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ABSTRACT: The profitability of a chemical plant is directly
related to its reliability, which has always been a major
concern in the chemical industry. In this paper, we address the
problem at the conceptual design phase of an air separation
plant to minimize the negative income, which consists of the
penalty incurred from pipeline supply interruption and the
cost of increasing reliability, including having redundant units
and storage tanks. A mixed integer linear programming
(MILP) model (denoted as RST) based on the Markov Chain
assumption is proposed and applied to the motivating example
of an air separation plant. Furthermore, to tackle larger super-
structures, we propose a game theoretic algorithm that decom-
poses and restructures the problem as a team game of the individual processing stages and arrives at a Nash Equilibrium among
them. It is also shown that a good initialization point close to the global optimum can be easily obtained, which guarantees the
quality of the Nash Equilibrium solution. A number of examples are shown to illustrate the proposed algorithm’s ability to solve
to global optimality in much shorter time than the direct solution of the original MILP model (RST).

1. INTRODUCTION

The reliability of a chemical plant is very important as it
directly impacts the customer service level and its economic
performance. A plant with all the state-of-art technologies may
not be able to generate the expected profits because of poor
decision making regarding its reliability. In industrial practice,
significant emphasis is placed on carrying out improved main-
tenance operations. There has also been academic research on
quantifying and optimizing the maintenance efforts after the
commissioning of a plant.1−5

However, prior to operations, the decisions regarding system
reliability are equally worthy of consideration in the conceptual
design phase. Thomaidis et al.6,7 integrate flexibility and reliability
in process design by deciding the reliability index of each piece
of equipment. Gong et al.8 incorporate several strategies in
both design and operations toward more resilient chemical
processes, including a major failure proof strategy for process
plants, which is to have redundancies for critical equipment.
There is a clear trade-off when higher expected availability of
the process requires greater capital investment. Kuo et al.9 provide
a literature survey on optimal reliability design methods classified
in terms of problem formulations and optimization techniques.
Aguilar et al.10 address reliability in utility plant design and
operation by considering a few prespecified alternatives for
redundancy selection, and for which they formulate an MILP
model considering certain failure scenarios. Ye et al.11 propose

a general mixed-integer programming framework for the
optimal selection of redundant units.
Another widely used strategy to improve product availability

is providing buffer storage for intermediate or final products,
which again incurs costs of building the tanks and maintaining
the stock that increases with the size of the storage tanks.
In our earlier effort12 to optimize redundancy selection together
with maintenance policies, Markov Chain is used to model the
stochastic process of failures and repairs. This paper inherits
the Markov Chain framework and takes a step back from
unifying design and operations decisions to focus on expanding
the scope of design decisions with the inclusion of storage
tanks. For the ASU processes that motivated this work, it is
especially important and common to have storage tanks of
liquid products as the last line of defense because the penalty
of interrupting pipeline supplies can be very large. In a similar
previous work, Terrazas et al.13 optimize the reliable design of
chemical sites networks with Markov Chain framework, and
estimate the stochastic variable of a buffer storage level with
the linear upper bound of its variance. As an improvement, this

Special Issue: Christos Georgakis Festschrift

Received: August 20, 2019
Revised: November 5, 2019
Accepted: November 27, 2019
Published: November 27, 2019

Article

pubs.acs.org/IECRCite This: Ind. Eng. Chem. Res. 2020, 59, 2491−2504

© 2019 American Chemical Society 2491 DOI: 10.1021/acs.iecr.9b04609
Ind. Eng. Chem. Res. 2020, 59, 2491−2504

D
ow

nl
oa

de
d 

vi
a 

C
A

R
N

EG
IE

 M
EL

LO
N

 U
N

IV
 o

n 
M

ar
ch

 9
, 2

02
0 

at
 1

7:
25

:2
7 

(U
TC

).
Se

e 
ht

tp
s:

//p
ub

s.a
cs

.o
rg

/s
ha

rin
gg

ui
de

lin
es

 fo
r o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

pubs.acs.org/IECR
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.iecr.9b04609
http://dx.doi.org/10.1021/acs.iecr.9b04609


paper models the stochastic process exactly, which allows it to
be associated with outage penalty and be reflected in the
objective function.
With the Markov Chain framework, the number of possible

states propagate geometrically with the size of the process
superstructure, which gives rise to the need of decomposition.
However, while the exact modeling of outage penalties provides a
closer representation of the trade-offs that decision makers face in
reality, it also results in highly nonlinear and nonconvex functional
relationships. Therefore, general decomposition methods such
as Lagrangean decomposition and Benders decomposition
cannot be readily applied. As an alternative perspective, the
problem can be decomposed into a team game for which each
processing stage is an individual agent. Plenty of works have
incorporated game theory to address the competitive aspect of
multiagent decision making as an improvement to the tradi-
tional holistic optimization. Lou et al.14 perform an emergy
analysis of an industrial ecosystem that treats the member
entities, such as plants, as players. Castillo et al.15 propose a
concordant decision-making model based on game theory for
liquified natural gas (LNG) processes. Zamarripa et al.16 address
both the cooperative and competitive properties of supply chain
planning problems with a game theory approach. On the other
hand, a team game17 considers the cooperative aspect, in which
the inputs of one agent include the actions of other agents.
A major application of the concept is the area of distributed
control18,19 for handling complex information structure. As pre-
sented in the following sections, the problem of concern has a
similar information structure. Therefore, in this work, we use
the concept of team game to reach a local optimum starting
from a good initial solution. It provides a novel perspective for
the simultaneous optimal design of system redundancy and storage
with respect to product availability, on top of the proposed general
mixed integer formulation, in which the stochastic process
inferences of equipment failures and repairs are modeled
exactly.
Section 2 introduces the motivating example of an air

separation unit (ASU) process and formally states the problem.
In section 3, we develop the MILP model (RST) and show
that its computational complexity increases drastically with
problem size. Section 4 presents the results of directly solving
the motivating example with the MILP model (RST) as well as

the computational difficulty of applying the model to a slightly
larger example. In section 5, we introduce an iterative algo-
rithm toward the team game Nash equilibrium, which is a
necessary condition for the global optimum. We show that a
good initial solution can be easily obtained for our problem,
which guarantees the quality of the Nash equilibrium solution.
Section 6 show a series of examples for which the global
optima are obtained by the game theoretic approach in much
shorter time than directly solving the original MILP model
(RST).

2. MOTIVATING EXAMPLE
Figure 1 shows a typical air separation unit that has two liquid
product storage tanks for LO2 and LN2, respectively. The air
first goes through the main air compressor and the after cooler
to be pressurized, then the prepurifier to remove impurities
such as CO2. After that, the air is compressed again by the
booster air compressor and cooled by the gas product of nitro-
gen and liquid product of oxygen. Usually, about two-thirds of
the air will be streamed out and expanded by a gas turbine
before being fed into the high pressure column. The rest of
the air is cooled down to be the two-phase region in the heat
exchanger, which is then split into two streams, and fed into
the low pressure column and the high pressure column sepa-
rately. It is worth mentioning that the liquid O2 comes out
from the bottom of the low pressure column. Therefore, a
pump is needed to bring the stream out, while the liquid N2
product comes out from the high pressure column and does
not need to be pressurized.
We analyze the reliability aspect of air separation units that

are built next to a designated customer and has to constantly
supply gas piped through pipelines. When the ASU is down
due to equipment failures, the liquid products can be vaporized
to sustain pipeline supply. However, if the downtime is too
long such that the tank runs out before the ASU is back online,
an interruption of pipeline supply is unavoidable. Typically,
the gas supplier and the customers agree that each occurrence
of pipeline interruption leads to a fixed penalty charge to the
supplier.
Figure 2 shows the system superstructure. The purpose of

the model is to determine the selection of parallel units among
a finite number of possibly distinct candidates, and the sizes of

Figure 1. ASU with storage
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the two liquid product storage tanks, in order to achieve the
minimum cost balancing capital investment and the interruption
penalty from the pipeline customers.

3. MATHEMATICAL MODEL
The site is considered to have two parts, the air separation
system with several stages in series, and the storage tanks.
In section 3.1, the failure-repair process of the air separation
system is modeled as a continuous-time Markov Chain
depending on the system design, or redundancy selection.
Next, in section 3.2, the impact of storage tank sizes on system
availability is incorporated based on the relationships established
in section 3.1.
3.1. Modeling the Processing System as a Continu-

ous-Time Markov Chain. The processing stages, for
example, main air compressor and prepurifier, are indexed
with k ∈ K, whereas the individual potential redundancy
designs in each stage are indexed with h ∈ Hk. Figure 3a shows
a stage k with potentially two units, while Figures 3b−3d show
the three potential redundancy designs (selections) indexed by
h, based on the superstructure.
The binary variable zk,h indicates which design h is selected

for stage k. Equation 1 requires that only one potential design
be selected for each stage k. The investment cost of the design
h in stage k is Ĉk,h

U . Equation 2 calculates the investment cost of
processing units depending on the design selection.

∑ = ∀ ∈
∈

z k K1,
h H

k h,
k (1)

∑ ∑= ̂
∈ ∈

C z CU

k K h H
k h k h

U
, ,

k (2)

On the basis of the assumption that the time to failure and
time to repair of single units follow exponential distributions,
we model the failure−repair process of the processing stage k
with design h as a continuous-time Markov Chain, and establish
the corresponding transition matrix Wk,h, from which two key
quantities can be obtained: πk,h is the probability distribution

vector over the state space Sk,h calculated from the corre-
sponding transition matrix Wk,h with eq 3; σk,h is the diagonal
of Wk,h as stated in eq 4. By the definition of continuous-time
Markov Chain, the residence time of any state follows an
exponential distribution. The physical meaning of σk,h(s) is that
it represents the rate parameter of the exponential distribution
of state s ∈ Sk,h. For a thorough explanation of Markov Chain
please refer to the book by Sericola et al.20 For the application
of Markov Chain to redundancy systems please refer to our
previous paper.12 It is worth mentioning that we only consider
independent failures that originated from within the individual
units, and exclude those that are correlated and are due to
external factors such as extreme weather, power fluctuation,
etc.

π ·[ ] = [ ]W , 1 0 , 1k h k h,
T

,
T

(3)

σ = Wdiag( )k h k h, , (4)

With the stage level dynamics understood, we introduce the
concept of system design, which is the combination of the
individual stage designs. The set of all unique potential system
designs is H̅, and the elements are indexed by h̅. Figure 4
shows the nine possible system designs of a system with two
stages just like the one stage shown in Figure 3a.
Again, we model the failure−repair process of the system

with design h̅ as a continuous-time Markov Chain with
transition matrix W h̅. πh̅ is the probability distribution vector
over the state space S̅h̅ of the system design h̅ calculated by eq 5.
σh̅ is the diagonal of W h̅, and σh̅(s)̅ is the rate parameter of
the exponential distribution dictating the residence time of
state s ̅ ∈ S̅h̅.

π ̅ ·[ ̅ ] = [ ]̅ ̅W , 1 0 , 1h h
T T

(5)

σ ̅ = ̅̅ ̅Wdiag( )h h (6)

In Appendix A in the Supporting Information we show that
π h̅ and σ̅h̅ of system design h̅ can be calculated based on πk,h
and σk,h as shown in eqs 7−9, for which design h(k, h̅) in stage k

Figure 2. ASU with storage.

Figure 3. Design options of individual stages.
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is part of system design h̅. (The ∏⊗ represents the Kronecker
product. Please see Appendix A for illustration.)

π π π π̅ = ⊗ ⊗ ⊗̅ | | | | ̅ ̅ ̅...h K h K h h h h h, ( , ) 2, (2, ) 1, (1, ) (7)

∑σ σ̅ = ⊗ ⊗̅
∈

̅1 1h
k K

g k h k h l( ) , ( , ) ( )k k
(8)

gk is the product of the state space dimensions of all the stages
after stage k in the stage sequence, while lk is the product of the
state space dimensions of all the stages before k.

∏

∏

π

π

= || ||

= || ||

> ̅ ∈

< ̅ ∈

g

l

,k
l h l k l h h HC

l h

k
l h l k l h h HC

l h

( , ): ,( , , )
, 0

( , ): ,( , , )
, 0

(9)

As mentioned above, rth̅(s)̅, the residence time of state s ̅ ∈ S̅h̅,
follows the exponential distribution with rate parameter σ̅h̅(s)̅.

σ̅ = = ̅ ̅ ∀ ̅ ∈ ̅σ
̅ ̅

− ̅ ̅
̅

̅P rt s t s e s S( ( ) ) ( ) ,h h
s t

h
( )h (10)

Finally, we introduce f h̅(s)̅, the frequency of encountering each
state s.̅ It is equal to the long-term probability πh̅(s)̅ divided by
the mean residence time ̅rth , which is equal to the reciprocal of
the rate parameter σ̅h̅(s)̅.

π
π σ̅ = ̅

̅
= ̅ ̅ ̅ ∀ ̅ ∈ ̅̅

̅

̅
̅ ̅ ̅f s

s
rt s

s s s S( )
( )
( )

( ) ( ),h
h

h
h h h

(11)

3.2. System Availability. In this section, we discuss how
to incorporate the size of the storage tank for evaluating the
network availability. The main idea is to calculate the frequency
of the incidents where the plant is down due to unplanned
equipment failure, and the downtime is too long such that the
liquid storage runs out. Furthermore, we account for the propor-
tional penalization in the objective function, because the actual
penalty being paid to the customers is directly proportional to
the frequency of supply interruption.
In section 3.1, it is established that the air separation system

follows a continuous-time Markov Chain with transition matrix
W h̅ for potential system design h̅, which produces the station-
ary probability distribution π̅h̅(s)̅ over the state space(S̅h̅),
the residence time rate parameter σ̅h̅(s)̅, and the frequency of
encountering each state f h̅(s)̅.
We first focus on the random variable of the volume of

liquid products decreasing during failure state s ̅ ∈ S̅h̅
f . It is

proportional to the consumption rates δLO2 or δLN2, and the

random variable of the residence time rth̅(s)̅. On the basis of
the exponential distribution followed by rth̅(s)̅ as shown in eq 10,
they follow the exponential distribution with rate parameters
σ
δ
̅ ̅̅ s( )h
LO2 or σ

δ
̅ ̅̅ s( )h
LN2 .

σ
δ̅ = = ̅ ̅

̅ ∈ ̅σ δ
̅

̅ − ̅ ̅
̅

̅P V s V
s

s S( ( ) )
( )

e ,h
h s V

h
fLO2dec

LO2
( )/( )h

LO2

(12)

σ
δ̅ = = ̅ ̅

̅ ∈ ̅σ δ
̅

̅ − ̅ ̅
̅

̅P V s V
s

e s S( ( ) )
( )

,h
h s V

h
fLN2dec

LN2
( )/( )h

LN2

(13)

We consider that there are a finite number of storage size
options (k gallon) for both products, which we denote as Vn

LO2

and Vn
LN2, with NLO2 and NLN2 as the index set of size options.

xn
LO2 and xn

LN2 are binary variables that indicate the selection
of tank sizes for LO2 (Vn

LO2) and LN2 (Vn
LN2), respectively.

Equations 14 and 15 require that one and only one size be
selected for each product.

∑ =
∈

x 1
n N

n
LO2

LO2 (14)

∑ =
∈

x 1
n N

n
LN2

LN2 (15)

CT is the investment cost of storage tanks depending on their
size selections.

∑ ∑= +
∈ ∈

C x c x c
n N

n n
n N

n n
T LO2 LO2 LN2 LN2

LO2 LN2 (16)

on the basis of eqs 11−13. the outage frequencies of LO2 and
LN2 for system design h̅ and tank size n for the respective

products, ̂
̅frn h,

LO2
and ̂

̅frn h,
LN2

, can be calculated with eqs 17 and 18.

∑

∑ π σ

= ̅ · ̅ ≥

= ̅ ̅ · ̅ ̅ ·

̂

δ σ

̅
̅∈ ̅

̅ ̅

̅∈ ̅
̅ ̅

− ̅ ̅

̅

̅

̅

fr f s P V s V

s s

( ) ( ( ) )

( ) ( ) e

n h
s S

h h n

s S
h h

V s

,
LO2 LO2dec LO2

/( ( ))

h
f

h
f

n h
LO2 LO2

(17)

∑

∑ π σ

= ̅ · ̅ ≥

= ̅ ̅ · ̅ ̅ ·

̂

δ σ

̅
̅∈ ̅

̅ ̅

̅∈ ̅
̅ ̅

− ̅ ̅

̅

̅

̅

fr f s P V s V

s s

( ) ( ( ) )

( ) ( ) e

n h
s S

h h n

s S
h h

V s

,
LN2 LN2dec LN2

/( ( ))

h
f

h
f

n h
LN2 LN2

(18)

Figure 4. Potential system designs.
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The following constraints and disjuctions represent the
relationship between the redundancy and storage selection and
the expected outage penalties PN. In eq 19, T is the total time
horizon being considered. penaltyLO2 and penaltyLN2 are the
amount of penalty charge per outage based on the contracts
between the gas supplier and the customer. Disjunctions
(20−21 enforce that f rLO2 and f rLN2 are equal to the param-

eters ̂
̅frn h,

LO2
and ̂

̅frn h,
LN2

where the corresponding stage designs

and storage tank sizes are selected.

= · + ·PN T fr fr(penalty penalty )LO2 LO2 LN2 LN2
(19)

∨
∧ ∧

= ̂∈ ̅∈ ̅

∈ ̅

̅

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

X Z

fr fr

( )

n N h H

n k K k h k h

n h
,

LO2
, ( , )

LO2
,
LO2LO2

(20)

∨
∧ ∧

= ̂∈ ̅∈ ̅

∈ ̅

̅

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

X Z

fr fr

( )

n N h H

n k K k h k h

n h
,

LN2
, ( , )

LN2
,
LN2LN2

(21)

We define the continuous variables ̅frn h,
LO2 and ̅frn h,

LN2 for the hull
reformulation21 given by eqs 22−28.

∑ ∑

∑ ∑

= ·

+ ·
∈ ̅∈ ̅

̅

∈ ̅∈ ̅
̅

PN T fr

fr

(penalty

penalty )

n N h H
n h

n N h H
n h

LO2
,
LO2

LN2
,
LN2

LO2

LN2 (22)

≤ ∀ ∈ ∈̂
̅ ̅fr x fr k K n N, ,n h n n h,

LO2 LO2
,
LO2 LO2

(23)

≤ ∀ ∈ ̅ ∈ ̅̂
̅ ̅ ̅fr z fr n N h H, ,n h k h k h n h,

LO2
, ( , ) ,

LO2 LO2
(24)

∑≥ − | | +

∀ ∈ ̅ ∈ ̅

̂
̅

∈
̅ ̅fr z K x fr

n N h H

( ) ,

,

n h
k K

k h k h n n h,
LO2

, ( , )
LO2

,
LO2

LO2 (25)

≤ ∀ ∈ ∈̂
̅ ̅fr x fr k K n N, ,n h n n h,

LN2 LN2
,
LN2 LN2

(26)

≤ ∀ ∈ ̅ ∈ ̅̂
̅ ̅ ̅fr z fr n N h H, ,n h k h k h n h,

LN2
, ( , ) ,

LN2 LN2
(27)

∑≥ − | | +

∀ ∈ ̅ ∈ ̅

̂
̅

∈
̅ ̅fr z K x fr

n N h H

( ) ,

,

n h
k K

k h k h n n h,
LN2

, ( , )
LN2

,
LN2

LN2 (28)

The objective function in eq 29 minimizes the total investment
cost and the expected penalty.

+ +C C PNmin
z x x, ,

U T

k h n n,
LO2 LN2 (29)

To summarize, the model (RST) is an MILP that minimizes
the total cost eq 29 under the constraints 1, 2, 14−16, and
22−28. A hidden bottleneck in the model(RST) is the com-
putation of the exponentially many numbers of parameters
̂

̅frn h,
LO2

and ̂
̅frn h,

LN2
(based on eqs 3, 4, 7, 8, 17, and 18) with

respect to the size of the design superstructure. To illustrate,
we consider a small example for the potential designs in Figure 4
with three possible sizes for LO2 and LN2 storage tanks.
To determine the 18 parameters for each of the two groups

̂
̅frn h,

LO2
and ̂

̅frn h,
LO2

, we have to solve for the probability vectors

of nine different state spaces of dimensions 4−25, before
carrying out the calculation in eqs 17 and 18 for the different
tank sizes. Table 1 shows how the computational workload

increases drastically as the superstructures grow in size.

Specifically, to calculate a single parameter ̂frn h,
LO2

, we need

to find out the corresponding state space of potential design h̅,
and calculate π̅h̅

T and σ h̅T, the complexity of which depends on
the dimension of the state space. Therefore, not only does the
number of parameters but also the computational effort needed
to determine each single parameter increase with the size of the
superstructure.

4. SOLUTION OF THE MOTIVATING PROBLEM AND
RESTRICTIONS OF THE MODEL (RST)

In this section, we present more details about the example
shown in section 2, including the assigned parameters and
corresponding solutions.
Table 2 shows the failure modes considered for each pro-

cessing stage. The mean time between failures (MTBF) and
the mean time to repair (MTTR) are known for each failure
mode. The failure rates and repair rates can be obtained by
taking their respective reciprocals. The transition matrices are
obtained as discussed in our previous work.12 The mean time
between failures (MTBF) ranges from 5 to 25 years. Mean
time to repair (MTTR) ranges from 8 to 1080 h.
The capital cost of each unit ranges from $140k to $1250k.

Table 3 shows the penalty rates and pipeline flow rates used in
the model.
Table 4 shows the tank size options and corresponding costs for

LO2 and LN2 storage. LO2 tanks are generally more expensive.
The MILP model (RST) has 8828 equations and 2800

variables, with 269 of them being binary variables. The param-
eters are calculated in Python and the model is solved with
CPLEX 12.8.0.0 in Pyomo. The total time to calculate the
parameters and solving the model is 8.0 s, where 5.3 s is used
for parameter calculation, and 2.7 s is used for solving the
MILP. The optimal design is shown in Figure 5. The expected
frequency of LO2 outage is 0.005732 in the 10 year horizon,
which incurs a penalty of $11,464. The expected frequency of
LN2 outage is 0.006 in the 10 year horizon, which incurs a
$12,291 penalty.
As mentioned in section 3.2, it becomes more challenging to

enumerate all possible combinations of (n, h̅) and calculate
̂

̂frn h,
LO2

and ̂
̅frn h,

LN2
as the number of stages and potential units

increase. In fact, for a larger problem where there is one more
potential unit for each of first three stages, the computational

Table 1. Required Computations for Different
Superstructures

small medium large

system statistics number of stages 2 3 4
number of potential
units per stage

2 3 4

number of potential
tank sizes

3 4 5

computational
tasks

number of state space 9 343 50 625
max dimension of
state space

24 21 870 141 087 744

number of parameters 36 2744 506 250
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time of (RST) is 2053.5 s, out of which 1697.2 s are used for
the parameter calculation. Moreover, for the example presented
above, the total number of complicating parameters is 2520,
and the maximum number of scenarios to consider for each
parameter is 4536, while for the larger problem, those numbers
become 37 730 and 14 117 880, respectively.

5. ITERATIVE GAME-THEORETIC ALGORITHM
To overcome the bottleneck of the exponential parameter
computational time, we propose an algorithm that starts with
approximate and incomplete parameters, and iteratively adjusts
the parameter pool as appropriate while the models are being
solved, which allows us to achieve a Nash equilibrium, or a
”person-by-person” optimum, among the stages.
The analogy of the problem being addressed to a team game

is as follows. Each stage has its own contribution to the system
costs by adding capital costs as well as the penalties from
unplanned downtimes. The condition of each stage (selection
of parallel units) impacts its contribution to the penalties, just
like each player is largely responsible for his/her contribution
to the team performance. However, they play as a team in
the sense that the individual contributions to the penalties
(if a failure is due to a specific stage, the resulting downtime is
considered its contribution) can be slightly affected by the
conditions of the other stages. To be more specific, a failure of
one stage means the failure of the entire system. Therefore, the
extents of reliability and investment levels have to be balanced

among the stages. For example, it might not be favorable to
have one stage being much more reliable than the others, even
if it is the best solution for itself standing alone. It is because
the other stages are more likely to fail before it does and cover
its failures, and therefore, the marginal decrease in its contri-
bution to the system failure from increasing reliability investment
is less than the case where this stage forms a one-stage-system.
The problem can be viewed as a team game22 in which the

players are the |K| stages. Inequality 30 provides the definition
of Nash equilibrium in a team game: Given the strategy of all
other players ρ′ ∈ (the design selection of all other stages
l ∈ K, l ≠ k), there is no other strategy ξ′ρ ∈ Ξρ (potential
design h) for any single player ρ ∈ (single stage k) that
could give better utility C (lower objective function values):

ξ ξ ξ ξ ξ ξ

ρ ξ

* * * ≤ * ′ *

∀ ∈ ′ ∈ Ξ
ρ ρ

ρ ρ

| | | |C C( , ..., , ) ( , ..., , ),

,

1 1

(30)

Before going into the details of the proposed algorithm, we
will graphically illustrate its significance of reducing parameter
calculations by considering a small system as shown in Figure 6.
The three rectangles grouping three dots of different sizes
represent three stages each with three design options. The
original formulation (RST) requires calculating the parameters
for each valid combination (27 triangles that have one vertex in
each rectangle).
However, in Figures 7, 8, and 9, which represent the steps in

the proposed algorithm, the connecting segments can be much
sparser, since much fewer parameters need to be calculated
following the proposed algorithm pursuing a Nash equilibrium.
First, we optimize the stage-wise design selection with approxi-

mated impact from other stages. The approximation effort is
presented in detail in section 5.1. The triangle in Figure 7
stands for the selected designs for individual stages.
An equilibrium test is then performed to this group of

designs to determine whether any single stage has a superior
deviation (deviation that generates lower total cost) given that
the rest of the stages stick to the current plan. As shown in

Table 2. Failure Modes of Each Processing Stage

stage failure mode stage failure mode stage failure mode stage failure mode

main air compressor FMC1 prepurifier FMPF1 booster air compressor FMC1 LO2 Pump FMP1
FMC2 FMC2
FMC3 FMC3
FMC4 FMC4
FMC5 FMC5
FMC6 FMC6

Table 3. Profitability parameters

penaltyLO2
(k$ per outage)

penaltyLN2
(k$ per outage)

δLO2

(k gallon per day)
δLN2

(k gallon per day)

2000 2000 48 60

Table 4. Tank Size Options and Costs

size options (k gallon) 100 400 700 1000 1500

price for LO2 (k$) 55 237 427 621 951
price for LN2 (k$) 50 215 388 565 864

Figure 5. ASU with storage
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Figure 8, the solid triangle represents the group of designs
undergoing the equilibrium test following from Figure 7.
In each rectangle group of dots, the two dots supporting dashed
vertices represent the deviations being examined, which oppose
the solid sides, as the deviations are taken with the rest of the
stages unchanged and unaffected.
If there is no superior deviation to the current plan, then the

current design is a Nash equilibrium point. If otherwise, for
example, in Figure 9a, the dot supporting the vertex with thinner
sides is a superior deviation for the stage to which it belongs,
we go to the next step shown in Figure 9b. In this step, we add
all the design selections (the six triangles with two thin dashed
sides) that can be obtained by alternating the current selection,

to the pool of potential system designs, while removing the
current selection itself (the triangle with all thick dashed sides).
It is worth noting the difference between the six vertices sup-

ported by dashed sides in Figure 8 and the six dashed triangles
in Figure 9b: The dashed vertices are fictional deviations that
affect the performance of the stage itself but not the outputs of
the other stages (players), while a dashed triangle means that all the
stages (players) take on a new set of designs (strategies) together,
and the impacts on the outputs of each other are accounted for.
The optimal design in the current pool will again go back

through the equilibrium check stage like in Figure 8, until a
Nash equilibrium point is found.
We can see that the new algorithm reduces a large part of

the parameter calculations compared to the original model,
especially when the number of stages and potential designs
increases. It is worth mentioning that an overall optimum implies a
Nash equilibrium, but the reverse is not true. Therefore, the Nash
equilibrium that we pursue in this method can be considered a
suboptimal solution or a local optimum.
In section 5.1, we first show how the complicating

parameters, ̂
̅frn h,

LO2
and ̂

̅frn h,
LN2

in eqs 17 and 18, can be closely

approximated with much simpler expressions. Next we present
a rearrangement of the terms that breaks down the summa-
tions over system failure states according to the exact stage
where the failure is happening, which reveals a linear impact of
the other stages on the contribution to liquid-overconsumption
of each individual stages. In section 5.2, we present a step-by-
step description of the algorithm.

5.1. Approximation and Rearrangement of Key
Parameter Expression. In this section, we propose an
approximate expression and a rearranged expression of the key
parameters, the outage frequencies of the liquid products (LO2

and LN2) output, ̂
̅frn h,

LO2
and ̂

̅frn h,
LN2

, which is in preparation for

the iterative solution scheme explained in the next section.
In the following context, we only focus on LO2 and omit the
similar term rearrangements and approximations that are also
done for LN2 to avoid unnecessary repetition.
First, we rearrange the expression in eq 31 with the following

notations:
For each stage k, we let h̃ index the potential designs of the

complementary subsystem obtained by subtracting stage k
from the entire system. For example, as shown in Figure 10, in
the perspective of stage 1, the complementary subsystem refers
to the system consisting of stages 2 and 3. Similarly to h(k, h̅),
we define h̃(k, h̅) as the index of the potential complementary
design of stage k that is part of system design h̅.
In the original expression shown in eq 17, the system failure

scenarios are directly enumerated, whereas in eq 31, the summa-
tion over the system failure scenarios breaks down by the stage k
that causes the failure (see Appendix B for detailed derivation).
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(31)

We denote the stage-wise component of ̂
̅frn h,

LO2
as ̂ ̅FRn k h k h, , ( , )

LO2
:

Figure 6. The original way has to calculate everything in advance.

Figure 7. Initial approximated optimum.

Figure 8. Equilibrium checking.

Figure 9.When current solution does not satisfy equilibrium condition.
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∑=̂ ̂
̅

∈
̅fr FRn h

k K
n k h k h,

LO2
, , ( , )
LO2

(32)

After rearrangement, ̂ ̅FRn h,
LO2

has the exact expression as shown
in eq 33.

= Θ ·Φ + Φ ·Θ̂ ̅ ̅ ̃ ̅ ̅ ̃ ̅FRn k h k h n k h k h n k h k h n k h k h n k h k h, , ( , )
LO2

, , ( , )
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, , ( , )
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, , ( , )
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, , ( , )
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where
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(37)

Therefore, instead of enumerating by system designs h̅, we
focus on one stage k at a time and enumerate by its potential
designs h ∈ Hk and the potential complementary designs

h̃ ∈ H̃k, and define ̂ ̃FRn k h h, , ,
LO2

:

= Θ ·Φ + Φ ·Θ̂ ̃ ̃ ̃FR ( )n k h h n k h n k h n k h n k h, , ,
LO2

, ,
LO2

, ,
LO2

, ,
LO2

, ,
LO2

(38)

It is also shown in Appendix B that following from eq 31, eqs 39
and 40 are based on the assumption that the failure rates are of
the order of 10−4, and the repair rates are of the order of 10−2.
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−FR O(1 (10 ))n k h k h n k h k h, , ( , )
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, , ( , )
LO2 2

(40)

Therefore, as shown in eq 40, we can use the sum of the outage
frequencies of each stage alone∑ Θ∈ ̅k K n k h k h, , ( , )

LO2 to approximate

the system outage frequency ̂
̅frn h,

LO2
.

As mentioned at the beginning of this section, similar term
rearrangements and approximations are done for LN2, but are
omitted to avoid unnecessary repetition. To summarize, it is

proposed to rewrite the original expression shown in eq 17 as

41 and approximate ̂
̅frn h,

LO2
with eq 42.

∑=̂ ̂
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∈
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k K
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, , ( , ), ( , )
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(41)

∑≈ Θ̂
̅

∈
̅frn h

k K
n k h k h,

LO2
, , ( , )

LO2

(42)

5.2. Algorithm Description. In this section, we provide a
step-by-step description of the algorithm with reference to the
above mathematical details and qualitative explanations. Briefly
speaking, the algorithm takes advantage of the fact that the
individual contribution from each stage is under limited impact
of the other stages, and obtains a good initial solution ignoring
these interrelations. It then iterates between two tasks, checking
the equilibrium condition of a current design, and until confirming
an equilibrium point, expanding the solution pool with all the
mutations of unsuccessful previous designs to find a better design.
Step 1. Calculate Θn,k,h

LO2 and Φn,k,h
LO2 (first defined in 34 and 36).

Solve the MILP independent design selection problem (IDS)
defined below, featuring the approximated parameters Θn,k,h

LO2

and Θn,k,h
LN2. On the basis of the relationship shown in eq 42, the

MILP (IDS) is an approximation of (RST).
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Figure 10. From the perspective of stage 1.
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The optimal solution of (IDS) indicates the potential design
to select for each stage k: {h(0)* (k), k ∈ K} (refer to the dots
supporting the triangle in Figure 7). Appendix C shows an
estimated bound of the gap between the global optimum and
the objective function resulting from k: {h(0)* (k), k ∈ K} and
the best storage selections that go with it.
Step 2. For each stage k ∈ K, solve the MILP equilibrium

checking problems (ECP)(m,k). m starts counting at m = 1. The
model formulation is shown in eq 45. To do that, we have to

first calculate the parameters ̂FRn k h m, , ,
LO2

based on {h(m−1)* (k), k ∈ K}
as shown in ref 44 (refer to the dashed vertices in Figure 8).

= Θ ·Φ + Φ ·Θ̂
̃* ̃*− −

FRn k h m n k h n k h k n k h n k h k, , ,
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The optimal solutions of the models (ECP)(m,k), k ∈ K
indicate a group of design selection for each stage {h(m)

o (k),
k ∈ K}. If for every stage k, the complementary design indexed
by (k, m) that was brought into (ECP)(m) consists of the selected

designs of the other stages, we say that a Nash equilibrium is
found among the stages, and the iteration stops. Otherwise, go to
step 3. The latter case is illustrated by Figure 9a.
Step 3. Solve the MILP partial design selection model (PDS)(m)

given by eq 49, which corresponds to the alternate and optimize
the step shown in Figure 9b. The model is called partial because
only an incomplete pool of possible designs are being evaluated.

The associated parameters Ĉh̅
U, ̂

̅frn h,
LO2

and ̂
̅frn h,

LN2
are calculated in

eqs 47, 48, and 49. The index set H̅ m( ) includes the indices
representing those system designs that, for at least one stage, the
complementary design is part of {h(m−1)* (k), k ∈ K}. In other
words, the system designs to be included in the partial design
selection model (PDS)(m) are obtained by alternating the designs
that are combinations of the stage designs in {h(m−1)* (k), k ∈ K},
which are represented by the dashed triangles in Figure 9b. Some
parameters from the last step can be reused here.
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The optimal solution of (PDS)(m) indicates the potential
design to select for each stage k: {h(m)* (k), k ∈ K}. After solving
the model, let m = m + 1 and go back to step 2.
To reiterate, as shown in Figure 11, the algorithm iterates

between two tasks, checking the equilibrium condition of
{h(m)* (k), k ∈ K}, and finding a new design based on the
unsuccessful previous solution and its superior deviation.

6. ADDITIONAL EXAMPLES

As was discussed in section 5.2, the globally optimal solution of
the original formulation (RST) is a Nash-equilibrium solution
but the reverse is not always true. However, we show in
Appendix C that, given that the failure rates and repair rates of
the units are of certain orders of magnitudes, the gap between
an easily obtained initial design and the global optimum is

small and can be estimated, which makes it highly likely for the
algorithm to arrive at the global optimum. In this section,
we consider an example with the superstructure shown in
Figure 12. It shares Table 2, Table 3, and Table 4 with the first
example shown in section 4. Mean time between failure, mean
time to repair, and capital costs are given in Table 1 in the
Supporting Information, which are not real world values and
are only meant for illustrative purposes. A series of reliability
parameters sensitivity tests are performed, for which the game-
theoretic approach gives the global optima according to the
solution of the original MILP (RST) (model stats), but in
much shorter time.
Figure 13 shows the optimal design. For both the main air

compressor and the booster air compressor, units 2 and 3 are
selected. The prepurifier and the LO2 pump exclude the last

Figure 11. Flowchart of the iterative problem solving scheme.

Figure 12. Design superstructure.
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potential units. The tanks for both LN2 and LO2 are of size
100k gallon. The capital cost on the processing equipment is
$6,225k, while the capital cost on the storage tanks is $105k.
The expected frequency of LO2 outage is 0.0105 in the 10 year
horizon, which incurs a $21,089 penalty. The expected frequency
of LN2 outage is 0.0121 in the 10 year horizon, which incurs a
$24,194 penalty.
First we perturb the parameters to make the units less reliable

and harder to repair. When the failure rates are doubled and the
repair rates are cut in half, the optimal design is shown in Figure 14,

where the only change compared to the original design (Figure 13)
is that the main air compressor switched one of the redundancies
for a more expensive and more reliable one. And because of
the changes in the reliability parameters, the expected LO2
penalty becomes $181,769, and the expected LN2 penalty
becomes $200,556.
If the failure rates are multiplied by 5 and repair rates are

divided by 5 (Figure 15), the best decision is to have the largest
storage tanks (1500k gallon) for both products, and to have all
the potential units in the compressor stages. The capital cost on

Figure 13. Optimal design for the parameters shown in Table 5.

Figure 14. Optimal design when failure rates are doubled and repair rates are cut in half.

Figure 15. Optimal design when failure rates are multiplied by 5 and repair rates are divided by 5.
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the processing equipment is now $8,475k, while the capital cost
on the storage tanks is $1,815k. The expected frequency of LO2
outage is 0.254 in the 10 year horizon, which incurs $508,643
penalty. The expected frequency of LN2 outage is 0.391 in the
10 year horizon, which incurs $781,340 penalty.
Now we switch to the other direction where the failure rates

are cut in half and the repair rates are doubled (Figure 16).
There is a fairly large reduction in the capital investment needed
for the redundancies comparing to the nominal case ($3,415k
compared to $6,225k), but there has to be a raise on the storage
side as a trade-off (1000k gallon for both LO2 and LN2 leading
to $1186k capital cost). The expected frequency of LO2 outage
is 0.237 in the 10 year horizon, which incurs $473,939 penalty.
The expected frequency of LN2 outage is 0.295 in the 10 year
horizon, which incurs $589,553 penalty.
Finally, as shown in Figure 17 when the units are assumed to

be significantly more reliable than the nominal case, the optimal
design is to use the fewest number of redundancies and the
smallest storage tanks. The investment on processing equipment
is $3,365k. 400k gallon tanks are chosen for both products,
which leads to a $452k cost. The expected frequency of LO2
outage is 0.0960 in the 10 year horizon, which incurs a penalty
of $192,029. The expected frequency of LN2 outage is 0.125 in
the 10 year horizon, which incurs $249,535 penalty.
It can be seen from the last two cases that the optimizer

chooses to pay more penalties rather than higher investment
cost, as the opportunistic decrease of outage penalties are not

enough to overcome capital commitment of installing more
redundancies.
Table 5 shows the numerical results and the computational

statistics from both methods for the above cases. It can be seen
that the proposed game theoretic algorithm can solve the
problem in much shorter time than the original MILP. Also, as
the units become more reliable, the overall costs and penalties
become lower.

7. CONCLUSION
In this paper, we have addressed the optimization problem of
reliable design for chemical processes, in which design decisions

Figure 16. Optimal design when failure rates are cut in half and repair rates are doubled.

Figure 17. Optimal design when failure rates are divided by 5 and repair rates are multiplied by 5.

Table 5. Numerical Results and Computational Statistics of
the Sensitivity Test Cases

least
reliable

less
reliable

more
reliable

most
reliable

objective value (K$) 11579.9 6722.4 5855.6 4258.5
investment cost (K$) 8475 6235 3415 3365
LN2 penalty (K$) 508.6 181.8 666.8 192.1
LO2 penalty (K$) 781.3 200.6 587.8 249.4
proposed
algorithm

CPUs 9.2 2.6 2.3 2.3

no. iters. 3 1 1 1
original MILP
(RST)

CPUs for
parameters

2702.2 2828.6 2712.3 2721.1

CPUs for
models

1191.2 2198.2 604.6 189.1
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are made regarding redundant equipment selection and storage
tanks sizing. The aim is to minimize the total cost, which
consists of the penalty from product unavailability and the cost
of increasing the reliability by installing parallel units and storage
tanks. An MILP model (RST) based on Markov Chain assump-
tion is proposed and applied to the motivating example of an air
separation unit, where the pipeline availability is essential for
ensuring the continuation of downstream customer productions.
While the Markov Chain framework closely represents the

stochastic process of equipment failures and repairs, and the
filling and consumption of liquid storage, the state space repre-
sentation leads to the curse of dimensionality. To be able to
tackle larger superstructures, we propose a game theoretic algo-
rithm that decomposes and restructures the problem as a team
game of the various processing stages, and arrives at a Nash
Equilibrium among them. It is also shown that a good initial
design that is close to the global optimum can be easily obtained
for our problem, which guarantees the quality of the Nash
Equilibrium solution. A number of examples have been shown
to illustrate capability of the proposed algorithm to solve to
global optimality in orders of magnitude shorter time than
directly solving the original MILP model (RST).
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■ NOMENCLATURE

Indices
k index of the processing stages
h index of single stage designs
h̅ index of the system designs
h̃ index of the minus-one-stage system designs
s state index of single stages
s ̅ state index of the system
s ̃ state index of the minus-one-stage systems
n index of storage tank size options
Sets
K index set of the processing stages
Hk index set of the designs of stage k
H̅ index set of system designs
H̃k index set of the complementary designs of stage k

NLO2 index set of LO2 storage tank size options
NLN2 index set of LN2 storage tank size options
Sk,h state space (set of all possible states) of design h in stage

k
Sk,h
f set of all failure states of design h in stage k
S̅h̅ state space of the system design h̅
S̅h̅
f set of all failure states of system design h̅
S̃k,h̃ state space of the complementary design h̃ of stage k

Parameters
c_unitk,h investment cost of design h in stage k
Wk,h(s,s),Wk,h transition rate (,matrix) of design h in stage k
πk,h(s),πk,h stationary probability distribution (,vector) of

design h in stage k
σk,h(s),σk,h departing rate (,vector) of design h in stage k
W̅h̅(s,̅s)̅,W h̅ transition rate (,matrix) of system design h̅
π̅h̅(s)̅,π h̅ stationary probability distribution (,vector) of

system design h̅
σh̅(s)̅,σ h̅ departing rate (,vector) of system design h̅
f h̅(s)̅ frequency of encountering state s of system

design h̅
T planned service time of the ASU
Vn
LO2 reserve volume option n of liquid oxygen (tons)

Vn
LN2 reserve volume option n of liquid nitrogen

(tons)
c_tankn

LO2 investment cost of liquid oxygen tank of reserve
volume Vn

LO2

c_tankn
LN2 investment cost of liquid nitrogen tank of

reserve volume Vn
LN2

δLO2 consumption rate of liquid oxygen (tons per day)
δLN2 consumption rate of liquid nitrogen (tons per day)
penaltyLO2 penalty of liquid oxygen supply interruption

(K$ per occurrence)
penaltyLN2 penalty of liquid nitrogen supply interruption (K

$ per occurrence)
̂

̅frn h,
LO2 overconsumption frequency of liquid oxygen

given that size n is selected for LO2 tank and h̅
is selected for system design

̂
̅frn h,

LN2 overconsumption frequency of liquid nitrogen
given that size n is selected for LN2 tank and h̅
is selected for system design

̂ ̅FRn k h k h, , ( , )
LO2 overconsumption frequency of liquid oxygen

that is due to the failure in stage k under system
design h̅, which corresponds to stage design h in
stage k

̂ ̅FRn k h k h, , ( , )
LN2 overconsumption frequency of liquid nitrogen

that is due to the failure in stage k under system
design h̅, which corresponds to stage design h in
stage k

̂ ̃FRn k h h, , ,
LO2 overconsumption frequency of liquid oxygen

that is due to the failure in stage k with design h
and complementary design h̃

̂ ̅FRn k h k h, , ( , )
LN2 overconsumption frequency of liquid nitrogen

that is due to the failure in stage k with design h
and complementary design h̃

Variables
zk,h binary variable that indicates the selection of

design h for stage k
xn
LO2 binary variable that indicates the selection of tank

size option n for liquid oxygen
xn
LN2 binary variable that indicates the selection of tank

size option n for liquid nitrogen
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rth̅(s)̅ random variable of the residence time of state s ̅ of
system design h̅

̅̅V s( )h
LO2dec random variable of the volume of liquid oxygen

decreasing during failure state s ̅
̅̅V s( )h

LN2dec random variable of the volume of liquid nitrogen
decreasing during failure state s ̅

̅frn h,
LO2 overconsumption frequency of liquid oxygen given

that size n is selected for LO2 tank and h̅ is
selected for system design

̅frn h,
LN2 overconsumption frequency of liquid nitrogen

given that size n is selected for LN2 tank and h̅
is selected for system design

CU investment cost on processing units
CT investment cost on storage tanks
PN expected penalty from supply interruptions
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