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Summary
In this paper, we propose an efficient numerical scheme for solving some
large-scale ill-posed linear inverse problems arising from image restoration.
In order to accelerate the computation, two different hidden structures are
exploited. First, the coefficient matrix is approximated as the sum of a small
number of Kronecker products. This procedure not only introduces one more
level of parallelism into the computation but also enables the usage of compu-
tationally intensive matrix–matrix multiplications in the subsequent optimiza-
tion procedure. We then derive the corresponding Tikhonov regularized mini-
mization model and extend the fast iterative shrinkage-thresholding algorithm
(FISTA) to solve the resulting optimization problem. Because the matrices
appearing in the Kronecker product approximation are all structured matrices
(Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multi-
plication algorithms at each iteration. The proposed algorithm is thus called
structured FISTA (sFISTA). In particular, we show that the approximation error
introduced by sFISTA is well under control and sFISTA can reach the same
image restoration accuracy level as FISTA. Finally, both the theoretical com-
plexity analysis and some numerical results are provided to demonstrate the
efficiency of sFISTA.
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1 INTRODUCTION

Image restoration problems have a wide range of important applications, such as digital camera and video, microscopy,
andmedical imaging. Image restoration is the process of reconstructing an image of an unknown scene from an observed
image, where the distortion can arise from many sources, such as motion blurs, out of focus lens, or atmospheric turbu-
lence. Suppose there is an exact image of being all black except for a single bright pixel. If we take a picture of this image,
then the distortion operation will cause the single bright pixel to be spread over its neighboring pixels. This single bright
pixel is called a point source, and the function that describes the distortion and the resulting image of the point source
is called the point spread function (PSF).1 Mathematically, the distortion can be represented by a PSF. If the PSF is the
same regardless of the location of the point source, it is called spatially invariant. Throughout this paper, we assume the
PSF under consideration is always spatially invariant.
A spatially invariant image restoration problem can be modeled by a linear inverse problem of the following form:

b = Ax + e, (1)
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where A ∈ ℝN×N is a blurring matrix constructed from the PSF, e ∈ ℝN is a vector representing additive noise, b ∈ ℝN

represents the distorted image, and x ∈ ℝN denotes the unknown true image to be estimated. The matrix A is usually
very ill-conditioned in these image restoration problems.
A classical way to solve (1) is by the least squares (LS) approach,2 whose solution takes the following form:

x̂LS = argmin
x

1
2 Ax߀߀ − b22߀߀.

However,whenA is ill-conditioned, the LS solutionusually has a hugenormand is thusmeaningless.1 In order to compute
a decent approximation to x, it is necessary to employ some form of regularization. The basic idea of regularization is
to replace the original ill-conditioned problem with a “nearby” well-conditioned problem whose solution is close to the
exact solution. Tikhonov regularization3 is one of the most popular regularization techniques, where a quadratic penalty
is added to the object function.

x̂TIK = argmin
x

1
2 Ax߀߀ − b22߀߀ +

�휆2
2 22߀߀Rx߀߀

The second term in the above equation is a regularization term, which controls the norm (or seminorm) of the solution.
The regularization parameter �휆 > 0 controls “smoothness” of the regularized solution. Typical choices of R include the
identity matrix and a matrix approximating the first or second-order derivative operator.4–6
In this paper, we choose R as an identity matrix and consider the following minimization model:

min
x

Φ(x) = 1
2 +22߀߀Ax−b߀߀

�휆2
2 .22߀߀x߀߀ ()

In many applications, such as image restoration, it may also be important to include convex constraints (e.g., x ≥ 0) on
the solution.
Numerous algorithms proposed in the literature can be used to solve () with convex constraints. One of them is

the interior point method.7,8 However, image restoration problems often involve dense matrix data, which will ham-
per the effectiveness of the interior point method. Another popular class of methods for solving () are gradient-based
algorithms.9–11 Although these algorithms are relatively inexpensive at each iteration, they often suffer from slow con-
vergence. One recent development is the fast iterative shrinkage-thresholding algorithm (FISTA),12 which was proposed
to solve nonsmooth convex optimization problems. FISTA preserves the computational simplicity and has a fast global
convergence rate. Thus, FISTA becomes quite attractive for solving large-scale problems. Although problem () does not
involve any nonsmooth term, incorporating convex constraints is important in image deblurring applications. Moreover,
in some situations l1-based regularization has to be exploited to enforce sparsity in the solution. We plan to apply the
proposed method to solve this class of nonsmooth optimization problems in the future. In this paper, we will first fully
take advantage of the hidden structures of the blurring matrix A and improve the efficiency of the FISTA framework for
solving the smooth optimization problem ().
Due to the 2Dnature of the blurringmodel, the first structure to be exploited is theKronecker product structure. Assume

K ∈ ℝn×n and H ∈ ℝm×m, the Kronecker product of these two matrices is defined as

K ⊗H =
[ k11H · · · k1nH

⋮ ⋮
kn1H · · · knnH

]
. (2)

For the blurring operator A in (1), it has been shown that A can be approximated by a matrix As as follows13,14:

A ≈ As =
s∑

i=1
Ki ⊗Hi, (3)

where Ki ∈ ℝn×n, Hi ∈ ℝm×m with N = mn. The error between the blurring matrix and the Kronecker product approx-
imation can be easily controlled. In addition, these Ki and Hi are not general dense matrices but structured matrices
(Toeplitz, Hankel, etc.15–17). We will give more details on the error between A and As and the structures of Ki and Hi in
Section 2.
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Consequently, the solution of (1) can be approximated by the problem

b = Asxs + e, (4)

and equivalently, the solution of () can be approximated by solving the optimization problem

min
xs

Φs(x) = 1
2 +22߀߀Asxs−b߀߀

�휆2
2 .22߀߀xs߀߀ (̂)

From the numerical examples in Section 4, we can see that xs from (̂) and x from () can provide indistinguishable image
restoration results. This is because the original ill-posed problem () only requires a numerical solution x with relatively
low accuracy. As long as the difference between As and A falls below a certain level, which can be easily met with only a
small value of s in (3), xs from (̂) and x from () can reach the same level of accuracy. This phenomenon is analyzed in
Theorem 4 in Section 3 and verified by the numerical experiments in Section 4.
If b = vec(B), xs = vec(X) and e = vec(E), where vec(X) represents a column vector obtained from vectorizing a matrix

X (i.e, columns of X are stacked one after the other), then (4) can be rewritten equivalently as

B =
s∑

i=1
HiXKT

i + E. (5)

It is straightforward to derive the corresponding Tikhonov regularized minimization model as follows:

min
X

1
2
‖‖‖‖‖

s∑
i=1

HiXKT
i − B

‖‖‖‖‖

2

F
+ �휆2

2 2F߀߀X߀߀ , (̃)

where ߀߀ · F߀߀ denotes the Frobenius norm. (̃) has several advantages over the original optimization problem (). First,
(̃) benefits from the Kronecker product structure of As and can exploit more computationally intensive matrix–matrix
operations. In addition, all the matrices Hi and Ki are structured matrices, which enables fast matrix–vector multipli-
cations at each iteration. Second, the summation of s terms in (̃) can be performed independently and enables (̃) to
reach superior parallel efficiency when implemented on modern high performance computing architectures. Some work
has been done to exploit matrix equation structures for iterative methods to solve inverse problems of the form (5); see,
for example, other works.18–21 In this paper, we propose the structured FISTA (sFISTA) method. It gains its efficiency by
exploiting both the Kronecker product structure of A and the structures from Ki and Hi. The convergence rate of sFISTA
can be of the same order as FISTA under mild conditions.
The remaining sections are organized as follows. In Section 2, we describe how to approximate the blurring matrix A

into the sum of a few of Kronecker products. In Section 3, we first briefly review the FISTA framework and then propose
the sFISTA method. We also show that sFISTA for (̃) is equivalent to FISTA for (̂) and derive the convergence and
complexity analysis of sFISTA for (̃). Some numerical examples are provided in Section 4, and the concluding remarks
are drawn in Section 5.

2 KRONECKER DECOMPOSITION

Consider a 2D spatially invariant image restoration problem. It was shown in the work of Ng et al.22 that three different
structures of the blurring matrix A commonly occur. If the zero boundary conditions (corresponding to assuming the val-
ues of x outside the domain of consideration are zero) are applied,Awill be a block-Toeplitz-Toeplitz-block (BTTB)matrix.
On the other hand, if the periodic boundary conditions (corresponding to the case that the image outside the domain
of consideration is a copy of the image inside in all directions) are used, A becomes a block-circulant-circulant-block
(BCCB)matrix. Finally,Awould be block-Toeplitz-plus-Hankel with Toeplitz-plus-Hankel-blocks (BTHTHB) if the reflec-
tive boundary conditions (corresponding to a reflection of the original scene at the boundary) are utilized. In any case, the
matrix A can always be approximated as the sum of a few Kronecker products. Because the periodic boundary conditions
often cause severe ringing artifacts near image borders, only the other two cases are considered in the remaining sections.
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In practice, the PSF for images withm × n pixels is often stored as anm × n array P. When P represents the image of a
single bright pixel, the process of taking a picture of such an image is equivalent to computing one columnofmatrixAwith
column index t, where t depends on the location of the point source. Thus, the structure of A is completely determined
by that of P. More specifically, suppose P has the SVD decomposition P = UΣVT. Let ui and vi be the ith columns of the
matrices U and V, respectively and �휎1 ≥ �휎2 ≥ · · · ≥ �휎min(m,n) be the singular values of P. It has been shown that A then
admits the following Kronecker decomposition13,14:

A =
min(m,n)∑

i=1
Ki ⊗Hi, (6)

where Ki andHi are matrices defined based on ui, vi, �휎i, and boundary conditions. More details on the structure of Ki and
Hi will be provided at the end of this section. Because the singular values of P decay quickly in realistic applications, (6)
can be further truncated by keeping only the first s terms

A ≈ As =
s∑

i=1
Ki ⊗Hi. (7)

The approximation error introduced in (7) has been well studied in other works.13,14 The analysis in other works13,14
shows that the distance between A and As is related to the approximation error of a truncated SVD decomposition of a
matrix P̄, which is summarized in the following theorem for the square PSF case.

Theorem 1 (See theorem 3.1 in the work of Nagy et al.14). Assume the blurring matrix A is constructed from a PSF P
with center plq located at (l, q), then for both zero boundary conditions and reflective boundary conditions, we have

‖‖‖‖‖
A −

s∑
i=1

Ki ⊗Hi
‖‖‖‖‖F

=
‖‖‖‖‖
P̄ −

s∑
i=1

�휎iuiviT
‖‖‖‖‖F

, (8)

where P̄ = WaPWb with Wa = diag
(
[
√
n − l + 1…

√
n − 1

√
n
√
n − 1…

√
l]T

)
, Wb = diag

(
[
√
n − q + 1…

√
n − 1

√
n
√
n − 1…

√
q]T

)
for the zero boundary conditions case and P̄ = RPRT with R is the Cholesky factor of the symmetric

Toeplitz matrix with its first row as [n, 1, 0, 1, 0, 1, …] for the reflective boundary conditions case. Here,∑s
i=1 �휎iuiviT is the

summation of the first s terms in the SVD decomposition of P̄.

Because the singular values of P̄ (as well as P) decay quickly to zero for most PSFs, Theorem 1 guarantees that even a
small s in (7) could lead to a very accurate approximation. Numerical experiments in Section 4 show that taking s as small
as 5 is enough for the image restoration applications under consideration.
At the end of this section, let us take a look at the structure of Ki and Hi. If the zero boundary conditions are used, Ki

and Hi have the following Toeplitz structure.

Ki = toep(ki, l) and Hi = toep(hi, q) (9)

In the above equations, ki = (
√
�휎iui).∕diag(Wa), hi = (

√
�휎ivi).∕diag(Wb), where .∕ denotes point-wise division, and

toep(c, j) denotes a banded Toeplitz matrix whose jth column is equal to c. For example,

toep(c, 4) =

⎡
⎢
⎢
⎢
⎢⎣

c4 c3 c2 c1 0
c5 c4 c3 c2 c1
0 c5 c4 c3 c2
0 0 c5 c4 c3
0 0 0 c5 c4

⎤
⎥
⎥
⎥
⎥⎦

with c =

⎡
⎢
⎢
⎢
⎢⎣

c1
c2
c3
c4
c5

⎤
⎥
⎥
⎥
⎥⎦

. (10)

On the other hand, if the reflective boundary conditions are applied, Ki and Hi are equal to the linear combinations of a
Toeplitz matrix and a Hankel matrix:

Ki = toep(ki, l) + hank(ki, l) and Hi = toep(hi, q) + hank(hi, q), (11)
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where ki =
√
�휎iR−1ui, hi =

√
�휎iR−1vi and hank(c, j) denotes a banded Hankel matrix whose first row and last column are

defined by [cj+1, … , cn, 0, … , 0] and [0, … , 0, c1, … , cj−1]T, respectively. For example,

hank(c, 3) =

⎡
⎢
⎢
⎢
⎢⎣

c4 c5 0 0 0
c5 0 0 0 0
0 0 0 0 0
0 0 0 0 c1
0 0 0 c1 c2

⎤
⎥
⎥
⎥
⎥⎦

with c =

⎡
⎢
⎢
⎢
⎢⎣

c1
c2
c3
c4
c5

⎤
⎥
⎥
⎥
⎥⎦

. (12)

The sFISTA to be introduced in the next section will benefit from the fast Toeplitz/Hankel matrix–vector product
algorithms when multiplying Ki and Hi with vectors at each iteration.

3 STRUCTURED FISTA

In this section, we will first review the FISTA framework for solving () and then propose sFISTA for solving (̃). We can
prove that the proposed sFISTA for solving (̃) is equivalent to FISTA for solving (̂). A detailed error analysis has also
been conducted to show that the computational accuracy of sFISTA can reach the same level as that of FISTA under mild
conditions. Finally, we compare the computational complexity of sFISTA for solving (̃) and FISTA for solving () and
show that sFISTA is more efficient in both serial and parallel computing environments.

3.1 FISTA: a fast iterative shrinkage-thresholding algorithm
FISTAwas first proposed in thework of Beck et al.12 to solve the following general nonsmooth convex optimizationmodel:

min
x
{F(x) = �푓 (x) + g(x)}, (13)

where �푓 ∶ ℝN → ℝ is a smooth convex function of the type C1,1 and g ∶ ℝN → ℝ is a continuous convex function,
which is possibly nonsmooth. The basic idea of FISTA is that at each iteration, after getting the current iteration point xk,
an additional point yk+1 is chosen as the linear combination of the current iteration point xk and the previous iteration
point xk−1. The next iteration point xk+1 is then set as the unique minimizer pL�푓 (�푦k+1) of the quadratic approximation
QL�푓 (x, �푦k+1) of F(x) at yk+1 with

QL�푓 (x, �푦) ∶= �푓 (�푦) + ⟨x − �푦,∇�푓 (�푦)⟩ + L�푓

2 x߀߀ − �푦22߀߀ + g(x) (14)

and Lf being the Lipschitz constant of ∇f. For more details about FISTA, see the work of Beck et al.12
Obviously, () is a special instance of problem (13) if we let �푓 (x) = 1

2 Ax߀߀ − b22߀߀ and g(x) = �휆2

2 .22߀߀x߀߀ In this case, the
(smallest) Lipschitz constant of the gradient ∇f is Lf = �휆max(ATA). Simple calculations lead to

xk = pL�푓 (�푦k) = argmin
x
{QL�푓 (x, �푦k) ∶ x ∈ ℝmn}.

= argmin
x

{
⟨x,AT(A�푦k − b)⟩ + L�푓

2 22߀߀x߀߀ − L�푓 ⟨x, �푦k⟩ + �휆2
2 22߀߀x߀߀

}
,

= argmin
x

{
L�푓 + �휆2

2
‖‖‖‖‖
x − 1

L�푓 + �휆2
(
L�푓 �푦k − AT(A�푦k − b)

)‖‖‖‖‖

2

2

}
,

= 1
L�푓 + �휆2

(
L�푓 �푦k − AT(A�푦k − b)

)
.

See Algorithm 1 for a description of FISTA for ().
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As can be seen from Algorithm 1, the total computational cost of FISTA is dominated by matrix–vector multiplications
associated withA andAT at Step 1. Other steps only involve inexpensive vector and scalar operators. Despite its simplicity,
FISTA enjoys a fast global convergence rate, which is summarized in Theorem 2.

Theorem 2 (See theorem 4.4 in the work of Beck et al.12). Let {xk}, {yk} be generated by FISTA. Then, for any k ≥ 1,

F(xk) − F
(
x∗F
) ≤ 2L�푓 ‖‖x0 − x∗F‖‖

2
2

(k + 1)2 ,

where x∗F is the solution of (13).

It is well known that first-order algorithms such as ISTAs,23 generally only enjoy O(1∕k) convergence rate for solving
(). From Theorem 2, we can see that FISTA is different from classical first-order methods in the sense that it preserves
a fast global convergence rate O(1∕k2). That is, in order to obtain a numerical solution x such that F(x) − F(x∗F) ≤ �휖, the
number of iterations required by FISTA is at most

√
2L�푓 x0−x∗F߀߀ √2߀߀

�휖
− 1. In the next section, we will propose the sFISTA, which

is more efficient for solving (̃).

3.2 Accelerating FISTA by exploiting structures
In this section, we will show how to adapt the FISTA framework to solve (̃) by exploiting the two hidden structures.
We first use a Kronecker product approximation As of the coefficient matrix A to introduce problem (̂), which can be
equivalently transformed into a matrix problem (̃). Consider the following quadratic approximation of the objective
function of (̃) at a given point Y:

QL(X ,Y ) ∶= 1
2
‖‖‖‖‖

s∑
i=1

HiYKT
i − B

‖‖‖‖‖

2

F
+
⟨
X − Y ,

s∑
�푗=1

HT
�푗

( s∑
i=1

HiYKT
i − B

)
K�푗

⟩

F

+ L
2 X߀߀ − Y 2F߀߀ + �휆2

2 2F߀߀X߀߀ ,
(15)

where L = �휆max (AT
s As) is the Lipschitz constant of the gradient of the first term in the object function of (̃). Similar to

FISTA, we choose the unique minimizer of the quadratic approximation at point Yk+1, which is the linear combination
of Xk and Xk−1, as the new iteration point Xk+1. Mathematically, we set

Yk+1 = Xk +
tk − 1
tk+1

(Xk − Xk−1),
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where tk and tk+1 are parameters updated in the same way as FISTA to make sFISTAmaintain the same convergence rate
as FISTA for solving (̃) and compute Xk+1 as

Xk+1 = pL(Yk+1) = argmin
X

{QL(X ,Yk+1) ∶ X ∈ ℝm×n}.

= argmin
X

{⟨
X ,

s∑
�푗=1

HT
�푗

( s∑
i=1

HiYk+1KT
i − B

)
K�푗

⟩

F

+ L
2 ߀߀X߀߀

2
F + L⟨X ,Yk+1⟩F + �휆2

2 2F߀߀X߀߀
}

,

= argmin
X

⎧
⎪
⎨
⎪⎩

L + �휆2
2

‖‖‖‖‖‖
X − 1

L + �휆2

(
LYk+1 −

s∑
�푗=1

HT
�푗

( s∑
i=1

HiYk+1KT
i − B

)
K�푗

)‖‖‖‖‖‖

2

F

⎫
⎪
⎬
⎪⎭
,

= 1
L + �휆2

(
LYk+1 −

s∑
�푗=1

HT
�푗

( s∑
i=1

HiYk+1KT
i − B

)
K�푗

)
.

Basic steps of sFISTA for (̃) are summarized in Algorithm 2.

Compared with Algorithm 1, there are several major differences between sFISTA and FISTA. First of all, the com-
putational cost of Algorithm 1 is dominated by matrix–vector multiplications whereas Algorithm 2 can benefit from
more computationally intensive matrix–matrix multiplications. Moreover, because Hi and Ki are all structured matrices
(Toeplitz, Hankel, etc.), we can further exploit their fast matrix–vector multiplications at Step 1 in Algorithm 2. Second,
Algorithm 2 decomposes the computation of Xk as the summation of s terms, which can be computed independently.
Therefore, we can easily explore two levels of parallelism at each iteration in Algorithm 2. The first level corresponds to
the structured matrix–vector multiplications with multiple vectors and the second level comes from the summation of
s terms. This property enables Algorithm 2 to reach superior parallel performance when implemented on modern high
performance architectures. Finally, we can prove that sFISTA for (̃) is equivalent to FISTA for (̂), which guarantees the
fast convergence.

Theorem3. sFISTA for (̃) andFISTA for (̂) provide the same output as long as their initial points satisfy x0 = vec(X0).
Mathematically, suppose {Xk}, {Yk} are generated by sFISTA for (̃) and {xk}, {yk} are obtained by FISTA for (̂), then
we have xk = vec(Xk) and yk = vec(Yk).
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Proof. To prove the desired results, we first review two important properties of Kronecker products, which will be
used in the proof below.

(H ⊗ K)vec(Z) = vec(KZHT),
(H ⊗ K)T = HT ⊗ KT ,

whereH,K, and Z are matrices of appropriate dimensions. Recall the frameworks of the two algorithms; to prove they
provide the same output, we only have to show that both algorithms are equivalent at Step 1. Specifically, we just have
to prove

vec
( s∑

�푗=1
HT

�푗

( s∑
i=1

HiYkKT
i − B

)
K�푗

)
= AT

s (As�푦k − b) . (16)

Utilizing the Kronecker product properties mentioned above, we can get

vec
( s∑

�푗=1
HT

�푗

( s∑
i=1

HiYkKT
i − B

)
K�푗

)
,

=
s∑

�푗=1

{
vec

( s∑
i=1

HT
�푗 HiYkKT

i K�푗

)
− vec

(
HT

�푗 BK�푗
)
}

,

=
s∑

�푗=1

{ s∑
i=1

vec
(
HT

�푗 HiYkKT
i K�푗

)
− vec

(
HT

�푗 BK�푗
)
}

,

=
s∑

�푗=1

{ s∑
i=1

((
KT
�푗 Ki

)
⊗

(
HT

�푗 Hi
))

vec(Yk) −
(
KT
�푗 ⊗HT

�푗
)
vec(B)

}
,

=
s∑

�푗=1

s∑
i=1

(
KT
�푗 ⊗HT

�푗
)
(Ki ⊗Hi)vec(Yk) −

s∑
�푗=1

(
KT
�푗 ⊗HT

�푗
)
vec(B),

=
( s∑

�푗=1
KT
�푗 ⊗HT

�푗

)( s∑
i=1

Ki ⊗Hi

)
vec(Yk) −

( s∑
�푗=1

KT
�푗 ⊗HT

�푗

)
vec(B),

= AT
s (As�푦k − b) ,

(17)

from which we can derive that xk = vec(Xk) and yk = vec(Yk).

It is worth pointing out that sFISTA for (̃) is only equivalent to FISTA for (̂) due to the Kronecker product approx-
imation error. The total computational error of sFISTA for solving (̃) comes from two places: the Kronecker product
approximation to A and the iterative procedure of sFISTA. The following theorem analyzes the effect of these two kinds
of errors on the accuracy of the final computed result.

Theorem 4. Assume x∗ and x∗s are the exact solutions of () and (̂) respectively, {Xk,Yk} is the sequence obtained by
sFISTA for (̃). Denote x̃k = vec(Xk). If the singular values of ATAs + �휆2I have a positive lower bound and the Kronecker
product approximation As satisfies A߀߀ − As߀߀F = �휖s, then we have for any k ≥ 1,

Φ(x̃k)߀ − Φ(x∗)߀ ≤ 2L ‖‖x̃0 − x∗s ‖‖22
(k + 1)2 + c0�휖s, (18)

where c0 is a positive constant independent of k.

Proof. Because x∗ and x∗s are the exact solutions of () and (̂) respectively, from their optimality conditions, we have

AT(Ax∗ − b) + �휆2x∗ = 0 and AT
s (Asx∗s − b) + �휆2x∗s = 0, (19)
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which implies that

ATAx∗ = ATb − �휆2x∗ and AT
s Asx∗s = AT

s b − �휆2x∗s . (20)

It is easy to see

Φ(x̃k)߀ − Φ(x∗)߀ ≤ Φ(x̃k)߀ − Φs(x̃k)߀
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

I

+ Φs(x̃k)߀ − Φs (x∗s ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟߀(
II

+ Φs߀ (x∗s ) − Φ(x∗)߀
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

III

. (21)

For the first term, we have

Φ(x̃k)߀ − Φs(x̃k)߀ =
||||
1
2 Ax̃k߀߀ − b22߀߀ −

1
2 Asx̃k߀߀ − b22߀߀

|||| ,

=
||||
1
2
(
x̃Tk A

T − bT + x̃Tk A
T
s − bT

)
(Ax̃k − Asx̃k)

|||| ,

≤ ‖‖‖‖
1
2 x̃

T
k A

T + 1
2 x̃

T
k A

T
s − bT

‖‖‖‖2
· 2߀߀x̃k߀߀ · A߀߀ − As2߀߀,

≤ c1�휖s,

(22)

where c1 = 1
2 2߀߀A߀߀)22߀߀x̃k߀߀ + (2߀߀As߀߀ + ,2߀߀x̃k߀߀2߀߀b߀߀ and we use the fact that ,2߀߀A߀߀ ,2߀߀As߀߀ 2߀߀x̃k߀߀ are bounded.

From Theorem 3, we know that sFISTA for (̃) is equivalent to FISTA for (̂), which implies that the second term
satisfies

Φs(x̃k)߀ − Φs (x∗s ߀( ≤ 2L ‖‖x̃0 − x∗s ‖‖22
(k + 1)2 . (23)

To estimate the last term, we first prove the following fact. From (19), we get

�휆2 (x∗s − x∗) = AT(Ax∗ − b) − AT
s (Asx∗s − b) ,

=
(
AT
s − AT) b + ATAx∗ − AT

s Asx∗s ,
=
(
AT
s − AT) b + (

ATAx∗ − ATAsx∗
)
+
(
ATAsx∗ − ATAsx∗s

)
+
(
ATAsx∗s − AT

s Asx∗s
)
,

=
(
AT
s − AT) b + AT(A − As)x∗ + ATAs (x∗ − x∗s ) +

(
AT − AT

s
)
Asx∗s ,

which implies that

(
ATAs + �휆2I

)
(x∗s − x∗) =

(
AT
s − AT) b + AT(A − As)x∗ +

(
AT − AT

s
)
Asx∗s .

Then, we have

x∗s߀߀ − x∗2߀߀ = ‖‖‖(A
TAs + �휆2I)−1 ·

((
AT
s − AT) b + AT(A − As)x∗ +

(
AT − AT

s
)
Asx∗s

))‖‖‖2,≤ ATAs)߀߀ + �휆2I)−12߀߀ ·
2߀߀b߀߀) + 2߀߀∗x߀߀2߀߀A߀߀ + x∗s‖2߀߀As߀߀ ‖2

) A߀߀ − As2߀߀,
≤ c̃�휖s,

where c̃ = ATAs)߀߀ + �휆2I)−12߀߀ · 2߀߀b߀߀) + 2߀߀∗x߀߀2߀߀A߀߀ + x∗s߀߀2߀߀As߀߀ (2߀߀ and we utilize Equation (20), the boundedness of
,2߀߀A߀߀ ,2߀߀As߀߀ ,2߀߀b߀߀ ,2߀߀∗x߀߀ x∗s߀߀ 2߀߀ and the assumption that the singular values ofATAs+�휆2I have a positive lower bound.
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Then, for the last term, we have

Φs(x∗s߀ ) − Φ(x∗)߀ = ||||
1
2 ‖Asx∗s − b‖22 + �휆2

2 ‖x∗s ‖22 − 1
2 Ax߀߀

∗ − b22߀߀ −
�휆2
2 22߀߀∗x߀߀

|||| ,

=
||||
1
2x

∗T
s AT

s Asx∗s − bTAsx∗s +
�휆2
2 ‖x∗s ‖22 − 1

2x
∗TATAx∗ + bTAx∗ − �휆2

2 22߀߀∗x߀߀
|||| ,

=
||||
1
2x

∗T
s
(
AT
s b − �휆2x∗s

)
− bTAsx∗s +

�휆2
2 ‖x∗s ‖22 − 1

2x
∗T (ATb − �휆2x∗) + bTAx∗ − �휆2

2 22߀߀∗x߀߀
|||| ,

=
||||−

1
2b

TAsx∗s +
1
2b

TAx∗
|||| ,

=
||||
1
2b

T (Ax∗ − Asx∗s )
|||| ,

=
||||
1
2b

T (Ax∗ − Ax∗s + Ax∗s − Asx∗s )
|||| ,

≤ 1
2 2߀߀b߀߀

∗x‖2߀߀A߀߀) − x∗s ‖2 + A߀߀ − As2߀߀‖x∗s ‖2
)
,

≤ c2�휖s,

where c2 = 1
2 x∗s߀߀+2c̃߀߀A߀߀)2߀߀b߀߀ ,�휖s(2߀߀ andwe utilize the boundedness of ,2߀߀A߀߀ ,2߀߀b߀߀ x∗s߀߀ 2߀߀ and the fact that x∗s߀߀ −x∗2߀߀ ≤

c̃�휖s.
Based on the analysis above for the three terms in (21), it follows that

Φ(x̃k)߀ − Φ(x∗)߀ ≤ 2L ‖‖x̃0 − x∗s ‖‖22
(k + 1)2 + (c1 + c2)�휖s. (24)

Let c0 = c1 + c2, where c1 and c2 are defined above, then the desired result (18) follows.

Theorem 4 shows that the error ߀Φ(x̃k)−Φ(x∗)߀ from sFISTA is bounded by two terms: 2L߀߀x̃0−x∗s 22߀߀
(k+1)2 and c0�휖s. The first term

decreases as the iteration proceeds whereas the second term remains constant during the iteration. In order to let the total
error Φ(x̃k)߀ − Φ(x∗)߀ fall below a threshold �휖, we need to make both terms smaller than �휖. As discussed before, because
only a relatively large �휖 is necessary in these ill-posed inverse problems, a small swould be enough to guarantee c0�휖s < �휖.
In this sense, the convergence of sFISTA is dominated by the first term 2L߀߀x̃0−x∗s 22߀߀

(k+1)2 and behaves in a similar way as FISTA.
As an example, we plot the singular values of the matrices P and P̄ from the test image “hst” (see Example 1 in

Section 4 for more details about this image) in Figure 1. It is easy to see that the singular values of both matrices decay
quickly to zero. For example, the ratio of the sixth largest singular value of P to the largest one is only 6.47e − 2 and the

(a) (b)
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FIGURE 1 Singular values of P and P̄ for test image “hst” in Example 1. (a) Singular values of P (b) Singular values of P̄
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ratio of the tenth largest singular value of P to the largest one reduces to 4.27e− 2. These patterns can also be observed in
other test examples.

3.3 Complexity analysis
In this section, we consider the computational complexity of sFISTA for (̃) (Algorithm 2) and FISTA for ()
(Algorithm 1). If we ignore the structures in A ∈ mn×mn, Ki ∈ n×n, Hi ∈ m×m, and assume that they are all general
dense matrices, then the cost of Step 1 in Algorithms 1 and 2 would be O

(
m2n2) and O

(
s(nm2 +mn2)

)
, respectively.

When s ismuch smaller thanm andn, which is the case for the applications under consideration in this paper, Algorithm2
is definitely faster than Algorithm 1.
Recall that the blurring matrix A and matrices Ki and Hi from the Kronecker product approximation of A all have

specific structures. As the matrix size becomes big enough, these structures will enable us to use fast Fourier transforms
(FFTs) to accelerate matrix–vector multiplications encountered in both algorithms. For example, when zero boundary
conditions are used, A is a BTTB matrix and Ki,Hi are Toeplitz matrices. In this case, the matrix–vector multiplication at
Step 1 in Algorithm 1 can be performed in O(mn log(mn))with 2D FFTs, whereas Step 1 in Algorithm 2 can be done with
1D FFTs in O(smn log(mn)). When reflective boundary conditions are utilized, A is a BTHTHB matrix and Ki, Hi can be
represented as the sum of a Toeplitz matrix and a Hankel matrix. In this case, the computational complexities of Step 1 in
both algorithms are still of the same order as in the zero boundary conditions case. Although Algorithm 2 has the same
complexity as Algorithm 1, it is important to notice that Algorithm 2 is actually muchmore attractive when implemented
on high performance architectures for a number of reasons. First of all, as discussed in the previous section, Algorithm 2
can easily exploit two levels of parallelism, which is crucial for fully taking advantage of themultilevel parallelism offered
by the current architectures. Second, parallel 1D FFTs are known to scale better than parallel 2D FFTs. Thus, Algorithm
2 is more computationally efficient than Algorithm 1 for solving large-scale problems.

4 NUMERICAL RESULTS

In this section, we provide some numerical examples to demonstrate the performance of sFISTA for solving (̃). All the
algorithms were implemented with MATLAB and the experiments were performed on a MacBook Air with Intel Core i7
CPU (2.2 GHz). The following notations will be used throughout this section:

• s: the number of terms in the Kronecker product approximation;
• b: the data vector;
• noise: the vector of perturbations;
• bn: the noisy data bn = b + noise;
• NoiseLevel: relative level of noise defined as 2߀߀b߀߀⧵2߀߀noise߀߀
• BlurLevel: an indicator used to set the severity of the blur to one of the following: “mild,” “medium,” and “severe”;
• �휂: the relative error x߀߀ − x∗߀߀⧵߀߀x∗߀߀;
• �훾 : the relative residual ,߀߀b߀߀⧵߀߀r߀߀ where r = Ax − b;
• iter: the iteration number of one algorithm;
• t(FISTA) and t(sFISTA): the CPU time (seconds) of FISTA and sFISTA, respectively;
• tratio: an indicator defined as tratio = t(sFISTA)

t(FISTA) to compare the efficiency of FISTA and sFISTA.

Example 1. In this example, four 256× 256 simple test images were extracted based on functions PRblurdefocus
and PRblurshake from the regularization toolbox.24 The four test images in this example are represented by “hst”
(image of the Hubble space telescope), “satellite” (satellite test image), “pattern1” (geometrical image) and “ppower”
(random image with patterns of nonzero pixels) respectively, which used reflective (Neumann) boundary conditions.1
PRblurdefocus and PRblurshake are functions simulating a spatially invariant, out-of-focus blur, and spatially
invariant motion blur caused by shaking of a camera, respectively. The BlurLevel was set to be “medium” in these
four tests. In addition, function PRnoise was used to add Gaussian noise with NoiseLevel = 0.01 in this example.
The regularization parameters were chosen automatically by IRhybrid_lsqr from the work of Gazzola et al.,24
which is based on the hybrid bidiagonalizationmethod presented in the work of Chung et al.25 The Lipschitz constant
was computed as an estimation of the two-norm of the matrix A, which was realized by a few iterations of Lanczos
bidiagonalization as implemented in HyBR.24
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We then tested FISTA for () and sFISTA for (̃) on these four images. To show how the number of terms in the
Kronecker product approximation affects the performance of sFISTA, swas set to range from 1 to 5 in these four tests.
Both algorithms were stopped when either the relative residual �훾 satisfied �훾 ≤ �훽 ·NoiseLevel or a maximum iteration
number 50 was reached, where �훽 = 1.05 is a “safety factor.” To compare the performance of FISTA and sFISTA, we
report the CPU time (seconds), the relative error �휂 and the relative residual �훾 returned by both algorithms. Their
values on these four tests are tabulated in Tables 1–4. To show how the FISTA and sFISTA iterations evolve, we plot
�휂 and �훾 versus iteration number for FISTA and sFISTA (with s= 1 and 5) in Figures 2, 3, 4, and 5.

TABLE 1 Numerical results for fast iterative
shrinkage-thresholding algorithm (FISTA) and structured FISTA
(sFISTA) for “hst”

FISTA sFISTA sFISTA sFISTA sFISTA sFISTA
(s = 1) (s = 2) (s = 3) (s = 4) (s = 5)

Time 6.8225 0.5255 0.7784 1.0089 1.4913 1.4991
Iter 50 50 50 50 50 50
�휂 0.2184 0.2649 0.2329 0.2212 0.2186 0.2182
�훾 0.0115 0.0180 0.0123 0.0116 0.0115 0.0115

TABLE 2 Numerical results for fast iterative
shrinkage-thresholding algorithm (FISTA) and structured FISTA
(sFISTA) for “satellite”

FISTA sFISTA sFISTA sFISTA sFISTA sFISTA
(s = 1) (s = 2) (s = 3) (s = 4) (s = 5)

Time 6.8618 0.5593 0.7870 0.9975 1.2309 1.6005
Iter 50 50 50 50 50 50
�휂 0.2740 0.3551 0.2979 0.2783 0.2757 0.2744
�훾 0.0129 0.0256 0.0152 0.0129 0.0130 0.0129

TABLE 3 Numerical results for fast iterative
shrinkage-thresholding algorithm (FISTA) and structured FISTA
(sFISTA) for “pattern1”

FISTA sFISTA sFISTA sFISTA sFISTA sFISTA
(s = 1) (s = 2) (s = 3) (s = 4) (s = 5)

Time 7.5562 0.6701 0.8669 1.0097 1.2027 1.5385
Iter 50 50 50 50 50 50
�휂 0.0607 0.4781 0.2171 0.1417 0.0813 0.0689
�훾 0.0087 0.0336 0.0137 0.0135 0.0108 0.0089

TABLE 4 Numerical results for fast iterative
shrinkage-thresholding algorithm (FISTA) and structured FISTA
(sFISTA) for “ppower”

FISTA sFISTA sFISTA sFISTA sFISTA sFISTA
(s = 1) (s = 2) (s = 3) (s = 4) (s = 5)

Time 7.1086 0.5863 0.8070 1.0227 1.2676 1.4446
Iter 50 50 50 50 50 50
�휂 0.0968 0.2725 0.1478 0.1160 0.1097 0.0985
�훾 0.0096 0.0226 0.0207 0.0139 0.0132 0.0096
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FIGURE 2 �휂 and �훾 versus iteration number for “hst” extracted from PRblurdefocus. (a) Relative error norms �휂 (b) Relative residual norms �훾
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FIGURE 3 �휂 and �훾 versus iteration number for “satellite” extracted from PRblurdefocus. (a) Relative error norms �휂 (b) Relative residual
norms �훾
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FIGURE 4 �휂 and �훾 versus iteration number for “pattern1” extracted from PRblurshake. (a) Relative error norms �휂 (b) Relative residual
norms �훾
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FIGURE 5 �휂 and �훾 versus iteration number for “ppower” extracted from PRblurshake. (a) Relative error norms �휂 (b) Relative residual
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FIGURE 6 Figures for “hst” extracted
from PRblurdefocus. (a) True image (b)
Blurred and noisy image (c) Image
obtained by fast iterative
shrinkage-thresholding algorithm
(FISTA) (d) Image obtained by structured
FISTA (sFISTA; s = 5)
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FIGURE 7 Figures for “satellite”
extracted from PRblurdefocus. (a) True
image (b) Blurred and noisy image (c)
Image obtained by fast iterative
shrinkage-thresholding algorithm
(FISTA) (d) Image obtained by structured
FISTA (sFISTA; s = 5)
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FIGURE 8 Figures for “pattern1”
extracted from PRblurshake. (a) True
image (b) Blurred and noisy image (c)
Image obtained by fast iterative
shrinkage-thresholding algorithm
(FISTA) (d) Image obtained by structured
FISTA (sFISTA; s = 5)
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FIGURE 9 Figures for “ppower”
extracted from PRblurshake. (a) True
image (b) Blurred and noisy image (c)
Image obtained by fast iterative
shrinkage-thresholding algorithm
(FISTA) (d) Image obtained by structured
FISTA (sFISTA; s = 5)
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As can be seen from Tables 1–4, sFISTA is much faster than FISTA in all test problems. As s increases from 1 to 5, the
computational time of sFISTA increases monotonically whereas both the relative error �휂 and the relative residual �훾 keep
decreasing. When s reaches 5, the errors of sFISTA are close enough to those of FISTA and sFISTA is still about five times
faster than FISTA.We would like to emphasize that sFISTAwas only implemented as a serial code, and we expect to see a
larger speedup with a parallel implementation in the future. As can be seen from Figures 2, 3, 4, and 5, �휂 and �훾 for sFISTA
with s= 1 are worse than those for sFISTA with s= 5 and FISTA. Those values even increase as the iteration proceeds
for the last two test images. However, �휂 and �훾 for sFISTA with s= 5 and FISTA are quite close during the iteration. This
implies that 5 is a good choice for s.
We also plot the four images obtained by sFISTA in Figures 6, 7, 8, and 9. As a comparison, the true, blurred and noisy

image and the image obtained by FISTA are also provided. It is easy to see that the images obtained by FISTA and sFISTA
(s = 5) seem very similar to each other.

Example 2. In this set of test problems, we compare the performance of sFISTA and FISTA on eight images
with different blur levels and noise levels. These problems are all extracted from functions PRblurdefocus and
PRblurshake. The eight test images are represented by “pattern1” (geometrical image), “pattern2” (geometrical
image), “ppower” (random image with patterns of nonzero pixels), “smooth” (very smooth image), “dot2” (two small
Gaussian shaped dots), “dotk” (N∕2 small Gaussian shaped dots), “satellite” (satellite test image), and “hst” (image
of the Hubble space telescope), respectively. Each test image in this example undergoes blurring and Gaussian white
noise-adding procedure with three different blurring levels: “mild,” “medium,” and “severe” and three different noise
levels: 10−3, 10−2, and 10−1. Because we have seen from Example 1 that s = 5 is a good choice for sFISTA, s is fixed to
be 5 in this example.
We then tested sFISTA and FISTA on these eight images to compare their performance. The computational results

are tabulated in Tables 5 and 6, respectively. In both tables, there are nine cases corresponding to the three different
blurring levels and three different noise levels. Because the indicator tratio measures the ratio of the computational
time of sFISTA to that of FISTA for solving the same problem to the same accuracy. Therefore, the smaller tratio is,
the more efficient sFISTA is than FISTA.
The results in Tables 5 and 6 show that sFISTA is more efficient than FISTA in all test problems. For example, when

we focus on one row or one column of Table 5 or Table 6, it is easy to see that all the values of tratio are less than 1.

TABLE 5 Values of tratio for PRblurdefocus with different blurring levels and noise levels
tratio case1 case2 case3 case4 case5 case6 case7 case8 case9
BlurLevel “mild” “mild” “mild” “medium” “medium” “medium” “severe” “severe” “severe”
NoiseLevel 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1
“pattern1” 0.2542 0.2654 0.2351 0.2534 0.2989 0.2937 0.2661 0.2874 0.2746
“pattern2” 0.2577 0.2493 0.2471 0.2515 0.2724 0.2953 0.2553 0.2607 0.2721
“ppower” 0.2449 0.2530 0.2601 0.2552 0.2753 0.2537 0.2601 0.2808 0.2531
“smooth” 0.2869 0.2562 0.2567 0.2554 0.2511 0.2735 0.2544 0.2913 0.2519
“dot2” 0.2559 0.2595 0.2545 0.2559 0.2545 0.2789 0.2911 0.2530 0.2905
“dotk” 0.2508 0.2769 0.2507 0.2620 0.2802 0.2560 0.2540 0.2618 0.2573
“satellite” 0.2643 0.2509 0.2560 0.2717 0.2708 0.2856 0.2539 0.2467 0.2944
“hst” 0.2501 0.2569 0.2618 0.2555 0.2599 0.2974 0.2542 0.2547 0.2821

TABLE 6 Values of tratio for PRblurshake with different blurring levels and noise levels
tratio case1 case2 case3 case4 case5 case6 case7 case8 case9
BlurLevel “mild” “mild” “mild” “medium” “medium” “medium” “severe” “severe” “severe”
NoiseLevel 10−3 10−2 10−1 10−3 10−2 10−1 10−3 10−2 10−1
“pattern1” 0.2948 0.2723 0.2965 0.2859 0.2571 0.2885 0.2520 0.2758 0.2497
“pattern2” 0.2518 0.2842 0.2510 0.2528 0.2565 0.2559 0.2459 0.2478 0.2400
“ppower” 0.2828 0.2551 0.2593 0.2638 0.2539 0.2605 0.2520 0.2587 0.2873
“smooth” 0.2538 0.2487 0.2931 0.2522 0.2559 0.2476 0.2949 0.2650 0.2841
“dot2” 0.2496 0.2695 0.2590 0.2543 0.2536 0.2908 0.2374 0.2451 0.2329
“dotk” 0.2586 0.2596 0.2641 0.2522 0.2606 0.2564 0.2809 0.2568 0.2487
“satellite” 0.2411 0.2549 0.2600 0.2880 0.2542 0.2686 0.2493 0.2829 0.2803
“hst” 0.2541 0.2627 0.2501 0.2620 0.2721 0.2591 0.2744 0.2729 0.2714
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Moreover, tratio in both tables are quite close to 0.25, which indicates that the efficiency of sFISTA does not depend
on the blurring type, the test images, the blurring levels or the noise levels. These results further indicate that sFISTA
is not only fast but also very robust for solving the image restoration problems considered in this paper.

5 CONCLUSION

In this paper, we propose the structured FISTA (sFISTA) for solving large-scale ill-posed linear inverse problems arising
from image restoration. By exploiting both the Kronecker product structure of the coefficient matrix and the pattern
structure of the matrices in the Kronecker product approximation, sFISTA can significantly accelerate the computation
compared to FISTA. A theoretical error analysis has been conducted to show that sFISTA can reach the same level of
computational accuracy as FISTA under certain conditions. Finally, the efficiency of sFISTA is demonstrated with both a
theoretical computational complexity analysis and various numerical examples coming from different applications.
The proposed sFISTA framework provides the possibility of developing new solvers for other imaging deblurring prob-

lems. For example, it is possible to adapt sFISTA to solve nonsmooth optimization problemswith sparsity constraints such
as those using l1-based regularization. In additional, the structured matrix computations may also benefit other iterative
regularizationmethods, such asKrylovmethods andKrylov–Tikhonovmethods.26 We also plan to exploit preconditioning
techniques to further reduce the iteration number and iteration time in our future work.
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