 degree of
visual angle), and saccades were computed from the fixations. We examined first-read eye move-
ments and answer correctness for the first question (during reading) from the 1,618 pages with
accompanying questions.

Eye movement features were chosen based on prior literature and the principle that page-level
fluctuations in comprehension would be best captured by features that may index alignment between
eye movements and the text. Four eye movement features were literature-based, including number of
fixations on the page and their mean fixation duration in ms. Further, we selected regression fixation
proportion, which is the proportion of all fixations on a page that were preceded by a regression
(defined as any fixations on a word with an index lower than that of the previous word that was
fixated on), and mean saccade length, which is the average number of pixels between two subsequent
fixations. These features have been used in similar modeling efforts (Copeland, 2016; Copeland &
Gedeon, 2013; Copeland et al., 2015, 2014; Martinez-Gomez & Aizawa, 2014) and have been
empirically linked to factors that influence text comprehension, including mind-wandering
(Reichle et al., 2010; Uzzaman & Joordens, 2011) and text difficulty (Rayner et al., 2006). This
literature-driven choice of features illustrates how MLCMs can be at least in part constrained by
theory.

The remaining two eye movement features, horizontal saccade proportion and fixation disper-
sion, have yet to be examined in the literature but were included for their potential to capture overall
alignment of eye movements with the text, which may be linked to comprehension (Wallot et al.,

Figure 1. A schematic of the machine learning approach. Models were trained to predict page-level multiple-choice comprehen-
sion question performance (correct vs. incorrect) from the eye movement features of the associated page using data from
computerized reading studies. “OGAMA” = Open Gaze and Mouse Analyzer.
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2015). Specifically, horizontal saccade proportion was calculated as the proportion of saccades with an
angle no more than 30 degrees above or below the x-axis and fixation dispersion as the root-mean-
square of the distance of each fixation to the average fixation. Thus, these two features may capture
especially sparse or erratic eye movements that could signal a disconnect between eye movement
patterns and the text on the page. The use of this highly constrained feature set also minimized
multicollinearity, which is a concern for some machine learning models (see Table 2 for between-
feature correlations).

Because head movement was not restrained to allow for naturalistic reading, participants could
shift position leading to eye-tracking disruptions. To compensate, we excluded pages that were
clearly unread (reading time < 1 s; 7 pages) and those without recorded eye movement data (i.e., one
fixation or fewer on the page; 81 pages). Only 5% of pages (88 of 1,618) were discarded as a result of
these criteria, leaving 1,530 pages for modeling. To address outliers we replaced eye gaze feature
values greater than 2.5 median absolute deviations with the highest observed value of that particular
feature within these bounds. As elaborated above, we further minimized the impact of eye tracking
errors by focusing on global eye movement features, which are based on relative rather than absolute
eye position (i.e., word-specific features like gaze duration and dwell time were not included).

Supervised classification and validation

Random Forest classification models were implemented in R with the caret package (Kuhn, 2008).
We used the default parameters, which were varying the number of features to split at each node,
then selecting the value that optimizes model fit; and building 500 decision trees. We compared
random forests, which capture interactivity and nonlinearity, with logistic regression, which is
a linear additive model. This also illustrates how an MLCM can be used to answer a pertinent
question on the nature of the relationship between eye movements and comprehension. Finally, we
examined whether model performance relied on systematic correspondence between eye movements
and comprehension by comparing the random forest model to shuffled surrogates, created by
shuffling the comprehension scores.

We used a participant-level fourfold cross-validation procedure to ensure generalizability to new
participants. Specifically, data were split into four subsets at the participant level, trained on three of
the subsets, and tested on the remaining subset. This process was repeated four times so that
predictions were generated for all four test subsets. To assess stability of results, the entire process
was repeated 100 times. There was very little variability across runs (see Table 3 for stability of model
performance across the 100 runs) so we focused on the median-performing model (based on the
correlation metric; see below) in our analyses.

Table 2. Descriptive and correlation of eye gaze features and comprehension accuracy.

Mean (SD)
Mean Fix
Duration N Fix

Reg Fix
Prop

Mean
saccade
Length

Horizontal
saccade
Prop

Fix
Disp

Mean fixation duration, ms 267 (33) —
No. of fixations 100 (36) 0.323 —
Regression fixation
proportion

0.136 (0.037) 0.180 0.269 —

Mean saccade length, pixels 237 (29) −0.429 −0.419 −0.102 —
Horizontal saccade
proportion

0.891 (0.073) −0.194 0.170 −0.210 0.030 —

Fixation dispersion 0.397 (0.050) −0.276 −0.440 −0.274 0.245 0.211
Comprehension accuracy 0.684 (0.169) 0.228 0.372 0.200 −0.260 −0.430 −0.421

Means and SDs in column 2 are computed over participants.
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Model evaluation

The model output is a probability that the question on a given page was answered correctly (i.e.,
a continuous variable between 0 and 1, termed the probability of the correct class). We computed
page-level accuracy as the area under the receiver operating characteristic curve (AUROC;
chance = 0.5) between the class probability of the correct class (between 0 and 1) and observed
scores (1 or 0). We also averaged both predicted (0 or 1, after applying a threshold at 0.5 to the class
probabilities) and observed (0 or 1) comprehension scores over all pages for each subject and then
computed the correlation between the predicted and observed performance at the participant level.
Note that the model was trained based on its performance at the page level for individual partici-
pants, but through averaging its predictions at the page level we use the same MLCM to make
predictions at the participant level. Whereas page-level accuracy evaluates the models’ ability to
make fine-grained predictions on individual comprehension items based on eye movements from
corresponding pages, participant-level accuracy is a coarser measure focusing on between-subject
variability. AUROCs were compared using the roc.test function in the pROC package (Robin et al.,
2011), and correlations were compared using tests of dependent correlations as implemented in the
cocor package (Diedenhofen & Musch, 2015).

Modeling results

Model accuracy

The results are summarized in Table 3, and ROC curves for all models are depicted in Figure 2. The
random forest model generated highly accurate predictions of both page- and participant-level
comprehension (page-level AUROC = 0.902; participant-level r = 0.661, p < .001). As illustrated in
Figure 3, the predicted distribution of comprehension scores closely aligned with the observed
distribution (top left), and the model accurately captured participant- (top right) and page-level
(bottom) variation in comprehension. This indicates that eye movements can be reliably linked to
comprehension during reading.

To examine whether interactivity of features improved model performance, we compared the
random forest model with a logistic regression (an additive) model trained on the same features. The
logistic regression model also generated above-chance predictions of page- and participant-level
comprehension (page-level AUROC = 0.879, participant-level r = 0.594, p < .001). Interactivity
significantly improved page-level model performance (z = 3.07, p = .002) but less so for participant-
level performance (z = 1.82, p = .07), suggesting a slight improvement.

Robustness checks

We examined whether above-chance predictions resulted from systematic correspondence between
eye movements and comprehension. The shuffled model performed at or near chance on the page

Table 3. Summary of classification model performance.

Model Page Level (AUROC) Participant Level (Correlation)

Median models AUROC [95% CI] Pearson’s r [95% CI]
Random forest 0.902* [0.885, 0.919] 0.661*** [0.537,0.757]
Logistic regression 0.879* [0.860, 0.899] 0.594*** [0.453,0.706]
Shuffled random forest 0.475 [0.494,0.556] −0.019 [−0.211,0.174]

Across 100 iterations Mean [min, max] Mean [min, max]
Random forest 0.902 [0.89, 0.91] 0.663 [0.602, 0.705]
Logistic regression 0.878 [0.866, 0.883] 0.592 [0.548, 0.617]
Shuffled random forest 0.463 [0.437, 0.486] −0.024 [−0.193, 0.125]

Significant AUROCs (bootstrapped 95% CIs nonoverlapping with chance [0.5]) and correlations are
marked with asterisks (*). For correlations, *p < .05, **p < .01, ***p < .001.
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and participant levels (AUROC = 0.48; r = −0.02, p = .85) and reliably worse than its nonshuffled
counterpart (page level: z = 20.70, p < .001; participant level: z = 5.81, p < .001).

Next, to examine the impact of outlier treatment on model performance, we compared the
performance of the random forest model (with outliers addressed as described above) with an
identical model in which outliers were not addressed. Results were equivalent at both the page
level (model with outliers: AUROC = 0.904; comparison: z = −0.60, p = .55) or participant levels
(model with outliers: r = 0.663, p < .001; comparison: z = −0.15, p = .87), suggesting that similar
model performance may be achieved without outlier treatment. Results were also similar and not
significantly different (z = −1.35, p = .177) when no pages were removed and missing feature values
were replaced with zeroes (zero imputation; AUROC = 0.864; r = 0.633, p < .001)

Checks for confounds

It was critical to determine whether model performance could be attributed to the contingency
between eye movements and interventions that were triggered by mind-wandering (in the experi-
mental condition). Thus, we analyzed whether predictions were dependent on experimental condi-
tion (intervention vs. yoked control) by modeling each condition separately. Both models performed
above chance on the page and participant levels (intervention: AUROC = 0.882, r = 0.652, p < .001;
yoked-control: AUROC = 0.892, r = 0.664, p < .001), and there was no reliable difference in
performance across the models (participant level z = −0.100, p = .921; page level z = 0.522,
p = .601). Thus, model performance did not rely on the mind-wandering–contingent interventions.

Relatedly, to what extent do associations between eye movement features and comprehension
reflect lower-level processes, such as whether participants were attending to the text? To examine
this we computed correlations between participants’ average mind-wandering likelihood (derived
from the eye movement–based MLCM used to trigger the interventions) for 100 participants with
available data and their predicted comprehension scores from the median random forest model. As
expected, we observed a significant negative correlation between mind-wandering and predicted

Figure 2. Receiver operating characteristic (ROC) curves for the median models.
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comprehension (r = −0.21, p = .04), although mind-wandering accounted for only 4.4% of the
variance in predictions (R2 = 0.044). This suggests that the model captured higher-level reading
processes in addition to whether or not the reader was attending to the text.

Predictive features

How do eye movement features relate to comprehension? To investigate this question, we analyzed
the models further. We opted to focus on the logistic regression model in lieu of the Random Forest

Figure 3. Visualization of page- and participant-level performance for the median random forest model predicting comprehension
from eye movements. Top left: Predicted and observed participant-level mean comprehension accuracy. Top right: Correlation
between predicted and observed participant-level mean comprehension accuracy. Bottom: Mean page-level accuracy; predicted
and observed. Error bars are 95% confidence intervals computed across participants.
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model because the former, albeit slightly less accurate, is more interpretable; this is because feature
values are linearly combined in logistic regression such that the coefficients are readily interpretable
as the contribution of each feature to model performance. One way to quantify coefficient impor-
tance is to examine the model coefficients by computing the mean and variability across the cross-
validated folds. The alternate approach, which we used here, is to focus on significance of the
coefficients. Accordingly, we fit mixed effects logistic regression models to quantify coefficient
significance using the lme4 library in R (Bates & Maechler, 2015) with participant as an intercept-
only random effect. To address outliers, feature values were median absolute deviation-scaled before
modeling (scaled values were truncated at ±2.5 median absolute deviation).

Model coefficients are presented in Table 4. We found that more fixations, shorter saccades,
fewer horizontal saccades, and lower fixation dispersion were associated with better comprehen-
sion scores. Why might this be the case? To illustrate, Figure 4 depicts example eye movements
from two participants corresponding to correct (left) and incorrect (right) responses to
a comprehension question immediately after reading a page. Longer saccades and fewer fixations
are indicative of skimming (Rayner et al., 2012), which is the inverse of what predicted accurate
comprehension in our model. Further, higher horizontal saccade proportion may result from eye
movements that too rigidly align with the text, which could also reflect skimming (as in the right
compared with the left panel of Figure 4). Finally, higher fixation dispersion may correspond with
sparse and erratic eye movements with poor correspondence to the text. Thus, lower horizontal
saccade proportion and fixation dispersion, in combination with more fixations and shorter
saccades, may indicate that the reader was sufficiently engaged to construct high-quality repre-
sentations of the text.

Table 4. Coefficients from a generalized linear mixed model with eye movement features as fixed
effects and participants as an intercept-only random effect.

Comprehension Accuracy

Predictors Coefficient 95% CI p

(Intercept) 1.34 1.06–1.63 <.001
Mean fixation duration −0.05 −0.27 to 0.17 .642
No. of fixations 1.22 0.97–1.47 <.001
Regression fixation proportion −0.01 −0.21 to 0.19 .948
Mean saccade length −0.47 −0.68 to −0.27 <.001
Horizontal saccade proportion −1.57 −1.78 to −1.36 <.001
Fixation dispersion −0.49 −0.68 to −0.30 <.001

Figure 4. Comparison of eye movements from two participants reading the same page. Circles represent fixations and are scaled
by duration, and lines represent saccades. The eye movements in the left and right panels preceded correct and incorrect
responses to a subsequent comprehension question, respectively.
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Note that the marginal R2 for the mixed-effects model was 0.566 and the conditional R2 was 0.680.
This corresponds to marginal r = 0.752 and conditional r = 0.824. This is indeed a highly accurate
model, with correlation coefficients higher than for both the MLCMs (random forest and logistic
regression). However, this can be attributed to the difference in the way these models were fit. The
mixed model is an explanatory model, fit to the entire dataset as a whole. Therefore, the marginal
and conditional R2 do not reflect the predictive accuracy of the model. In contrast, the same model
fit with the MLCM approach has a correlation of 0.627 when fit with cross-validation. Put
differently, this reduction in correlation provides an index of the extent to which the mixed
modeling approach overfits to the data. This model, if it were used to predict comprehension on
unseen participants, would likely underperform as the model will have overfit to the training data.

Discussion of modeling approach and results

Our goal was to demonstrate how eye movements could be used to develop an MLCM of reading
comprehension. Our results showed that our models produced highly accurate predictions of page-
and participant-level comprehension, suggesting this approach yields predictions of sufficient accu-
racy and granularity (AUROC of .90; r = .66) to be used for research as well as intervention and
diagnostic purposes. Further, we demonstrated that the success of these models relies on the page-
level correspondence between eye movements and comprehension, specifically as illustrated by
comparisons with a random surrogate model.

This current model offers several crucial improvements over prior work. First, it extends previous
research predicting overall comprehension (Copeland, 2016; Copeland & Gedeon, 2013; Copeland
et al., 2014, 2015; Martinez-Gomez & Aizawa, 2014) to real-time, page-level comprehension during
reading. This is critical because real-time assessment of comprehension is needed to better our
theoretical understanding of short-lived, dynamic phenomena during reading. For example, as
suggested by the bottom panel of Figure 3, comprehension may fluctuate throughout a reading as
attention waxes and wanes, or if particular text regions are especially difficult to integrate. By
leveraging such a real-time, eye movement–based measure of comprehension, we anticipate that
researchers will be better poised to study text comprehension dynamics without interrupting the
reader.

This work also provides encouraging evidence for the generalizability and scalability of this
approach. Namely, using cross-validated models we achieved highly accurate predictions on held-
out participants, suggesting that the models can be used predict comprehension for new readers in
a similar context. In further support of this, the current modeling approach generalized across two
experimental conditions (intervention vs. yoked-control) and were highly stable across 100 runs (see
the lower half of Table 3). In addition, by using global eye movement features (e.g., number and
duration of fixations on a page), the current approach minimizes the need for human coding of the
text (e.g., defining text regions of interest and defining linguistic properties for those regions) and
minimizes the impact of routine eye-tracking and calibration errors that would be expected in real-
world settings (e.g., classrooms).

In addition, our results provide further insights on how eye movements are linked to comprehen-
sion. We hypothesized based on previous research that modeling interactivity among eye movements
is key toward capturing the link between eye movements and comprehension. In line with this, when
we compared random forest (interactive) and regression (additive) algorithms, we observed that
modeling interactivity slightly improved page-level model performance, but the improvement was
quite minor, suggesting that an additive model would suffice. Indeed, a benefit of the regression
model over the random forest model is that the contribution of individual features to model
performance was more easily quantified. The tradeoff between the ability to model more complex
data and the ability to interpret the structure of the resulting model in terms of its individual features
is indeed an important consideration in the choice of specific model to use with an MLCM
approach. Accordingly, we found that more fixations along with shorter saccades (the inverse of
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eye movements typically observed during skimming) were predictive of accurate comprehension.
Further, features that indexed spatial alignment between eye movements and the text (horizontal
saccade proportion and fixation dispersion) also predicted comprehension. Collectively, these find-
ings suggest that eye movements during reading capture higher-level processes (e.g., motivation),
which can be used to accurately diagnose comprehension in real-time.

Notably, models of eye movements during reading assume the reader is attending and that local
text processing is generally successful (e.g., E-Z Reader model: Reichle et al., 1998). The current
research suggests that such assumptions might be reconsidered when the goal is to model
naturalistic reading. Instead, a comprehensive model of eye movements during reading of longer,
connected texts must integrate attentional and motivational processes (e.g., mind-wandering) that
are neglected in current models. How could this be accomplished? One approach could be to
develop models which detect the unique eye movement signatures of reading behaviors and
associated mental states (e.g., mind-wandering, skimming, and repair) that interfere with or
facilitate comprehension.

Encouragingly, an MLCM approach has been applied to detect mind-wandering (Bixler &
D’Mello, 2016; Faber et al., 2018) and skimming (Biedert et al., 2012). However, much work still
needs to be done to model what occurs during motivated, attentive reading, some of which might be
covert (e.g., developing models to predict covert comprehension repair and inferencing). These
models of the reading process could also offer improvement over the current results by integrating
predictions from several submodels (e.g., of skimming, mind-wandering, and repair) in an ensemble-
like fashion to generate highly robust predictions of comprehension accuracy.

Despite the success of the present MLCM that models eye movements from eye gaze, many
open questions remain. For example, the current approach models only one dataset with a single
text and only textbase-level assessments of comprehension. Thus, the extent to which the current
findings generalize to other contexts (e.g., texts) and whether eye movement measures capture
deeper text processing remains to be investigated. A critical test of the current MLCM would be to
test its performance on gaze data from uninterrupted reading. If this model successfully predicts
multiple-choice item performance after reading, then it could be usable as a fine-grained, page-
level comprehension measure without interrupting the participant. Further, we did not explicitly
measure the underlying reading behaviors and processes involved in reading (such as skimming,
inferencing, and error-monitoring), which would be a critical step toward building more compre-
hensive models of real-time reading comprehension and make more explicit the link between the
model structure and theory-derived constructs. An additional avenue for future work using this
MLCM would be to assess whether it generalizes to reading different texts and under different
contexts.

Keith Rayner, perhaps the most influential scholar of eye movements and reading of the past
40 years, and his colleagues (Rayner et al., 2006) imagined that once eye-tracking technology became
more portable and affordable, eye movements could be used as a diagnostic and intervention tool for
comprehension difficulties. With consumer-off-the-shelf eye-tracking technology becoming more
cost-effective and accurate (Gibaldi et al., 2017), that day has seemingly arrived from a technological
standpoint. Whereas we use an expensive research-grade eye tracker in this work, other studies have
successfully developed MLCM using consumer-off-the-shelf eye trackers in authentic environments
(Hutt et al., 2019). For example, Hutt et al. (2019) successfully developed MLCMs of mind-
wandering while interacting with a learning technology using data collected with consumer-off-the-
shelf eye-trackers in a classroom context. The researchers also found the model to be comparably
accurate with models based on data collected in a laboratory setting with consumer-off-the-shelf eye-
trackers (Hutt et al., 2016). Thus, recent advances in eye-tracking technology coupled with the
MLCM approach advocated here take us a step toward bringing Keith Rayner’s predictions about the
future of eye movement–based diagnostic and intervention tools from the realm of science fiction to
plausible reality.
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Concluding remarks

It is generally accepted that computational analyses of discourse can complement other methods
including think-alouds, code and count, experimental methods, and the like. Here we suggest that
MLCMs provide a unique, yet complementary, approach to the study of discourse. To make our case
we distinguished MLCMs from traditional computational models, highlighted different types of
MLCMs, discussed their potential benefits, and demonstrated the overall idea by developing and
validating an MLCM model of reading comprehension from eye movements. Despite the encoura-
ging success of these models, there is still a long way to go. Even the most sophisticated MLCM is
unlikely to deeply understand, for example, the excerpt from The King in Yellow reproduced in the
opening lines of this article. We do not know the answer yet, except to advocate for a future of
discourse research that incorporates computational models in its existing arsenal of theoretical,
observational, and experimental methods. In this future MLCMs are rapidly instantiated to analyze
experimental data while also serving as measurement and intervention tools. Qualitative inspection
of their parameters and behavior provide insights into the underlying theories, which in turn can be
tested via different instantiations of the models. Thus, computational models and theory develop-
ment go hand in hand.
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