
Streaming Computations with Region-Based
State on SIMD Architectures

Stephen Timcheck and Jeremy Buhler

Washington University in St. Louis
One Brookings Dr., St. Louis, MO 63130, USA

{stimcheck,jbuhler}@wustl.edu

Abstract. Streaming computations on massive data sets are an attrac-
tive candidate for parallelization, particularly when they exhibit inde-
pendence (and hence data parallelism) between items in the stream.
However, some streaming computations are stateful, which disrupts in-
dependence and can limit parallelism. In this work, we consider how to
extract data parallelism from streaming computations with a common,
limited form of statefulness. The stream is assumed to be divided into
variably-sized regions, and items in the same region are processed in a
common context of state. In general, the computation to be performed
on a stream is also irregular, with each item potentially undergoing dif-
ferent, data-dependent processing.
This work describes mechanisms to implement such computations effi-
ciently on a SIMD-parallel architecture such as a GPU. We first develop
a low-level protocol by which a data stream can be augmented with con-
trol signals that are delivered to each stage of a computation at precise
points in the stream. We then describe an abstraction, enumeration and
aggregation, by which an application developer can specify the behavior
of a streaming application with region-based state. Finally, we study an
implementation of our ideas as part of the MERCATOR system [5] for
irregular streaming computations on GPUs, investigating how the fre-
quency of region boundaries in a stream impacts SIMD occupancy and
hence application performance.1

Keywords: signal · control message · SIMD · irregular · streaming

1 Introduction

Streaming computations are integral to high-impact applications such as bio-
logical sequence analysis [1], astrophysics [13], and decision cascades in machine
learning [14]. These computations operate on a long stream of data items, each
of which must be processed through a pipeline of computational stages. When
items can be processed independently and identically, extracting data parallelism
is straightforward, particularly on SIMD-parallel architectures such as GPUs.

1 Presented at 13th Int’l Wkshp. on Programmability and Architectures for Heteroge-
neous Multicores, Bologna, Italy, Jan 2020. Copyright c© 2020 by Stephen Timcheck
and Jeremy Buhler. All rights reserved.

2 S. Timcheck, J. Buhler

A greater challenge lies in supporting streaming computations whose behav-
ior deviates from the above ideal. Deviations can occur in two ways. First, items
may not be processed identically; in particular, some stages of the pipeline may
produce a variable, data-dependent amount of output for each input item. Such
computations — which include all the examples cited above as well as appli-
cations in, e.g., particle simulation [2] and network packet processing [10] —
are said to exhibit irregular data flow, which complicates the lock-step execu-
tion model of a SIMD-parallel processor. Our prior work on the MERCATOR
system [5] describes a way to support such irregular computations on GPUs.

A second deviation, which is the subject of the present work, arises when
items in a stream cannot be processed independently; that is, the computation
is stateful. To avoid the need for full serialization, we focus on a common sce-
nario in which the input stream is divided into variably-sized regions. Items in
one region are processed independently of each other but in a common context.
For example, a stream of characters may be grouped into lines or network pack-
ets; a stream of edges in a graph may be grouped by their source vertex; or a
stream of measurements may be grouped by a common time window or event
trigger. Region boundaries are state-change events for the stream — items after
a boundary must be processed differently than items before it.

In this work, we investigate mechanisms to support streaming computations
with region-based contextual state on SIMD-parallel platforms. Our contribu-
tions are threefold. First, we describe a low-level mechanism for precise deliv-
ery of control signals between pipeline stages of a streaming application. This
mechanism, unlike those described in some prior work (e.g. [12]), supports irreg-
ular dataflow. Second, we use this mechanism to construct an abstraction, enu-
meration and aggregation, that lets application developers express region-based
contextual state as part of a streaming application. Finally, we implement our
designs in MERCATOR to investigate the performance implications of regional
context, exposing a SIMD-specific performance tradeoff between alternate ways
of implementing this behavior in applications. The two strategies we examine
trade off between SIMD occupancy and representation overhead.

The remainder of this paper is organized as follows. Section 2 describes the
application and architectural models in which we formulate our work and con-
siders related work in other streaming models. Section 3 describes our protocol
for synchronizing control signals with a data stream. Section 4 describes the
developer-facing abstraction of enumeration and aggregation, which we imple-
ment in terms of signals. Section 5 investigates the performance of our designs,
while Section 6 concludes and considers future work.

2 Background and Related Work

2.1 Application Model

A streaming application consists of a pipeline of compute nodes connected by
fixed-sized data queues. A node consumes a stream of data items from its input

Streaming Computations with Region-Based State on SIMD Architectures 3

queue and produces a stream of data items (perhaps of a different type) at
its output that are queued for processing by the next node downstream in the
pipeline. When a node is executed to consume one or more inputs, we say that the
node fires. Each input data item consumed by a node causes it to produce zero or
more outputs. The number of outputs may vary for each input consumed, up to
some node-dependent maximum, and is not known prior to execution. Figure 1a
shows a simple application pipeline with three nodes. While we mainly discuss
linear pipelines in this work, our contributions also apply to tree-structured
topologies like those in Figure 1b.

n1 n2 n3A

B

Fig. 1. (a) Streaming computation
pipeline with three compute nodes;
(b) Pipeline with a tree topology.

We do not consider DAG-structured
topologies because the semantics associated
with convergent edges are complex under ir-
regular dataflow, even in the absence of state-
ful execution [9]. Topologies with cycles have
clearer streaming semantics, but in the pres-
ence of irregularity, items in the stream can
be reordered if they take different numbers
of trips around a cycle. For such topologies,
Maintaining precisely ordered control bound-
aries in the stream requires aggressive reorder-
ing that is beyond the scope of this work.

An application is provided with an initial stream of inputs to its source node.
When the application executes, a global scheduler repeatedly chooses a node
with one or more pending inputs to fire. Because of our architectural mapping
below, we assume that only one node fires at a time and that a node cannot be
preempted while firing. The scheduler continues to select and fire nodes until no
node has any inputs remaining.

A signal is a control message generated by a node for consumption by its
downstream neighbor. When a node receives a signal it can change its state
and may also generate additional signals to the next node downstream. Signals
must be delivered precisely with respect to the stream of data items. Formally,
suppose we have two successive nodes n1 and n2 in a pipeline. If n1 emits a data
item d, followed by a signal s, followed by another data item d′, then n2 must
receive s after processing d but before processing d′.

2.2 Target Architecture and Mapping

Our work targets wide-SIMD multiprocessors. While many general-purpose pro-
cessors support SIMD instructions, we realize our designs on NVIDIA GPUs due
to their robust CUDA tool chain and their popularity as accelerators.

A GPU may be viewed as a collection of SIMD processors sharing a common
memory. Each processor has a fixed SIMD width w, which is the number of
concurrent SIMD lanes that it can execute2. SIMD lanes execute computations

2 We treat the CUDA block size as the effective SIMD width, ignoring CUDA’s vir-
tualization of an underlying, smaller width (the warp size).

4 S. Timcheck, J. Buhler

in lock-step; hence, divergent behavior such as nonuniform branches, or lack of
inputs to some SIMD lanes, causes some lanes to sit idle while others execute.

Mapping a streaming computational pipeline onto a GPU entails moving the
input stream from the host system to the GPU’s memory, executing a GPU
kernel to process the data through the pipeline, and finally transferring the
output stream back to the host. Our work focuses on efficient processing on the
GPU, rather than the orthogonal task of host/GPU data transfer.

GPU runtimes offer little support for interprocessor synchronization other
than via control transfer back to the host. To avoid excessive host-device control
overhead, we therefore instantiate the pipeline separately on each processor of
the GPU, then let all processors’ pipelines compete to consume data from a
common input stream. This approach requires atomic operations but no locking.
The GPU kernel does not return control to the host until the entire stream is
consumed. Each processor on the GPU independently implements the sequential,
non-preemptively scheduled computation described above. However, a node now
consumes not a single input per firing but rather a variably-sized ensemble of
inputs, up to the processor’s SIMD width, which are processed in parallel.

Our performance goal is to maximize throughput, or equivalently to minimize
time for the GPU to process an entire input stream. A secondary goal that
promotes high throughput is to maximize SIMD occupancy, the fraction of SIMD
lanes doing useful work at any step of the computation. In particular, we want
the sizes of ensembles presented to each node to achieve the full SIMD width.
However, we will show that region-based state can be in tension with the goal of
maximizing SIMD occupancy, creating a challenge for performance optimization.

2.3 Related work

Several systems and languages have been developed to express streaming dataflow
computations. One of the most influential such systems is StreamIt [11], which
implements the synchronous data flow (SDF) abstraction [8]. StreamIt assumes
a fixed number of outputs per input to a compute node. This assumption allows
StreamIt to offer a powerful abstraction, teleport messaging [12], in which signals
can flow both forward and backward in a pipeline. StreamIt can also schedule
a signal to be delivered to an arbitrary destination node at some precise future
time, rather than forcing the signal to flow through the pipeline.

Many capabilities of teleport messaging rely on the underlying SDF model. In
contrast, our model does not assume a fixed number of outputs per input and so
requires a different design to ensure precise signaling. Our work therefore extends
precise signaling capabilities from regular to irregular streaming applications.
Like StreamIt, we choose to send signals “out of band,” in our case via parallel
control edges, rather than attempt to enqueue them together with data items.

Other streaming systems, such as Ptolemy [6] and Auto-Pipe [4], support
a variety of dataflow semantics, including multiple, differently-typed dataflow
edges between a pair of nodes. This support is in principle sufficient to implement
a control channel for signals. However, except in restricted cases like SDF, the

Streaming Computations with Region-Based State on SIMD Architectures 5

systems do not specify how multiple channels between the same two nodes are
synchronized and so do not by themselves support precise signaling.

Our work is influenced by a control messaging protocol developed by Li
et al. [9]. That work, however, incurs additional complexity to support asyn-
chronous streaming dataflow and to impose well-defined semantics on conver-
gent dataflow edges in an DAG-structured irregular application. We preserve
their idea of a credit protocol for synchronizing data and control streams but
realize this idea in a way that is efficient for our target model and architecture.

The idea of processing part of a stream of items in a common context is simi-
lar to facilities present in Apache Spark [16]. Spark streams consist of a sequence
of RDDs [15], which are discrete data sets, processed as a unit, that may contain
multiple elements. Our abstraction supports some operations semantically sim-
ilar to Spark’s but realizes them in the context of a single wide-SIMD processor
rather than the multicore and distributed systems that Spark targets.

Other frameworks supporting streaming-like behavior, such as CnC-CUDA [7],
utilize an “in-band” approach with control collections that mix control and data
into a single stream. Control collections are analogous to our regions of items
with a common context. Their implementation requires a tag for each item to
track the region associated with it. In contrast, our implementation keeps region
boundaries synchronized with the data stream without the need for tagging. We
compare these two approaches in Section 5.

3 A Mechanism for Precise Signaling

In this section, we describe how to synchronize data and control signals between
two successive nodes in a streaming pipeline. The mechanism bears some simi-
larities to control flow in networking. We state the correctness properties of our
design but relegate their proofs to the appendix.

3.1 Credit Protocol for Synchronizing Signals

Let n1 and n2 be successive nodes in a pipeline, connected by data queue Q. We
add a separate, finite-sized signal queue S between the nodes, as in Figure 2a.
Data items are moved from n1 to n2 on Q, while signals are moved on S.

We must ensure that, although data and signals move on separate queues,
their movement is synchronized so as to ensure precise signal delivery. For this
purpose, we introduce a credit protocol between n1 and n2. Each signal created
by n1 is assigned an non-negative integer amount of credit, which is transmitted
along with the signal on S. Credit records a number of data items that n2 must
process before it can receive the signal.

When n1 emits a signal s, it uses two rules to set the credit associated with
s. (1) If no signal is currently queued on S, then s gets an amount of credit
equal to the number of data items queued on Q. (2) If one or more signals are
queued on S, let s′ be the signal at the tail of S. Then s gets an amount of credit
equal to the number of data items emitted by n1 since s′ was enqueued. Node

6 S. Timcheck, J. Buhler

n1 maintains a counter of emitted data items, which is reset each time it emits
a signal, that is used to implement the second rule.

The downstream node n2 maintains a current credit counter, initially set to
0, that tracks the number of items that can safely be consumed before processing
the next signal. Node n2 uses the following two rules to determine whether to
process data or a signal when it fires. (1) If no signal is queued on S, n2 may
freely consume any available data items on Q without regard to the counter.
Otherwise (i.e., a signal is queued on S), (2a) if the current credit counter is
non-zero, n2 may consume only a number of data items less than or equal to the
value of this counter, which is decremented once for each data item consumed.
(2b) If instead the current credit counter is 0, let s be the signal at the head
of queue S. If s carries more than 0 credit, that credit is removed from s and
added to the current credit counter. Otherwise, n2 consumes s.

Figure 2b illustrates how the credit carried in the signals and in the receiving
node’s credit counter synchronizes the two queues.

Lemma 1. A signal s emitted by n1 is received by n2 precisely when n2 has
consumed all data items emitted by n1 prior to s.

3.2 Scheduling Applications with Signals

A firing of a node n proceeds in two phases: a data phase and a signal phase. In
the data phase, n consumes as many queued data items as it can. The number
of items consumed is limited to the minimum of three values: the number of
queued items, the amount of space in n’s downstream queue, and (if a signal is
pending for n) the value of n’s current credit counter. Once n can consume no
more data, if its current credit counter is 0, it enters the signal phase, in which
it consumes as many queued signals as it can. Signal processing ends when no
queued signals remain, or when n’s current credit counter becomes > 0 (and
hence data must be consumed prior to the next queued signal).

A node is fireable if it has either data or a signal pending, and if there is
sufficient space in its output queue to hold any outputs from the firing. The
maximum number of output data items per input item is known a priori for
each node, so the scheduler can determine whether at least one data item can

n1 n2

Q

S

n1 n2

02

CCC=1
A B

Fig. 2. (a) Two nodes with data and signal queues Q and S between them; (b) A
possible state of the signal protocol, showing the credit associated with each signal
(lower edge) and the current credit counter (right). n2 may consume one data item
from Q before the first signal, then another two before the second signal.

Streaming Computations with Region-Based State on SIMD Architectures 7

be consumed given the available space on n’s downstream data queue. The max-
imum number of signals emitted per data item or signal input is also known
a priori, so a similar determination can be made given n’s downstream signal
queue. The scheduler repeatedly chooses some fireable node and fires it until no
node has queued data or signals remaining.

Lemma 2. Under the given firing/scheduling policy, an application pipeline al-
ways finishes execution in finite time and so cannot deadlock.

3.3 SIMD Extensions

The above description assumes that nodes process input data items one at a
time. However, on a SIMD-parallel processor, a node may process an ensemble of
multiple items at once. Because a signal updates the state of the receiving node,
we must ensure that items appearing before and after a signal in the stream are
not processed in the same input ensemble. Hence, if a signal is queued for a node,
the system must limit the size of the node’s input ensemble to the value of its
current credit counter. This requirement may adversely impact SIMD occupancy
if signals occur frequently; we study its impact in Section 5.

4 Regional Context via Enumeration and Aggregation

We now describe a developer-facing abstraction, enumeration and aggregation,
that allows application developers to describe streaming computations in which
regions of a stream must be processed in a common context. We have imple-
mented this abstraction as an extension to our MERCATOR system, building
on the work of the previous section.

Our abstraction assumes that regions of a stream with a common context are
represented as composite objects, similar to the RDDs of Apache Spark [16]. The
actual input provided to the application is a stream of such objects. Each object
may contain zero or more elements of a common data type. For example, an
object could be a line of text whose elements are characters, or a vertex whose
elements are its adjacent edges, or a list whose elements are numbers. Objects
may contain different numbers of elements.

At a given point in the application’s pipeline, the developer may choose to
“open” the stream of composite objects to create a stream of all their elements.
We call this opening process enumeration of the objects. The enumerated ele-
ment stream becomes the input to the next node in the pipeline. In this and
subsequent nodes, the developer may access the parent object that gave rise to
an input item to obtain context needed for its processing.

The opposite of enumeration is aggregation, which “closes” the context as-
sociated with a parent object. The developer may choose to emit a stream of
results derived from individual elements, stripped of their parent context, or
to aggregate values computed from the elements of each parent object (e.g. by
summing them) and emit a single result per parent. Either way, the stream of
results continues down the pipeline.

8 S. Timcheck, J. Buhler

4.1 Developer Interface

To make these ideas concrete, consider the simple application whose topology
is sketched in Figure 3. A stream of objects of type Blob, each containing a
collection of numbers, flows from the source node. The Blobs’ elements are enu-
merated, and node f does some computation on each number in the element
stream, producing a (possibly shorter) output stream of numbers. These results
are passed to node a, which sums the results from each Blob and sends a stream
of per-Blob sums to a sink node.

src f a snk

en
u
m
e
ra
te

aggregate

Fig. 3. A pipeline with enumera-
tion and aggregation. The compu-
tation enumerates composite ob-
jects drawn from an input source,
acts on their elements with a filter-
ing node f , aggregates the filtered
values in an accumulator node a,
and writes the accumulated value
from each object to an output sink.

The listing of Figure 4 specifies the ap-
plication’s topology. For each node, we spec-
ify the types of its input and output streams.
The enumerate keyword at the input to node
f indicates that Blobs are to be enumerated
starting there; subsequent data types in the
enumeration region of the pipeline are labeled
from Blob, indicating that items are to be
processed in the context of their parent Blobs.
Aggregation occurs at the output of node a,
where the aggregate keyword indicates that
a produces (up to) one double value per par-
ent object rather than per element.

Figure 5 shows code to implement the ap-
plication. For each node, there is a run() func-
tion that processes items in the node’s input

stream. Output from a node is generated via the push() function; because the
application is irregular, not every input might produce an output.

The listing shows several functions specific to enumeration and aggregation.
findCount() is called once per parent object to determine how many elements
it contains. The begin() and end() functions, which may be defined for each
node receiving enumerated inputs, are executed before and after the region of
the stream associated with each parent object, respectively. The parent object
associated with a node’s current input is accessible via getParent().

Enumeration produces a stream of sequential indices of elements in each
parent object. However, the application developer is responsible for providing
code to extract the elements from an object. This design allows MERCATOR
to remain ignorant of how objects are organized internally.

4.2 Implementation

The MERCATOR system takes in an application topology, as shown in Figure 4,
and produces stubs for all the functions shown in Figure 5. The user then fills
in the function bodies with the actual code of the application.

We note that the code shown is CUDA, not C++; hence, the run() functions
are actually called not with a single input but with a SIMD ensemble of items in
multiple threads, which execute the function body in parallel for each item. (The

Streaming Computations with Region-Based State on SIMD Architectures 9

Node s r c : Source<Blob>;
Node f : enumerate Blob −>

f l o a t from Blob ;
Node a : f l o a t from Blob −>

aggregate double ;
Node snk : Sink<double >;

Edges s r c −> f −> a −> snk ;

Fig. 4. Application topology spec-
ification illustrating enumeration
and aggregation.

void enumForF : : f indCount (Blob ∗b)
{ re turn b−>nElements () ; }

void f : : run (i n t i)
{

Blob∗ b = getParent () ;
f l o a t v = b−>getItem (i) ;
i f (isGood (v)) push (3 . 14 ∗ v) ;

}

void a : : begin (Blob ∗b) { acc =0.0; }
void a : : run (f l o a t v) { acc+=v ; }
void a : : end (Blob ∗b) { push (acc) ; }

Fig. 5. Application code, with stubs gener-
ated from topology and developer-supplied
function bodies.

accumulation in node a would in practice be implemented atomically or with
a SIMD-parallel reduction.) MERCATOR provides the runtime infrastructure
needed to transfer data from one node to the next and to schedule nodes.

The signaling mechanism of the previous section is key to enabling enumera-
tion and aggregation. At the point of enumeration, the runtime generates a data
stream of element indices together with signals indicating the start and end of
each parent object’s elements. Downstream nodes intercept these signals in order
to update their current parent object and to call the begin() and end() stubs
at the right times. Because data before and after a signal is never processed
in the same SIMD ensemble, operations on different parent objects’ elements
always happen in separate calls to a node’s run() function, and the result of
getParent() is the same for all items in an ensemble.

5 Results

We implemented both our precise signaling infrastructure and the enumeration
and aggregation abstraction as extensions to our MERCATOR framework and
studied their performance on several benchmark computations. All experiments
were conducted on an NVIDIA GTX 1080Ti GPU (28 processors), using as many
active blocks as could fit on the device and a SIMD width of 128 threads per
block. Code was compiled using CUDA v10 under Linux. The abstraction penalty
of the new features was verified to be negligible in MERCATOR applications that
do not use them.

Cost of Regional Context Abstraction To characterize the performance impact
of regional context, we began with two simple benchmark computations. Each
benchmark operates on a large array of integers in GPU memory, and each
divides this array into a series of regions. The computation enumerates each
region, sums its elements, and produces a stream of per-region sums. In the first

10 S. Timcheck, J. Buhler

256
512

768
1024

1280
1536

1792
2048

10

20

30

40

Region Size

E
x
ec

u
ti

o
n

T
im

e
(s

)

Fig. 6. Execution time vs. region size
for sum app with fixed-size regions.

256
512

768
1024

1280
1536

1792
2048

20

40

60

80

100

Max Region Size

E
x
ec

u
ti

o
n

T
im

e
(s

)

Fig. 7. Execution time vs. max region size
for sum app with variable regions.

benchmark, the regions are of uniform size; in the second, the size of each region
is chosen uniformly at random between 0 and a specified maximum.

Figures 6 and 7 show the time to process an array of 512 million integers
in each benchmark as a function of the region size (fixed in the first figure,
maximum in the second). Focusing first on the test with fixed-sized regions, we
see that execution time decreases sharply as the region size grows from 32 to
the SIMD width of 128, then decreases more gradually for larger sizes. This
decrease reflects the lower frequency of region boundary signals relative to the
data stream as the region size increases. For region sizes on the order of several
hundred of elements or more, the abstraction overhead is small relative to the
total cost of execution.

A second phenomenon observable in Figure 6 is that the overhead incurred
by region boundaries changes non-monotonically with region size. In particular,
overhead is locally minimized for region sizes equal to a multiple of the SIMD
width and then jumps sharply for slightly larger sizes. This behavior reflects the
impact of region boundaries on SIMD occupancy. Recall that signals prevent
elements in two regions from being combined in the same SIMD ensemble, which
is required to ensure that each element contributes only to its own region’s sum.
Region sizes that do not evenly divide the SIMD width therefore require that
nodes run with non-full input ensembles at least once per region. This loss of
SIMD occupancy appears as reduced application throughput. For region sizes
less than the SIMD width, every ensemble becomes non-full, which explains the
large performance impacts seen at region sizes below 128.

Figure 7 shows a much-reduced impact of small size variations on through-
put. Unlike the previous benchmark, but more typically of real-world irregular
applications, the region size is not fixed. The sharp peaks of reduced throughput
for worst-case region sizes are therefore smoothed out, but the dominant effect
remains: larger region sizes incur less abstraction overhead.

Comparison of Mechanisms for Communicating Context For our second experi-
ment, we implemented a real-world application taken from the DIBS benchmark

Streaming Computations with Region-Based State on SIMD Architectures 11

set [3], a suite of applications representative of data integration workloads. The
application, which DIBS calls tstcsv->csv but we refer to hereafter as “taxi,”
processes a sequence of lines of text, each of which contains a tag, a variable-
length list of GPS locations specified as real-valued coordinate pairs, and other
data. The goal is to parse each coordinate pair, swap the elements of the pair,
and emit the pair together with the tag corresponding to its source line.

Our initial implementation of the taxi application operates on the raw text
in GPU memory. It takes as input a stream of line start indices and line lengths.
For each line, the first stage of the application enumerates the line’s individual
characters as a stream, checks them in parallel, and retains only those character
positions (identified by an open-brace character) that likely mark the start of a
coordinate pair. The second stage verifies, again in parallel, that each open-brace
indeed marks a coordinate pair and, if so, parses the pair’s coordinates. Each
line’s tag is parsed once when the line is first enumerated and is then used to
mark each parsed coordinate pair for that line.

The first series of Figure 8 (square points) shows the execution time of the taxi
app as a function of its input size. Larger file sizes were obtained by replicating
the input file from DIBS multiple times. Mindful of the relationship between
abstraction penalty and region size, we then investigated how the input data in
the taxi app determined SIMD occupancy. Input lines have an average length of
1397 characters, so regions corresponding to each line in the stage 1 are large,
and the penalty to occupancy is expected to be low. In contrast, lines contain
on average only 45 coordinate pairs, less than the SIMD width, and so would be
expected to incur a large penalty to occupancy in stage 2, whose region size is
determined by the number of pairs per line. Indeed, we found that stage 1 was
fired with full SIMD ensembles 91% of the time, while stage 2 had full ensembles
only 9% of the time.

When regional context changes frequently relative to the SIMD width, the oc-
cupancy cost to performance of our implementation may exceed the cost (mainly
extra memory accesses) of replicating this context along with every data item.
We therefore developed a second version of the taxi app that used enumera-
tion to provide context in stage 1 but explicitly marked each open-brace with
its line’s tag before sending it to stage 2. The latter stage does not utilize the
enumeration abstraction and so can process items from multiple lines in one en-
semble, achieving essentially full SIMD occupancy. The second series in Figure 8
(triangular points) shows that improved occupancy results in lower total execu-
tion time. However, using the same strategy to tag each character of each line in
stage 1, while it slightly improves occupancy by avoiding enumeration entirely,
incurs substantially more overhead due to the much greater number of elements
to be tagged per region. The third series (x points) shows that, at the largest
input size tested, a pure tagging implementation is roughly 30% slower than one
that judiciously uses either tagging or our design as appropriate for each stage.

We conclude that the best way to provide regional context to streaming ap-
plications on a SIMD architecture depends strongly on the performance tradeoff
between reduced SIMD occupancy and reduced representation overhead. Each

12 S. Timcheck, J. Buhler

437
864

1.69K
3.38K

6.75K
13.5K

27K
54K

108K
216K

432K
864K

1728K

2

4

6

8

10

Input size (Kilobytes)

E
x
ec

u
ti

o
n

T
im

e
(s

)

Both stages enumerated

Stage 1 enumerated

Neither stage enumerated

Fig. 8. Execution time vs input size for three versions of the taxi app.

stage of a pipeline may represent a different point in this tradeoff, and the
highest-performing implementation (dense or sparse) for regional context may
therefore vary between stages. Ultimately, this choice should be made transpar-
ently to the application developer based on profile-guided feedback.

6 Conclusion and Future Work

We have described an abstraction, enumeration and aggregation, to support
stateful streaming computation based on regional contexts. We presented an im-
plementation of this abstraction for irregular streaming computations on SIMD-
parallel architectures such as GPUs. Our abstraction relies on a sparse imple-
mentation of precise signal delivery between computational stages.

We characterized the cost of the abstraction on benchmark computations
and demonstrated that the best strategy for realizing it may depend on the
relationship between region size and the architecture’s SIMD width. Future work
will include more careful modeling and/or empirical measurement of the costs
of alternative implementations, with an eye toward allowing the MERCATOR
runtime to transparently choose between strategies based on the typical number
of elements per region.

Another direction for future work will investigate how to lower the abstrac-
tion penalty of precise signaling for SIMD occupancy. When the effects of a signal
on a node’s state are limited and well-defined (e.g. changing the parent object
pointer), the node may be able to compute the correct state (pre- or post-signal)
to expose to the item in each SIMD lane separately. Computing the correct state
per item in each node, rather than storing it with items in the queues between
nodes, would offer the same efficient representation of state as in our design
while eliminating signals’ cost to SIMD occupancy.

Streaming Computations with Region-Based State on SIMD Architectures 13

Acknowledgments

This work was supported by NSF CISE awards CNS-1763503 and CNS-1500173.

References

1. Altschul, S., Gish, W., Miller, W., Myers, E., Lipman, D.: Basic local alignment
search tool. J. Molecular Biology 215(3), 403–10 (1990)

2. Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature
324(6096), 446 (1986)

3. Cabrera, A.M., Faber, C.J., Cepeda, K., Derber, R., Epstein, C., Zheng, J., Cytron,
R.K., Chamberlain, R.D.: DIBS: A data integration benchmark suite. In: 2018
ACM/SPEC Int’l Conf. Performance Engineering. pp. 25–28 (2018)

4. Chamberlain, R., Franklin, M., Tyson, E., Buckley, J., et al.: Auto-Pipe: streaming
applications on architecturally diverse systems. Computer 43(3), 42–49 (2010)

5. Cole, S., Buhler, J.: MERCATOR: A GPGPU framework for irregular streaming
applications. In: 2017 Int’l Conf. High Performance Computing and Simulation.
pp. 727–36 (2017)

6. Eker, J., Janneck, J., Lee, E.A., Liu, J., Ludvig, J., Sachs, S., , Xiong, Y.: Taming
heterogeneity - the Ptolemy approach. Proc. IEEE 91(1), 127–44 (2003)

7. Grossman, M., Simion Sb̂ırlea, A., Budimlić, Z., Sarkar, V.: CnC-CUDA: Declar-
ative programming for GPUs. In: Cooper, K., Mellor-Crummey, J., Sarkar, V.
(eds.) Languages and Compilers for Parallel Computing. pp. 230–245. Springer
Berlin (2011)

8. Lee, E., Messerschmitt, D.: Synchronous data flow. Proc. IEEE 75(9), 1235––245
(1987)

9. Li, P., Agrawal, K., Buhler, J., Chamberlain, R.: Orchestrating safe streaming com-
putations with precise control. In: 4th Int’l Workshop on Extreme Scale Computing
Application Enablement - Modeling and Tools. pp. 1017–22 (2014)

10. Roesch, M., et al.: Snort: Lightweight intrusion detection for networks. In: Proc.
13th Systems Administration Conf. (LISA). pp. 229–238 (1999)

11. Thies, W., Karczmarek, M., Amaransinghe, S.: StreamIt: A language for streaming
applications. In: 11th Int’l Conf. Compiler Construction. pp. 179–96 (2002)

12. Thies, W., Karczmarek, M., Sermulins, J., Rabbah, R., Amaransinghe, S.: Tele-
port messaging for distributed stream programs. In: 10th ACM SIGPLAN Symp.
Principles and Practice of Parallel Programming. pp. 224–35 (2005)

13. Tyson, E., Buckley, J., Franklin, M., Chamberlain, R.D.: Acceleration of atmo-
spheric Cherenkov telescope signal processing to real-time speed with the Auto-
Pipe design system. Nuclear Instruments and Methods in Physics Research Sec. A:
Accelerators, Spectrometers, Detectors and Associated Equipment 595(2), 474–9
(2008)

14. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple fea-
tures. In: Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition
(2001)

15. Zaharia, M., Chowdhury, M., Das, T., Dave, A., et al.: Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster computing. In: 9th
USENIX Conf. Networked Systems Design and Implementation. p. 2 (2012)

16. Zaharia, M., Xin, R., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X.,
Rosen, J., Venkataraman, S., Franklin, M., Ghodsi, A., Gonzalez, J., Shenker, S.,
Stoica, I.: Apache Spark: a unified engine for big data processing. Communications
of the ACM 59(11), 56–65 (2016)

14 S. Timcheck, J. Buhler

7 Appendix: Proofs Omitted in Text

7.1 Proof of Lemma 1

Proof. We proceed by induction on the number of signals already on the signal
queue S when s is emitted.

Suppose S is empty when n1 emits s. All items emitted by n1 prior to s
either have been consumed by n2 or are present on Q. The protocol assigns s
an amount of credit equal to the size of Q. This amount is then added to n2’s
current credit counter, which was previously 0. Finally, n2 consumes s precisely
when its current credit counter returns to 0, which happens once n2 consumes
the items that were present on Q when s was emitted.

Now suppose s is emitted when S is not empty. s receives a number of credits
equal to the number of items added to Q since the prior signal s′. We know
inductively that n2 consumes s′ precisely when all data items emitted prior to s′

have been consumed. At this point, the only items on Q must be those emitted
after s′ but before s, and n2’s current credit counter is 0 since it just consumed a
signal. Conclude that n2 will transfer the credit in s to its current credit counter
and will then consume exactly those data items emitted after s′ but before s
before it consumes s itself.

7.2 Proof of Lemma 2

Proof. Our proof of deadlock-freedom relies on the following two claims.

Claim. A node cannot have a current credit counter > 0 without a pending data
item.

Proof of claim: Suppose that a node’s current credit counter is > 0. The
credit in the current counter was transferred from the signal s currently at the
head of the signal queue; it cannot remain from prior signals because the node
did not even check for s until its current credit counter last became 0. Hence,
this credit was assigned to s to cover data items that were enqueued at the time
that s was issued. Since not all credit has yet been consumed, at least one of
these items is still enqueued.

Claim. If a node n has either pending data or a pending signal, one of the
following holds: (1) n can consume a data item; (2) n can consume a signal; (3)
n is blocked due to insufficient space in its downstream queues.

Proof of claim: The node either has credit or not. If it has credit, then
by the previous claim it has pending data that can be consumed. If it has no
credit but has a pending signal, then either the signal can be consumed, or
credit can be transferred from the signal; in the latter case, there must again be
data corresponding to this credit. If there is no credit and no pending signal,
then there must be pending data, which can be consumed without credit in the
absence of pending signals. In all cases, the node can consume some input unless
its downstream queues lack sufficient space.

Streaming Computations with Region-Based State on SIMD Architectures 15

We now proceed to prove the original lemma. If any node in the pipeline has
pending data or a signal, then let n be the last such node. Either n’s downstream
queues are empty (else its successor would have pending data or signals), or n
has no successor, i.e., it is the last node in the pipeline, which has unbounded
output space and cannot block. Hence, node n is not blocked on its downstream
queues and so, by the second claim, can be fired to consume input.

We conclude that the application terminates only when all nodes have ex-
hausted their inputs.

	Streaming Computations with Region-Based State on SIMD Architectures
	Introduction
	Background and Related Work
	A Mechanism for Precise Signaling
	Regional Context via Enumeration and Aggregation
	Results
	Conclusion and Future Work
	Appendix: Proofs Omitted in Text

