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SPECTRAL COMPUTED TOMOGRAPHY WITH LINEARIZATION2

AND PRECONDITIONING3

YUNYI HU⇤, MARTIN S. ANDERSEN† , AND JAMES G. NAGY‡4

Abstract. In the area of image sciences, the emergence of spectral computed tomography (CT)5
detectors highlights the concept of quantitative imaging, in which not only reconstructed images are6
o↵ered, but also weights of di↵erent materials that compose the object are provided. If a detector is7
made up of several energy windows and each energy window is assumed to detect a specific range of8
energy spectrum, then a nonlinear matrix equation is formulated to represent the discretized process9
of attenuation of x-ray intensity. In this paper, we present a linearization technique to transform this10
nonlinear equation into an optimization problem that is based on a weighted least squares term and a11
nonnegative bound constraint. To solve this optimization problem, we propose a new preconditioner12
that can significantly reduce the condition number, and with this preconditioner, we implement13
a highly e�cient first order method, Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), to14
achieve substantial improvements on convergence speed and image quality. We also use a combination15
of generalized Tikhonov regularization and `1 regularization to stabilize the solution. With the16
introduction of new preconditioning, a linear inequality constraint is introduced. In each iteration,17
we decompose this constraint into small-sized problems that can be solved with fast optimization18
solvers. Numerical experiments illustrate convergence, e↵ectiveness and significance of the proposed19
method.20
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1. Introduction. The development of new energy-windowed spectral computed24

tomography (CT) machines have received a great deal of interest in recent years;25

see, e.g. [1, 24]. These detectors assume that x-rays emitted by the x-ray source26

are composed of a spectrum of di↵erent energies, and in each energy window, the27

detector can detect a specific range of energy. Moreover, it assumes that the detector28

can perform photon counting and the data collected by the detector are nonnegative29

integers. Compared with traditional CT machines, we can avoid introducing beam-30

hardening artifacts [19] and improve quality of reconstructed images. To reconstruct31

images of an object, we need to solve a nonlinear equation32

(1.1) Y = exp
�
�AWC

T
�
S + E ,33

where Y is a matrix that gathers the projected data of each energy window in the34

corresponding column and the exponential operator is applied element-wise (i.e., it is35

not a matrix function). A is a matrix that is related to the quantitative information36

of ray trace and C is a matrix that contains linear attenuation coe�cients for par-37

ticular (known) materials at specified energies. S is the matrix that accumulates the38

spectrum energies for each energy window in the corresponding column. We assume39

that S is square and invertible. Moreover, E represents the noise term and we assume40

that Eil ⇠ N (0, yil) for each component Eil in E and yil in Y . We assume that these41

data are known and the target is to solve the unknown weight matrix W . W is of42

⇤Department of Mathematics and Computer Science, Emory University. Email:
yhu85@mathcs.emory.edu.

†Department of Applied Mathematics and Computer Science, Technical University of Denmark,
Email: mskan@dtu.dk.

‡Department of Mathematics and Computer Science, Emory University. Email:
nagy@mathcs.emory.edu.

1

This manuscript is for review purposes only.



2 Y. HU, M. S. ANDERSEN, J. NAGY

the size Nv by Nm, where Nv is the number of voxels (pixels if 2D) for each material43

map and Nm is the number of materials. Since the weight matrix W represents the44

material maps of di↵erent materials, then it must be nonnegative and we need to add45

a lower bound W > 0.46

To solve Equation (1.1), we want to vectorize it at first. Then we use the Taylor47

expansion to remove the point-wise exponential function and obtain an approximate48

linearized equation. Under the Gaussian assumption, as we show in Section 2, we49

can transform this equation into a weighted least squares problem under bound con-50

straints:51

min
w

1

2
kAw � bk

2
⌃�1

subject to w > 0,
(1.2)52

where A = C ⌦ A, b = � log (y), y = vec (Y ) and w = vec (W ). ⌃�1, which53

combines information from S and y, is the inverse covariance matrix generated by54

Gaussian noise and log transformation. k·k
2
⌃�1 represents a weighted 2-norm and55

kAw � bk
2
⌃�1 = (Aw � b)T ⌃�1 (Aw � b) . C is of the size Ne by Nm, where Ne is56

the number of energy and Nm is the number of materials. Since each column of C57

collects the corresponding linear attenuation coe�cients and two materials, such as58

adipose and glandular, might be similar to each other, the matrix C is likely to be ill-59

conditioned. On the other hand, Problem (1.2) is similar to a quadratic programming60

problem under bound constraints. However, direct implementation of an optimization61

solver does not provide high-quality reconstruction because the ray trace matrix A is62

large and ill-conditioned, and the columns of the linear attenuation coe�cient matrix63

C might be nearly collinear.64

Because of the ill-posedness, Barber et al. [1] proposed a preconditioner based65

on the eigenvalue decomposition of the matrix product of linear attenuation coef-66

ficients, CT
C, to orthogonalize columns of C. They also suggest using a Poisson67

noise assumption and construct loss functions that are either based on the maximum68

likelihood estimator (MLE) or the nonlinear least squares term. Using these types of69

loss functions and the proposed preconditioner, a Chambolle-Pock (CP) primal-dual70

method [5] is implemented to solve the corresponding optimization problem. However,71

because the MLE for the Poisson model is nonlinear, it is not obvious to see how this72

preconditioner can reduce the condition number of the Hessian matrix. Moreover,73

because each iteration of a second order method for large three-dimensional imaging74

problems is very costly (in terms of both the computations and storage requirements),75

in this paper we consider first order methods. With a first order method, it is not76

necessary to construct either the Hessian or Hessian-vector multiplication in each step.77

To mitigate the ill-posedness, we propose a new preconditioner that is based on78

a rank-1 approximation of the matrix Y . With this rank-1 approximation, we can79

estimate the Hessian of the objective function in (1.2) by a Kronecker product of two80

parts. The first part of this Kronecker product is of the size Nm ⇥ Nm, where Nm81

denotes the number of materials; usually this is quite small, e.g. Nm = 2 or 3. This82

matrix product is also symmetric and positive definite so we can construct a precon-83

ditioner from its inverse Cholesky factorization, and thus transform it into an identity84

in the preconditioned system. Because the conditioning of the Hessian is closely re-85

lated to these two matrices and one of them has been transformed into an identity,86

we have reduced the condition number significantly. Moreover, it is an economical87

preconditioner since we only need to compute the preconditioner once and can reuse88

it in the future iterations. The preconditioner proposed in [1] includes only the data89
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of C, the matrix of linear attenuation coe�cients of material and energy. Compared90

with this, the preconditioner proposed in this paper includes the information of linear91

attenuation coe�cients, the energy spectrum and photon counting data. It o↵ers a92

more physically meaningful approximation of the Hessian.93

In addition, with the weighted least squares objective function, it is much easier94

to analyze the condition number before and after preconditioning. Since the per-95

formance of a first order method is closely related to the condition number of the96

Hessian, it is intuitive to implement a first order method if we can reduce the condi-97

tion number significantly. Based on this idea, Fast Iterative Shrinkage-Thresholding98

Algorithm (FISTA) [2, 21, 20] comes into view. FISTA is a first order method that99

has an “optimal” function convergence rate, O
�
1/k2

�
, where k is the number of iter-100

ations. Furthermore, this method is suitable for solving problems that have a form of101

f (x) + g (x) where both f (x) and g (x) are convex but g (x) is possibly nonsmooth.102

This f (x) can be the weighted least squares term in Problem (1.2) and g (x) can103

represent a nonsmooth regularization term such as `1 regularization or nonnegative104

constraints. Even if we can achieve fast convergence, the introduction of a precon-105

ditioner complicates the bound constraints. The previous bound constraints have106

become linear inequality constraints because of the preconditioner. However, we can107

construct a projection problem that can find the closest solutions to satisfy these108

constraints. Moreover, this projection problem is separable and we can apply highly109

e�cient solvers to compute the solutions to these decomposed small-sized problems.110

Generally speaking, the implementations of our preconditioner, FISTA and projec-111

tion problem compliment each other and exhibit high-quality reconstructed images112

and fast convergence results.113

This paper is organized as follows. In Section 2, we review the continuous energy-114

windowed spectral CT model and the corresponding discretized nonlinear matrix115

equation. The linearization, vectorization and set-up of the optimization problem are116

also included in Section 2. The key idea of this paper, preconditioning, is introduced117

in Section 3. In this section, both the derivation of our preconditioner and an analysis118

of the reduction of the condition number are presented. The choice of regularization119

will be exhibited in this section as well. In Section 4, we study FISTA and how we120

construct and solve the projection problems. Moreover, numerical experiments are121

presented in Section 5 and concluding remarks are given in Section 6.122

2. The Energy-windowed Spectral CT Model. In this section, we start123

with an introduction to the basic model. Then we show how to discretize this model124

to obtain a matrix equation. Since we do not want to solve this matrix equation125

directly, we therefore vectorize this equation and take the Taylor expansion to the126

first order term to remove the exponential function. In this case, we can obtain a127

linear system with transformed noise. With this transformed noise, we can build a128

weighted least squares optimization problem under bound constraints.129

In computed tomography (CT), source x-ray beams are composed of a spectrum130

of di↵erent energies [4]. Recent technological developments have resulted in the de-131

sign of new photon counting detectors that can discriminate the measured data into132

specific energy windows. Image reconstruction algorithms that exploit this informa-133

tion can avoid introducing beam-hardening artifacts, obtain material decomposition134

and improve the quality of reconstructed images. The mathematical model for image135

reconstruction uses Beer’s law [12], which states that the change of x-ray intensity136
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4 Y. HU, M. S. ANDERSEN, J. NAGY

before and after illumination through the object is137

(2.1)

y(k)i =

Z

E
S(k)(e) exp

✓
�

Z

t2l
µ (~r (t) , e) d t

◆
d e+ ⌘(k)i ,

⇢
i = 1, 2, · · · , Nd ⇥Np,
k = 1, 2, · · · , Nb,

138

where139

• y(k)i is x-ray intensity of the i-th pixel in the k-th detector bin.140

• E is the photon flux density. Figure 5.2 shows a curve of E versus photon141

energy.142

• Nd is the number of detector pixels. For a material map of the size n by n,143

we assume Nd = n.144

• Np is the number of projections. For cone/fan beam CT, projections are145

uniformly distributed from 0 to 360 degrees.146

• Nb is the number of detector bins. For an energy-windowed CT machine, we147

usually assume that it has 5 to 6 energy bins.148

• S(k)(e) represents photon flux density for the k-th detector bin, which is the149

number of incident photons at the energy e in the k-th energy window.150

• µ (~r (t) , e) denotes the linear attenuation coe�cient that is related to the151

position function ~r (t) and the energy level e.152

• ⌘(k)i is the error term for the i-th element in the k-th energy bin and it is153

assumed to be Gaussian for this model.154

In Equation (2.1), the unknown linear attenuation coe�cient µ (~r (t) , e) is dependent155

on the position function r (t) and the energy levels e. If the object is assumed to be156

composed of several di↵erent materials, then a material expansion is introduced to157

further decompose the function µ (~r (t) , e) [11]:158

(2.2) µ (~r (t) , e) =
NmX

m=1

um,ewm (~r) ,159

where160

• Nm is the number of materials that form the object.161

• um,e is the linear attenuation coe�cient for the m-th material at the energy162

level e.163

• wm (~r) is the unknown weight of the m-th material at the position ~r.164

With this decomposition, the unknown variable has been shifted from µ (~r (t) , e) to165

the weight fraction wm (~r). If we also assume that wm (~r) can be represented as a166

sum of product of weights and basis functions �j (~r), then another expansion can be167

expressed by168

(2.3) wm (~r) =
NvX

j=1

wj,m�j (~r) ,169

where170

• Nv is the number of voxels (pixels if 2D) of images that compose the object.171

• wj,m is the weight fraction of the m-th material in the j-th voxel (pixels if172

2D).173

• �j (~r) is the basis function of image representation. The line integral of the174

basis function, ai,j , is the length of the x-ray beam through the j-th voxel175

(pixel if 2D), incident onto the i-th element of the product of detector pixels176
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Nd and the number of projections Np:177

(2.4) ai,j =

Z

t2l
�j (~r (t)) d t.178

Then the line integral in Equation (2.1) can be simplified by Expansion (2.3) and179

Integral (2.4):180

(2.5)
Z

t2l
µ (~r (t) , e) d t =

NmX

m=1

NvX

j=1

um,ewj,m

Z

t2l
�j (~r (t)) d t =

NvX

j=1

NmX

m=1

ai,jwj,mum,e.181

If we also discretize the integral over the energy E and ignore quadrature errors, then182

the discrete model of Equation (2.1) can be written as:183

(2.6) y(k)i =
NeX

e=1

s(k)e exp

0

@�

NvX

j=1

NmX

m=1

ai,jwj,mum,e

1

A+ ⌘(k)i ,184

where Ne is the number of discrete energies. If we collect ai,j , wi,j and um,e in a185

matrix form and concatenate y(k)i , s(k)e , ⌘(k)i with respect to their energy windows,186

then the corresponding matrix equation of (2.6) can be represented as:187

(2.7) Y = exp
�
�AWC

T
�
S + E ,188

where189

• Y is a matrix of the size (Nd · Np) ⇥ Nb that gathers x-ray photons of each190

energy window in the corresponding column.191

• A is a matrix of the size (Nd ·Np)⇥Nv that collects the fan-beam geometry192

and each element corresponds to ai,j .193

• C is a matrix of the size Ne ⇥Nm that accumulates linear attenuation coef-194

ficients and each entry corresponds to ue,m, the linear attenuation coe�cient195

of the energy e and the m-th material.196

• S is a matrix of the size Ne ⇥ Nb and each column collects the spectrum197

energy of a specific range. In the forward problem, we use the full spectrum,198

but when we solve the inverse problem, the average in each energy window199

is used to represent the corresponding spectral energy. Therefore, Nb = Ne200

for the inverse problem and S is an invertible diagonal matrix because the201

means are placed in the diagonal. A detailed example is shown in Figure 5.2.202

• E is the noise matrix that is of the size (Nd ·Np)⇥Nb. The assumption for203

the noise is Eil ⇠ N (0, yil) for each element Eil in E and yil in Y .204

In Equation (2.7), the exponential operator is applied element-wise (i.e., it is not a205

matrix function). In addition to Equation (2.7), we also require that weight fractions206

should be nonnegative and this can be illustrated by the constraint W > 0.207

In several cases, the composition of materials can be similar. For example, glan-208

dular and adipose have similar attenuation coe�cients at the same energy level and209

it causes the collinearity. After discretization, the columns of C can be nearly de-210

pendent. Moreover, A is large-scale and sparse and it is highly likely to have small211

singular values. As we will see later, the Hessian system involves the Kronecker prod-212

uct C ⌦ A and it can cause the ill-posedness. Since it is challenging to solve this213

equation directly, it is important to consider approaches to facilitate the process.214

First, we can introduce a preconditioning matrix M into Equation (2.7):215

(2.8) Y = exp
�
�AWM

�T
M

T
C

T
�
S + E .216

This manuscript is for review purposes only.



6 Y. HU, M. S. ANDERSEN, J. NAGY

If we let W̃ = WM
�T and C̃ = CM , then Equation (2.8) is equivalent to217

(2.9) Y = exp
⇣
�AW̃C̃

T
⌘
S + E .218

So far, we have not introduced how to choose the preconditioner M . The choice of M219

depends on linearization and approximation. In Section (3.1), we will state the process220

in detail, and in the new coordinate system defined by M , the corresponding Hessian221

will be better conditioned. With the help of the preconditioning matrix M , we have222

transformed the original system of solving W into the new system of solving W̃ .223

Since each entry of W̃ is a linear combination of all entries in the corresponding row224

of W , we can try to find a matrix M such that the new system is better conditioned225

than the original one.226

On the other hand, we do not want to solve the nonlinear matrix equation (2.9)227

directly because it might introduce a tensor when we compute second order deriva-228

tives. In this case, we want to vectorize Equation (2.9) on both sides and linearize it229

to construst a weighted least squares optimization problem. In the forward problem,230

we use the full spectrum and the matrix S is then usually rectangular. When we231

solve the inverse problem, we choose the average in each energy window to represent232

the corresponding energy spectrum. In this case, Nb = Ne and the matrix S in the233

inverse problem is a nonsingular diagonal matrix. So we can multiply S
�1 on both234

sides of (2.9):235

(2.10) Y S
�1 = exp

⇣
�AW̃C̃

T
⌘
+ ES�1.236

Vectorizing both sides of (2.10), and using properties of Kronecker products, we obtain237

(2.11)
�
S

�T
⌦ I

�
y = exp

n
�

⇣
C̃ ⌦A

⌘
w̃

o
+
�
S

�T
⌦ I

�
e,238

where y = vec(Y ), w̃ = vec(W̃ ) and e = vec (E). If we let ỹ =
�
S

�T
⌦ I

�
y and239

ẽ =
�
S

�T
⌦ I

�
e, then we can subtract ẽ on both sides of (2.11) and obtain240

(2.12) ỹ � ẽ = exp
n
�

⇣
C̃ ⌦A

⌘
w̃

o
.241

By taking the logarithm on both sides of Equation (2.12), we can obtain a linear242

equation243

(2.13) log (ỹ � ẽ) = �

⇣
C̃ ⌦A

⌘
w̃.244

However, the left-hand side of Equation (2.13) contains the transformed error term ẽ245

so we cannot solve this equation directly. In this case, we can separate the error term246

ẽ from ỹ using a first order Taylor expansion at ỹ:247

(2.14) log (ỹ � ẽ) = log (ỹ)� diag (ỹ)�1
ẽ+O

�
kẽk

2
2

�
.248

If we use the first two terms on the right-hand side of Equation (2.14) to estimate249

the term log (ỹ � ẽ), then Equation (2.13) can be expressed by a linear equation with250

the error term diag (ỹ)�1
ẽ. Let b = � log (ỹ), then Equation (2.13) is approximately251

equal to252

(2.15) b ⇡

⇣
C̃ ⌦A

⌘
w̃ � diag (ỹ)�1

ẽ.253
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With this equation and the Gaussian assumption of noise e ⇠ N (0, diag (y)), we254

have255

(2.16) b|w̃ ⇠ N

⇣⇣
C̃ ⌦A

⌘
w̃, ⌃

⌘
,256

where the noise covariance matrix ⌃ is expressed by257

(2.17) ⌃ = diag (ỹ)�1 �
S

�T
⌦ I

�
diag (y)

�
S

�1
⌦ I

�
diag (ỹ)�1 ,258

and the inverse covariance matrix is given by259

(2.18) ⌃�1 = diag (ỹ) (S ⌦ I) diag (y)�1 �
S

T
⌦ I

�
diag (ỹ) .260

Since Y is a matrix that collects the number of photons of each energy window in the261

corresponding column, each entry of Y is a positive integer whose value can be in the262

order of hundreds of thousands. As long as the noise does not dominate the projected263

data, we expect the entries of ỹ will be larger than zero. From Expression (2.18), we264

can see that the structure of ⌃�1 depends on the structure of the matrix S. If S is265

diagonal, then ⌃ is also diagonal. If we let A = C̃ ⌦A, then (see, e.g., [3]) the best266

unbiased linear estimator of w̃ for the Gaussian model (2.16) is the solution of267

(2.19) min
w̃

1

2
(Aw̃ � b)T ⌃�1 (Aw̃ � b) .268

In addition, we require that W > 0, and with the preconditioner, these constraints269

are transformed into (M ⌦ I) w̃ > 0. Therefore, we can formulate a weighted least270

squares problem under bound constraints271

min
w̃

1

2
kAw̃ � bk

2
⌃�1

subject to (M ⌦ I) w̃ > 0.
(2.20)272

In (2.20) the norm k·k
2
⌃�1 corresponds to the weighted inner product given in (2.19).273

From this expression, we know that the objective function is convex. Moreover, the274

inverse covariance matrix ⌃�1 is diagonal as long as S is diagonal and this optimiza-275

tion problem has linear inequality constraints. Based on these observations, we can276

identify four challenges involved in solving this optimization problem. At first, we277

need to choose an appropriate preconditioning matrix to reduce the ill-conditioning278

of the Hessian. Secondly, we want to select suitable regularizations for the correspond-279

ing materials. Thirdly, we have to find an e�cient method to solve the constrained280

weighted least squares problem. These three challenges are related to each other and281

an appropriate preconditioner with appropriate regularizations will be beneficial for282

the solver e�ciency. Finally, we should handle linear inequality constraints in an283

e�cient way. We will address these four challenges in the following sections.284

3. Preconditioning and Regularization.285

3.1. Preconditioning. The choice of the preconditiong matrix M is crucial for286

solving the optimization problem (2.20). If we do not have a preconditioner or we287

choose the preconditioner M as identity, the original Hessian for the weighted least288

squares problem (2.20) is expressed by289

(3.1) H =
�
C

T
⌦A

T
�
⌃�1 (C ⌦A) .290
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An appropriate preconditioner can transform the original ill-posed system into a291

better-conditioned system and thus bring faster convergence speed as well as higher292

quality of reconstructed images. In general, the preconditioned Hessian H̃ can be293

represented as294

(3.2) H̃ = A
T⌃�1

A =
⇣
C̃

T
⌦A

T
⌘
⌃�1

⇣
C̃ ⌦A

⌘
,295

where C̃ = CM . From this expression, it is still not obvious how to construct the296

preconditioner. However, if we can separate the noise covariance matrix ⌃�1 into a297

Kronecker product of two terms, we can merge several terms using properties of the298

Kronecker product and transform parts of the Hessian into identity with the help of299

M . To realize this idea, we review the expression of ⌃�1 in Equation (2.18), where300

we can see that it contains the Kronecker products S ⌦ I and S
T
⌦ I and it is not301

necessary to separate these two terms. So we focus on the other terms that include302

diag {ỹ} and diag {y}�1. By definition, these two terms are related to each other by303

ỹ =
�
S

�T
⌦ I

�
y. In this case, if we can express diag {y} into a Kronecker product304

of two terms, then we will reach the goal.305

Recall that y = vec (Y ). Therefore, if we can find two rank-1 matrices, u and v,306

such that Y ⇡ uv
T , then307

(3.3) diag {y} ⇡ diag
�
vec

�
uv

T
� 

= diag {v}⌦ diag {u} .308

These two rank-1 matrices can be obtained by solving a nearest Kronecker product309

(NKP) problem, which is equivalent to a rank-1 approximation of Y in terms of the310

Frobenius norm:311

(3.4) min
u, v

kY � uv
T
kF .312

The solution to this problem has been studied extensively [23]. Using the singular313

value decomposition (SVD), one solution to Problem (3.4) can be expressed by u =314
p
�1u1 and v =

p
�1v1, where u1 and v1 are the first left and right singular vectors315

and �1 is the corresponding largest singular value of Y . Since we only need these316

terms rather than a full SVD, we can use MATLAB’s svds function, or other e�cient317

approaches, such as “PROPACK” [14], to calculate only �1, u1 and v1.318

After we have obtained u and v, we can estimate the matrix diag {y} as a Kro-319

necker product of two terms as Equation (3.3). In addition, the term diag {ỹ} can be320

represented as321

diag {ỹ} = diag
��

S
�T

⌦ I
�
vec (Y )

 
⇡ diag

��
S

�T
⌦ I

�
vec

�
uv

T
� 

= diag
�
vec

�
uv

T
S

�1
� 

= diag
�
S

�T
v
 
⌦ diag {u} .

(3.5)322

If we substitute the terms in (3.3) and (3.5) for the same terms in (2.18), we can323

obtain that324

(3.6) ⌃�1
⇡

⇣
diag

�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 ⌘

⌦ diag {u} .325

So the preconditioned Hessian matrix is given by326

H̃ =
⇣
C̃

T
⌦A

T
⌘
⌃�1

⇣
C̃ ⌦A

⌘

⇡

⇣
C̃

T
⌦A

T
⌘ h

diag
�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 
⌦ diag {u}

i ⇣
C̃ ⌦A

⌘

=
⇣
C̃

Tdiag
�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 
C̃

⌘
⌦
�
A

Tdiag {u}A
�
.

(3.7)

327
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Since the size of C̃ is Ne ⇥ Nm, then the first part of the Kronecker product in328

(3.7) is a square matrix of the size Nm ⇥ Nm. In other words, this part only de-329

pends on the number of materials that compose the object. Usually, we only con-330

sider 2 or 3 materials for the object so that the size of the matrix products for this331

part is usually either 2 ⇥ 2 or 3 ⇥ 3. Moreover, the matrix Y gathers the num-332

ber of photons of each energy window in the corresponding column so all of its en-333

tries are positive integers. In this case, we can choose u and v to be positive such334

that CTdiag
�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 
C is a symmetric positive definite335

(SPD) matrix. Therefore, we can calculate M with the Cholesky decomposition:336

(3.8) C
Tdiag

�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 
C = G

T
G,337

whereG is an upper triangular matrix with positive diagonal entries. Since C̃ = CM ,338

we can choose M = G
�1 to transform this part into identity. From Expression (3.7),339

we see that the preconditioned Hessian, H̃, is dependent on a Kronecker product of340

two parts and the first part has been transformed into an identity. In particular,341

since the condition number of this part is typically significantly greater than 1, the342

condition number of the preconditioned Hessian H̃ is significantly smaller than the343

original Hessian H.344

After we have obtained the matrixM , we can analyze the e↵ect of preconditioning345

using the SVD. Without preconditioning, the Hessian matrixH depends on two parts,346

C
Tdiag

�
S

�T
v
 
Sdiag {v}�1

S
Tdiag

�
S

�T
v
 
C and A

Tdiag {u}A. If we assume347

the singular value decomposition for these two matrices are U1⌃1V
T
1 and U2⌃2V

T
2 ,348

then the condition number of the original Hessian H is closely related to ⌃1 and ⌃2.349

Let the largest and smallest singular values of ⌃1 and ⌃2 be �1max, �1min, �2max and350

�2min, respectively, then the condition number of the original Hessian,  (H), can be351

estimated as352

(3.9)  (H) =
�1max�2max

�1min�2min
.353

On the other hand, the condition number of the preconditioned Hessian can be ap-354

proximated by355

(3.10) (H̃) =
�2max

�2min
.356

Since the fraction �1max/�1min is most likely to be significantly greater than 1, the357

condition number of H̃ is likely to be much smaller than H. To validate this phe-358

nomenon, we can build a numerical example to compare the condition numbers. For359

an object that is composed of two materials and each material map is of the size360

16⇥ 16, we can construct the original Hessian H and the preconditioned Hessian H̃361

explicitly and compute the estimations of condition numbers for these two Hessian362

matrices. The result is presented in Table 3.1. From Table 3.1, we can see that the

Matrix Types Condition Numbers
Original Hessian 2.00 e+06
Preconditioned Hessian 2.59 e+04

Table 3.1

Comparison of Condition Numbers

363
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di↵erence between (H) and (H̃) is around two orders of magnitude, which indi-364

cates the significance of this preconditioner. For a linear system that involves the365

preconditioned Hessian H̃, the convergence rate is highly dependent on the condition366

number. With a better-conditioned system, we can compute the solution in a more367

e�cient way. Moreover, we will validate the strength of this preconditioner by solving368

the preconditioned system versus the original system. More details are presented in369

Section 5.370

3.2. Regularization. With the help of our preconditioner, we can speed up an371

optimization algorithm and achieve higher accuracy. To further alleviate the noise372

amplification, it is important to add regularization terms to the objective function.373

In total, we have m materials and the weights of these m materials are not equal.374

Rather than adding a single regularization to all weights, we should add a specific375

regularization to each material. In addition, for di↵erent materials, we can choose dis-376

tinct regularizations to match their properties. For the dominant material, we select377

the generalized Tikhonov regularization to smooth the edges. For other materials, we378

choose the `1 regularization to penalize the sum of weights. Based on this idea, we379

can represent the regularization term as a sum of m parts:380

(3.11) R (w) =
mX

i=1

↵i

2
Ri (wi) ,381

where wi is the vectorization form of the i-th weight matrix, Ri (wi) is the corre-382

sponding regularization term and ↵i is the regularization parameter.383

The choice of what type of regularization to use is problem-specific, and a priori384

knowledge of the object being imaged could inform this decision. For example, if it is385

known that the object contains two material maps with relatively equal distributions,386

we might select two generalized Tikhonov regularizations. In breast imaging, if the387

object is dominated by glandular and adipose tissue, it might make sense to use a388

generalized Tikhonov regularization for each of them. On the other hand, it could be389

the case that the object is dominated by one material (or one set of materials), with a390

relatively sparse distribution of another material. In the breast imaging situation, the391

object may contain small micro-calcifications or areas highlighted by an iodine tracer.392

In this case, one can use generalized Tikhonov regularizations for the dominating393

materials (e.g., glandular and adipose tissue) and an `1 regularization for the sparse394

material. We illustrate this with two materials, one that dominates, and one that is395

sparse:396

(3.12) R (w) =
↵1

2
kLw1k

2
2 +

↵2

2
kw2k1.397

If we add these regularization terms to the objective function in Equation (2.20), we398

can rewrite it as an augumented system:399

min
w̃

�����

"p
2
2 ⌃� 1

2

⇣
C̃ ⌦A

⌘

p
↵1
2 L̃

#
w̃ �


⌃� 1

2 b

0

������

2

2

+
↵2

2

⇥
0 1

⇤
(M ⌦ I) w̃

subject to (M ⌦ I) w̃ > 0,

(3.13)400

where L̃ =
⇥
L 0

⇤
(M ⌦ I). As we can see, the objective function in this problem401

consists of two parts: one is smooth and convex and the other one is possibly non-402

smooth. Because of these properties, we can think about using FISTA [2] to solve403
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this problem. It not only fits the features of the objective function but also pro-404

vides an optimal convergence rate. In addition, we are concerned about the linear405

inequality constraints, and in each step, we can maintain these constraints by solving406

a projection problem that is based on the 2-norm.407

4. FISTA and Projections. In this section, we first briefly present the main408

algorithm FISTA. To implement FISTA to solve the target optimization problem, we409

need to determine the step size and handle the nonnegative constraints. For the step410

size, we introduce how to compute the Lipschitz constant numerically and then choose411

a constant step size based on the calculated Lipschitz constant. For the nonnegative412

constraints, we build another quadratic programming problem and solve it with a413

delicate decomposition and e�cient algorithms.414

4.1. FISTA. Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a first415

order method that belongs to the family of Iterative Shrinkage-Thresholding Algo-416

rithm (ISTA). This method is proposed by Beck et al., and compared with the O (1/k)417

rate of convergence of ISTA, it has a best function value convergence rate O
�
1/k2

�
,418

where k is the number of iterations. Moreover, it is very appropriate for problems in419

imaging science because it is usually used to solve the nonsmooth convex problem420

(4.1) min
x

f (x) + g (x) ,421

where f (x) and g (x) are both convex functions and g (x) might not be smooth. In422

imaging sciences, f (x) is likely to be a least squares loss function to test the goodness423

of fit and g (x) can be a regularization term such as a `1 penalty or a total variation424

regularization. For Problem (3.13), we construct an augumented loss function that425

merges the generalized Tikhonov regularization term, which corresponds to f (x) in426

(4.1). For the regularization term, the `1 regularization is nonsmooth but convex and427

this matches g (x) in (4.1).428

The details of this algorithm are shown in Algorithm (4.1). For the main algo-429

rithm, we need to compute the smallest Lipschitz constant K at first. Then we can430

update the current step using FISTA. Because of the linear inequality constraints, we431

need to project the new step onto these constraints to keep the solution feasible. We

Algorithm 4.1 FISTA and Projections [2]

1: Initialization:
2: Calculate the smallest Lipschitz constant K in (4.3) by Power Method.

3: Set up the initial guess W̃0; Let y0 = vec
⇣
W̃0

⌘
, xold = y0 and t1 = 1;

4: for k = 1, 2, · · · do
5: Calculate the gradients, rf (yk) and rg (yk), of f (yk) and g (yk) in (4.2);
6: xk = yk �

1
L(f) [rf (yk) +rg (yk)];

7: Reshape xk into a matrix and use CVXGEN to solve the projection problems
to obtain xnew as (4.6);

8: tk+1 =
1+

p
1+4t2k
2 ;

9: yk+1 = xnew +
⇣

tk�1
tk+1

⌘
(xnew � xold);

10: xold = xnew.

432
would like to implement FISTA with a constant step size to solve the optimization433

problem (3.13). To implement this method, we need several preparations, which we434

will discuss in the following sections.435
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4.2. Lipschitz Constant. The first step is to calculate the smallest Lipschitz436

constant. If we let437

(4.2)
f (w̃) =

�����

"p
2
2 ⌃� 1

2

⇣
C̃ ⌦A

⌘

p
↵1
2 L̃

#
w̃ �


⌃� 1

2 b

0

������

2

2

,

g (w̃) = ↵2
2

⇥
0 1

⇤
(M ⌦ I) w̃,

438

then we need the smallest Lipschitz constant K for rf (w̃), which is the largest439

eigenvalue for r2f (w̃). That is to say,440

(4.3) K = �max

h⇣
C̃

T
⌦A

T
⌘
⌃�1

⇣
C̃ ⌦A

⌘
+ ↵1L̃

T
L̃

i
.441

Since we only need the largest eigenvalue, it is not necessary for us to construct442

these matrices explicitly; instead we can use an iterative approach, such as the power443

method [6]. Note that we only need to calculate K once for all FISTA iterations. The444

details are shown in Algorithm (4.2).

Algorithm 4.2 Power Method [6]

1: Initialization:
2: Generate a random vector q0 and normalize q0;
3: for i = 1, 2, · · · do

4: zi =
h⇣

C̃
T
⌦A

T
⌘
⌃�1

⇣
C̃ ⌦A

⌘
+ ↵1L̃

T
L̃

i
qi�1;

5: qi = zi/ kzik2;

6: �i = q
T
i

h⇣
C̃

T
⌦A

T
⌘
⌃�1

⇣
C̃ ⌦A

⌘
+ ↵1L̃

T
L̃

i
qi;

445

4.3. Projections. In addition to the largest eigenvalue, we also need to handle446

the linear inequality constraints (M ⌦ I) w̃ > 0. Generally speaking, we can regard447

Problem (3.13) as a quadratic programming problem under these specific constraints.448

To impose the linear inequality constraints, we can construct another quadratic pro-449

gramming problem that o↵ers a nearest solution to satisfy these constraints. If we450

assume that we have obtained w̃k in the k-th step, then we build a projection problem451

of the form:452

min
w̃new

kw̃new � w̃kk
2
2

subject to (M ⌦ I) w̃new > 0.
(4.4)453

For small and medium size problems, we can solve it e�ciently by direct implemen-454

tation of standard optimization algorithms. For example, we can use CVX [7, 8]455

to solve Problem (4.4), which turns to be low-cost both in storage and calculation456

consumptions. However, there are challenges for large-scale problems. For example,457

saving long vectors or constructing sparse matrices might require large storage space.458

Therefore, we should find a method to decompose Problem (4.4) into small pieces and459

try to solve each small problem accurately and e�ciently.460

Suppose we reshape vectors into matrices, for example using MATLAB’s “re-461

shape” function, W̃new = reshape (w̃new, Nv, Nm) and W̃k = reshape (w̃k, Nv, Nm),462
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then by Kronecker product properties and the connection between the 2-norm and463

the Frobenius norm, Problem (4.4) is equivalent to464

min
W̃new

���W̃new � W̃k

���
2

F

subject to W̃newM
T > 0.

(4.5)465

If we focus on each row of W̃k, W̃k (i, :), then Problem (4.5) can be rewritten as466

min
W̃new

NvX

k=1

���W̃new (i, :)� W̃k (i, :)
���
2

2

subject to W̃new (i, :)MT > 0,

(4.6)467

where W̃new (i, :) is the corresponding i-th row in W̃new. It is obvious that this468

problem is separable, and the original problem (4.5) can be separated into small-sized469

problems that only involve each row of W̃new and W̃k. Since each row only depends470

on the number of materials Nm, then the size of each problem is usually 2⇥1 or 3⇥1.471

In this case, we can solve each small-sized problem e�ciently and concatenate the472

solutions into a large matrix. To realize this idea, we can find a highly e�cient solver473

for small-sized problems and loop around the number of voxels (pixels if 2D) Nv. In474

this paper, we choose CVXGEN [15, 16, 17, 18] to generate a customized solver for475

small quadratic programming problems. It is a problem-specific, fast and accurate476

code generator which can achieve advance performance in particular for small-sized477

quadratic programming problems. In addition, if computer clusters are available, we478

can write parallel programming codes, such as MPI or OpenMP, and compute the479

solution to this projection problem in parallel. The speedup in this case relies on480

the number of available compute nodes, but clearly there is potential for significant481

speedup with such an approach.482

In conclusion, we can see that this algorithm incorporates the advantages of the483

power method, FISTA and the fast solver, CVXGEN, for small-sized problems. With484

the power method, we only need to save the Hessian-vector multiplication rather485

than the full Hessian, and it is very cheap to compute. Moreover, we can achieve486

a rapid convergence by FISTA in the main loop. Finally, the projection problem is487

decomposed into many small pieces and each can be solved by CVXGEN e�ciently.488

5. Numerical Experiments. To test the performance of our preconditioner489

and the main algorithm, we set up a test problem that is composed of two materials,490

plexiglass and polyvinyl chloride (PVC). The size of each material map is 128⇥ 128.491

The first material map is a circular mask that dominates the object, while the second492

material map consists of small “spikes” that are scattered randomly inside the circle.493

The number of “spikes” is chosen to be 50. Outside of the circle, we assume that494

there exist no weights of the object. These two images are shown in Figure 5.1.495

Inside the mask, the darker blue areas for the first material map are mainly496

located in the upper left and lower right corners, which corresponds to blank points.497

Other areas inside the circle are represented by heavily weighted yellow and green498

color. In the second material map, the weights are scattered around the image and499

only occupy a small part of the area in total. This test problem can be regarded as500

a simplification of a real life application. For example, in medical imaging for cancer501

detection, the first material map is similar to a small area of human body or tissue,502

while the second material map can represent the calcium located inside this area.503
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Fig. 5.1. The original material maps for Plexiglass (Left) and PVC (Right).

In addition to the test images, we also need other parameters in Equation (1.1). To504

generate the ray trace matrix A, we use the MATLAB function fanbeamtomolinear505

from AIR Tools [13, 10, 9] to simulate a fan-beam geometry with a flat detector.506

Other parameters that we need to choose in this function are presented in Table 5.1.507

In addition, we use 180 projections in total which are equally distributed from 0 to

Items Parameters (cm)
Width of Domain 2.0
Distance from Source to Rotation Center 3.0
Distance from Source to Detector 5.0
Detector Width 4.0

Table 5.1

Geometry Parameters of CT Machine

508
360 degrees. The spectral energy of the x-ray source is generated by the MATLAB509

function spektrSpectrum [22] with 120 keV voltage as input. The detector is assumed510

to be photon-counting with 5 energy windows. From the first energy window to the511

fifth energy window, we assume that they can detect the range of photon energies 10512

to 34 keV, 35 to 49 keV, 50 to 64 keV, 65 to 79 keV and 80 to 120 keV, respectively.513

The plot of photon flux density versus photon energy is presented in Figure 5.2.514

In Figure 5.2, the red curve represents photon intensity of x-ray source and the gray515

boxes indicate energy windows of the detector. Moreover, the black dots are the val-516

ues of mean photon energy in each energy window. When we build the test problem,517

the full energy spectrum and all the corresponding linear attenuation coe�cients are518

used, while only the mean photon energies and the corresponding linear attenuation519

coe�cients are applied for reconstruction. As it is well-known, this strategy of gen-520

erating data on a finer grid and solve it on a coarser grid is a standard approach to521

avoiding what is called the inverse crime.522

We also plot the curves of linear attenuation coe�cients with respect to pho-523

ton energy in Figure 5.3. From Figure 5.3, we can see that the slopes of these two524

curves are close to each other, which are likely to introduce the collinearity between525

coe�cients. Moreover, we assume that the entries of the matrix Y follow a Poisson526

distribution, and for large scale problems, from the Central Limit Theorem, the Pois-527

son distribution is approximated well by a Gaussian distribution. So the assumption528

of Gaussian model is valid.529
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Fig. 5.2. Detector bins and photon flux density.
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Fig. 5.3. Linear attenuation coe�cients and photon flux density.

The reconstructed images are shown in Figure 5.4. From Figure 5.4, we can see530

that we achieve almost perfect separation for these two materials. Moreover, the531

reconstructed images have excellent quality in terms of visuality. Both two material532

maps are relatively close to the true images. In the first material map, the distribution533

of weights is clear to identify. The low intensity pixels are located in the upper left534
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Fig. 5.4. The reconstructed images for plexiglass (Left) and PVC (Right).

and lower right areas of the circle, while other places are occupied by the yellow and535

green colors. Moreover, we can easily recognize the edges of the circle that indicate536

the boundary of the object, which is a plus. As we can see, the reconstruction of537

small “spikes” are of great di�culty because of the randomness of weights and spots.538

However, we can see that the small “spikes” are scattered in the same positions as539

the true image, while they are masked by the shade of a circle. These results present540

the significance of methods proposed in this paper.541

To further validate the results, we plot the relative errors of these two materials542

versus the number of FISTA iterations. The decrease of relative errors of correspond-543

ing materials is shown in Figure 5.5. From this figure, we can see that the relative
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Fig. 5.5. The related errors for each iteration (with preconditioner) for plexiglass and PVC.

544
error of the first material drops sharply as the number of iterations increase. It then545

stagnates after around 150 iterations. However, the relative error of the second ma-546
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terial only decreases fast in the beginning, and after several iterations, the rate of547

change slows down and the relative error cannot reduce further. We can also iden-548

tify the same phenomenon by comparing the true and reconstructed images of the549

second material map. Even if the spots of these “spikes” are approximately correct,550

the numerical weights of these dots might not be the same. Moreover, there are a551

large number of small values in the background of the reconstructed image, causing552

somewhat large relative errors, even though visually the result looks quite good.553

Other accuracy measures illustrate this phenomenon. In Figure 5.6, we plot the554

mean squared error (MSE) at each iteration. In Figure 5.7, the structural similarity555

index (SSIM) is presented. Not surprisingly MSE produces information very similar
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Fig. 5.6. MSE for each iteration (with preconditioner) for plexiglass and PVC.

556
to the relative errors, but it also shows a clear diminution for the second material from557

Figure 5.6. The SSIM is a metric for image quality and large values correspond to558

better solutions. From Figure 5.7, it can be found that the quality of the reconstructed559

first material map improves slowly in the early iterations but it achieves a higher560

quality measure in the end compared with the second material map. In summary,561

all of these errors and quality measures illustrate fast convergence to high quality562

reconstructions.563

It may also be of interest to observe the decay of norm of the gradient at each564

iteration, which is shown in Figure 5.8. From this figure, we can see that the norm565

of the gradient decreases significantly in the beginning and levels o↵ after a su�cient566

number of iterations, indicating the convergence to a minimizer.567

To further validate the strength of our proposed preconditioner, we compare the568

performance with a preconditioner proposed by Barber [1], and the performance with-569

out using any preconditioners. As previously mentioned, the approach proposed in570

[1] is based on the eigenvalue decomposition of CT
C. The results are shown in Fig-571

ure 5.9, where we plot the decay of relative errors for these three cases. To reduce572

clutter in this plot, we only show results for the first material; the behavior for the573

This manuscript is for review purposes only.



18 Y. HU, M. S. ANDERSEN, J. NAGY

0 50 100 150 200 250 300

Number of Iterations

-7

-6

-5

-4

-3

-2

-1

0

S
S

IM
 (

lo
g
)

SSIM Versus Number of Iterations

1st Material

2nd Material

Fig. 5.7. SSIM for each iteration (with preconditioner) for plexiglass and PVC.
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Fig. 5.8. The norm of the gradient for overall materials, normalized by the 2-norm of the image.

second material is the same. From this figure, we can easily observe that both pre-574

conditioners are e↵ective at accelerating convergence, with our approach producing575

the fastest convergence and the lowest relative errors.576
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Fig. 5.9. The decay of related errors with new preconditioner, Barber’s [1] preconditioner, and

with no preconditioner.

6. Conclusions and Remarks. In this paper, we use the Gaussian assump-577

tion of noise to construct a weighted least squares problem under bound constraints578

for energy discriminating x-ray detectors in computed tomography. Based on this579

problem, we propose a new preconditioner that includes not only the information of580

the linear attenuation coe�cient matrix C but also the projected data matrix Y and581

the energy spectrum matrix S. With this new preconditioner, the condition number582

of the Hessian can be reduced significantly. To implement this new preconditioner583

within an optimization framework, we suggest to use a first order method, FISTA,584

that can generate fast convergence speed. Because of the introduction of the new585

preconditioner, we recommend to construct a projection problem and compute the586

nearest step that will satisfy the linear inequality constraints for each iteration. Fi-587

nally, numerical experiments also specify the advantages of the method mentioned in588

this paper. For future work, it would be interesting to consider other regularization589

schemes to emphasize the edges of the object, such as the total variation.590
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