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Color image restoration is an ill-posed problem, and regularization is necessary. In 
this paper, we first formulate the color image restoration problem into a constrained 
minimization problem that minimizes a quadratic functional and subject to a constraint 
that the total variation of the color image is less than a given parameter δ. The advantages 
of the constrained minimization problem over the traditional unconstrained one is 
that the parameter δ has an obvious physical meaning and is easy to select. However 
solving the constrained minimization problem is generally more difficult than solving the 
corresponding unconstrained form. We propose an effective alternating direction method of 
multipliers for color image restoration by using the structure of the problem. We prove the 
convergence of the method in detail. Experimental results demonstrate that the proposed 
method is feasible and much more effective for color image restoration.

 2020 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Image restoration, and important task in image processing, is the process of reconstructing an image of an unknown 
scene from an observed distorted image, and it finds many applications in scientific computing and engineering.

Let x be a vector representation of the desired original image, and b be a vector representing the observed image. Then 
the forward model for image restoration is as follows,

b=Ax+ e, (1)

where A is a linear operator that describes the distortion process of the imaging system, and e represent additive noise, 
usually assumed to Gaussian. Image restoration is a broad term used for methods that attempt to recover x from the 
observed degraded image b. It is well-known that image restoration is a typical ill-posed problem [16,17]. In order to 
find a meaningful solution for image restoration, a regularization technique is applied to deal with the ill-posedness. One 
classical regularization technique is to restore the image by minimizing a functional that consists of a data-fitting term and 
a regularization term:

min
x

{
1
2
|Ax− b|2 + γ φ(x)

}
, (2)
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where the regularization term φ(x) is used to stabilize the solution by enforcing some prior constraints on x, and γ > 0
is a small regularization parameter that is used to balance the data-fitting term and the regularization term. Here and in 

the sequel, for any vectors x, y ∈ Rmn , their inner product is defined as 〈x, y〉 =
mn∑

i=1

xi yi , the 2-norm of x is defined as 

|x| =√〈x, x〉. (We purposely use | · | to represent vector 2-norm instead of the standard ‖ · ‖ notation.)
Numerous kinds of regularization functionals have been studied; the classical and most well-known is Tikhonov regu-

larization [26]. Image restoration based on Tikhonov regularization is popular because of its computational simplicity and 
efficiency [14,21]. The downside however is that it may oversmooth the computed solution. To overcome this weakness, 
edge-preserving regularization techniques have been proposed, including total variation (TV) regularization [24], half-
quadratic regularization [3,22], high-order TV based regularization [9], total generalized variation regularization [6], nonlocal 
TV regularization [15] and structure tensor TV regularization [20].

Image restoration based on TV regularization requires solving the following minimization problem:

min
x

{
1
2
|Ax− b|2 + γ TV(x)

}
, (3)

where TV(x) is the TV norm of x.
Compared to the Tikhonov approach, TV regularization can preserve edges in the image. The price paid is that the 

TV regularization model (3) is more computationally difficult to solve, but some effective schemes have been proposed. For 
example, the time-marching method [24], the primal-dual Newton method [8], the variable splitting method [1], primal-dual 
methods [32], alternating minimization methods [18,27,28], and the alternating direction method of multipliers (ADMM) 
[5,30].

Aside from the numerical difficulty for the minimization of the TV regularization model, one has to tackle the difficulty 
of the selection of a suitable regularization parameter. If the regularization parameter is too large, the restored image is too 
smooth. If the regularization parameter is too small, the restored image will contain more oscillatory artifacts. Finding a 
suitable value for the regularization parameter is therefore crucial for image restoration.

To circumvent this difficulty, we can rewrite the optimization problem as an equivalent constrained minimization prob-
lem,

min
x

1
2
|Ax− b|2, subject to TV(x) ≤ δ, (4)

where δ is a regularization parameter that controls the smoothness of x.
Mathematically, problems (3) and (4) are equivalent and there is a correspondence between γ and δ. However, from 

computational point of view, these two problems are very different. For problem (3), the parameter γ does not have a 
physical meaning, and it is very difficult to determine a suitable value. On the other hand, the parameter δ in problem (4)
has an obvious physical meaning that represents the smoothness of the image x. We can select δ by using information of b. 
The advantages of the constrained minimization (4) over unconstrained one (3) have been observed by many authors. See 
for example [2,11,23]. However, in general solving problem (4) is more difficult than solving problem (3).

In this paper we consider color image restoration, which we first formulate the problem as a constrained minimization 
problem that minimizes a quadratic functional subject to a constraint that the total variation of the color image is less than 
a given parameter δ. As previously mentioned, the advantages of the constrained minimization problem over the traditional 
unconstrained one is that the parameter δ has an obvious physical meaning and is easy to select. Then by exploiting 
structure inherent in the color image restoration model, we propose an effective alternating direction method of multipliers 
to solve the constrained minimization problem. We prove the convergence of the method in detail. Experimental results 
demonstrate that the proposed method is feasible and much more effective for color image restoration.

The contributions of this paper include: (i) We propose a new effective iteration method for color image restoration 
by using the structure of the considered problem. (ii) The proposed method is based on the minimization of a quadratic 
functional, subject to a constraint that the total variation of the color image is less than a given parameter δ, which has 
obvious meaning and is easy to tune. (iii) Convergence of the proposed method is established.

The rest of this paper is organized as follows. In Section 2, we present the forward model of color image restoration, 
and formulate the problem as a constrained minimization problem. Our proposed algorithm is presented in Section 3. 
Convergence analysis of the proposed method is given in Section 4. Experimental results are given in Section 5, and some 
conclusions are presented in Section 6.

2. Forward model and TV regularization

Pixels of a color image are encoded in three scalar values, namely, red, green and blue, and thus can be represented by a 
three-dimensional array X of size m × n × 3, in which the three channels of red, green and blue are respectively the three 
two-dimensional arrays Xr ! X (:, :, 1), Xg ! X (:, :, 2), and Xb ! X (:, :, 3). Accordingly, the forward model for color image 
restoration is much more complicated than grayscale image restoration, since blurs exist either within or across channels.
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Fig. 1. Left: the Bayer pattern of sensors for recording color images on a single CCD; right: the situation that the Bayer pattern is shifted with respect to 
the CCD. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

In recording a color image, two strategies are often employed [17]. One strategy is splitting the incoming light in 
three separate color channels using color filters, and then recording these three color images on three different CCDs 
(charge-coupled devices). Another strategy is using a single CCD to record color pixels. To that end, a filter mask with a 
red/green/blue pattern, called a Bayer pattern, is placed on top of the CCD so that light in the different colors is recorded 
by different sensors on the same CCD. The Bayer pattern uses the property that the human eye is most sensitive to green, 
less to red and least to blue, and is shown in the left part of Fig. 1.

In either technique, color images recorded may suffer from color artifacts. For example, in the single-CCD approach, this 
occurs due to the Bayer pattern shift with respect to the CCD, as shown in the right part of Fig. 1. Due to the shift, a sensor 
meant to record green might be partially misaligned with the red. As a result, in addition to the within-channel blurring of 
each of the three color layers, there is also a cross-channel blurring among these layers. See [17] for details.

According to [17], assume that the optical blurring or the within-channel blurring takes place before color blurring which 
is spatially invariant. In addition, we assume that in all three channels the blurring is the same. To simplify the notation, 
we let A be the matrix that represents within-channel blurring, and define

Ac =




arr arg arb
agr agg agb
abr abg abb





to represent cross-channel blurring. Then the model for color blurring takes the following form:
(
vec(Br),vec(Bg),vec(Bb)

)
=

(
Avec(Xr) Avec(Xg) Avec(Xb)

)
AT
c (5)

where the three-dimensional array B of size m × n × 3 is the observed color image, and Br ! B(:, :, 1), Bg ! B(:, :, 2), and 
Bb ! B(:, :, 3), and for any m-by-n matrix M = (m1, m2, · · · , mn), vec(M) ! (mT

1 , m
T
2 , · · · , mT

n )
T .

Let xr = vec(Xr), xg = vec(Xg), xb = vec(Xb), br = vec(Br), bg = vec(Bg), bb = vec(Bb), and set X = (xr, xg, xb), B =
(br, bg, bb). Then equation (5) can be written as the following matrix equation

B = AX AT
c .

In addition to color blurring, there is noise during the image formation process, and so the forward model for color 
image restoration then has the following form

B = AX AT
c + E, (6)

where we assume in this paper that E additive Gaussian white noise. This forward model for color image restoration was 
also studied in [4]. In order to stabilize the solution to equation (6), we rewrite it in the form (4). For this purpose, we 
need to define TV for a color image. There are different definitions of TV for color image, here we use multichannel TV 
[7,10,25,29,31].

For a vector u ∈Rmn , let uij represent u’s (i + ( j − 1)m)th element. Let I ! {1, 2, . . . , m} × {1, 2, . . . , n}. Then, assuming 
periodic boundary conditions, the discrete derivatives ∇xu ∈ Rmn of u in the horizontal and ∇yu ∈ Rmn in the vertical 
directions respectively, are defined by

(∇xu)i j =
{
ui, j+1 − uij, 1 ≤ j < n,
ui1 − uin, j = n,

and

(∇yu)i j =
{
ui+1, j − uij, 1 ≤ i < n,
u1 j − umj, i =m,
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for (i, j) ∈ I . For color image X written in the form X = (xr, xg, xb) ∈ Rmn×3, we define the discrete gradient operator 
∇ :Rmn×3 →Rmn×6 by ∇X = (∇xxr, ∇yxr, ∇xxg, ∇yxg, ∇xxb, ∇yxb). Then the discrete multichannel TV of X , is defined by

‖X‖MT V :=
∑

(i, j)∈I

√ ∑

k∈{r,g,b}
|(∇xxk)i j|2 + |(∇yxk)i j|2.

For any space Rmn×l (l ≥ 2), we use the inner product 〈·, ·〉F and norm ‖ · ‖F , which are defined as follows: for 

P = (p1, p2, · · · , pl) ∈ Rmn×l and Q = (q1, q2, · · · , ql) ∈ Rmn×l , 〈P , Q 〉F =
l∑

k=1

〈pk, qk〉 and ‖P‖F =
√〈P , P 〉F . Clearly ‖P‖F

is the traditional Frobenius norm. Define ‖P‖1 =
∑

(i, j)∈I
|P i j |, where |P i j | = |(p1

i j, p
2
i j, · · · , pli j)| =

√√√√
l∑

k=1

(pki j)
2 for (i, j) ∈ I . 

Using these notations, we have ‖X‖MT V = ‖∇X‖1, and we formulate the color image restoration problem as the following 
minimization problem.

{
min

1
2
‖AX AT

c − B‖2F ,
subject to ‖∇X‖1 ≤ δ,

(7)

or

min
1
2
‖AX AT

c − B‖2F + ı(‖∇X‖1≤δ)(X), (8)

where ı$(ω) is the indicator function of $, i.e.,

ı$(ω)=
{
0, for ω ∈ $,
+∞, otherwise.

3. Our method

In this section, we design an effective method for solving (8).
By introducing new variables Y and Z , we can write the minimization problem (8) into






min
1
2
‖AX AT

c − B‖2F + ı(‖Z‖1≤δ)(Z),

subject to X = Y ,
Z = ∇Y .

(9)

Now attaching the Lagrange multipliers !X ∈ Rmn×3 to the linear constraints X = Y , and !Z ∈ Rmn×6 to Z = ∇Y , we get 
the augmented Lagrangian (AL) function of (9):

L(X,Y , Z ,!X ,!Z )= 1
2‖AX AT

c − B‖2F + ı(‖Z‖1≤δ)(Z)+ 〈!X , X − Y 〉F
+ β

2 ‖X − Y ‖2F + 〈!Z , Z − ∇Y 〉F + µ
2 ‖Z − ∇Y ‖2F ,

where β > 0, µ > 0 are the penalty parameters for the violation of the constraint X = Y and Z = ∇Y . Hence, given initials 
Y (0) , !(0)

X and !(0)
Z , ADMM for problem (9) computes a sequence of iterates X (1) , Z (1) , Y (1) , !(1)

X , !(1)
Z , X (2) , Z (2) , Y (2) , 

!(2)
X , !(2)

Z , · · · , X (k) , Z (k) , Y (k) , !(k)
X and !(k)

Z , · · · , such that

X (k+1) = argmin
X

{
1
2
‖AX AT

c − B‖2F + 〈!(k)
X , X − Y (k)〉F +

β

2
‖X − Y (k)‖2F

}
, (10)

Z (k+1) = argmin
Z

{
ı(‖Z‖1≤δ)(Z)+

µ

2
‖Z − ∇Y (k)‖2F + 〈!(k)

Z , Z − ∇Y (k)〉F
}
, (11)

Y (k+1) = argmin
Y

{
β

2
‖X (k+1) − Y ‖2F + 〈!(k)

X , X (k+1) − Y 〉F
+ µ

2 ‖Z (k+1) − ∇Y ‖2F + 〈!(k)
Z , Z (k+1) − ∇Y 〉F

}
,

(12)

and

!(k+1)
X = !(k)

X + β(X (k+1) − Y (k+1)),

!(k+1)
Z = !(k)

Z +µ(Z (k+1) − ∇Y (k+1)).
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We now consider solving the above three subproblems.
For problem (10), by setting the gradient of

1
2
‖AX AT

c − B‖2F +
β

2
‖X − Y (k)‖2F + 〈!(k)

X , X − Y (k)〉F
with respect to X to zero, we have

AT AX AT
c Ac + βX = AT BAc + βY (k) − !(k)

X ! R(k). (13)

Let the singular value decomposition of matrix Ac be Ac = U"V T . Then (13) can be written as

AT AXV"2V T + βX = R(k),

or

AT AXV"2 + βXV = R(k)V . (14)

Let " = diag(σ1, σ2, σ3), T = XV = (t1, t2, t3), and G (k) = R(k)V = (g(k)1 , g(k)2 , g(k)3 ), then (14) can be written as





(σ 2
1 AT A + β I)t1 = g(k)1 ,

(σ 2
2 AT A + β I)t2 = g(k)2 ,

(σ 2
3 AT A + β I)t3 = g(k)3 .

(15)

Under the periodic boundary condition for Xr , Xg and Xb , AT A is a block circulant with circulant blocks matrix. Therefore, 
the coefficient matrices on the left-hand sides of (15) can be diagonalized by 2D discrete Fourier transform F . Let F(X)
denote the discrete Fourier transform of X . Let the symbol “◦” denote the element-wise multiplication, and the division is 
taken element-wise. Let g(k)i = vec(G(k)

i ), i = 1, 2, 3. Then we can write the solution to (15) as

ti = vec

(

F−1

(
F(G(k)

i )

σ 2
i F(A)∗ ◦F(A)+ β1

))

, for i = 1,2,3, (16)

where the super script “*” denotes complex conjugacy and 1 is a matrix of the same size with F(A), with all its elements 
being 1. Accordingly, X (k+1) = T V T = [t1, t2, t3]V T .

The minimization problem (11) seems computationally challenging, but if we define W (k) = ∇Y (k) − !
(k)
Z
µ , then (11) can 

be written as

Z (k+1) = argmin
Z

{
ı(‖Z‖1≤δ)(Z)+

µ

2
‖Z − W (k)‖2F

}
. (17)

We note that W (k) ∈ Rmn×6. Let W (k)
i be the ith row vector of W (k) , and let |W (k)

(i) | be the order statics of the norms 
|W (k)

i | for i = 1, 2, · · · , mn. That is, |W (k)
(1)| ≥ |W (k)

(2)| ≥ · · ·≥ |W (k)
(mn)|. Let I be the largest number such that

I∑

i=1

|W (k)
(i) |− δ < I|W (k)

(I) |,

and define λ = 1
I

(
I∑

i=1

|W (k)
(i) |− δ

)

. Then problem (17) has a closed form solution:

Z (k+1)
i =





max

((

1− λ

|W (k)
i |

)

,0

)

W (k)
i , if W (k)

i /= 0,

0, otherwise,

(18)

for i = 1, 2, · · · , mn. The details are presented in the Appendix of this paper.
For problem (12), if we set the gradient of

β

2
‖X (k+1) − Y ‖2F + 〈!(k)

X , X (k+1) − Y 〉F +
µ

2
‖Z (k+1) − ∇Y ‖2F + 〈!(k)

Z , Z (k+1) − ∇Y 〉F

with respect to Y to be zero, then the solution Y (k+1) solves the following matrix equation:

(µ∇T∇ + β I)Y =µ∇T Z (k+1) +∇T!(k)
Z + (!(k)

X + βX (k+1)). (19)
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So we can write the solution as follows:

Y (k+1) =F−1




F

(
µ∇T Z (k+1) +∇T!(k)

Z +
(
!(k)

X + βX (k+1)
))

F(∇x)∗ ◦F(∇x)+F(∇y)∗ ◦F(∇y)+ β1



 .

Based on the above discussion, we give the following algorithm.

Algorithm 1. ADMM for color image restoration.

1. Let A, Ac and B be given. Let Ac = U"V T be singular value decomposition of Ac . Given constants β, µ ∈ R, and given 
initial Y (0) ∈Rmn×3, !(0)

X ∈Rmn×3, and !(0)
Z ∈Rmn×6.

2. For k = 0, 1, 2, . . .,
• Compute R(k) = AT BAc + βY (k) − !(k)

X .

• Compute G (k) = R(k)V = (g(k)1 , g(k)2 , g(k)3 ).

• Compute t(k)i = vec
(
F−1

(
F(G(k)

i )

σ 2
i F(A)∗◦F(A)+β1

))
, for i = 1, 2, 3.

• Compute X (k+1) = T (k)V T , where T (k) = (t(k)1 , t(k)2 , t(k)3 ).

• Compute W (k) = ∇Y (k) − !
(k)
Z
µ .

• Compute Z (k+1) according to (18).

• Compute Y (k+1) =F−1

(
F

(
µ∇T Z (k+1)+∇T !

(k)
Z +

(
!
(k)
X +βX(k+1)

))

F(∇x)∗◦F(∇x)+F(∇y)∗◦F(∇y)+β1

)

.

• !(k+1)
X = !(k)

X + β(X (k+1)
X − Y (k+1)).

• !(k+1)
Z = !(k)

Z +µ(Z (k+1) − ∇Y (k+1)).

4. Convergence analysis

In this section, we establish the convergence theory of our proposed algorithm.

Definition 1. [13] Let $, ) be nonempty convex subset of RN and RK . (u∗, v∗) ∈ $ ×) is called a saddle point of function 
ψ defined on $ × ), if for all u ∈ $ and v ∈ )

ψ(u∗, v)≤ ψ(u∗, v∗) ≤ ψ(u, v∗). (20)

Lemma 1. [13] Let ψ(u, v) = ψ1(u, v) +ψ2(u, v) be defined on $ × ) with

∀u ∈ $, φ2(v)= ψ2(u, v) is a concave differentiable function on ),
∀v ∈ ), φ1(u)= ψ2(u, v) is a convex differentiable function on $.

Then (u∗, v∗) ∈ $ × ) is a saddle point of function ψ if and only if

∀u ∈ $, ψ1(u, v∗)− ψ1(u∗, v∗)+ (u − u∗)T∇uψ2(u∗, v∗) ≥ 0, (21)

∀v ∈ ), ψ1(u∗, v∗)− ψ1(u∗, v)− (v − v∗)T∇vψ2(u∗, v∗) ≥ 0.

Remark 1. From the proof of Lemma 1 in [13], we see that the right inequality of (20) is satisfied if and only if (21) is 
satisfied.

Lemma 2. X∗ ∈Rmn×3 is a solution of (8) if and only if there exist Y ∗ , Z∗ , !∗
X , and !

∗
Z such that

L(X∗,Y ∗, Z∗,!X ,!Z ) ≤ L(X∗,Y ∗, Z∗,!∗
X ,!

∗
Z ) ≤ L(X,Y , Z ,!∗

X ,!
∗
Z ). (22)

Proof. (⇐) Suppose that (X∗, Y ∗, Z∗, !∗
X , !

∗
Z ) is a solution of (22). Then from the left inequality of (22), we have that

1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)+ 〈!X , X∗ − Y ∗〉F
+ β

2 ‖X∗ − Y ∗‖2F + 〈!Z , Z∗ − ∇Y ∗〉F + µ
2 ‖Z∗ − ∇Y ∗‖2F

≤ 1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)+ 〈!∗
X , X

∗ − Y ∗〉F
+β

2 ‖X∗ − Y ∗‖2F + 〈!∗
Z , Z

∗ − ∇Y ∗〉F + µ
2 ‖Z∗ − ∇Y ∗‖2F ,



JID:APNUM AID:3887 /FLA [m3G; v1.291; Prn:17/07/2020; 12:20] P.7 (1-14)

J. Zhang, J.G. Nagy / Applied Numerical Mathematics ••• (••••) •••–••• 7

from which we have

〈!∗
X − !X , X∗ − Y ∗〉F + 〈!∗

Z − !Z , Z∗ − ∇Y ∗〉F ≥ 0.

Since !X and !Z can take any elements in Rmn×3 and Rmn×6, we get X∗ = Y ∗ , and Z∗ = ∇Y ∗ .
Now by using the right inequality of (22), we have that

1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)+ 〈!∗
X , X

∗ − Y ∗〉F
+ β

2 ‖X∗ − Y ∗‖2F + 〈!∗
Z , Z

∗ − ∇Y ∗〉F + µ
2 ‖Z∗ − ∇Y ∗‖2F

≤ 1
2‖AX AT

c − B‖2F + ı(‖Z‖1≤δ)(Z)+ 〈!∗
X , X − Y 〉F

+ β
2 ‖X − Y ‖2F + 〈!∗

Z , Z − ∇Y 〉F + µ
2 ‖Z − ∇Y ‖2F ,

from which by taking Y = X , Z =∇Y =∇X , we have

1
2
‖AX AT

c − B‖2F + ı(‖∇X‖1≤δ)(X)≥ 1
2
‖AX∗AT

c − B‖2F + ı(‖∇X‖1≤δ)(X∗).

So X∗ is a solution of (8).
(⇒) Suppose X∗ is a solution of (8), then ∀ X ∈Rmn×3,

1
2
‖AX AT

c − B‖2F + ı(‖∇X‖1≤δ)(X)≥ 1
2
‖AX∗AT

c − B‖2F + ı(‖∇X‖1≤δ)(X∗),

and so

0 ∈ AT (AX∗AT
c − B)Ac +∇T ∂ı(‖∇X‖1≤δ)(X∗).

So there exist !∗
X and !∗

Z such that,

!∗
X =−AT (AX∗AT

c − B)Ac,−!∗
Z ∈ ∂ı(‖∇X‖1≤δ)(X), and !∗

X +∇T!∗
Z = 0. (23)

By taking Y ∗ = X∗ , Z∗ =∇Y ∗ , we immediately obtain the left inequality of (22).
We now consider the function L(X, Y , Z , !∗

X , !
∗
Z ). Since L(X, Y , Z , !∗

X , !
∗
Z ) is convex on (X, Y , Z), to prove the right 

inequality of (22), by Remark 1 we just need to prove that

〈


AT (AX∗AT

c − B)Ac + β(X∗ − Y ∗)+!∗
X

β(Y ∗ − X∗)− !∗
X +µ∇T (∇Y ∗ − Z∗)− ∇T!∗

Z

µ(Z∗ − ∇Y ∗)+!∗
Z



 ,




X − X∗

Y − Y ∗

Z − Z∗




〉

F
+ ı(‖Z‖1≤δ)(Z)− ı(‖Z‖1≤δ)(Z∗) ≥ 0.

From (23), and using Y ∗ = X∗ , Z∗ = ∇Y ∗ , the above inequality is equivalent to

ı(‖Z‖1≤δ)(Z)− ı(‖Z‖1≤δ)(Z∗)− 〈−!∗
Z , Z − Z∗〉F ≥ 0,

which is true since ı(‖Z‖1≤δ)(Z) is a convex function on Z , and −!∗
Z ∈ ∂ı(‖∇X‖1≤δ)(X∗) and Z∗ =∇X∗ . !

By using (22) and Remark 1, we have that, (X∗, Y ∗, Z∗, !∗
X , !

∗
Z ) satisfies

AT (AX∗AT
c − B)Ac + β(X∗ − Y ∗)+!∗

X = 0, (24)

β(Y ∗ − X∗)− !∗
X +µ∇T (∇Y ∗ − Z∗)− ∇T!∗

Z = 0, (25)

ı(‖Z‖1≤δ)(Z)− ı(‖Z‖1≤δ)(Z∗)+ 〈µ(Z∗ − ∇Y ∗)+!∗
Z , Z − Z∗〉F ≥ 0. (26)

In the following, we present a convergence result for Algorithm (1).

Theorem 1. Let X∗ ∈Rmn×3 be a solution of (8). Then the sequence (X(k), Z (k)) generated by Algorithm 1 is a minimization sequence 
of (8). That is, it satisfies

lim
k→∞

{
1
2
‖AX (k)AT

c − B‖2F + ı(‖Z‖1≤δ)(Z (k))

}
= 1

2
‖AX∗AT

c − B‖2F + ı(‖X‖1≤δ)(X∗).

Moreover, if A and Ac are nonsingular, then we have lim
k→∞

X (k) = X∗ , lim
k→∞

Y (k) = X∗ , and lim
k→∞

Z (k) = ∇X∗ .
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Proof. Let (X∗, Y ∗, Z∗, !∗
X , !

∗
Z ) be a solution of (22), then from the proof of Lemma 2, we know that, Y ∗ = X∗ , 

Z∗ = ∇Y ∗ . Let !
(k)
X = !(k)

X − !∗
X , !

(k)
Z = !(k)

Z − !∗
Z , X

(k) = X (k) − X∗ , Y (k) = Y (k) − Y ∗ , and Z (k) = Z (k) − Z∗ . From 
the updates !(k+1)

X and !(k+1)
Z of Algorithm 1, we have that !

(k+1)
X = !

(k)
X + β

(
X
(k+1) − Y

(k+1)
)
, and !

(k+1)
Z =

!
(k)
Z + µ 

(
Z
(k+1) − ∇Y

(k+1)
)
. These two equalities are equivalent to √µ!

(k+1)
X = √

µ!
(k)
X + √

µβ
(
X
(k+1) − Y

(k+1)
)
, and 

√
β!

(k+1)
Z = √

β!
(k)
Z +√

βµ 
(
Z
(k+1) − ∇Y

(k+1)
)
, from which we can get

µ
(
‖!(k+1)

X ‖2F − ‖!(k)
X ‖2F

)
= 2µβ〈!(k)

X , X
(k+1) − Y

(k+1)〉F +µβ2‖X (k+1) − Y
(k+1)‖2F , (27)

and

β
(
‖!(k+1)

Z ‖2F − ‖!(k)
Z ‖2F

)
= 2µβ〈!(k)

Z , Z
(k+1) − ∇Y

(k+1)〉F +µ2β‖Z (k+1) − ∇Y
(k+1)‖2F . (28)

From (24) and (25), we get

AT AX∗AT
c Ac + βX∗ = AT BAc + βY ∗ − !∗

X ,

and

(µ∇T∇ + β I)Y ∗ =µ∇T Z∗ +∇T!∗
Z +!∗

X + βX∗.

Notice that X (k+1) is the solution of (13), and Y (k+1) is the solution of (19), so we get that

AT AX
(k+1)

AT
c Ac + βX

(k+1) = βY
(k) − !

(k)
X ,

and

(µ∇T∇ + β I)Y
(k+1) =µ∇T Z

(k+1) +∇T!
(k)
Z +!

(k)
X + βX

(k+1)
.

This then allows us to conclude that

‖AX
(k+1)

AT
c ‖2F + β‖X (k+1)‖2F = β〈X (k+1)

,Y
(k)〉F − 〈!(k)

X , X
(k+1)〉F , (29)

and

µ‖∇Y
(k+1)‖2F + β‖Y (k+1)‖2F = β〈X (k+1)

,Y
(k+1)〉F + 〈!(k)

X ,Y
(k+1)〉F

+µ〈∇T Z
(k+1)

,Y
(k+1)〉F + 〈∇T!

(k)
Z ,Y

(k+1)〉F .
(30)

On the other hand, by (11) we get

ı(‖Z‖1≤δ)(Z)− ı(‖Z‖1≤δ)(Z (k+1))+ 〈µ
(
Z (k+1) − ∇Y (k)

)
+!(k)

Z , Z − Z (k+1)〉F ≥ 0. (31)

Taking Z = Z (k+1) in (26), and Z = Z∗ in (31), and then adding these equations together, we have
〈
Z
(k+1)

,µ
(
∇Y

(k) − Z
(k+1) − !

(k)
Z

)〉

F
≥ 0,

from which we have

µ‖Z (k+1)‖2F ≤ 〈Z (k+1)
,µ∇Y

(k) − !
(k)
Z 〉F . (32)

By adding (27), (28) and the results of (29), (30) and (32) by multiplying both sides of them with 2βµ, we obtain

µ
(
‖!(k+1)

X ‖2F − ‖!(k)
X ‖2F

)
+ β

(
‖!(k+1)

Z ‖2F − ‖!(k)
Z ‖2F

)

+ β2µ
(
‖Y (k+1)‖2 − ‖Y (k)‖2F

)
+ βµ2

(
‖∇Y

(k+1)‖2F − ‖∇Y
(k)‖2F

)

≤ − β2µ‖X (k+1) − Y
(k)‖2F − βµ2‖Z (k+1) − ∇Y

(k)‖2F − 2βµ‖AX
(k+1)

AT
c ‖2F .

(33)

From (33), we have that, 
{
!

(k)
X

}
, 
{
!

(k)
Z

}
, 
{
Y
(k)

}
and 

{
∇Y

(k)
}
are convergent, and ‖X (k+1) − Y

(k)‖F , ‖Z (k+1) −∇Y
(k)‖F , and 

‖AX
(k+1)

AT
c ‖F converge to zero.

Notice X∗ = Y ∗ , Z∗ = ∇Y ∗ , from the right inequality of (22), we have that
1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)

≤ 1
2‖AX (k+1)AT

c − B‖2F + ı(‖Z‖1≤δ)(Z (k+1))+ 〈!∗
X , X

(k+1) − Y (k)〉F
+ β

2 ‖X (k+1) − Y (k)‖2F + 〈!∗
Z , Z

(k+1) − ∇Y (k)〉F + µ
2 ‖Z (k+1) − ∇Y (k)‖2F .

(34)
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Since

X (k+1) = argmin
X

{
1
2
‖AX AT

c − B‖2F + 〈!(k)
X , X − Y (k)〉F +

β

2
‖X − Y (k)‖2F

}
,

we have,
1
2
‖AX AT

c − B‖2F − 1
2
‖AX (k+1)AT

c − B‖2F + 〈β
(
X (k+1) − Y (k)

)
+!(k)

X , X − X (k+1)〉F ≥ 0. (35)

Since

Z (k+1) = argmin
Z

{
ı(‖Z‖1≤δ)(Z)+

µ

2
‖Z − ∇Y (k)‖2F + 〈!(k)

Z , Z − ∇Y (k)〉F
}
,

we have,

ı(‖Z‖1≤δ)(Z)− ı(‖Z‖1≤δ)(Z (k+1))+ 〈µ
(
Z (k+1) − ∇Y (k)

)
+!(k)

Z , Z − Z (k+1)〉F ≥ 0. (36)

Taking X = X∗ in (35) and Z = Z∗ in (36) we have

1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)

≥ 1
2‖AX (k+1)AT

c − B‖2F + ı(‖Z‖1≤δ)(Z (k+1))

+〈β
(
X (k+1) − Y (k))+!(k)

X , X
(k+1)〉F + 〈µ

(
Z (k+1) − ∇Y (k))+!(k)

Z , Z
(k+1)〉F .

(37)

Since

Y (k+1) = argmin
Y

{
β

2
‖X (k+1) − Y ‖2F + 〈!(k)

X , X (k+1) − Y 〉F
+ µ

2 ‖Z (k+1) − ∇Y ‖2F + 〈!(k)
Z , Z (k+1) − ∇Y 〉F

}
,

we have,

β
(
Y (k+1) − X (k+1)

)
− !(k)

X +µ∇T
(
∇Y (k+1) − Z (k+1)

)
− ∇T!(k)

Z = 0.

Therefore we have lim
k→∞

(!(k)
X +∇T!(k)

Z ) = 0 because ‖X (k+1) − Y
(k)‖F and ‖Z (k+1) − ∇Y

(k)‖F converge to zero, and 
{
Y
(k)

}

is convergent. Since Y (k)
, !(k)

X and !(k)
Z are convergent, we therefore have lim

k→∞

〈
!(k)

X +∇T!(k)
Z ,Y

(k)
〉

F
= 0, or

lim
k→∞

(〈
!(k)

X ,Y
(k)

〉

F
+

〈
!(k)

Z ,∇Y
(k)

〉

F

)
= 0. (38)

From the results that 
{
!

(k)
X

}
, 
{
!

(k)
Z

}
, 
{
Y
(k)

}
and 

{
∇Y

(k)
}
are convergent, and ‖X (k+1)−Y

(k)‖F , ‖Z (k+1)−∇Y
(k)‖F converge 

to zero, and by using (38) we have from (34) and (37) that

lim
k→∞

{
1
2
‖AX (k)AT

c − B‖2F + ı(‖Z‖1≤δ)(Z (k))

}

=
{ 1
2‖AX∗AT

c − B‖2F + ı(‖Z‖1≤δ)(Z∗)
}

=
{ 1
2‖AX∗AT

c − B‖2F + ı(‖X‖1≤δ)(X∗)
}
.

If A and Ac are nonsingular, then we have lim
k→∞

X (k) = X∗ , lim
k→∞

Y (k) = Y ∗ = X∗ , and lim
k→∞

Z (k) = ∇ Z∗ = ∇X∗ . !

5. Experimental results

In this section, we conduct two experiments to illustrate the effectiveness of our proposed method. In the first exper-
iment, we study how the value of δ affects the quality of the image restoration. In the second experiment, we compare 
the restoration performance by using our proposed method with the well-known FTVd method [31]. FTVd is a very fast 
method; in each iteration, it uses six FFTs and one thresholding operation. For the convenience of discussion, we will use 
the notation ADMC for our proposed method.

We tested six typical images “House”, “Lake”, “Mandril”, “Peppers’, “Rose” and “Sunset” to investigate the performance of 
ADMC and FTVd. The six images are shown in Fig. 2.

We use the signal-to-noise ratio (SNR) [31]:

SNR= 10 log10
‖X true − E(X true)‖2F

‖X true − X‖2F
,
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Fig. 2. Test images. From top row to bottom row: House, Lake, Mandril, Peppers, Rose and Sunset.

to measure the quality of the image restoration, where X true and X denote the original image and the restored image 
respectively, and E(X true) is the mean intensity value of X true.

All computations were performed in double precision using MATLAB 7.12 (R2011a) on an Intel(R) Core(TM) i7-2600 CPU 
@3.40 GHz, 4.00 GB RAM.

Experiment 1.

In this experiment, we investigate how the value of δ affects the quality of the image restoration. For this purpose, we 
first use (6) to generate a blurred and noisy image for two test images house and sunset, where we take A = G(7, 5), which 

is a Gaussian blur with square support size 7 and standard deviation 5, and Ac =




0.7 0.2 0.1
0.25 0.5 0.25
0.15 0.1 0.75



. In each case we 

generate a noise free observation image Bnf = AX trueAT
c . The blurred and noisy image B was generated by B = Bnf + E , 

where E is a noise matrix whose entries are chosen from a normal distribution with mean 0 and variance 1, and scaled so 
that

‖E‖F

‖Bnf‖F
= η, (39)

and we use η = 10−3 and η = 10−2. Then we set δ to be 1.5‖B‖MT V , 2‖B‖MT V and 2.5‖B‖MT V . The results are shown in 
Figs. 3 to 6.

From the above figures, we see that the closer δ is to the TV of the true image, the better the obtained result is. We also 
see that, even if δ is not a good approximation to the TV of the true image, the obtained results are still acceptable.

Experiment 2.

In this experiment, we compare the results obtained by using our proposed method with that obtained by using FTVd. 
In order to provide a fair comparison, the experiments were done in the following way. For each test image, we use FTVd 
to restore the image, where the parameters in the algorithm are selected by trial and error to obtain best possible results. 
We then set δ to be the TV of above restored image, and finally we use our proposed method to restore the image. Tables 1
and 2 show the obtained results. From the tables, we see that our proposed method gets the highest SNR value for almost 
every test image.
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Fig. 3. From left to right: blurred and noise image (SNR = 8.98, η = 0.001), restored image (δ = 1.5‖B‖MT V , SNR = 23.30), restored image (δ = 2‖B‖MT V , 
SNR = 23.42), restored image (δ = 2.5‖B‖MT V , SNR = 23.57).

Fig. 4. From left to right: blurred and noise image (SNR = 14.18, η = 0.001), restored image (δ = 1.5‖B‖MT V , SNR = 25.12), restored image (δ = 2‖B‖MT V , 
SNR = 25.45), restored image (δ = 2.5‖B‖MT V , SNR = 25.50).

Fig. 5. From left to right: blurred and noise image (SNR = 8.95, η = 0.01), restored image (δ = 1.5‖B‖MT V , SNR = 17.76), restored image (δ = 2.0‖B‖MT V , 
SNR = 16.62), restored image (δ = 2.5‖B‖MT V , SNR = 15.35).

Fig. 6. From left to right: blurred and noise image (SNR = 14.14, η = 0.01), restored image (δ = 1.5‖B‖MT V , SNR = 19.91), restored image (δ = 2.0‖B‖MT V , 
SNR = 19.31), restored image (δ = 2.5‖B‖MT V , SNR = 18.43).

Table 1
SNR (db) for experiment with η = 0.001.

Algorithm House Lake Mandril Peppers Rose Sunset

ADMC 23.57 21.09 14.94 23.23 23.21 25.38
FTVd 23.51 21.07 14.95 23.20 23.17 25.33
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Table 2
SNR (db) for experiment with η = 0.01.

Algorithm House Lake Mandril Peppers Rose Sunset

ADMC 18.05 16.91 10.33 19.72 18.19 19.92
FTVd 17.99 16.88 10.30 19.73 18.20 19.84

6. Conclusions

We propose an effective alternating direction method of multipliers for color image restoration with TV regularization 
by formulating it as a constrained minimization problem and exploiting the structure to develop a very efficient algorithm. 
We prove convergence of the method in detail. Experimental results demonstrate that the proposed method is feasible and 
effective for color image restoration.

7. Appendix

In this section, we consider the minimization problem

min
Z∈Rmn×6

{
ı(‖Z‖1≤δ)(Z)+

µ

2
‖Z − W ‖2F

}
. (40)

This problem can be reformulated as

min
Z∈Rmn×6

1
2
‖Z − W ‖2F s.t. ‖Z‖1 ≤ δ. (41)

It is easy to see that if ‖W ‖1 ≤ δ, then the solution is Z∗ = W . Therefore, to solve the above problem, we may assume that 
‖W ‖1 > δ. In this case, since {Z |‖Z‖1 ≤ δ} is a convex set, the optimal solution must be on the boundary of the constrained 
set and we therefore can replace the inequality constraint ‖Z‖1 ≤ δ with equality constraint ‖Z‖1 = δ.

We now consider the following problem

min
Z∈Rmn×6

1
2
‖Z − W ‖2F s.t. ‖Z‖1 = δ. (42)

The Lagrangian function of the above problem is

L(X,λ)= 1
2
‖Z − W ‖2F + λ(‖Z‖1 − δ), (43)

where λ ∈R is a Lagrangian multiplier. If Z is the minimizer of (42), then 0 ∈ ∂X L(Z , λ).
To characterize the optimal solution of the problem (42), we first give the following lemma.

Lemma 3. [19] Let x ∈Rl(l ≥ 2), and |x| =

√√√√
l∑

i=1

x2i . Then the subdifferential of functional f (x) = |x| is

∂ f (x)=
{ x

|x| , if x /= 0,
{h ∈ Rl||h| ≤ 1}, otherwise.

Denote Z = (Z T
1 , Z

T
2 , · · · , Z T

mn)
T , where Z i = (Z i1, Z i2, · · · , Z i6) is the ith row vector of Z . Then using Lemma 3, we get 

for i = 1, 2, · · · , mn,
{

Z i − W i + λ Z i
|Z i | = 0, if Z i /= 0,

|W i |≤ λ, otherwise,
(44)

from which we see that Z i is either parallel to W i or Z i = 0 for i = 1, 2, · · · , mn. On the other hand, since Z is the solution 
of (42), Z i should have the same direction with W i if Z i /= 0.

Lemma 4. Let Z be the optimal solution of the problem (42), then Z i = θiW i , with θi ≥ 0.

Proof. From (44) we have that Z i = θiW i . The only thing we need to do is to show that θi ≥ 0 for all i. Suppose that there 
exists some i0 such that θi0 < 0. Then we define Z̃ ∈Rmn×6 with

Z̃ i =
{

Z i, if i /= i0,
−Z i, otherwise.
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Clearly ‖ Z̃‖1 = ‖Z‖1, and is equal to δ. However, since θi0 < 0,

‖Z − W ‖2F − ‖ Z̃ − W ‖2F = |Z i0 − W i0 |2 − | Z̃ i0 − W i0 |2
= |θi0W i0 − W i0 |2 − |− θi0W i0 − W i0 |2
=

(
(θi0 − 1)2 − (−θi0 − 1)2

)
|W i0 |2 > 0

which contradicts the assumption that Z is the optimal solution of problem (42). !

Based on Lemma 4, we have by using (44) that, if Z is the optimal solution of problem (42), then

Z i =





max

((
1− λ

|W i|

)
,0

)
W i, if W i /= 0,

0, otherwise.
(45)

Based on (45), we have the following lemma.

Lemma 5. Let Z be the optimal solution of problem (42), and let i1 and i2 be two indices such that

|W i2 |> |W i1 |.
If |Z i2 | = 0, then |Z i1 | = 0.

Proof. If |Z i2 | = 0, then from (45) we have |W i2 | ≤ λ. By the assumption we also have |W i1 | ≤ λ. Then using (45), we have 
Z i1 = 0, or equivalently |Z i1 | = 0. !

Using Lemma 5, and following [12], let |Z (i)| be the order statics of the norms |Z i |. That is, |Z (1)| ≥ |Z (2)| ≥ · · ·≥ |Z (mn)|. 
Suppose that |Z (i)| > 0 for i = 1, 2, · · · , I and |Z (i)| = 0 for i = I + 1, · · · , mn. Then we have

‖Z‖1 =
mn∑

i=1

|Z i| =
mn∑

i=1

|Z (i)| =
I∑

i=1

|Z (i)|

=
I∑

i=1

|(W (i)|− λ)=
I∑

i=1

|W (i)|− λI = δ.

From which we have λ = 1
I

(
I∑

i=1

|W (i)|− δ

)

. So if we find I , which is the largest number such that

1−

1
I

(
I∑

i=1

|W (i)|− δ

)

|W (I)|
> 0,

or

I∑

i=1

|W (i)|− δ < I|W (I)|,

we then obtain the optimal solution Z from (45).
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