Multi-spectral Reuse Distance: Divining Spatial
Information from Temporal Data

Anthony M. Cabrera
Roger D. Chamberlain
Jonathan C. Beard

Anthony M. Cabrera, Roger D. Chamberlain, and Jonathan C. Beard, “Multi-
spectral Reuse Distance: Divining Spatial Information from Temporal Data,”
in Proc. of IEEE High-Performance Extreme Computing Conference
(HPEC), September 2019. DOI: 10.1109/HPEC.2019.8916398

Dept. of Computer Science and Engineering
Washington University in St. Louis

Arm Research
Austin, Texas

Multi-spectral Reuse Distance: Divining Spatial
Information from Temporal Data

Anthony M. Cabrera**, Roger D. Chamberlain*, and Jonathan C. Beard®
*Dept. of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
{acabrera,roger} @wustl.edu
T Arm Research, Austin, TX, USA
jonathan.beard @arm.com

Abstract—The problem of efficiently feeding processing ele-
ments and finding ways to reduce data movement is pervasive in
computing. Efficient modeling of both temporal and spatial local-
ity of memory references is invaluable in identifying superfluous
data movement in a given application.

To this end, we present a new way to infer both spatial
and temporal locality using reuse distance analysis. This is
accomplished by performing reuse distance analysis at different
data block granularities: specifically, 64B, 4KiB, and 2MiB sizes.
This process of simultaneously observing reuse distance with
multiple granularities is called multi-spectral reuse distance. This
approach allows for a qualitative analysis of spatial locality,
through observing the shifting of mass in an application’s reuse
signature at different granularities. Furthermore, the shift of
mass is empirically measured by calculating the Earth Mover’s
Distance between reuse signatures of an application.

From the characterization, it is possible to determine how
spatially dense the memory references of an application are based
on the degree to which the mass has shifted (or not shifted)
and how close (or far) the Earth Mover’s Distance is to zero
as the data block granularity is increased. It is also possible
to determine an appropriate page size from this information,
and whether or not a given page is being fully utilized. From
the applications profiled, it is observed that not all applications
will benefit from having a larger page size. Additionally, larger
data block granularities subsuming smaller ones suggest that
larger pages will allow for more spatial locality exploitation, but
examining the memory footprint will show whether those larger
pages are fully utilized or not.

[. INTRODUCTION

At present, data movement is far more expensive than
compute (i.e., an off-chip DRAM access will use 1000x more
energy, comparatively, than the 64-bit floating-point multiply-
add that results from it when calculated using a 28nm process
node [8], [16]). It follows that superfluous data movement
should be reduced as much as possible as a means to improve
system efficiency. Efficiently modeling the spatial and tem-
poral locality of data has a direct impact on multiple facets
of the data movement problem [18]. This includes optimal
page sizing, data to memory technology placement, data page
prefetching (related to placement) [27], [36], and when (and
where) to use various forms of data gather/scatter. This work
makes two primary contributions. First we demonstrate how

{This work was performed while on internship at Arm Research in Austin,
TX,USA.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

to use a well known statistical technique (Earth Mover’s
Distance) in a novel way to inform the relationship between
spatial and temporal locality. Second, we show empirically
the application of our method using a set of industry standard
benchmarks and how multi-spectral reuse distance analysis can
inform various facets of memory management.

Page sizing is often not associated with changes in data
movement, though it should be. Whether using a disk con-
troller or the main central processing unit, when data is
paged-out and new data paged-in, all the contents of that
page must be written to persistent storage if modified. That
write-back and subsequent reloading with a new 4KiB page
requires 128-256b coherence bus transactions for just one
direction of movement (e.g., controller to physical DRAM).
If that page isn’t fully utilized once it is moved, then much
of that data movement is likely wasted. Consider the case
when a 2MiB page is loaded to DRAM but only half of
the page is used before that physical memory is needed for
another application. We will potentially have wasted 2! bus
transactions for loading the page, and another 2'° transactions
(only considering wastage for the portion of the page that was
not used, the full page would take 2'® bus transactions with a
256b bus). Even when the core is not actively participating in
the transfer, cache line tag RAMs will be accessed, as will
snoop/directory filters within the cache coherence network.
Every access for superfluous data movement is an access taken
away from useful data movement. Choosing the correct size
of page is also important for copy-on-write memory systems
(which most modern operating systems implement). If super
(huge) pages are chosen where page utilization is low, much
additional data must be copied. For example, any time a write
to a child page (the virtual page pointing to a parent original
page) occurs, the entire contents of that page must be copied.
Simply choosing a smaller page would have been desirable.
The model described in this paper could be used for online
prediction for page size based on actual spatial/temporal reuse
patterns, potentially with relatively low overhead.

Modern computer systems often integrate multiple memory
technologies into a computer system. As an example, some
GPGPU devices incorporate static random-access memory
(SRAM), high bandwidth memory (HBM), and nonvolatile
memory (NVM) all within the same device, and often byte

addressable. The decision on where to place data within
this physical memory space has direct system performance
implications. Placing data on an HBM device provides very
high bandwidth but intermediate latency, whereas placing data
in an SRAM scratchpad could provide very low latency and
high bandwidth at the expense of lower capacities (relative
to other options such as NVM). Current industry practice for
placing data on these memories is either to do it manually (user
driven) or to treat the memory as a cache with some suitable
replacement policy. The model described in this paper could be
used to determine dynamically what granularity page should
be used and if a predictor would be effective. Our model could
do this by simplifying complex patterns, which is a side effect
of the multi-spectral reuse distance approach (i.e., patterns
often are easier to determine at a larger granularity versus
small). Evidence presented within this work suggests that by
using larger pages, the page placement prediction policy would
be easier to derive due to the coarser granularity. Our model
could be used as a means to decide between a caching policy
or a prediction counter policy that would attempt to proactively
fetch the next page.

Tightly related to data and memory technology placement is
the choice of where to gather or scatter (and also compress and
decompress) data. Currently the best way to decide is through
extensive offline profiling on the target system. Evidence
suggests that future systems will be equipped with DMA-like
gather/scatter engines at multiple locations within the memory
hierarchy [1], [22]. Just like the data placement decision and
page sizing decisions previously mentioned, gathering data at
the network interface controller (NIC) or NVM versus bringing
all the data into the coherence network can pay dividends
for efficiency [11]. If a system is equipped with multiple
gather/scatter units, how is the system to choose between
gathering at one location or another? If a reorganization
function exists (provided by either the user or compiler), then
using the spatial and temporal locality data provided through
our described model a system could decide based on a heuristic
if less data movement and tighter spatial locality could be
gleaned from data reorganization.

II. RELATED WORK

Characterization of both temporal and spatial locality has a
long history [10]. Metrics from the literature include [7], [13],
[171, [19], [32], [33], [34], [37].

Reuse distance—defined initially by Mattson et al. [23] as
stack distance—is frequently used as a measure of temporal
locality. For example, Weinberg et al. [38] define a temporal
locality measure that is the area under the reuse distance
curve, with the reuse distance expressed using a log scale. This
formulation has been used for the characterization of various
benchmarks [5], [6], [26], [29], [35]. Reuse distance has been
compared with spatial locality by previous authors [12], [39].
All of these authors owe the gestalt of their works to the
observations of Spirn and Denning [34] who made some of
the earliest observations of program locality. Gu et al. [12]
observed reuse distance to be a measure of both temporal

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

and spatial locality. They used reuse distance as a measure
of spatial locality as we do, by altering the granularity of
the data block size. They reason that varying the block size
leaves temporal locality unchanged, so distinctions between
two block sizes are due to spatial locality. These authors
also propose a spatial locality score SLQ. Gupta et al. [13]
propose a statistical model based on the idea of “near-future
windows sizes.” In contrast to this work, our methodology
uses Earth Mover’s Distance (EMD) [30] to provide a metric
that gauges spatial locality when moving histograms of multi-
spectral temporal reuse data.

While the approach we espouse is driven by empirical
data, others have taken a more theoretical approach, using
the cache oblivious model to determine data locality [31]
and graph theoretic approaches (interval graphs) [3]. These
methods are complex, requiring (in the case of the graph
approach of [3]) the search for multiple cliques over the entire
stream of allocations and accesses of a program. Where these
methods are intended to inform cache behavior, our methods
are intended to be more general. We intend to be approximate;
we feel that for many cases in real world decisions, a good
fast answer is far better than a too-late exact answer.

Within this work, we make the claim that prefetching of
data is a difficult problem. Mittal [24] provides an excellent
overview of contemporary prefetching methods and results.
Plainly speaking, the dynamic random access main memory
(DRAM) of modern computers is yet another level of cache,
managed by the operating system. This DRAM can be com-
posed of many different types of memory technology, as well
as having NUMA [20] characteristics. The authors make no
claims of use directly as a model for prefetching, however, the
proposed modeling methodology could be used to determine
the optimal granularity of prefetch (in the case of memory
systems) and also on the selection of cost function to drive
the control process. Granularity of statistical prediction has
a well known relationship with a prediction’s accuracy [25]
(e.g., very detailed predictions with more degrees of freedom
often have more uncertainty) and we make no claim to this
relationship, but we do hope that this method provides a means
to more optimally use coarse grained prediction effectively
(through better page sizing). The problem of data placement
within a tiered and NUMA system is by no means new, and
heavily related to data to disk optimization problems solved
as examples in [21].

III. METHODS

A. Benchmark Applications

The applications used in this work are a subset of the
SPEC2006 benchmark suite [14]. However, profiling the en-
tirety of a given benchmark proved too prohibitive. Generating
reuse data for any application compiled with the -size=train
option (i.e., the largest input size option) took several hours in
the worst case. In the case of the 433.milc benchmark compiled
with the -size=ref option, the instrumented application took
26 days to complete. Thus, functions within this subset that

Reuse Distance Count
1 1
' 2 2

(a) (b) ()

abcaach

Fig. 1. (a) Reference trace. (b) Reuse distance stack. (c) Reuse distance
histogram.

have been shown to take a large share of the total execu-
tion time [28] were characterized. Additionally, the MEGA-
STREAM benchmark [9], is used to demonstrate behavior of
codes with very high memory access to computation ratios
(itself derived from stencil computations).

Trying to save the traces of instrumented functions of the
applications for post-processing also proved to be problematic
because traces easily exceeded terabytes in size. Sampling
reuse distances was also a possibility, but we did not want
to risk aliasing a reuse distance pattern or miss unique cache
line accesses. Thus, the characterization has been limited to 1
trillion references while the target function was executing.

B. Reuse Distance

In a trace of memory references, given a unique reference,
its reuse distance is the number of unique references that
are made before it is referenced again. Traditionally, memory
references take on a cache line (64B) granularity. To calculate
reuse distances for an application, a stack is employed to
maintain ordering of the memory references as they are en-
countered. The most recently used memory reference is always
at the head of the stack. There are two main operations of the
reuse distance stack: encountering either new or previously
seen memory references. A memory reference is added to
the stack if it has not been seen during execution. When a
memory reference has been encountered before, its index in
the stack is isolated and the distance between its index and
the head of the stack becomes the reuse distance. This reuse
distance is the index into a histogram that keeps track of how
many elements have a particular reuse distance. Reuse distance
analysis was performed by dynamically instrumenting loads
and stores using the drcachesim tool of DynamoRIO [4].

An example of calculating reuse distance is shown in
Figure 1. The end result of the reuse distance analysis, i.e.,
the reuse distance stack in Figure 1(b) and histogram in
Figure 1(c), is shown after processing the reference trace
in Figure 1(a). Exploring the memory reference named a, it
contributes to the reuse distance histogram as follows: the first
time it is seen, it is added to the stack. The second time it is
encountered, its reuse distance is calculated to be 2, and the
reuse distance is O when it seen for the third time.

A reuse distance signature is the probability mass function
(PMF) for the reuse distances of a given application across a
range of bins. In this work, the bins represent groupings of
reuse distances on a logarithmic scale.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Reuse distance analysis has traditionally been performed
at cache line granularities, i.e., data blocks are set to 64B.
However, our particular method uses multi-spectral reuse
distance, which is to say that we sample reuse distance at
64B, 4KiB, and 2MiB. The 'multi-spectral’ character of our
methodology is what enables us to yield additional spatial
locality information.

C. Earth Mover’s Distance

Earth Mover’s Distance (EMD) is a metric described by
Rubner et al. [30] that quantifies the similarity of two his-
tograms by finding the minimum amount of work necessary to
transform the mass of one histogram into the other. In keeping
with the spirit of the nomenclature, the two histograms can
intuitively be viewed as a supplier and consumer of dirt (mass)
that make up the two disjoint sets of a complete bipartite
graph with weighted edges. The nodes of the supplier set can
be viewed as piles of dirt, where the amount of earth in the
pile corresponds to the value of that bin. The nodes of the
consumer set can be regarded as holes, where the depth of
each hole corresponds to the value of that bin. The weights
are the distances between a given pile and hole. The amount
of work to fill a given hole with dirt from a given pile is a
function of the amount of dirt to be moved from the pile to
the hole and the ground distance between the two.

More formally, bins are formed by grouping reuse distances
into ranges of exponentially increasing reuse distances, with
the exception of the first bin which has a range of [0,4). The
bins used in this work can be observed as the labels of the
x-axis in Figure 2. Mass is the value of a given bin of a reuse
signature. Ground distances refer to the distance between the
indices of the supplier and consumer bin. Though bin ranges
grow exponentially, their indices are linear (e.g., bin with range
[0,4) has index 0, bin with range [4, 8) has index 1, bin with
range [8, 16) has index 2). As an example of ground distance
in the context of EMD, the distance between bin [0,4) in one
histogram and bin [32, 64) in the other histogram would be:

abs(index([0,4)) —index([32, 64)))=abs(4—-0)
—4

The amount of mass located at each bin is defined by X =
T1,...,xpand Y =1yy,...,y,, for the supplier and consumer
distributions, respectively.

From this, EMD can be solved for by applying polynomial
time linear programming methods [30] to minimize the fol-
lowing equation:

EMD = Zz.fijcij (h
=1 j=1

where c¢;; is the distance (cost) of moving mass from bin ¢ to
bin j and f;; is the amount moved from bin ¢ to bin j.

The minimization of EMD is subject to the following

constraints:

fij =0 2)
n
Y fiy=wi wmeX 3)
j=1
n
Y fi=v yEY)
i=1

In our case, we quantify the similarity between reuse
distance signatures X and Y (e.g., reuse distance signatures
for 64KiB and 4KiB granules), where f;; is the amount of
mass that will be moved from bin x; to y; and the cost of
moving that mass is defined by c¢;;. The amount of mass in
both X and Y is normalized to 1, and our cost function is
simply the difference between the given indices, i.e.,

Cij = j —1
D. Memory Footprint

The memory footprint is derived from the final state of the
reuse distance stack after performing reuse distance analysis
at a given data block granularity. For each granularity, the
memory footprint is calculated as follows:

Sblock_granulam’ty X Nunique_blocks (5)

where Shiock_granularity 18 the size of the granularity used for
reuse distance analysis and Nypique_blocks 15 the number of
unique data blocks accessed at that granularity. Calculating
the memory footprint yields a measure of how much data
(in bytes) is paged in for the profiled application’s region of
interest.

As an example, consider the final state of the reuse distance
stack in Figure 1(b). If we assume that the granularity of each
block is 2MiB,

Sblock_granularity =2M1iB

Nunique_block:s =3
Memory Footprint = 6MiB

This calculation shows that 6MiB of data were paged when
profiled in a given region of interest.

IV. RESULTS AND DISCUSSION

The reuse signatures for each benchmark are shown in
Figure 2. Isolating any one granularity shows typical tem-
poral locality information such as how a particular memory
subsystem will handle the memory reference access pattern
of a given application (e.g., how many off-chip memory
references to expect based on the PMF past the capacity of the
last-level cache). Analyzing the reuse signatures of different
granularities (a.k.a., multi-spectral reuse distance) provides
valuable insight on the spatial locality of an application.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

A. Spatially Dense Memory Accesses

When comparing the different signatures, there are two
prototypical behaviors as the granularity of the reuse distance
analysis is increased.

The first is the shift of mass in the PMF towards the bins of
shorter reuse distances. An example of this is the result from
464 .h264ref —— 2719 in Figure 2. When the granularity
is 64B, almost a third of all memory references exhibit reuse
distances greater than or equal to 8. At the 4KiB granularity,
all memory references exhibit reuse distances no greater than
16. In the 2MiB case, virtually all reuse occurs within a reuse
distance of 3.

The second behavior is the shape of the PMF remaining
largely the same as the granularity is increased. There are two
manifestations of this behavior. One is when the mass of each
of the reuse signatures are contained mostly in the first bin.
The result from 450.soplex —-— 930 in Figure 2 shows
almost identical reuse signatures for all 3 granularities, where
90% of the memory references happen within a reuse distance
of 3 when the granularity is 64B, and 100% for 4KiB and
2MiB. The other manifestation is shown in the result from
from 4x0.mega_stream. For the 64B granularity, 70% of
the PMFs mass is located in the [4,8) bin. While increasing
the granularity to both 4KiB and 2MiB captures some of the
mass to the right of this bin in the 64B case, the shape of the
distribution remains largely unchanged.

The shifting (or not) of the PMF from higher to lower reuse
distances bins as the granularity increases serves as a measure
for how spatially dense the memory references are. A shift is
indicative of memory references that reside on different data
blocks at one granularity but reside on the same data block at
a larger granularity. For example, refer back to the example
reference trace in Section III-B and assume the granularity to
be 64B. If references a, b, and ¢ all reside on the same 4KiB
data block, then when the reuse distance analysis is conducted
at 4KiB granularity, then the reuse distance becomes 0 for all
references. This is because the 64B data blocks that a, b, and
c resided on were subsumed by the same 4KiB block. This is
representative of the first prototypical behavior. If references
a, b, and c reside on different 4KiB data blocks, then the reuse
distances remain the same because they will not be subsumed
by the same 4KiB block. Thus, we are able to observe the
spatial locality for memory references by performing reuse
distance analysis at different granularities.

1) Directionality of Mass Shift: Additionally, it is possible
to formally prove the directionality of the mass shift that
occurs when comparing the reuse signature of a smaller
granularity to a larger one. In general, if we view the virtual
address space of a process divorced from the physical address
space underlying it, then we can view it as a contiguous
space A. Realistically this space has a natural range from
0 to (264 — 1) for most 64-bit architectures. Calculating the
reuse distance as previously defined in Section III-B, with a
single bin size of A would result in a distance of zero and
nothing else. Consider dividing this single space A into two

429, mcf - 165 433.mile - 31

445.gobmk - 3662 445.gobmk - 584

100 ===z 100 === 100 == 100 =
80 — K 80 — dK 80 — 4K 80 — K
— M — M — M — M
60| &0 60| 60| .
40) 40 40| A0
20 A 20 20| 20|
0 i o o ol tees
450 s0plex - 922 450.50plex - 930 456.hmmer - 1139 462 61
100 =====1 100 === 100 =====1 100 ==
a0 — 80 = 2K 80 e 4K 80 — K
— M — M — M — M
60| . &0 -] 2 60| o
40| 40 40| 40|
20 20 20 20
£ 0 0 oA 0 A
= 464 h264ref - 2419 464 h26dref - 2719 464 h26dred -« 360 464 h2Garef -- 394
] 100 T 100 T 100| 100 7
] — 4 — — =
w a0l — K 80 w— K a0 — K 80| w— 2K
=4 — M| — M — M — M
" 60| " &0 - 60|] .
% 40 40 40| 40|
] 20 | 20 20] 20
< i ol o
S 470.1bm -- 186 471 omnetpp - 196 473 astar -- 100 482 sphinx3 -- 596
= T 100 o 100[¢ r——r T 100 — 5|
- &0 — 4K a0 [E—_— 80 —e 4K
| — M — M — M
&0 a 60|)
40 40|
20 20|
o oo wwﬂx!!zx!!xzx:zzz:z o ¢ Smor mwﬁx!xxx!!xx!zzz:::
Dt L et 482 sphinx3 - 632 4x0.mega stream -- 370 At e T]
Sy iy 'T".'z 220 100 100| e e
FRgmet N T PR - x 2 — — ”‘"““’-“D"‘"""¥¥¥¥¥¥u,‘nvzz
SRR «ﬂgggm - B0 w— 4K 80| | e Amimen W%
Y — M — M L
- GO
40|
2 20
ol

MM AN EEEEEES

T e NN EEn
in,

] e
ry e
Ngn~~°gg§¥“l~anz:

i

it

16M - 32

Reuse Distance Bins

Fig. 2. Reuse distance signatures for all benchmarks. The numbers following the name of each benchmark are the line numbers on which the regions of

interest for that application start.

spaces (as illustrated in Figure 3), denoted as set B, 5 —
{By,B;} = B. There are two spaces and two possible reuse
distances: zero and one. Each of these spaces has the relation
(when comparing the size of each space, or granularity of reuse
bin) of: |A|> |By|= |Bj|. It follows, then, that regardless
of the the reuse bin within set B, when superimposed over
the larger set A, the reuse distance will be zero with regards
to that set. Dividing the subsets of B yet again yields four
spaces, which we denote as set C corresponding to four reuse
distance bins. All valid programs must fit within the space of
A. The same cannot be said of the subsets of B or C. It is
expected, and required, that the next larger set will subsume
smaller ones. These sets are equivalent to the reuse distance
granularities we have chosen, as an example, B could equal
2MiB, C could equal 4KiB, etc. If, as we have described with
the multiple sized sets, we instead have multiple fixed sizes
of reuse distance bins, then the bin widths should exhibit the
same pattern and directionality. That is, if the distributions of
each granularity are ordered with the smallest granularity bin
widths in front and the largest granularity widths in back (if
on a three-dimensional axis, the PMF of each reuse distance
measurement would have the probability on the y-axis, the bin
count on the x-axis, and the z-axis would be ordered from

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

smallest to largest), then we would expect the mass when
moving from front to back (with respect to the z-axis) to slide
towards the zero bin of the largest granule. When ordered in
this way, taking the multi-spectral reuse distance measurement
has two immediate consequences we can exploit: when moving
along the z-axis, we can qualitatively assess spatial density
and the degree by which larger granules subsume (or do not
subsume) smaller ones based on changes along the x- and y-
axes. Second, with sufficiently large reuse distance bins, the
mass will always converge to a zero reuse distance bin when
moving in a positive direction along the z-axis (smaller reuse
distance widths to larger ones).

2) EMD as a Spatial Locality Measure: The amount of
mass that is shifted from one distribution to another is empiri-
cally shown by computing the Earth Mover’s Distance between
them, as described in Section III-C. The results of comparing
the 64B and 4KiB distributions and the 4KiB and 2MiB ones
are shown in Figure 5. The closer the EMD is to zero, the
more similar the distributions are. It follows that EMDs that
approach zero demonstrate behavior in which larger data block
granularities do not subsume smaller ones (within the range of
granularities measured, as proven previously, eventually they
will always be subsumed), and that their memory reference

Bin
Widths
0 Increase

Reuse distance bin

Front View

Change in mass X
(dotted line)

informs spatial

locality

3

Reuse distance bin

Fig. 3. Visual representation of trend described in Section IV-Al. Xg
corresponds to set €, X corresponds to set B, Xo corresponds to A. The
bottom graph is the view from “above” of the x and z axis showing the trend
of changing mass that is expected of all applications as the bin size of each
X; approaches infinity. The rate of change in the mass (essentially slope of
the line along this axis) informs the spatial locality, quantitatively measured
in this work as EMD.

patterns are less spatially dense (i.e., having parts close to-
gether) than two distributions that express a large EMD.

For example, the 470.1bm —-— 186 benchmark has the
highest EMD score among all of the 64B vs. 4KiB com-
parisons. From Figure 2, at the 64B granularity, over 20%
of all reuse distances are at least 4MiB away. However, we
observe qualitatively in the shifting of mass from 64B to 4KiB
in Figure 2, and quantitatively with Figure 5 an EMD that
is much greater than zero, that much of the necessary data
for computation is resident on the same 4KiB data blocks.
The implications of these observations will be explored in the
following subsections.

B. Page Sizing and Utilization

1) Page Sizing: The reuse signatures and their respective
EMD results also have implications for selecting the page size
for a given computer system. In many system architectures,
it is possible to alter the page size from 4KiB or 8KiB to
something larger to try and exploit spatial locality and reduce
translation overhead. From the spatial locality information that
results from Figures 2 and 95, it is possible to evaluate whether
there are any performance benefits to increasing page size.

Referring to the 464 .h264ref —-— 2719 benchmark,
we observe mass shifting in its reuse signatures and EMD
scores that are greater than zero. In fact, at the 2MiB granu-
larity, all of the data required for this computation is resident
within strides of 0 to 8MiB, i.e., all of the mass is located in
the first bin. This suggests an extremely dense spatial locality
access pattern, which would benefit from larger pages.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

Antithetical to this are the results from the
4x0.mega_stream -— 370, which qualitatively in
Figure 2 shows no shift in mass and has a very small EMD
at all granularities. Specifically, it is shown that at least 75%
of all reuse distances are occurring between 8 and 16 at all
granularities. At the largest granularity, 75% of all accesses
are touching data resident on at least 4 different 2MiB pages
before that data is reused again. Larger page sizes are not
subsuming the memory references from smaller granularities.
Thus, larger page sizes cannot extract spatial locality from
applications in which that spatial locality does not exist.

2) Page Utilization: The memory footprint data, calculated
using 5, for each benchmark is presented in Figure 4. Each
granularity is normalized to the 64B case. From this, it is
possible to determine how much extraneous data, if any,
is paged in when larger pages are used. When looking at
Figure 4, any bar that extends past the black dotted line
indicates that more memory was paged in than was necessary.
We will investigate this idea further in the remainder of this
section.

The 462.1libguantum —- 61 benchmark results from
Figures 2 and 5 show benefits for increasing larger page
sizes, while also fully utilizing the data that is paged in. This
is evidenced by the amount of data paged in at the 2MiB
granularity being almost equal to the amount paged in for the
64B case. Referring to Equation 5, the Syock_granularity term
will be larger in the 2MiB case than for the 64B case, but
the spatially local accesses at the larger granularity decrease
the Nunique_blocks term such that the memory footprint of the
two cases are almost equal. We will now examine applica-
tions for which non-spatially local accesses result in bigger
discrepancies in memory footprint at their respective measured

granularities.
Looking at 464 .h264ref —— 2419 and
464 .h264ref —— 2719, however, we observe that,

although the 2MiB page size subsumes the smaller granules,
the 2MiB page size actually pages in 10x and 100x more
data, respective to each function, than is actually necessary,
assuming that every byte of each 64B data block pulled
in is fully utilized (note: this is a strong assumption given
the previous characterizations of Dark Bandwidth[2]). Thus,
using a 2MiB page size for this application puts undue stress
on the coherence bus, and wastes a considerable amount of
energy since it has to move 10x and 100x more data than is
actually necessary.

The 4x0.mega_stream —-- 370 benchmark is partic-
ularly interesting because it has been previously shown that
its spatial locality access pattern is not dense, and that larger
pages do not subsume the smaller data block granules and
help with spatial locality. However, virtually all of the data
that is paged in, even at the 2MiB granularity, is used as
shown in Figure 4. Thus, the page utilization is very good
for this application. This result indicates that it may be a
prime candidate for a data layout transformation in order
to reduce the amount of data movement and increase the
amount of available physical at any given instant. The spatial

Memaory Footprint

445 gobmk_3662
a45.gobmk_584
450.50plex_ 922 F—
A50.50plex_930
456 hmmer_119 =4

a62.libquantum_61

464 h26drel 2419
464 h264ref 2719
#64.h264ref 360
464, h264ref_394
470.1bm_186
A71.omnetpp 196
473.astar_100
482 sphinx_596
482 sphinx_642
4x0.mega

Benchmark

Fig. 4. Memory footprint normalized to 64B granularity.

and temporal locality patterns of this benchmark indicate that
multiple values are pulled from each page at any given instant.
However, streaming them in a packed fashion would improve
the utilization over any given time window (recall that the
overall utilization is large, but only after the entire application
has executed).

C. Data Layout Transformation

The layout of the data necessary for the computation directly
impacts the spatial locality characterization of an application.
Recent work such as [1] shows that data movement can be
reduced by transforming the layout of data near memory to
better exploit spatial locality for current memory subsystem
and reduce superfluous data movement. Given that a data lay-
out transformation is possible at multiple levels of the memory
hierarchy, it is possible to better determine at which level
to perform the data layout transformation. We can identify
the levels to perform the data layout transformation using the
memory footprint analysis performed in this work.

In the case of 4x0.mega_stream, the memory footprint
data shows that, even at the largest page size, all of the data
that gets paged in eventually gets used. Since even at such
a large granularity the spatial access is not dense, it would
be beneficial to perform the data layout transformation nearer
the data, so that the data that gets paged in is densely packed,
which will reduce the amount of fast physical memory that
must be utilized, improve cache utilization, and lastly reduce
the overall energy of computation. The last improvement
would primarily be due to the reduced need to refresh DRAM
rows [15] compared to a non-data layout transformation case
(as less physical DRAM need be provisioned). When using
a data layout transformation mechanism such as SPiDRE [1],
the data could be streamed as needed potentially reducing the
need to store data in DRAM.

V. CONCLUSIONS

The problem of efficiently feeding processing elements and
finding ways to reduce data movement is a pervasive problem
in computing. Efficient modeling of both temporal and spatial
locality of memory references is invaluable in identifying
superfluous data movement in a given application.

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

I 648 vs. 4KB
[4KB vs. ZMB

R B

Earth Mover's Distance

-

=]

445 gobmk_3662

464 h264ref_2419

433 milc_31

450 soplex 922

471.omnetpp_196

473 .astar_100

450.soplex_930

456.hmmer_119

464 h264ref 394

470.1bm_1586

452.sphinx3_596

432.sphinx3_642

452 libguantum_61

464 h264ref 2719

464.h264ref 360

429.mcf_165
445 gobmk_554

4x0 mega_stream_370

Fig. 5. Comparing (64B, 4KiB) and (4KiB, 2MiB) reuse signatures using
Earth Mover’s Distance.

In this work, we have presented a way to model both spatial
and temporal locality using what we term “multi-spectral
reuse distance,” derived from classic reuse distance analysis.
Reuse distance is a metric traditionally used to determine
the temporal locality of an application. Multi-spectral reuse
distance is measured by performing reuse distance measure-
ment at differing reuse distance granularities, in example,
64B, 4KiB, and 2MiB sizes. This approach allows for a
qualitative observation of spatial locality, through observing
the shifting of mass in an application’s reuse signature at
different granularities. Furthermore, this aspect can be quan-
tified through the Earth Mover’s Distance between ordered
sets (ordered on reuse distance bin size) of probability mass
functions of an application. It is these sets of PMFs that
define the multi-spectral reuse distance. This characterization
was performed on a subset of the SPEC2006 benchmark, as
well as a streaming mini-application characteristic of stencil
calculations.

From the multi-spectral characterization, it is possible to
determine how spatially dense the memory references of an
application are based on the degree to which the mass has
shifted (or not shifted) and how close (or far) the Earth
Mover’s Distance is to zero as the data block granularity is
increased. It is also possible to make inferences based on this
information as to the appropriate page size, and whether or not
a given page is being fully utilized. From the applications pro-
filed, it is observed that not all applications will benefit solely
from having a larger page size. Additionally, larger data block
granularities subsuming smaller ones suggest that larger pages
will allow for more spatial locality exploitation, but examining
the memory footprint will show whether those larger pages are
fully utilized or not. Finally, it is possible to infer where in
the memory hierarchy a data layout transformation could be
beneficial in order to more efficiently move data by observing
the data utilization within given data page.

VI. FUTURE WORK

One area of future work would be to enable an automated
analysis of spatial and temporal locality as a means to discern
if applications would benefit from a data layout transformation
on the fly, so that data layout transformations could be applied

in a more demand-based way. It is a well known fact that
calculating reuse distance with large bins requires storing
less information than with smaller bins. This is observed by
considering two cases: a reuse distance bin spanning from zero
through 254 — 1 becomes just a counter while maintaining
smaller bins results in more than a single counter in direct
proportion to the width of the bins relative to the overall
address space. A direct implication of this is that online
instrumentation could be developed that exploits this property,
measuring larger bins for an application while shifting to
smaller bins only when necessary. A direct implication of this
property, is that multi-spectral reuse distance could become a
tool to address data placement and migration. Speaking more
plainly, coarser granularities can be used to make the on-the-
fly computation more feasible.

ACKNOWLEDGMENT

The authors would like to thank colleagues at Arm Research
who contributed to this work through referrals to related work,
helpful implementation-oriented suggestions, and spirited dis-
cussions around reuse distance. The research is supported in
part by NSF grants CNS-1527510 and CNS-1763503.

REFERENCES

[1] J. C. Beard, “The sparse data reduction engine (spidre): Chopping sparse
data one byte at a time,” in Proc. of 2nd International Symposium on
Memory Systems. ACM, Oct. 2017.

[2] J. C. Beard and J. Randall, “Eliminating dark bandwidth: a data-
centric view of scalable, efficient performance, post-moore,” in Proc. of
International Conference on High Performance Computing. Springer,
2017, pp. 106-114.

[3] M. Beg and P. Van Beek, “A graph theoretic approach to cache-conscious
placement of data for direct mapped caches,” ACM SIGPLAN Notices,
vol. 45, no. 8, pp. 113-120, 2010.

[4] D. Bruening, Q. Zhao, and S. Amarasinghe, “Transparent dynamic
instrumentation,” ACM SIGPLAN Notices, vol. 47, no. 7, pp. 133-144,
2012.

[5] A. M. Cabrera, C. J. Faber, K. Cepeda, R. Derber, C. Epstein, J. Zheng,
R. K. Cytron, and R. D. Chamberlain, “DIBS: A data integration
benchmark suite,” in Proc. of ACM/SPEC Int’l Conf. on Performance
Engineering Companion, Apr. 2018, pp. 25-28.

[6] R. Cheveresan, M. Ramsay, C. Feucht, and I. Sharapov, “Characteristics
of workloads used in high performance and technical computing,” in
Proc. of ACM 21st Int’l Conf. on Supercomputing, 2007, pp. 73-82.

[71 T. M. Conte and W.-m. W. Hwu, “Benchmark characterization for
experimental system evaluation,” in Proc. of 23rd Hawaii Int’l Conf.
on System Sciences, vol. 1. 1EEE, 1990, pp. 6-18.

[8] W.J. Dally. (2010) GPU Computing: To Exascale and Beyond. [Online].
Available: https://www.nvidia.com/content/PDF/sc_2010/theater/Dally_
SC10.pdf

[9] T. Deakin, W. Gaudin, and S. McIntosh-Smith, “On the mitigation of

cache hostile memory access patterns on many-core CPU architectures,”

in Proc. of International Conference on High Performance Computing.

Springer, 2017, pp. 348-362.

P. J. Denning, “The working set model for program behavior,” Commu-

nications of the ACM, vol. 11, no. 5, pp. 323-333, 1968.

M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The

Terasys massively parallel PIM array,” Computer, vol. 28, no. 4, pp.

23-31, 1995.

X. Gu, I. Christopher, T. Bai, C. Zhang, and C. Ding, “A component

model of spatial locality,” in Proc. of ACM Int’l Symp. on Memory

Management, 2009, pp. 99-108.

S. Gupta, P. Xiang, Y. Yang, and H. Zhou, “Locality principle revisited:

A probability-based quantitative approach,” Journal of Parallel and

Distributed Computing, vol. 73, no. 7, pp. 1011-1027, 2013.

J. L. Henning, “SPEC CPU2006 benchmark descriptions,” ACM

SIGARCH Computer Architecture News, vol. 34, no. 4, pp. 1-17, 2006.

[10]

[11]

[12]

[13]

[14]

978-1-7281-5020-8/19/$31.00 ©2019 IEEE

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

(24]
[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

B. Jacob, S. Ng, and D. Wang, Memory Systems: Cache, DRAM, Disk.
Morgan Kaufmann, 2010.

G. Kestor, R. Gioiosa, D. J. Kerbyson, and A. Hoisie, “Quantifying the
energy cost of data movement in scientific applications,” in Proc. of
IEEE Int’l Symp. on Workload Characterization, Sep. 2013, pp. 56-65.
S. Kumar and C. Wilkerson, “Exploiting spatial locality in data caches
using spatial footprints,” in Proc. of 25th Int’l Symp. on Computer
Architecture, 1998, pp. 357-368.

G. Kurian, O. Khan, and S. Devadas, “The locality-aware adaptive cache
coherence protocol,” ACM SIGARCH Computer Architecture News,
vol. 41, no. 3, pp. 523-534, 2013.

T. Lafage and A. Seznec, “Choosing representative slices of program
execution for microarchitecture simulations: A preliminary application
to the data stream,” in Workload Characterization of Emerging Computer
Applications, ser. SECS, L. K. John and A. M. G. Maynard, Eds., 2001,
vol. 610, pp. 145-163.

C. Lameter, “NUMA (non-uniform memory access): An overview,’
Queue, vol. 11, no. 7, p. 40, 2013.

E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik, Quanti-
tative System Performance: Computer System Analysis using Queueing
Network Models. Prentice-Hall, Inc., 1984.

S. Lloyd and M. Gokhale, “In-memory data rearrangement for irregular,
data-intensive computing,” Computer, no. 8, pp. 18-25, 2015.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger, “Evaluation
techniques for storage hierarchies,” IBM Systems Journal, vol. 9, no. 2,
pp. 78-117, 1970.

S. Mittal, “A survey of recent prefetching techniques for processor
caches,” ACM Computing Surveys (CSUR), vol. 49, no. 2, p. 35, 2016.
H. D. Morris, Probability and Statistics: Classic Version. Prentice Hall,
Inc., 2018.

R. C. Murphy and P. M. Kogge, “On the memory access patterns of
supercomputer applications: Benchmark selection and its implications,”
IEEE Transactions on Computers, vol. 56, no. 7, pp. 937-945, 2007.
M. Pavlovic, N. Puzovic, and A. Ramirez, “Data placement in HPC
architectures with heterogeneous off-chip memory,” in Proc. of Int’l
Conf. on Computer Design. IEEE, 2013, pp. 193-200.

G. Petrousis, “An evaluation of decoupled access execute on ARMvVS,”
Master’s thesis, Uppsala University, 2017.

B. Reagen, R. Adolf, Y. S. Shao, G.-Y. Wei, and D. Brooks, “Machsuite:
Benchmarks for accelerator design and customized architectures,” in
Proc. of IEEE Int’l Symp. on Workload Characterization, 2014, pp. 110—
119.

Y. Rubner, C. Tomasi, and L. J. Guibas, “The earth mover’s distance as
a metric for image retrieval,” International Journal of Computer Vision,
vol. 40, no. 2, pp. 99-121, 2000.

H. V. Simhadri, “Program-centric cost models for locality and paral-
lelism,” Ph.D. dissertation, Carnegie Mellon University, 2013.

E. S. Sorenson and J. K. Flanagan, “Cache characterization surfaces
and predicting workload miss rates,” in Proc. of IEEE Int’l Workshop
on Workload Characterization, 2001, pp. 129-139.

, “Evaluating synthetic trace models using locality surfaces,” in
Proc. of IEEE Int’l Workshop on Workload Characterization, 2002, pp.
23-33.

J. R. Spirn and P. J. Denning, “Experiments with program locality,” in
Proc. of ACM Fall Joint Computer Conference, Part I, ser. AFIPS, 1972,
pp. 611-621.

M. M. Tikir, L. Carrington, E. Strohmaier, and A. Snavely, “A genetic
algorithms approach to modeling the performance of memory-bound
computations,” in Proc. of ACM/IEEE Conf. on Supercomputing, 2007.
B. Verghese, S. Devine, A. Gupta, and M. Rosenblum, “Operating
system support for improving data locality on CC-NUMA compute
servers,” ACM SIGPLAN Notices, vol. 31, no. 9, pp. 279-289, 1996.
M. Wang, A. Ailamaki, and C. Faloutsos, “Capturing the spatio-temporal
behavior of real traffic data,” Performance Evaluation, vol. 49, no. 1-4,
pp. 147-163, 2002.

J. Weinberg, M. O. McCracken, E. Strohmaier, and A. Snavely, “Quan-
tifying locality in the memory access patterns of HPC applications,” in
Proc. of ACM/IEEE Conference on Supercomputing, 2005.

Y. Zhong, X. Shen, and C. Ding, “Program locality analysis using reuse
distance,” ACM Transactions on Programming Languages and Systems,
vol. 31, no. 6, pp. 20:1-20:39, 2009.

