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Abstract
Streaming computations often exhibit substantial data paral-
lelism that makes them well-suited to SIMD architectures.
However, many such computations also exhibit irregular-
ity, in the form of data-dependent, dynamic data rates, that
makes efficient SIMD execution challenging. One aspect of
this challenge is the need to schedule execution of a com-
putation realized as a pipeline of stages connected by finite
queues. A scheduler must both ensure high SIMD occupancy
by gathering queued items into vectors and minimize costs
associated with switching execution between stages.
In this work, we present the AFIE (Active Full, Inactive

Empty) scheduling policy for irregular streaming applica-
tions on SIMD processors. AFIE provably groups inputs to
each stage of a pipeline into a minimal number of SIMD vec-
tors while incurring a bounded number of switches relative
to the best possible policy. These results apply even though
irregularity forbids a priori knowledge of how many outputs
will be generated from each input to each stage.

We have implemented AFIE as an extension to the MER-
CATOR system [6] for building irregular streaming applica-
tions on NVIDIA GPUs. We describe how the AFIE scheduler
simplifies MERCATOR’s runtime code and empirically mea-
sure the new scheduler’s improved performance on irregular
streaming applications.
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uling
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1 Introduction
Many high-impact computations can be parallelized using a
streaming dataflow model. In this model, data items move
through a pipeline (more generally, a tree or DAG) of com-
pute nodes, each of which performs some transformation
on each item. Examples of computations that fit this model
include biological sequence comparison [2], network packet
filtering [13], and decision cascades in machine learning [17].
When the individual items in a stream can be processed in-
dependently, streaming computations naturally map onto
SIMD architectures such as GPUs, which can execute the
computation of a node on many items from a stream in data-
parallel fashion.

While streaming computations often treat each item inde-
pendently, they may not process items identically. In partic-
ular, each item consumed by a node may require a different
amount of work and may produce a variable, data-dependent
number of outputs. For example, a node may filter its input
stream, allowing only a subset of items through. We refer to
applications with such dynamic data rates (including, e.g.,
the three high-impact tasks described above) as having ir-
regular data flow.

Mapping an irregular streaming computation onto a SIMD
processor is challenging for two reasons. First, a static as-
signment of data to SIMD lanes causes some lanes to become
idle earlier than others, reducing SIMD occupancy (fraction
of active SIMD lanes) and hence the efficiency with which
the device is used. Runtime support for irregular streaming
must therefore remap data dynamically between SIMD lanes
to maintain high occupancy. The MERCATOR system for
GPUs [6] is an example of a framework that performs such
remapping transparently to the application developer. Sec-
ond, the unpredictable rates at which output is generated
from each node pose a challenge for scheduling nodes’ exe-
cution. The present work addresses this scheduling problem.

Unlike traditional streaming models such as Synchronous
Data Flow [10], whose fixed data rates admit throughput-
optimal static schedules, irregular streaming requires a dy-
namic, data-dependent scheduling algorithm. To maximize
application throughput, a scheduler must execute nodes in
an order that both ensures high SIMD occupancy (i.e., nodes
should run only when they have a full SIMD-width’s worth
of input) and minimizes overhead, both from the scheduling
decisions themselves and from costs such as cache misses
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when switching from one node’s computation to another’s. A
throughput-optimal schedule may not be practically achiev-
able because the behavior of each data item at each node
is discovered only at runtime. However, we can still design
a scheduling policy whose decisions are, under certain as-
sumptions, close to optimal.

In this paper, we present a scheduling policy, AFIE (Active
Full, Inactive Empty), for irregular streaming dataflow com-
putations on a wide-SIMD processor. The AFIE policy prov-
ably optimizes SIMD occupancy while limiting the number
of switches between nodes. In terms of number of switches,
AFIE with only a trivial amount of resource augmentation
is 2-competitive vs a clairvoyant scheduler that knows in
advance how many outputs will be produced by each node
for each of its inputs. We implement AFIE as a replacement
for MERCATOR’s existing scheduler, in the process realizing
additional benefits of the policy for code simplification and
overhead reduction in MERCATOR’s runtime. Finally, we
investigate the behavior of our scheduler on two types of
irregular streaming application.
The remainder of this work is organized as follows. Sec-

tion 2 describes the application and architectural assump-
tions underlying our work. Section 3 introduces the AFIE
scheduling policy and verifies that it is both safe and efficient.
Section 4 describes our implementation of AFIE in the MER-
CATOR system and the resulting benefits for simplification
of its runtime. In Section 5, we validate the performance of
AFIE. Finally, Section 6 discusses related work, while Sec-
tion 7 concludes and identifies future work.

2 Background
In this section, we describe the application model that we
study and how that model is realized on a particular SIMD
platform, namely an NVIDIA GPU. The constraints of model
and platform determine the form of our scheduling problem.

Our application model focuses on pipelines for simplicity,
but our work extends straightforwardly to tree-structured
topologies. In contrast, DAG-structured irregular applica-
tions lack consistent, well-defined semantics for how to
match up inputs on multiple input edges to a node. For one
approach to this problem, see [11].

2.1 Application Model
An application is a linear pipeline ofm + 1 nodes, n0 . . .nm ,
that process data items. For each input item that node ni con-
sumes, it emits a variable, data-dependent number of items
between 0 and some maximum дi . A node ni can process a
SIMD-parallel vector of up to vi inputs at a time, where vi
the vector width of ni .
Nodes are connected by dataflow edges, each of which

has a finite queue. These queues are important for achieving
high SIMD occupancy in an irregular streaming application
because they allow outputs from one node to accumulate

over time until a full vector of inputs is available for pro-
cessing at the next node. Node ni , 1 ≤ i ≤ m, has an input
queue qi . Node ni can fire, consuming and processing k ≤ vi
inputs from its input queue, only if there are at least kдi
slots available in the downstream queue qi+1, i.e. qi+1 has
sufficient free space to hold the maximum number of outputs
that ni could produce from k inputs. The last node nm in the
pipeline has an effectively infinite output queue and so can
always consume up to vm inputs in one firing.
As discussed below, we focus on a pipeline executing se-

quentially on a single wide-SIMD processor. Only a single
node fires at a time, and nodes cannot be preempted. Ini-
tially, all queues are empty except for that of the head node
n0, which contains the entire input stream. Nodes are then
fired in some order, consuming some number of inputs each
time, until no node has any pending input, at which point the
computation ends. When execution begins firing a node ni
after previously firing some other node (or at the beginning
of execution), it is said to switch to ni .
The schedule of a pipeline’s execution specifies both the

sequence in which its nodes are fired and the number of
inputs consumed by each firing. For a given stream of inputs,
there may be many feasible schedules if execution results
in multiple nodes being ready to fire at a given time. We
seek a schedule that maximizes application throughput or,
equivalently, minimizes the time for the pipeline to process
all inputs. We assume that node ni requires a fixed service
time to process a vector of (any size up to) vi inputs and
produce any associated outputs. Switching from one node
to another incurs some fixed time overhead.

2.2 Architectural Realization
We use NVIDIA GPUs as our target SIMD architecture. How-
ever, while NVIDIA’s compiler and runtime support are a
convenient base for our research, the scheduling policy and
realization described in this work are not restricted to GPUs.
Our approach for realizing streaming applications applies
broadly to wide-SIMD multiprocessors.

A GPU contains a number of processors, each with some
fixed SIMD width1. To minimize the cost of coordination
between the GPU and its host system, an application pipeline
runs entirely on the GPU, processing an input stream that
is initially copied to the GPU’s memory. Control does not
return to the host until the input stream has been completely
processed. Queues between nodes are stored in the GPU’s
DRAM memory; to avoid the need for dynamic allocation,
they have fixed sizes, typically on the order of a few hundred
to a few thousand elements.
Communication and synchronization between code run-

ning on different processors has nontrivial overhead and

1For this work, we treat the CUDA block size as our effective SIMD width,
ignoring its realization as a collection of hardware threads, each with a
smaller SIMD width (the “warp size”).
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complexity; on a GPU, it typically requires expensive in-
teraction with the host to ensure correctness. We therefore
instantiate the full application pipeline separately on each
processor of the GPU. Pipelines on different processors com-
pete to consume the shared input stream and process their
portions of the stream independently of each other. As noted
above, each processor’s pipeline schedules its node firings
sequentially and non-preemptively.

3 The AFIE Pipeline Scheduler
We now define a scheduling policy for a pipeline with the
goal of achieving near-optimal throughput. We associate
with each node a status, which is either “active” or “inactive.”
Informally, our policy ensures that active nodes have abun-
dant inputs ready to consume, while inactive nodes have
abundant free space in their input queues. This intuition
explains the name of the policy, “Active Full Inactive Empty”
(AFIE). Nodes that are both active and have inactive down-
stream neighbors therefore have both abundant inputs to
process and plenty of space to write any resulting outputs.
Under the AFIE policy, only such nodes are eligible to fire.
More formally, the AFIE policy for a pipeline n0 . . .nm is

as follows.
1. A node ni may fire iff ni is active and either

• ni+1 is inactive, or
• i =m (i.e., ni is the tail of the pipeline).

2. Once a node ni begins to fire, it continues firing, con-
suming a full-width vector of vi inputs from qi each
time, until either
• qi has fewer than vi items remaining, or
• qi+1 has fewer than viдi free slots remaining.
We refer to these two circumstances asni being blocked
on its input and output queues, respectively.

3. An inactive node ni becomes active when its input
queue qi has fewer than vi−1дi−1 spaces remaining.

4. An active node ni becomes inactive when its input
queue qi has fewer than vi items remaining.

An AFIE schedule is one that complies with this policy.
At the start of execution, n0, which has the entire input

stream queued, is active, and all other nodes are inactive.
We handle the end of execution, when the input stream is
exhausted, as follows. If the end of the input stream reaches
qi while it is nonempty, ni becomes active if qi has any
remaining items and remains so until qi is empty. If qi has
fewer than vi items after the end of stream reaches qi , the
last firing of ni consumes them all.

3.1 Safety of AFIE
We first verify that the AFIE policy is safe, in the sense that
it allows a pipeline to execute without the risk of deadlock.
Safety of AFIE requires that the queue between nodes ni−1
and ni be large enough to hold all outputs from one firing of
ni−1 plus a nearly full vector of inputs to ni .

Lemma 3.1. Assume that, for i > 0, queue sizes satisfy

|qi | ≥ vi−1дi−1 +vi − 1.

Under any AFIE schedule, so long as not all queues are empty,
execution can always fire some node and so empties all queues
in finite time.

Proof. Initially, n0 is eligible to fire, and q1, being empty, con-
tains enough slots to receive the output from a full vector of
inputs. After any number of firings, let ni be the last active
node in the pipeline. Such a node exists because, at a mini-
mum, n0 remains active until its input stream is exhausted,
after which the earliest remaining node with a non-empty
queue becomes active.
If i = m, qm has either at least vm inputs or the end of

stream, and so nm can fire. Otherwise, ni+1 must be inactive,
and so qi+1 must hold < vi+1 items. Conclude that qi+1 must
have at least viдi free slots. Node ni , being active, again has
a queue qi with either at least vi inputs or the end of stream
and so can fire. □

3.2 Efficiency of AFIE
We now analyze the efficiency of the AFIE scheduler. We can
break the execution time of a pipeline into two components:
time spent firing nodes, and time spent switching between
them. We will analyze each of these two components of
AFIE’s performance separately. In what follows, let bi be
the total number of inputs consumed by node ni during
the entirety of an application’s execution, which is fixed
independent of the scheduling policy.

3.2.1 Time Spent Firing Nodes
We first lower-bound the number of times a node must fire to
consume all its inputs under any schedule, then observe that
AFIE meets this lower bound. AFIE therefore fires each node
as few times as possible, which implies that it achieves the
highest possible SIMD occupancy; otherwise, more firings
would be needed to consume all of the node’s inputs.

Claim 3.1. The number of firings needed to consume all bi
inputs to ni is at least

⌈
bi
vi

⌉
.

Proof. If every firing of ni uses the full vector width, except
perhaps for one partial-width firing at the end of the input
stream, the claimed bound is achieved. Any other firing
sequence has at least as many non-full-width firings and
so needs at least as many total firings as the bound. □

Lemma 3.2. An AFIE schedule achieves the lower bound on
total node firings given by Claim 3.1.

Proof. Each firing of a node under AFIE consumes only full-
width vectors, except perhaps its last firing. This policy is
exactly the one given in the proof of Claim 3.1. □
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3.2.2 Time Spent Switching Between Nodes
We now focus on the other component of execution time, the
overhead due to switching from one node to another. In our
simplified model, a switch between nodes has constant cost,
so our concern is to minimize the number of switches be-
tween nodes during execution. For space reasons, the proofs
for this section are relegated to an appendix.

We first derive a lower bound on the number of switches
needed to execute a pipeline under any schedule.We quantify
the minimum number of times Si that execution must switch
to a given node ni .

Lemma 3.3. For 0 < i < m,

Si = max
(⌈

bi
|qi |

⌉
,

⌈
bi+1
|qi+1 |

⌉)
.

Moreover,

S0 =

⌈
b1
|q1 |

⌉
and Sm =

⌈
bm
|qm |

⌉
.

We now quantify how closely AFIE’s schedules approach
the lower bounds of the previous result.

Lemma 3.4. If the best possible schedule for a given input
stream uses S∗ switches to nodes, an AFIE schedule for the same
stream uses at most 2S∗+1 switches, provided that the capacity
of each queue qi is first augmented by vi−1дi−1 +vi − 2 slots.

To summarize, we find that with modest additive resource
augmentation, AFIE schedules are 2-competitivewith respect
to the number of switches and optimal with respect to the
number of firings of each node. Hence, overall throughput
is 2-competitive, no matter how large switching overhead is
relative to node service times. If switching overhead is small,
then throughput may be even closer to optimum.

4 Implementing the AFIE Scheduler
We implemented the AFIE scheduler as a modification to the
MERCATOR system [6], an existing framework for irregular
streaming computation on NVIDIA GPUs2. MERCATOR al-
lows application developers to specify a pipeline structure,
including the input and output types of each computational
node and each node’s maximum number of outputs per in-
put. Given such a specification, MERCATOR produces a set
of CUDA stubs that the developer fills in with the code to
implement each node. This code is then combined with MER-
CATOR’s runtime support to produce a complete application
that executes the pipeline on the GPU.

4.1 Tracking Active Status and Fireability
To implement the AFIE policy, each node in a pipeline both
maintains its active/inactive status and accesses the status of
its downstream neighbor3. This information is sufficient to
2https://github.com/jdbuhler/mercator
3MERCATOR also supports applications with tree topologies, for which we
maintain a count of each node’s active downstream neighbors.

test the condition in point 1 of the policy, which determines
when a node becomes eligible to fire. Fireable nodes are
maintained in a FIFO queue, and the scheduler simply takes
a node from this queue when it needs to find one to fire. The
schedule remains AFIE no matter the order in which fireable
nodes are queued and dequeued.
To maintain each node’s active status, we must track

changes to it according to AFIE policy points 3 and 4. Inacti-
vation can occur only as a consequence of firing a node as
described in policy point 2, so the check for inactivation is
performed as part of the test needed to determine if a node
can continue firing. Similarly, a node can become active only
as a result of its upstream neighbor filling its input queue.
Hence, after a node fires, we check whether its output has
caused its downstream neighbor to activate.

Activation and inactivation checks have a small constant
cost per firing. If a node has become active or its downstream
neighbor inactive, we additionally check whether the condi-
tion of point 1 is now satisfied and, if so, enqueue the node
for future firing. A node, once enqueued, is guaranteed to
remain fireable until it is fired.

4.2 Impact of AFIE Scheduler on MERCATOR
The original scheduler described for MERCATOR in [6] used
a different scheduling approach to achieve high occupancy.
In MERCATOR, nodes implementing the same function are
grouped into a common module type. The developer writes
code for a module type only once; different nodes may, how-
ever, be given parameters, separate from the data stream,
to modify their execution. Because they share code, mul-
tiple nodes of a given module type may be fired and may
consume inputs concurrently; this is achieved by combining
items from multiple nodes’ queues into a single SIMD vector
that is the input to the module’s code.
MERCATOR’s original scheduler always fires the mod-

ule type whose nodes are collectively able to consume the
most input items. By combining items across all nodes of the
module type, the scheduler tries to ensure that the module’s
code receives full-width vectors of inputs, even if individual
nodes have less than one vector-width of queued items. This
scheduler is known to be free of deadlock but was not proved
to have any particular efficiency properties. Like the AFIE
scheduler, the original scheduler defers firing a module until
a full SIMD width of inputs is available, though this rule is
relaxed once the input stream has been exhausted.

Replacing the original scheduler with AFIE had immediate
benefits for code simplification. Firstly, AFIE guarantees high
occupancy without combining inputs across nodes. Conse-
quently, we were able to remove the MERCATOR runtime’s
node-combining infrastructure, which is complex and incurs
nontrivial overhead in gathering items from multiple input
queues and scattering them to multiple output queues. (The
developer-facing aspect of modules, which allows code to
be written only once per module type, remains unchanged.)

https://github.com/jdbuhler/mercator
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Secondly, the old scheduler did not have a simple, flag-based
fireability criterion but rather had to calculate the number
of inputs consumable by each node each time it selected a
module to fire. This process took time proportional to the
number of nodes in the application for each firing. In con-
trast, the AFIE scheduler spends only constant time per firing
to select a node and to update its active flags and those of its
neighbors. These changes, which reduced the MERCATOR
runtime’s code size by 20%, result in improved throughput
for MERCATOR applications, as we verify in the next section.
We note further that the original scheduler reevaluated

the best module to fire by its metric after each firing, even if
it was possible to fire the same module again. This behavior
is a consequence of the difficulty of efficiently determining
whether sufficient inputs and queue space exist to fire again
when combining data across many nodes at once. In contrast,
the AFIE policy can easily check these properties for a single
node and so will continue to fire a node without switching
until either its input is exhausted or its output is full. AFIE
therefore incurs fewer trips through the scheduler, even if
both schedulers maintain high SIMD occupancy.

5 Experimental Validation
We investigated the impact of the AFIE scheduler on the
performance of applications written for the MERCATOR
framework. All experiments were performed on an NVIDIA
GeForce GTX 1080Ti GPU using CUDA 10.1. Applications
were run with the maximum possible number of active GPU
blocks, with each block separately instantiating the pipeline.
For each application studied, we compared the perfor-

mance of unmodified MERCATOR to our modified version
with the AFIE scheduler and resultant simplifications de-
scribed in Section 4.2. We compared total GPU running time
as measured by CUDA’s event-based timing facility as well as
total trips through the runtime’s scheduling loop. (Although
the original scheduler, unlike AFIE, does not necessarily
switch nodes after each scheduling trip, it does always incur
substantial overhead per trip.) Results were averaged over
25 trials. Running times represent the cost to process the
application’s entire input stream in a single GPU kernel call.
They do not include application setup/teardown, which was
negligible compared to processing time, or host-GPU data
transfers for the input and output streams, which have a
fixed cost independent of the on-GPU scheduling policy.

5.1 Applications Tested
We investigated two irregular streaming applications repre-
senting two paradigms of execution. The first application,
the Basic Local Alignment Search Tool (BLAST) [2], is from
the domain of bioinformatics and represents a filter cascade.
BLAST compares a genomic DNA sequence (the query) to
a database of other sequences, looking for approximate se-
quence matches. It is organized as a pipeline of filtering

stages, each of which receives a stream of database positions
and either rules out a match to the query at that position
or passes the position on to the next stage. Positions that
survive all stages are deemed to contain a match.

MERCATOR’s BLAST pipeline consists of four stages. Be-
cause each stage acts as an increasingly stringent filter on
its input, the number of database positions surviving to each
successive stage decreases vs the prior stage. Other applica-
tions that exhibit similar filtering behavior include network
packet filtering [12], telescope data processing [16], and de-
cision cascades in machine learning [17]. For an alternative
GPU implementation of BLAST, see, e.g., [18].

We tested BLAST using the full human genome as a data-
base and randomly generated DNA queries between 200 and
64200 bases. Longer queries produce more potential matches
at earlier stages of the BLAST pipeline and so require more
computation to process.

Our second application is a solver for the n Queens Prob-
lem, representing computations organized as a tree search.
The goal is to enumerate all ways to place n queens on an
n × n chess board so that no queen shares the same row,
column, or diagonal with another. This problem is solved
by a branching search: at each step, the solver considers all
ways to place a queen on the ith row of the board given fixed
positions for queens in rows 1 . . . i − 1 and eliminates those
possibilities that conflict with a previously placed queen.
Only branching paths in the tree that successfully pass row
n yield valid solutions. Other applications that exhibit similar
tree-like structures include Delaunay mesh refinement [7, 8]
and the Barnes-Hut algorithm for the n-body problem [3].
For an alternative GPU implementation of n Queens, see [15].

MERCATOR’s n Queens implementation is a pipeline of n
stages that process a stream of partial solutions correspond-
ing to points in the search tree. Node i processes partial solu-
tions that have successfully placed queens in rows 1 . . . i − 1,
or equivalently points at depth i in the tree. The computa-
tion is thus effectively breadth-first on the search tree. Nodes
working near the root produce a large number (up to n−i+1)
of outputs per input, while those toward the bottom of the
tree produce few or no outputs for most inputs. Each node
of the pipeline does essentially the same computation, albeit
on partial solutions on a different row; hence, all nodes are
of the same module type and execute the same code.
We tested n Queens for n from 13 to 16; larger values

of n exhausted our GPU’s DRAM memory just to store the
solutions found. To distribute work across processors, the ap-
plication’s input stream contained all valid partial solutions
for i = 2, which were divided equally among GPU blocks
and used as roots for each block’s search.

5.2 Results
Figures 1 and 2 compare the behavior of MERCATOR with
original vs AFIE scheduler on the BLAST application. The
AFIE implementation exhibited substantial reductions in
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Figure 1. BLAST execution time. Figure 2. BLAST trips through scheduler.

Figure 3. % of node firings in BLAST for which original
MERCATOR scheduler misses an opportunity to fire the
same node again.

Figure 4. n Queens execution time.

NQueens AFIE Original
13 95.67% 88.80%
14 99.03% 92.67%
15 99.81% 88.69%
16 99.96% 83.57%

Table 1. Average % SIMD occupancy over all firings
for n Queens.

NQueens AFIE Original
13 10.45 28.69
14 11.51 91.22
15 12.45 784.43
16 13.45 6898.01

Table 2.Number of firings with non-full SIMD occupancy in
one run of n Queens (averaged over all pipeline instances).

both total running time (hence, higher throughput) and trips
through the scheduler.
The BLAST application’s pipeline performs a different

function in every node. Each node therefore has a different
module type, and there is no opportunity to improve oc-
cupancy by merging inputs across nodes. Nevertheless, we
found that node firings even with the original MERCATOR
scheduler had full SIMD occupancy over 99% of the time,
comparable to the results obtained with the AFIE sched-
uler. The BLAST application provides abundant inputs to all
nodes, so high occupancy is easy to achieve.

However, we found that the AFIE scheduler substantially
reduces total trips through the scheduler compared to the
original MERCATOR scheduler. This improvement may oc-
cur in part because AFIE, unlike the original scheduler, offers
a stronger guarantee of both available inputs and free space
before firing a node. However, a second contributing cause
is the fact that our AFIE implementation checks after each
firing whether it is possible to continue firing the current
node and does so if possible (policy point 2). In contrast, the
original MERCATOR scheduler pessimistically computes the
minimum number of firings before a node’s downstream
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Figure 5. n Queens trips through scheduler.

queue could become full and returns to the scheduler af-
ter that many firings, whether or not the queue actually
fills. Figure 3 shows that the original scheduler often misses
the opportunity to fire a node again without returning to
the scheduler; in contrast, AFIE never misses such an op-
portunity. Because trips through the scheduler in original
MERCATOR have high complexity and cost, this difference
in behavior contributes to differing application throughput.
While it is in principle possible to modify MERCATOR’s

original scheduler to be less pessimistic like AFIE, the com-
plexity of doing so when merging across multiple nodes
of the same module type is substantially greater than for
AFIE, which does not merge nodes yet still provides strong
performance guarantees.

Figures 4 and 5 compare the original and AFIE schedulers
on the n Queens problem. We see a similarly dramatic drop
to BLAST in the number of trips through the scheduler. The
difference in application runtime is more modest, but the
AFIE scheduler consistently delivers lower running times
than MERCATOR’s original scheduler.

Nearly all nodes in then Queens application have the same
module type, so MERCATOR’s scheduler should have ample
opportunity to ensure high occupancy and reduce scheduler
calculations by merging inputs across nodes. However, as
shown in in Table 1, AFIE also exhibits notably greater av-
erage SIMD occupancy than the original scheduler. A likely
cause of the difference in observed occupancy is that in n
Queens, the small input stream is rapidly depleted; most
work is the generated in intermediate stages of the pipeline
by amplifying the small number of inputs. To avoid dead-
lock, MERCATOR’s scheduler relaxes its requirement of full
SIMD width to fire a module as soon as the input stream
is depleted. But most outputs from the main module of n
Queens feed back into the same module (albeit to another
node), so this module remains active for a long time after the
depletion of the input stream without enforcing full SIMD
occupancy. In contrast, Our AFIE implementation enforces
the full occupancy requirement for each node in the pipeline

for as long as possible, until its upstream neighbor will no
longer produce any more output.
Table 2 illustrates the impact of this difference: AFIE’s

firings with less than full SIMD occupancy, which occur
only at the end of execution, stay nearly constant as the
amount of work done by the application grows. In contrast,
the number of such firings with the original MERCATOR
scheduler increases rapidly with workload.
Here again, MERCATOR’s scheduler exhibits unantici-

pated and undesirable behavior not seen with AFIE. It may
again be possible to modify the original scheduler to avoid
this pitfall. However, the complexity of doing in the presence
of merging inputs across nodes seems high. In contrast, the
AFIE scheduler avoids such complexity while still offering a
strong occupancy guarantee.

Finally, we observed (data not shown) that the gap in over-
all application throughput between AFIE and the original
MERCATOR scheduler becomes larger if the application is
run with fewer active GPU blocks. This observation holds
for both BLAST and n Queens. NVIDIA GPUs switch among
active GPU blocks to hide memory access latencies incurred
by each block during execution. We therefore hypothesize
that the AFIE scheduler incurs fewer high-latency opera-
tions – perhaps due to simpler implementation or to better
cache performance obtained with fewer switches between
nodes. Future work will characterize the implications of AFIE
scheduling for memory access patterns.

6 Related Work
Streaming is a well-studied model of computation with im-
plementations for multiple architectures, including GPUs
and other accelerators. Frameworks that support streaming
include, e.g., StreamIt [14], Brook [4], and StreamC [9].
StreamIt, which is based on the Synchronous Data Flow

(SDF) model of computation [10], developed advanced meth-
ods for computing a static schedule for node execution that
minimize the need for inter-node queuing. Their methods
rely on the fact that SDF guarantees a predictable number
of outputs for each input to a node, that is, regular dataflow
by our definition. In contrast, our work supports irregular
applications for which a static schedule is not possible.
Our focus on switching as a behavior to optimize is in-

spired in part by work of Agarwal et al. [1]. That work consid-
ers scheduling for pipelines with the goal of minimizing an
application’s cache miss rate. Cache misses arise both from
switching between nodes and from the need to access items
stored in inter-node queues in DRAM. We address the first
of these costs in our work, while the second is an interesting
topic for future work. However, Agarwal et al. consider a
very different architectural model, in which a pipeline is
distributed across multiple processors that execute different
nodes concurrently, and their work does not consider SIMD
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occupancy or irregular dataflow. In contrast, our work is mo-
tivated by a quite different, more loosely-coupled mapping
of irregular streaming pipelines to a multiprocessor.
Burtscher et al. [5] collect, implement, and profile many

GPU codes for irregular applications. They consider more
expansive notions of irregularity that encompass both com-
putation and memory access patterns. Our work focuses
more narrowly on computations with irregular dataflow that
map well to the streaming paradigm.

7 Conclusion and Future Work
We have introduced the AFIE scheduling policy for irregular
streaming computations on SIMD processors. AFIE satisfies
strong theoretical performance guarantees in both SIMD
occupancy and minimization of node-switching overhead
while offering a simple, efficient implementation. While our
exposition focused on linear pipelines, AFIE extends straight-
forwardly to tree-structured application topologies as well.
We implemented AFIE in a framework for building irregu-
lar streaming applications on NVIDIA GPUs and observed
improvements in overall throughput and in the frequency
of scheduler invocation. On the applications we studied,
our AFIE implementation proved less prone to performance
pitfalls arising from implementation complexity than MER-
CATOR’s original scheduler.

Several opportunities exist for future work on scheduling
irregular streaming applications on SIMD-parallel architec-
tures. First, the AFIE policy assumes that every node in an
application has a unique predecessor. While this property
holds for pipelines and trees, it is not true of applications
whose dataflow graphs include directed cycles. For exam-
ple, MERCATOR supports such cyclic application topologies.
Scheduling such applications safely (without deadlock) and
efficiently requires further study. Second, our model of appli-
cation costs focuses on two aspects: SIMD occupancy, and
the overhead of switching between nodes. Amodel that more
explicitly accounts for cache performance, as in the work
of [1], might suggest a modified policy. At a minimum, it
would be informative regarding the most efficient sizes for
inter-node queues; AFIE, in contrast, is agnostic about the
sizes of queues provided they meet the minimum threshold
for safe execution. Finally, we plan to develop a wider array
of irregular streaming benchmark applications to facilitate
the study of scheduling and other aspects of runtime support
for such applications.
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Appendix: Proofs for Switching
Competitiveness
Proof of Lemma 3.3
Proof. We prove two claims that imply the lower bound on
Si for 1 ≤ i ≤ m. The first claim alone proves the bound for
Sm , while the second proves the bound for S0.

Claim 7.1. Any feasible schedule for executing the pipeline
must switch to node ni , i > 0, at least

⌈
bi
|qi |

⌉
times.

Proof of claim.When execution switches to ni , it cannot
consume more than |qi | inputs without emptying its input
queue. Because nodes do not execute concurrently, execution
must then switch away from ni . If execution later produces
additional inputs for ni , it must eventually switch back to ni
to consume them. The claim follows.

Claim 7.2. Any feasible schedule for executing the pipeline
must switch to node ni , i < m, at least

⌈
bi+1
|qi+1 |

⌉
times.

Proof of claim.When execution switches to ni , it cannot
produce more than |qi+1 | outputs without filling its output
queue. Because nodes do not execute concurrently, execution
must then switch to another node. Hence, execution must
switch to ni at least

⌈
bi+1
|qi+1 |

⌉
times to produce all its outputs.

□

Proof of Lemma 3.4
Proof. At the time a node ni becomes active (other than at
the end of stream), qi must hold at least |qi | − vi−1дi−1 + 1
items; moreover, when ni subsequently becomes inactive, qi
must hold at most vi − 1 items. Hence, after augmenting the
capacity of each queue as stated in the Lemma, the number
of inputs consumed between a node’s becoming active and
its becoming inactive is at least
(|qi | +vi−1дi−1 +vi − 2) −vi−1дi−1 + 1 − (vi − 1) = |qi |.

Similarly, the number of inputs that must accumulate in qi
between ni becoming inactive and ni becoming active is at
least |qi |, except at the end of stream.
We again consider the number of switches to each node

ni . Node n0 is always active while it has any inputs. Hence,
any time an AFIE schedule switches to n0, its output queue
q1 has < vi items, and n0 fills q1 until it either blocks on q1
or runs out of input stream. Hence, execution switches to n0
at most

⌈
b1
|q1 |

⌉
times, including switches back after blocking

on q1 and the final switch (if any) to produce any remaining

output. This number of switches matches the lower bound
for S0 derived from Claim 7.2.
Node nm never blocks, so we switch to it only when its

input queue qm fills enough to make it active (at which point
nm can drain at least |qm | inputs), plus once more at the end
of execution if nm must process any remaining items in qm .
Hence, execution switches to nm at most

⌈
bm
|qm |

⌉
times, which

matches the lower bound for Sm derived from Claim 7.1.
For 0 < i < m, we consider the number of times ni be-

comes eligible to fire. Each time this occurs, execution must
switch to ni before it again becomes ineligible to fire, i.e., be-
fore either ni blocks on its input queue and becomes inactive
or ni blocks on its output queue and causes ni+1 to become
active.
There are three circumstances in which node ni can be-

come newly eligible to fire:
1. node ni transitions from inactive to active.
2. node ni+1 transitions from active to inactive.
3. at the end of input stream, if there are more than zero

inputs remaining in qi but not enough to otherwise
make ni active.

Events (1) and (2) may happen concurrently or not, but the
number of switches cannot exceed the sum of counts for all
three events.
Event (1) occurs when qi fills enough to make ni active

after being empty enough to make it inactive, i.e. after ac-
cumulating at least |qi | new items. Hence, this transition
occurs at most

⌊
bi
|qi |

⌋
times. Event (2) occurs when qi+1 emp-

ties enough to make ni+1 inactive after previously being full
enough to make it active, i.e. after at least |qi | items are con-
sumed. Hence, this transition occurs at most

⌊
bi+1
|qi+1 |

⌋
times.

Event (3) occurs at most once.
We conclude that the total number of events (1)-(3), and

hence the total number of switches to ni , is at most⌊
bi
|qi |

⌋
+

⌊
bi+1
|qi+1 |

⌋
+ 1 ≤

⌈
bi
|qi |

⌉
+

⌈
bi+1
|qi+1 |

⌉
+ 1

≤ 2max
(⌈

bi
|qi |

⌉
,

⌈
bi+1
|qi+1 |

⌉)
+ 1

= 2Si + 1
We conclude that the total number of switches over all

nodes is at most
m∑
i=0

2Si + 1 = 2S∗ + 1

as claimed. □
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