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1. Introduction

Image restoration, and important task in image processing, is the process of reconstructing an image of an unknown
scene from an observed distorted image, and it finds many applications in scientific computing and engineering.

Let x be a vector representation of the desired original image, and b be a vector representing the observed image. Then
the forward model for image restoration is as follows,

b=Ax+e, (1)

where A is a linear operator that describes the distortion process of the imaging system, and e represent additive noise,
usually assumed to Gaussian. Image restoration is a broad term used for methods that attempt to recover x from the
observed degraded image b. It is well-known that image restoration is a typical ill-posed problem [16,17]. In order to
find a meaningful solution for image restoration, a regularization technique is applied to deal with the ill-posedness. One
classical regularization technique is to restore the image by minimizing a functional that consists of a data-fitting term and
a regularization term:

nyn{%wx—bﬁwmx)}, (2)
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where the regularization term ¢(x) is used to stabilize the solution by enforcing some prior constraints on x, and y > 0

is a small regularization parameter that is used to balance the data-fitting term and the regularization term. Here and in
mn

the sequel, for any vectors x, y € R™, their inner product is defined as (x,y) = inyi, the 2-norm of x is defined as
i=1
|x| = 4/ {x, x). (We purposely use | - | to represent vector 2-norm instead of the standard | - | notation.)

Numerous kinds of regularization functionals have been studied; the classical and most well-known is Tikhonov regu-
larization [26]. Image restoration based on Tikhonov regularization is popular because of its computational simplicity and
efficiency [14,21]. The downside however is that it may oversmooth the computed solution. To overcome this weakness,
edge-preserving regularization techniques have been proposed, including total variation (TV) regularization [24], half-
quadratic regularization [3,22], high-order TV based regularization [9], total generalized variation regularization [6], nonlocal
TV regularization [15] and structure tensor TV regularization [20].

Image restoration based on TV regularization requires solving the following minimization problem:

rnxin{%le—b|2+yTV(x)}, (3)

where TV(x) is the TV norm of x.

Compared to the Tikhonov approach, TV regularization can preserve edges in the image. The price paid is that the
TV regularization model (3) is more computationally difficult to solve, but some effective schemes have been proposed. For
example, the time-marching method [24], the primal-dual Newton method [8], the variable splitting method [1], primal-dual
methods [32], alternating minimization methods [18,27,28], and the alternating direction method of multipliers (ADMM)
[5,30].

Aside from the numerical difficulty for the minimization of the TV regularization model, one has to tackle the difficulty
of the selection of a suitable regularization parameter. If the regularization parameter is too large, the restored image is too
smooth. If the regularization parameter is too small, the restored image will contain more oscillatory artifacts. Finding a
suitable value for the regularization parameter is therefore crucial for image restoration.

To circumvent this difficulty, we can rewrite the optimization problem as an equivalent constrained minimization prob-
lem,

1
min 3 | Ax — b|?, subject to TV(x) <8, (4)

where § is a regularization parameter that controls the smoothness of x.

Mathematically, problems (3) and (4) are equivalent and there is a correspondence between y and §. However, from
computational point of view, these two problems are very different. For problem (3), the parameter y does not have a
physical meaning, and it is very difficult to determine a suitable value. On the other hand, the parameter § in problem (4)
has an obvious physical meaning that represents the smoothness of the image x. We can select § by using information of b.
The advantages of the constrained minimization (4) over unconstrained one (3) have been observed by many authors. See
for example [2,11,23]. However, in general solving problem (4) is more difficult than solving problem (3).

In this paper we consider color image restoration, which we first formulate the problem as a constrained minimization
problem that minimizes a quadratic functional subject to a constraint that the total variation of the color image is less than
a given parameter §. As previously mentioned, the advantages of the constrained minimization problem over the traditional
unconstrained one is that the parameter § has an obvious physical meaning and is easy to select. Then by exploiting
structure inherent in the color image restoration model, we propose an effective alternating direction method of multipliers
to solve the constrained minimization problem. We prove the convergence of the method in detail. Experimental results
demonstrate that the proposed method is feasible and much more effective for color image restoration.

The contributions of this paper include: (i) We propose a new effective iteration method for color image restoration
by using the structure of the considered problem. (ii) The proposed method is based on the minimization of a quadratic
functional, subject to a constraint that the total variation of the color image is less than a given parameter 8, which has
obvious meaning and is easy to tune. (iii) Convergence of the proposed method is established.

The rest of this paper is organized as follows. In Section 2, we present the forward model of color image restoration,
and formulate the problem as a constrained minimization problem. Our proposed algorithm is presented in Section 3.
Convergence analysis of the proposed method is given in Section 4. Experimental results are given in Section 5, and some
conclusions are presented in Section 6.

2. Forward model and TV regularization

Pixels of a color image are encoded in three scalar values, namely, red, green and blue, and thus can be represented by a
three-dimensional array X of size m x n x 3, in which the three channels of red, green and blue are respectively the three
two-dimensional arrays X, = X(,:, 1), Xg £ X(:,:2), and X, & X (., 3). Accordingly, the forward model for color image
restoration is much more complicated than grayscale image restoration, since blurs exist either within or across channels.

Please cite this article in press as: J. Zhang, J.G. Nagy, An effective alternating direction method of multipliers for color image restoration, Appl. Numer.
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Fig. 1. Left: the Bayer pattern of sensors for recording color images on a single CCD; right: the situation that the Bayer pattern is shifted with respect to
the CCD. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In recording a color image, two strategies are often employed [17]. One strategy is splitting the incoming light in
three separate color channels using color filters, and then recording these three color images on three different CCDs
(charge-coupled devices). Another strategy is using a single CCD to record color pixels. To that end, a filter mask with a
red/green/blue pattern, called a Bayer pattern, is placed on top of the CCD so that light in the different colors is recorded
by different sensors on the same CCD. The Bayer pattern uses the property that the human eye is most sensitive to green,
less to red and least to blue, and is shown in the left part of Fig. 1.

In either technique, color images recorded may suffer from color artifacts. For example, in the single-CCD approach, this
occurs due to the Bayer pattern shift with respect to the CCD, as shown in the right part of Fig. 1. Due to the shift, a sensor
meant to record green might be partially misaligned with the red. As a result, in addition to the within-channel blurring of
each of the three color layers, there is also a cross-channel blurring among these layers. See [17] for details.

According to [17], assume that the optical blurring or the within-channel blurring takes place before color blurring which
is spatially invariant. In addition, we assume that in all three channels the blurring is the same. To simplify the notation,
we let A be the matrix that represents within-channel blurring, and define

rr Qrg  Arp
Ac=| agr agg ag
dpr  Qpg  Qpb

to represent cross-channel blurring. Then the model for color blurring takes the following form:
(vec(By), vec(Bg), vec(By)) = (Avec(X;) Avec(Xg) Avec(Xp)) Al (5)

where the three-dimensional array B of size m x n x 3 is the observed color image, and B, £ B(:,:, 1), Bg £ B(,:,2), and
By £ B(:,:,3), and for any m-by-n matrix M = (my,my, -+ ,my), vec(M) = (mI, mI, ... .mDHT.

Let x, = vec(X;), xg = vec(Xyg), Xp = vec(Xp), by = vec(B;), bg = vec(Bg), by, = vec(By), and set X = (x;,Xg,Xp), B =
(br, bg, bp). Then equation (5) can be written as the following matrix equation

B=AXA!

In addition to color blurring, there is noise during the image formation process, and so the forward model for color
image restoration then has the following form

B=AXA! +E, (6)

where we assume in this paper that E additive Gaussian white noise. This forward model for color image restoration was
also studied in [4]. In order to stabilize the solution to equation (6), we rewrite it in the form (4). For this purpose, we
need to define TV for a color image. There are different definitions of TV for color image, here we use multichannel TV
[7,10,25,29,31].

For a vector u € R™, let u;j represent u’s (i + (j — 1)m)th element. Let T4£1{1,2,...,m}x({1,2,...,n}. Then, assuming
periodic boundary conditions, the discrete derivatives Vyu € R™ of u in the horizontal and Vyu € R™ in the vertical
directions respectively, are defined by

ujjr1 — Ui,  1<j<n,
(Vawyij=q 0 i
uj1 — Uin, J=n,
and
Uit1,j —Ujj, 1=<i<n,
Vywij =1, 0 Y Z
1j — Umj, I=m,
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for (i, j) € Z. For color image X written in the form X = (x;, Xg, Xy) € RM>x3 e define the discrete gradient operator
V RMX3 s RMNX6 by VX = (VXr, VyXr, ViXg, VyXg, VX, VyXp). Then the discrete multichannel TV of X, is defined by

IXImrv == D | > 1(Vax)ijl + [(Vyxil.

(i,j)eZ \ ke{r,g,b}

For any space R™*! (I > 2), we use the inner product (-,-)r and norm | - ||r, which are defined as follows: for
!

P=p' p%---,pheR™ and Q =(q",¢% - ,a) e R™, (P, Q)r =) (p*.q") and ||P||r = (P, P);. Clearly || P
k=1

is the traditional Frobenius norm. Define ||P|; = Z [Pij|, where |Pjj| = |(pi1j, p,2] ,pi.j)| =
(i,))eT

Using these notations, we have ||X| |ty = ||VX]l1, and we formulate the color image restoration problem as the following

minimization problem.

1
Xz(pf?j)2 for (i, j) € Z.
k=1

1 T 2
mln.EHAXAC - B“F? (7)
subjectto ||[VX]1 <3,
or
1 T 2
min EHAXAC — Bz +1qvx); <) (X), (8)
where 1o (w) is the indicator function of €, i.e.,
(@) = 0, for w € Q,
‘e ]| +00, otherwise.
3. Our method
In this section, we design an effective method for solving (8).
By introducing new variables Y and Z, we can write the minimization problem (8) into
1 T 2
min illAXAc = Blf +1qz)1<5)(2),
subjectto X =Y, (9)

Z=VY.

Now attaching the Lagrange multipliers Ax € R™*3 to the linear constraints X =Y, and Az € R™*% to Z = VY, we get
the augmented Lagrangian (AL) function of (9):
LX,Y,Z,Ax,Az)= FI|AXA] — BI2 +1(1z),26)(Z) + (Ax, X — Y)F
+BIX YR+ (A2, Z-VY)r+ L1z - VY2,
where 8 > 0, u > 0 are the penalty parameters for the violation of the constraint X =Y and Z = VY. Hence, given initials
YO, Ag?) and A(ZO), ADMM for problem (9) computes a sequence of iterates XD, z(D y®, Ag(l), A(Z]), X® z@ y®?,
Ag(z), A(Zz), s, X0z y A()’;) and Ag{), .-, such that

1
XD _ argmin ! i”AXAZ- _ B||% n <A§’(<)’ X-—yY®y 4 §||X - Y(k)||%} ) (10)
X
. /1/ ’
Z(k+]) = argmin {l(||z||1§5)(z) + E”Z - Vy(k)II% + (A(Z<), Z — Vy(k))[:] s (]])
VA

g||x<k+]) _ y”% + <A§l(<)’ xk+1) _ Y)r a2
12
+ G120 - VY2 + (AP, 205D — V)],

y kD) — argmin{
Y

and

Agl(<+1) _ Ag’;) 1 (XD _y i)y,
Agﬁq) — Ago + M(Z(k-‘rl) _ vy(k-i—'l))'

Please cite this article in press as: J. Zhang, J.G. Nagy, An effective alternating direction method of multipliers for color image restoration, Appl. Numer.
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We now consider solving the above three subproblems.
For problem (10), by setting the gradient of

4
2
with respect to X to zero, we have

1
SIAXAL — BIE + X — YO F + (A X — ¥ ),

ATAXATA.+ X =ATBA +pY® — AP 2 RV, (13)
Let the singular value decomposition of matrix A be Ac =UZXVT. Then (13) can be written as
ATAxvx?vT + X =RW,
or
ATAXVE? + XV =RVV. (14)
Let ¥ =diag(o1, 02,03), T =XV = (t1,t2,t3), and G®¥ = ROV = (ggk), gék), ggk)), then (14) can be written as
(0PATA+ BDt =g}",
(02ATA+ gDt =g, (15)
(02ATA+ BDt; = g°.

Under the periodic boundary condition for X;, X and Xj, AT A is a block circulant with circulant blocks matrix. Therefore,
the coefficient matrices on the left-hand sides of (15) can be diagonalized by 2D discrete Fourier transform F. Let F(X)

denote the discrete Fourier transform of X. Let the symbol “o” denote the element-wise multiplication, and the division is
taken element-wise. Let gfk) = vec(Gfk)), i=1,2,3. Then we can write the solution to (15) as

i, F(G) .
ti=vec|F ,fori=1,2,3, (16)
o2 F(A)* o F(A) + B1

where the super script “*” denotes complex conjugacy and 1 is a matrix of the same size with F(A), with all its elements
being 1. Accordingly, X**+D =TVT =[t,t5, t3]V7.
o
The minimization problem (11) seems computationally challenging, but if we define W® =vy® — A/—f then (11) can
be written as

: M
zk+1) arg;nln [l(||Z||1§6)(Z) + EHZ — W(’<)||%} . (17)

We note that W& ¢ RMnx6_ [et Wl(k) be the ith row vector of W®, and let |WE:.‘)) | be the order statics of the norms

|Wl§’<>| fori=1,2,---,mn. That is, |WEII<))| > |W$§| > > |Wg;1)n)|. Let I be the largest number such that

I

k) *)
Do IWE =8 < Wl
i=1

1

and define A = % (Z |W8.<))| - 8). Then problem (17) has a closed form solution:
i=1

A ® e
wrn | max[(1—-—=],0)w", ifw® 2o,
Zi = (( |w§")|> ) ’ : (18)
0, otherwise,

fori=1,2,---,mn. The details are presented in the Appendix of this paper.
For problem (12), if we set the gradient of

4
2

with respect to Y to be zero, then the solution Y *+1) solves the following matrix equation:

IXOED — ¥ I+ AR XD — ¥4 E1Z8 - vy 4 (A, 26D vy,

VTV + BNY = uvT 26D L vTAY £ (AP 4 gx ki), (19)

Please cite this article in press as: J. Zhang, J.G. Nagy, An effective alternating direction method of multipliers for color image restoration, Appl. Numer.
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So we can write the solution as follows:
1 F (MVTz(k-H) + VTAgO + (Agl(() + ﬁx(k+1)))

Y& —
F(V)* o F(Vx) + F(Vy)* o F(Vy) + 1

Based on the above discussion, we give the following algorithm.
Algorithm 1. ADMM for color image restoration.

1. Let A, A; and B be given. Let Ac = UXVT be singular value decomposition of A.. Given constants j, it € R, and given
initial Y@ ¢ RMx3, A()?) e R™>*3, and A(ZO) € RMnx6,

2. Fork=0,1,2,...,
o Compute R® =ATBA, +8Y® — Agp.
e« Compute ¢ _pby = (ggk), gék), g;k)).

® _ - FG{") . _
o Compute t;~ = vec <]—" (Wlﬂﬂ)ﬂ‘“ , fori=1,2,3.

o Compute X*+D = T® VT where T® = ¢{?, ¢, ).
@
o Compute WH =vy® _ ATZ

o Compute Z**D according to (18).

F MVTZ(k+1)+VTA(")+ A(k)+ﬂx(k+1>
e Compute Y+ = F-1 ( (s )

F(Vx)*oF (Vx)+F (Vy)*oF (Vy)+B1
k+1 k k+1

o ATV =AY + XKD —y kD),

° A(Zk+1) — Ag() +/’L<Z(k+1) _ VYUH—])).

4. Convergence analysis

In this section, we establish the convergence theory of our proposed algorithm.

Definition 1. [13] Let , IT be nonempty convex subset of RN and RX. (u*, v*) € Q x I is called a saddle point of function
Y defined on @ x I, if forall u e Q and v e I1

Yt v) Syt v <y v, (20)

Lemma 1. [13] Let ¥ (u, v) = ¥1(u, v) + ¥2(u, v) be defined on  x IT with

Yu e Q, ¢2(v) =y (u, v) is a concave differentiable function on IT,
Vv e I1, ¢1(u) =y (u, v) is a convex differentiable function on .

Then (u*, v*) € Q x I is a saddle point of function v if and only if
Vu e Q. Y (u, v) — gy (u*, v + (u — u*) Vg (u*, v > 0, (21)
Vv eI, i (u*, v¥) — Y1 (¥, v) — (v = v¥) V¥, v¥) > 0.

Remark 1. From the proof of Lemma 1 in [13], we see that the right inequality of (20) is satisfied if and only if (21) is
satisfied.

Lemma 2. X* € R™>3 is a solution of (8) if and only if there exist Y*, Z*, A%, and A% such that
LOX*Y*,Z* Ax,Az) < CX*,Y*,Z* A%, Ay < L(X,Y,Z, A%, AY). (22)
Proof. (<) Suppose that (X*,Y*, Z*, A%, A%) is a solution of (22). Then from the left inequality of (22), we have that
SIAX*AL — BIZ +1(12),<5)(Z%) + (Ax, X* = Y*)F
FOIX Y2+ (Az, ZF — VY*)p + B ZF - VYF|2

= 3IAX*AL = BIf + 102120 (Z) + (A% X* = Y7)e
+RIX" = YU+ (A, Z5 = VY + 5127 - VYR,

Please cite this article in press as: J. Zhang, J.G. Nagy, An effective alternating direction method of multipliers for color image restoration, Appl. Numer.
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from which we have

(Ax —Ax, X" —Y")p+ (A} — Az, Z* —VY*)F > 0.

Since Ax and Az can take any elements in R™>3 and R™>6, we get X* =Y*, and Z* = VY*.
Now by using the right inequality of (22), we have that

SIAX*AT — BIIZ + 1z, <5)(Z%) + (A, X* — Y*)F
+BIXF — Y2+ (A, ZF — VYR + EZF - VY2
< SIAXAL — Bl +1(z),<5)(Z) + (A} X — Y)F
+OIX - Y2+ (AL Z-VY)r+E1Z - VY2,

from which by taking Y = X, Z =VY = VX, we have
1 1
SIAXA; = Bl + 1qvx1,0 (X0 = SIAX"A¢ = BIIE + 19 x5 (X

So X* is a solution of (8).
(=) Suppose X* is a solution of (8), then V X € R™>3,

1 T 2 1 xaT 2 *
EIIAXAC = Bl +1qvxii=s(X) = §||AX A; — B|E +iqvx)<s) (X5,
and so
0 AT(AX*Al — B)Ac + VT 31y x|, <5 (X*).
So there exist A*X and A’g such that,

Ay =—AT(AX*A] — B)Ac, — A} € d1vx|,<5)(X), and A% + VT A% =0. (23)

By taking Y* = X*, Z* = VY*, we immediately obtain the left inequality of (22).
We now consider the function £(X,Y, Z, Ay, A%). Since L(X,Y,Z, A, A}) is convex on (X,Y, Z), to prove the right
inequality of (22), by Remark 1 we just need to prove that

AT(AX*Al — B)A. + B(X* — Y*) + A% X — X*
< BY* — X*) — Ay +uVI(VY* —Z*) - VTAY |, ;—;: >

W(Z* = VY*) + Ay
+1(1z),<6)(Z) — 1()z),<6)(Z%) > 0.

From (23), and using Y* = X*, Z* = VY*, the above inequality is equivalent to

F

11zl <8)(Z) — 1 z)y<8)(Z") — (=A%, Z — Z*)F > 0,

which is true since 1(z),<s)(Z) is a convex function on Z, and —A} € di(vx),<5(X*) and Z* =VX*. O

By using (22) and Remark 1, we have that, (X*, Y*, Z*, A%, A%) satisfies

AT(AX*A] — B)A 4+ B(X* —Y*) + A =0, (24)
BOY* — X*) — A% +uVI(VY* —2%) —VITA% =0, (25)
Wz1h=9)(Z) = 1q1z11=8)(Z7) + (W(Z* = VY") + A7, Z — Z")F 2 0. (26)

In the following, we present a convergence result for Algorithm (1).

Theorem 1. Let X* € R™3 be a solution of (8). Then the sequence (X%, Z®)) generated by Algorithm 1 is a minimization sequence
of (8). That is, it satisfies

. 1 1
klglgo{illﬂx(k)ﬂf - B| + l(qulgm(Z(k))} = EIIAX*ACT — BI% + t(1x )y <8) (X*).

Moreover, if A and A are nonsingular, then we have lim X% = X*, lim Y® = X* and lim Z® = vXx*.

k— o0 k—o0 k—o00

Please cite this article in press as: J. Zhang, J.G. Nagy, An effective alternating direction method of multipliers for color image restoration, Appl. Numer.
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Proof. Let (X*,Y*, Z* A%, A%) be a solution of (22), then from the proof of Lemma 2, we know that, Y* = X*,
zr = vy* Let Ay =AY — A%, AP =A% —Ar, x© = x®0 _ x* ¥¥ = y® _y* and 2% = 20 — z*. From

the updates A(,f“) and A(k“) of Algorithm 1, we have that A;?H) = A(k) + B ( x _ytD , and A(Z’<+1>
AY +u (7(k+]) - VV(kH)) These two equalities are equivalent to \/—A?;H) fA(k) + fﬁ( x Y(k“)), and
fA(kH) JBX( +fu( z* vyt )), from which we can get
(k+1) 2 () ikt 1) _ 0etD) D et 2
(IR V1R = IRY12) =20 Ry XY =¥ e 4 X I 27)
and
(k+1) 2 - 2 (k) —(k+1) v k+1) —(k+1) v k+1)
B IRz 12— 1RZ 13) =218 (Rg . 2" = 9¥ ) 4 2120 — v¥ U, (28)
From (24) and (25), we get
ATAX*ATA. + pX* =ATBA. + BY* — A%
and
WUVTV 4+ BDY* = uvTz* + VT A% + A + X"
Notice that X**1 is the solution of (13), and Y **D is the solution of (19), so we get that
< k+1 < (k+1 vk (k)
ATAX* VAT A, + pX*Y = py® — A,
and
VTV + oY Y = vz L vTRY LAY 4 px D,
This then allows us to conclude that
—(k+1) <k+1) 2 —(k+1) (k) — () <(k+1)
IAX"VALIE + BIX IF=8X"" " Y )rF—(Ax . X )F. (29)
and
v (k+1) vk+1) 2 v k+1) k+1) - k+1)
miIvy I+ BIY I2= BX Y JFH (ALY )F (30)
+,u(VT7(kH),7(kH)) (VTA(k) (k+1)) '
On the other hand, by (11) we get
K
Wiz =0)(2) = 12120/ @40) 4 (1 (2050 = VY ©) 1A, 2 - 204D)p =0, (31)
Taking Z = Z**D in (26), and Z = Z* in (31), and then adding these equations together, we have
<2(k+1), w (vv(k) _ 2(1(4—1) _ ng))>F >0,
from which we have
k+1 —(k+1 vk =k
A R A 4 A VP (32)
By adding (27), (28) and the results of (29), (30) and (32) by multiplying both sides of them with 28u, we obtain
(k+1) (k+1) —(k)
w(IRX 12— 1AY13) + 8 (187 13 - 1A 13
(k+1) 12 v 2 (k+1) 2 v 2
+ 82 (V12 = 17 12) + g2 (IVF 12 97 2) (33)
vk+1) k)2 (k+1) A (k+1)
< —p*ulX -Y" I} - BullZ —VY U [: - 28ulAXT U ALE.
From (33), we have that, {Agﬁ)}, {Xg{)}, {Y(k)} and {VY(k)} are convergent, and ||X(k+1) y® lF, ||7(k+1) y® llF, and

||A7(k+1)ACT||F converge to zero.
Notice X* =Y*, Z* = VY*, from the right inequality of (22), we have that
FIAX*AL = BF + 1z}, <5)(Z7)
< SIAX®DAL = BIZ +1(z),<5(Z%D) + (A}, XD —y®)p (34)
+ §||X(k+1) —_y® ||12: + (A%, zktD) _ gy @y, 4 %Hz(kH) —_vy® ||%_.
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Since
X0 arg)r(nin{%HAXAZ B3+ AR X -9 Dy Y”‘W%} ,
we have,
%HAXACT _ B2 - %HAX("“)ACT B2+ (8 (x“‘“) - Y(k)) + A% x - x®y >0,
Since
20 = argmin [rz10 @ + 12 = VYOI + (AP, 2 - 0¥ O ],
we have,

k
Wizi=9(2) = 10z1 202D+ (u (20D - Vy(k)) +Az.Z2-2%)p=0.
Taking X = X* in (35) and Z = Z* in (36) we have

SIAX*AL — BIIZ + 1z}, <5)(Z*)

SIAXED AT — B|1Z + 1z, <5)(Z*TD)
(k+1)

v

—(k+1)

+(B (XD —y®) 4+ A XV (u (20D - vy @) AP ZH)
Since
Y(+D = argmin {§||x<’<“> — Y2+ (AR XED —y)p
k
+ 51200 - VY2 + (AP, 20D — vY)e],
we have,

B (Y(k+1) _ X(k+1)) _ Aglg) +uvT (Vy(k-H) _ Z(k+1)) _ VTAgO —o.

<k+1) k) —Zk+1)

Therefore we have lim (A(k) + VTA(")) 0 because ||X

k— o0

~ Y| and |Z

APNUM:3887

(36)

(37)

I
||p converge to zero, and { (c)}

is convergent. Since v, A(k) and Ago are convergent, we therefore have klim (A(,l(‘) + VTAg‘), V(k)>F =0, or
— 00

lim ((Agf),v(k)>F+(A(k) VY(l<)>F) —0.

k—o00

—(k+1) (k) (l<+l)

From the results that {Ag)} {Ag{)}, { (k)} and {Vv(k)} are convergent, and || X -Y

to zero, and by using (38) we have from (34) and (37) that

I, 1Z

1
lim {§||Ax<’<>AZ — B|I% + z(HZH1§5)(z<’<>)}

(_>OO
= {31AX*A] — Bl +1(12),<6(Z")}
= {FIAX*AL = BIE +1(x)1 (XD} -

If A and A, are nonsingular, then we have lim X® = x* lim Y® =y*=X* and lim Z®¥ =vz*=

k— o0 k—o0 k—o0

5. Experimental results

(38)

(k)
||F converge

vVX*. O

In this section, we conduct two experiments to illustrate the effectiveness of our proposed method. In the first exper-
iment, we study how the value of § affects the quality of the image restoration. In the second experiment, we compare
the restoration performance by using our proposed method with the well-known FTVd method [31]. FTVd is a very fast
method; in each iteration, it uses six FFTs and one thresholding operation. For the convenience of discussion, we will use

the notation ADMC for our proposed method.

We tested six typical images “House”, “Lake”, “Mandril”, “Peppers’, “Rose” and “Sunset” to investigate the performance of

ADMC and FTVd. The six images are shown in Fig. 2.
We use the signal-to-noise ratio (SNR) [31]:

I Xtrue — E(Xrue) 12
I Xtrue — X112

s

SNR=10 loglo

Math. (2020), https://doi.org/10.1016/j.apnum.2020.07.008
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Fig. 2. Test images. From top row to bottom row: House, Lake, Mandril, Peppers, Rose and Sunset.

to measure the quality of the image restoration, where Xye and X denote the original image and the restored image
respectively, and E(Xye) is the mean intensity value of Xrye.

All computations were performed in double precision using MATLAB 7.12 (R2011a) on an Intel(R) Core(TM) i7-2600 CPU
@3.40 GHz, 4.00 GB RAM.

Experiment 1.

In this experiment, we investigate how the value of § affects the quality of the image restoration. For this purpose, we

first use (6) to generate a blurred and noisy image for two test images house and sunset, where we take A = G(7,5), which
0.7 02 0.1

is a Gaussian blur with square support size 7 and standard deviation 5, and A. = | 0.25 0.5 0.25 |. In each case we
0.15 0.1 0.75

generate a noise free observation image Byf = AXtrueA!. The blurred and noisy image B was generated by B = By + E,

where E is a noise matrix whose entries are chosen from a normal distribution with mean 0 and variance 1, and scaled so

that

IEIF

| Bnll F
and we use 7 =103 and 1 = 10~2. Then we set § to be 1.5|[B|lmrv, 2||Bllmrv and 2.5||B||m7v. The results are shown in
Figs. 3 to 6.

From the above figures, we see that the closer § is to the TV of the true image, the better the obtained result is. We also
see that, even if § is not a good approximation to the TV of the true image, the obtained results are still acceptable.

(39)

Experiment 2.

In this experiment, we compare the results obtained by using our proposed method with that obtained by using FTVd.
In order to provide a fair comparison, the experiments were done in the following way. For each test image, we use FTVd
to restore the image, where the parameters in the algorithm are selected by trial and error to obtain best possible results.
We then set § to be the TV of above restored image, and finally we use our proposed method to restore the image. Tables 1
and 2 show the obtained results. From the tables, we see that our proposed method gets the highest SNR value for almost
every test image.
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4% 45 45 45

Fig. 3. From left to right: blurred and noise image (SNR = 8.98, n = 0.001), restored image (8§ = 1.5|/B||mTv, SNR = 23.30), restored image (8§ =2||B||mTv,
SNR = 23.42), restored image (8 = 2.5||B||mTv, SNR = 23.57).

Fig. 4. From left to right: blurred and noise image (SNR = 14.18, n = 0.001), restored image (§ = 1.5||B||mTv, SNR = 25.12), restored image (8 =2||B||m1v,
SNR = 25.45), restored image (8§ =2.5||B||m7v, SNR = 25.50).

iR g

Fig. 5. From left to right: blurred and noise image (SNR = 8.95, n = 0.01), restored image (8 = 1.5||B||mtv, SNR = 17.76), restored image (§ = 2.0||B||m1v,
SNR = 16.62), restored image (§ = 2.5||B||m7v, SNR = 15.35).

Fig. 6. From left to right: blurred and noise image (SNR = 14.14, n = 0.01), restored image (8§ = 1.5||B||mutv, SNR = 19.91), restored image (§ = 2.0|B||mTV,
SNR = 19.31), restored image (8 = 2.5||B||mTv, SNR = 18.43).

Table 1

SNR (db) for experiment with 1 =0.001.
Algorithm House Lake Mandril Peppers Rose Sunset
ADMC 23.57 21.09 14.94 23.23 23.21 25.38
FTVd 23.51 21.07 14.95 23.20 2317 25.33
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Table 2
SNR (db) for experiment with 1 =0.01.
Algorithm House Lake Mandril Peppers Rose Sunset
ADMC 18.05 16.91 10.33 19.72 18.19 19.92
FTVd 17.99 16.88 10.30 19.73 18.20 19.84

6. Conclusions

We propose an effective alternating direction method of multipliers for color image restoration with TV regularization
by formulating it as a constrained minimization problem and exploiting the structure to develop a very efficient algorithm.
We prove convergence of the method in detail. Experimental results demonstrate that the proposed method is feasible and
effective for color image restoration.

7. Appendix

In this section, we consider the minimization problem
. E _ 2 ]
i Nizi=0/(@) + F1Z - WG, (40)
This problem can be reformulated as
1
min ~[Z-W|?% s.t. |Z]l; <8. (41)
ZeRmnx6 2

It is easy to see that if |W||; <4, then the solution is Z* = W. Therefore, to solve the above problem, we may assume that
|[W 1 > é. In this case, since {Z]||Z||; < §} is a convex set, the optimal solution must be on the boundary of the constrained
set and we therefore can replace the inequality constraint ||Z||{ < § with equality constraint || Z||; = 4.

We now consider the following problem

. 1
min ~|Z—-W|?2 s.t. |Z]; =86. (42)
ZcRmnx6 2

The Lagrangian function of the above problem is
1
L(X,A)=EIIZ—WII%JH»(IIZII] —3), (43)

where A € R is a Lagrangian multiplier. If Z is the minimizer of (42), then 0 € 9xL(Z, )).
To characterize the optimal solution of the problem (42), we first give the following lemma.

I
inz. Then the subdifferential of functional f(x) = |x| is
i=1

Lemma 3. [19] Let x € R'(I > 2), and |x| =

X ifx£0,
afy =11 fx#0
{he R'||h| <1}, otherwise.
Denote Z =(Z],ZY,.--,Z] )T, where Z; = (Zj1, Zi, -+ , Zig) is the ith row vector of Z. Then using Lemma 3, we get
fori=1,2,---,mn,
W Zi _ it 7.
Zl Wl+)\‘|zi|—0, lel7é'07 (44)
Wil <A, otherwise,
from which we see that Z; is either parallel to W; or Z; =0 for i =1, 2, --- , mn. On the other hand, since Z is the solution

of (42), Z; should have the same direction with W; if Z; #0.
Lemma 4. Let Z be the optimal solution of the problem (42), then Z; = 6; W ;, with 6; > 0.

Proof. From (44) we have that Z; = 6;W ;. The only thing we need to do is to show that 6; > 0 for all i. Suppose that there
exists some ig such that 6;, < 0. Then we define Z RMX6 with

7 _1Zi if i # o,
"7 | —Z;, otherwise.
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Clearly | Z|l; = ||Z|)1, and is equal to 8. However, since i, <0,

1Z W2~ Z-WI|2Z=|Zijj — Wi, > — |Zi; — W;,|?
= |0iowi0 - Wi0|2 - | _aiowio - Wio|2
= ((0iy — D% = (=6, — D?) [W;y|> > 0

which contradicts the assumption that Z is the optimal solution of problem (42). O

Based on Lemma 4, we have by using (44) that, if Z is the optimal solution of problem (42), then

A
1——),0)W;, ifW;+#£0,
zi= max<< |w,~|> ) b WiE (45)

0, otherwise.

Based on (45), we have the following lemma.

Lemma 5. Let Z be the optimal solution of problem (42), and let i1 and i, be two indices such that

(Wi, | > [W,|.
If1Z;,] =0, then |Z;,| = 0.

Proof. If |Z;,| =0, then from (45) we have |W;,| < A. By the assumption we also have |W; | <. Then using (45), we have
Z;, =0, or equivalently |Z;,|=0. O

Using Lemma 5, and following [12], let |Z ;| be the order statics of the norms |Z;|. That is, |Z)| > |Z )| = -+ > | Z guny |.
Suppose that |Z| >0 fori=1,2,---,1and |Z;)|=0fori=1+1,---,mn. Then we have

mn mn 1
1ZIh=)_"1Zil =) 1Zw| =) _1Z)
i=1 i=1 i=1
1

1
=D Wil ==Y Wl — Al =8.
i=1 i=1
1

From which we have =1 Z |W )| — 6 ). So if we find I, which is the largest number such that

i=1
1
T Iwal—s
1-— i=1 >0,
(W |
or

1

DIWa | =8 <I1IW ),

i=1

we then obtain the optimal solution Z from (45).
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