N

16
17
18
19
20

SPECTRAL COMPUTED TOMOGRAPHY WITH LINEARIZATION
AND PRECONDITIONING

YUNYI HU*, MARTIN S. ANDERSENT, AND JAMES G. NAGY*

Abstract. In the area of image sciences, the emergence of spectral computed tomography (CT)
detectors highlights the concept of quantitative imaging, in which not only reconstructed images are
offered, but also weights of different materials that compose the object are provided. If a detector is
made up of several energy windows and each energy window is assumed to detect a specific range of
energy spectrum, then a nonlinear matrix equation is formulated to represent the discretized process
of attenuation of x-ray intensity. In this paper, we present a linearization technique to transform this
nonlinear equation into an optimization problem that is based on a weighted least squares term and a
nonnegative bound constraint. To solve this optimization problem, we propose a new preconditioner
that can significantly reduce the condition number, and with this preconditioner, we implement
a highly efficient first order method, Fast Iterative Shrinkage-Thresholding Algorithm (FISTA), to
achieve substantial improvements on convergence speed and image quality. We also use a combination
of generalized Tikhonov regularization and ¢; regularization to stabilize the solution. With the
introduction of new preconditioning, a linear inequality constraint is introduced. In each iteration,
we decompose this constraint into small-sized problems that can be solved with fast optimization
solvers. Numerical experiments illustrate convergence, effectiveness and significance of the proposed
method.

Key words. preconditioning, digital image reconstruction, FISTA, beam-hardening artifacts,
spectral computed tomography, bound constraints

AMS Subject Classifications: 65F22, 65F10, 49N45, 65K99

1. Introduction. The development of new energy-windowed spectral computed
tomography (CT) machines have received a great deal of interest in recent years;
see, e.g. [1, 24]. These detectors assume that x-rays emitted by the x-ray source
are composed of a spectrum of different energies, and in each energy window, the
detector can detect a specific range of energy. Moreover, it assumes that the detector
can perform photon counting and the data collected by the detector are nonnegative
integers. Compared with traditional CT machines, we can avoid introducing beam-
hardening artifacts [19] and improve quality of reconstructed images. To reconstruct
images of an object, we need to solve a nonlinear equation

(1.1) Y =exp (—AWCT) S+ €,

where Y is a matrix that gathers the projected data of each energy window in the
corresponding column and the exponential operator is applied element-wise (i.e., it is
not a matrix function). A is a matrix that is related to the quantitative information
of ray trace and C is a matrix that contains linear attenuation coefficients for par-
ticular (known) materials at specified energies. S is the matrix that accumulates the
spectrum energies for each energy window in the corresponding column. We assume
that S is square and invertible. Moreover, € represents the noise term and we assume
that E; ~ N (0,y;) for each component E;; in € and y;; in Y. We assume that these
data are known and the target is to solve the unknown weight matrix W. W is of
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2 Y. HU, M. S. ANDERSEN, J. NAGY

the size N,, by N,,,, where N, is the number of voxels (pixels if 2D) for each material
map and N, is the number of materials. Since the weight matrix W represents the
material maps of different materials, then it must be nonnegative and we need to add
a lower bound W > 0.

To solve Equation (1.1), we want to vectorize it at first. Then we use the Taylor
expansion to remove the point-wise exponential function and obtain an approximate
linearized equation. Under the Gaussian assumption, as we show in Section 2, we
can transform this equation into a weighted least squares problem under bound con-
straints:

1
(1.2) min g llAw b5
subject to w >0

7

where A = C® A, b = —log(y), y = vec(Y) and w = vec(W). X~! which
combines information from S and y, is the inverse covariance matrix generated by
Gaussian noise and log transformation. |[|-||%_; represents a weighted 2-norm and
[ Aw — |4, = (Aw — b)" 7! (Aw — b). C is of the size N, by N, where N, is
the number of energy and N,, is the number of materials. Since each column of C
collects the corresponding linear attenuation coefficients and two materials, such as
adipose and glandular, might be similar to each other, the matrix C is likely to be ill-
conditioned. On the other hand, Problem (1.2) is similar to a quadratic programming
problem under bound constraints. However, direct implementation of an optimization
solver does not provide high-quality reconstruction because the ray trace matrix A is
large and ill-conditioned, and the columns of the linear attenuation coefficient matrix
C might be nearly collinear.

Because of the ill-posedness, Barber et al. [1] proposed a preconditioner based
on the eigenvalue decomposition of the matrix product of linear attenuation coef-
ficients, CTC, to orthogonalize columns of C. They also suggest using a Poisson
noise assumption and construct loss functions that are either based on the maximum
likelihood estimator (MLE) or the nonlinear least squares term. Using these types of
loss functions and the proposed preconditioner, a Chambolle-Pock (CP) primal-dual
method [5] is implemented to solve the corresponding optimization problem. However,
because the MLE for the Poisson model is nonlinear, it is not obvious to see how this
preconditioner can reduce the condition number of the Hessian matrix. Moreover,
because each iteration of a second order method for large three-dimensional imaging
problems is very costly (in terms of both the computations and storage requirements),
in this paper we consider first order methods. With a first order method, it is not
necessary to construct either the Hessian or Hessian-vector multiplication in each step.

To mitigate the ill-posedness, we propose a new preconditioner that is based on
a rank-1 approximation of the matrix Y. With this rank-1 approximation, we can
estimate the Hessian of the objective function in (1.2) by a Kronecker product of two
parts. The first part of this Kronecker product is of the size N,, X N,,, where N,,
denotes the number of materials; usually this is quite small, e.g. N, = 2 or 3. This
matrix product is also symmetric and positive definite so we can construct a precon-
ditioner from its inverse Cholesky factorization, and thus transform it into an identity
in the preconditioned system. Because the conditioning of the Hessian is closely re-
lated to these two matrices and one of them has been transformed into an identity,
we have reduced the condition number significantly. Moreover, it is an economical
preconditioner since we only need to compute the preconditioner once and can reuse
it in the future iterations. The preconditioner proposed in [1] includes only the data
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of C, the matrix of linear attenuation coefficients of material and energy. Compared
with this, the preconditioner proposed in this paper includes the information of linear
attenuation coefficients, the energy spectrum and photon counting data. It offers a
more physically meaningful approximation of the Hessian.

In addition, with the weighted least squares objective function, it is much easier
to analyze the condition number before and after preconditioning. Since the per-
formance of a first order method is closely related to the condition number of the
Hessian, it is intuitive to implement a first order method if we can reduce the condi-
tion number significantly. Based on this idea, Fast Iterative Shrinkage-Thresholding
Algorithm (FISTA) [2, 21, 20] comes into view. FISTA is a first order method that
has an “optimal” function convergence rate, O (1 / kz), where k is the number of iter-
ations. Furthermore, this method is suitable for solving problems that have a form of
f () + g (x) where both f () and g (x) are convex but g (x) is possibly nonsmooth.
This f () can be the weighted least squares term in Problem (1.2) and ¢ (x) can
represent a nonsmooth regularization term such as ¢; regularization or nonnegative
constraints. Even if we can achieve fast convergence, the introduction of a precon-
ditioner complicates the bound constraints. The previous bound constraints have
become linear inequality constraints because of the preconditioner. However, we can
construct a projection problem that can find the closest solutions to satisfy these
constraints. Moreover, this projection problem is separable and we can apply highly
efficient solvers to compute the solutions to these decomposed small-sized problems.
Generally speaking, the implementations of our preconditioner, FISTA and projec-
tion problem compliment each other and exhibit high-quality reconstructed images
and fast convergence results.

This paper is organized as follows. In Section 2, we review the continuous energy-
windowed spectral CT model and the corresponding discretized nonlinear matrix
equation. The linearization, vectorization and set-up of the optimization problem are
also included in Section 2. The key idea of this paper, preconditioning, is introduced
in Section 3. In this section, both the derivation of our preconditioner and an analysis
of the reduction of the condition number are presented. The choice of regularization
will be exhibited in this section as well. In Section 4, we study FISTA and how we
construct and solve the projection problems. Moreover, numerical experiments are
presented in Section 5 and concluding remarks are given in Section 6.

2. The Energy-windowed Spectral CT Model. In this section, we start
with an introduction to the basic model. Then we show how to discretize this model
to obtain a matrix equation. Since we do not want to solve this matrix equation
directly, we therefore vectorize this equation and take the Taylor expansion to the
first order term to remove the exponential function. In this case, we can obtain a
linear system with transformed noise. With this transformed noise, we can build a
weighted least squares optimization problem under bound constraints.

In computed tomography (CT), source x-ray beams are composed of a spectrum
of different energies [4]. Recent technological developments have resulted in the de-
sign of new photon counting detectors that can discriminate the measured data into
specific energy windows. Image reconstruction algorithms that exploit this informa-
tion can avoid introducing beam-hardening artifacts, obtain material decomposition
and improve the quality of reconstructed images. The mathematical model for image
reconstruction uses Beer’s law [12], which states that the change of x-ray intensity

This manuscript is for review purposes only.



137

138

139
140
141
142
143
144
145
146
147
148
149
150

159

160
161
162
163
164
165
166
167
168

169
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before and after illumination through the object is

(2.1)

(k) _ (k) . . (k) 1=1,2,--- ,Ng X Np,
Y; —/ES (e)exp( /tElu(r(t),e)dt>de+ni , {k:1727"‘;Nb,
where

° ygk) is x-ray intensity of the i-th pixel in the k-th detector bin.
e F is the photon flux density. Figure 5.2 shows a curve of E versus photon
energy.
e N, is the number of detector pixels. For a material map of the size n by n,
we assume Ng = n.
e N, is the number of projections. For cone/fan beam CT, projections are
uniformly distributed from 0 to 360 degrees.
e N, is the number of detector bins. For an energy-windowed CT machine, we
usually assume that it has 5 to 6 energy bins.
e S(*)(e) represents photon flux density for the k-th detector bin, which is the
number of incident photons at the energy e in the k-th energy window.
e 1 (7(t),e) denotes the linear attenuation coefficient that is related to the
position function 7(¢) and the energy level e.
° ngk) is the error term for the i-th element in the k-th energy bin and it is
assumed to be Gaussian for this model.
In Equation (2.1), the unknown linear attenuation coefficient (7 (t),e) is dependent
on the position function r (¢) and the energy levels e. If the object is assumed to be
composed of several different materials, then a material expansion is introduced to
further decompose the function p (7 (¢) ,e) [11]:

(2.2) B, =S et (7,

where

e N, is the number of materials that form the object.

® U, . is the linear attenuation coefficient for the m-th material at the energy

level e.

e wy, (7) is the unknown weight of the m-th material at the position 7.
With this decomposition, the unknown variable has been shifted from p (7 (t),e) to
the weight fraction wy, (¥). If we also assume that w,, (¥) can be represented as a
sum of product of weights and basis functions ¢, (), then another expansion can be
expressed by

(2.3) W (7) = S w35 ()

Jj=1

where
e N, is the number of voxels (pixels if 2D) of images that compose the object.
® w;, is the weight fraction of the m-th material in the j-th voxel (pixels if
2D).
e ¢; () is the basis function of image representation. The line integral of the
basis function, a; ;, is the length of the x-ray beam through the j-th voxel
(pixel if 2D), incident onto the i-th element of the product of detector pixels
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Spectral Computed Tomography with Linearization and Preconditioning 5
Ng and the number of projections Np:
tel

Then the line integral in Equation (2.1) can be simplified by Expansion (2.3) and
Integral (2.4):

(2.5)
N,, N, v Nm
/ p(F),e)dt=> "> umewjm | ¢ (F(t)dt = Wi W -
tel m=1j=1 tel j=1m=1

If we also discretize the integral over the energy E and ignore quadrature errors, then
the discrete model of Equation (2.1) can be written as:

Ne Ny, Np
k k
(2.6) w =" sWexp | =D @i jwjmtime | + 0,
e=1 j=1m=1

where NN, is the number of discrete energies. If we collect a; ;, w;; and Uy, in a
matrix form and concatenate ygk)7 sék), ngk) with respect to their energy windows,

then the corresponding matrix equation of (2.6) can be represented as:
(2.7) Y =exp (—AWC") S+ €,

where

e Y is a matrix of the size (Vg - Np) x N, that gathers x-ray photons of each
energy window in the corresponding column.

e A is a matrix of the size (Ng - N,) x N, that collects the fan-beam geometry
and each element corresponds to a; ;.

e (C is a matrix of the size N, x N,, that accumulates linear attenuation coef-
ficients and each entry corresponds to e m,, the linear attenuation coefficient
of the energy e and the m-th material.

e S is a matrix of the size N, x N, and each column collects the spectrum
energy of a specific range. In the forward problem, we use the full spectrum,
but when we solve the inverse problem, the average in each energy window
is used to represent the corresponding spectral energy. Therefore, N, = N,
for the inverse problem and S is an invertible diagonal matrix because the
means are placed in the diagonal. A detailed example is shown in Figure 5.2.

e & is the noise matrix that is of the size (Ng - Np,) x N;,. The assumption for
the noise is E; ~ N (0,y;) for each element F; in € and y; in Y.

In Equation (2.7), the exponential operator is applied element-wise (i.e., it is not a
matrix function). In addition to Equation (2.7), we also require that weight fractions
should be nonnegative and this can be illustrated by the constraint W > 0.

In several cases, the composition of materials can be similar. For example, glan-
dular and adipose have similar attenuation coefficients at the same energy level and
it causes the collinearity. After discretization, the columns of C can be nearly de-
pendent. Moreover, A is large-scale and sparse and it is highly likely to have small
singular values. As we will see later, the Hessian system involves the Kronecker prod-
uct C ® A and it can cause the ill-posedness. Since it is challenging to solve this
equation directly, it is important to consider approaches to facilitate the process.
First, we can introduce a preconditioning matrix M into Equation (2.7):

(2.8) Y =exp (-AWM TMTC") S+ E.
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6 Y. HU, M. S. ANDERSEN, J. NAGY
If we let W =WM~T and C = CM, then Equation (2.8) is equivalent to
(2.9) Y = exp (—AVVC’T> S+E.

So far, we have not introduced how to choose the preconditioner M. The choice of M
depends on linearization and approximation. In Section (3.1), we will state the process
in detail, and in the new coordinate system defined by M, the corresponding Hessian
will be better conditioned. With the help of the preconditioning matrix M, we have
transformed the original system of solving W into the new system of solving W.
Since each entry of W is a linear combination of all entries in the corresponding row
of W, we can try to find a matrix M such that the new system is better conditioned
than the original one.

On the other hand, we do not want to solve the nonlinear matrix equation (2.9)
directly because it might introduce a tensor when we compute second order deriva-
tives. In this case, we want to vectorize Equation (2.9) on both sides and linearize it
to construst a weighted least squares optimization problem. In the forward problem,
we use the full spectrum and the matrix S is then usually rectangular. When we
solve the inverse problem, we choose the average in each energy window to represent
the corresponding energy spectrum. In this case, N, = N, and the matrix S in the
inverse problem is a nonsingular diagonal matrix. So we can multiply $~! on both
sides of (2.9):

(2.10) YS! = exp (—AWC’T> rESL
Vectorizing both sides of (2.10), and using properties of Kronecker products, we obtain
(2.11) (57T®I)y:exp{f (C‘@A) u*;}Jr(S*T@I) e,

where y = vec(Y), @ = vec(W) and e = vec (E). If we let § = (ST®I)y and
€= (ST ®1I)e, then we can subtract € on both sides of (2.11) and obtain
(2.12) g}fé:exp{f (C‘@A)ﬁ;}.

By taking the logarithm on both sides of Equation (2.12), we can obtain a linear
equation

(2.13) log (§ — &) = — (é ® A) .

However, the left-hand side of Equation (2.13) contains the transformed error term é
so we cannot solve this equation directly. In this case, we can separate the error term
€ from g using a first order Taylor expansion at y:

(2.14) log (§ — &) = log (§) — diag (§) '€+ O (||€]13) -

If we use the first two terms on the right-hand side of Equation (2.14) to estimate
the term log (g — €), then Equation (2.13) can be expressed by a linear equation with
the error term diag (§) ' &. Let b = —log (), then Equation (2.13) is approximately
equal to

(2.15) b~ (é ® A) W — diag (§) " &.
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Spectral Computed Tomography with Linearization and Preconditioning 7

With this equation and the Gaussian assumption of noise e ~ A (0, diag(y)), we
have

(2.16) bl ~N((C‘®A> @, 2),

where the noise covariance matrix 3 is expressed by

(2.17) Y =diag(§) ' (ST ®I)diag(y) (S @ I) diag (§) ",
and the inverse covariance matrix is given by

(2.18) 7! = diag (§) (S ® I) diag (y) ' (ST @ I) diag (§) -

Since Y is a matrix that collects the number of photons of each energy window in the
corresponding column, each entry of Y is a positive integer whose value can be in the
order of hundreds of thousands. As long as the noise does not dominate the projected
data, we expect the entries of g will be larger than zero. From Expression (2.18), we
can see that the structure of 37! depends on the structure of the matrix S. If S is
diagonal, then ¥ is also diagonal. If we let A = C ® A, then (see, e.g., [3]) the best
unbiased linear estimator of @ for the Gaussian model (2.16) is the solution of

(2.19) mjn% (A — b)" B! (Aw — b).

In addition, we require that W > 0, and with the preconditioner, these constraints
are transformed into (M ® I)@ > 0. Therefore, we can formulate a weighted least
squares problem under bound constraints

1
min — || A® — b||%
(2.20) @ 2” I
subject to (M ®I)w > 0.

In (2.20) the norm |[-||%_, corresponds to the weighted inner product given in (2.19).
From this expression, we know that the objective function is convex. Moreover, the
inverse covariance matrix 7! is diagonal as long as S is diagonal and this optimiza-
tion problem has linear inequality constraints. Based on these observations, we can
identify four challenges involved in solving this optimization problem. At first, we
need to choose an appropriate preconditioning matrix to reduce the ill-conditioning
of the Hessian. Secondly, we want to select suitable regularizations for the correspond-
ing materials. Thirdly, we have to find an efficient method to solve the constrained
weighted least squares problem. These three challenges are related to each other and
an appropriate preconditioner with appropriate regularizations will be beneficial for
the solver efficiency. Finally, we should handle linear inequality constraints in an
efficient way. We will address these four challenges in the following sections.

3. Preconditioning and Regularization.

3.1. Preconditioning. The choice of the preconditiong matrix M is crucial for
solving the optimization problem (2.20). If we do not have a preconditioner or we
choose the preconditioner M as identity, the original Hessian for the weighted least
squares problem (2.20) is expressed by

(3.1) H=(C"eAT)S ' (C®A).

This manuscript is for review purposes only.
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An appropriate preconditioner can transform the original ill-posed system into a
better-conditioned system and thus bring faster convergence speed as well as higher
quality of reconstructed images. In general, the preconditioned Hessian H can be
represented as

(3.2) H=ATS 4= (éT®AT) »-! (C~'®A>7

where C = CM. From this expression, it is still not obvious how to construct the
preconditioner. However, if we can separate the noise covariance matrix X! into a
Kronecker product of two terms, we can merge several terms using properties of the
Kronecker product and transform parts of the Hessian into identity with the help of
M. To realize this idea, we review the expression of X1 in Equation (2.18), where
we can see that it contains the Kronecker products S ® I and ST @ I and it is not
necessary to separate these two terms. So we focus on the other terms that include
diag {§} and diag {y}~". By definition, these two terms are related to each other by
Yy = (S‘T ® I) y. In this case, if we can express diag {y} into a Kronecker product
of two terms, then we will reach the goal.

Recall that y = vec (Y'). Therefore, if we can find two rank-1 matrices, u and v,
such that Y ~ uv?T, then

(3.3) diag {y} ~ diag {vec (uv")} = diag {v} ® diag {u}.

These two rank-1 matrices can be obtained by solving a nearest Kronecker product
(NKP) problem, which is equivalent to a rank-1 approximation of Y in terms of the
Frobenius norm:

(3.4) min [|Y" — uv” || p.

The solution to this problem has been studied extensively [23]. Using the singular
value decomposition (SVD), one solution to Problem (3.4) can be expressed by u =
Voruy and v = \/o1v1, where u; and vy are the first left and right singular vectors
and o7 is the corresponding largest singular value of Y. Since we only need these
terms rather than a full SVD, we can use MATLAB’s svds function, or other efficient
approaches, such as “PROPACK?” [14], to calculate only o1, u; and v;.

After we have obtained w and v, we can estimate the matrix diag {y} as a Kro-
necker product of two terms as Equation (3.3). In addition, the term diag {g} can be
represented as

diag {§} = diag {(S™" @ I) vec (Y)} ~ diag { (S~ @ I) vec (uv")}
= diag {Vec (uvTS_l)} = diag {S’_Tv} ® diag {u} .

If we substitute the terms in (3.3) and (3.5) for the same terms in (2.18), we can
obtain that

(3.6) »lx (diag {S v} Sdiag {v} " 8T diag {SfT'v}) ® diag {u}.

(3.5)

So the preconditioned Hessian matrix is given by
(3.7)
A= (C"eA")z ! (CoA)

~ (éT ® AT) [diag {S~Tv} Sdiag {v} ' ST diag {S v} ® diag {u}} (é ® A)

(éTdiag {S§ Tv} Sdiag {v} ' ST diag {s v} C’) ® (ATdiag {u} A) .
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Spectral Computed Tomography with Linearization and Preconditioning 9

Since the size of C is N, x N,,, then the first part of the Kronecker product in
(3.7) is a square matrix of the size N,, X N,,. In other words, this part only de-
pends on the number of materials that compose the object. Usually, we only con-
sider 2 or 3 materials for the object so that the size of the matrix products for this
part is usually either 2 x 2 or 3 x 3. Moreover, the matrix Y gathers the num-
ber of photons of each energy window in the corresponding column so all of its en-
tries are positive integers. In this case, we can choose u and v to be positive such
that CTdiag {S*TU} Sdiag {v‘f1 STdiag {S*T'v} C is a symmetric positive definite
(SPD) matrix. Therefore, we can calculate M with the Cholesky decomposition:

(3.8) C"diag {S~"v} Sdiag {v} " 8T diag {s Tw}C =G"G,

where G is an upper triangular matrix with positive diagonal entries. Since C=CcM,
we can choose M = G~ ! to transform this part into identity. From Expression (3.7),
we see that the preconditioned Hessian, H, is dependent on a Kronecker product of
two parts and the first part has been transformed into an identity. In particular,
since the condition number of this part is typically significantly greater than 1, the
condition number of the preconditioned Hessian H is significantly smaller than the
original Hessian H.

After we have obtained the matrix M, we can analyze the effect of preconditioning
using the SVD. Without preconditioning, the Hessian matrix H depends on two parts,
C'diag {S™"Tv} Sdiag {v} " STdiag {§Tv} C and ATdiag{u} A. If we assume
the singular value decomposition for these two matrices are U; X VlT and Uy Xo VQT,
then the condition number of the original Hessian H is closely related to X1 and Xs.
Let the largest and smallest singular values of 31 and 35 be 01maz, T1min, O2maz and
Oomin, respectively, then the condition number of the original Hessian, « (H ), can be
estimated as

(39) K (H) _ O1maz92max )

O1minO2min

On the other hand, the condition number of the preconditioned Hessian can be ap-
proximated by

(3.10) k(H) = Z2maz
02min

Since the fraction 01maz/01min is most likely to be significantly greater than 1, the
condition number of H is likely to be much smaller than H. To validate this phe-
nomenon, we can build a numerical example to compare the condition numbers. For
an object that is composed of two materials and each material map is of the size
16 x 16, we can construct the original Hessian H and the preconditioned Hessian H
explicitly and compute the estimations of condition numbers for these two Hessian
matrices. The result is presented in Table 3.1. From Table 3.1, we can see that the

Matrix Types Condition Numbers

Original Hessian 2.00e+-06

Preconditioned Hessian 2.59e+04
TABLE 3.1

Comparison of Condition Numbers

This manuscript is for review purposes only.
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10 Y. HU, M. S. ANDERSEN, J. NAGY

difference between x(H) and x(H) is around two orders of magnitude, which indi-
cates the significance of this preconditioner. For a linear system that involves the
preconditioned Hessian H, the convergence rate is highly dependent on the condition
number. With a better-conditioned system, we can compute the solution in a more
efficient way. Moreover, we will validate the strength of this preconditioner by solving
the preconditioned system versus the original system. More details are presented in
Section 5.

3.2. Regularization. With the help of our preconditioner, we can speed up an
optimization algorithm and achieve higher accuracy. To further alleviate the noise
amplification, it is important to add regularization terms to the objective function.
In total, we have m materials and the weights of these m materials are not equal.
Rather than adding a single regularization to all weights, we should add a specific
regularization to each material. In addition, for different materials, we can choose dis-
tinct regularizations to match their properties. For the dominant material, we select
the generalized Tikhonov regularization to smooth the edges. For other materials, we
choose the /1 regularization to penalize the sum of weights. Based on this idea, we
can represent the regularization term as a sum of m parts:

(3.11) R(w) = i YR (wi),

where w; is the vectorization form of the i-th weight matrix, R; (w;) is the corre-
sponding regularization term and «; is the regularization parameter.

The choice of what type of regularization to use is problem-specific, and a priori
knowledge of the object being imaged could inform this decision. For example, if it is
known that the object contains two material maps with relatively equal distributions,
we might select two generalized Tikhonov regularizations. In breast imaging, if the
object is dominated by glandular and adipose tissue, it might make sense to use a
generalized Tikhonov regularization for each of them. On the other hand, it could be
the case that the object is dominated by one material (or one set of materials), with a
relatively sparse distribution of another material. In the breast imaging situation, the
object may contain small micro-calcifications or areas highlighted by an iodine tracer.
In this case, one can use generalized Tikhonov regularizations for the dominating
materials (e.g., glandular and adipose tissue) and an ¢; regularization for the sparse
material. We illustrate this with two materials, one that dominates, and one that is
sparse:

(651 (65)
(3.12) R (w) = S| Lwy |3 + 5w |1

If we add these regularization terms to the objective function in Equation (2.20), we
can rewrite it as an augumented system:

V233 (C’@A) s-%p ’ o
13 min 2 A —[ 0 ] +7[0 (M eI)w
(3.13) @ VEL ,

subject to (M ®I)w > 0,
where I = [L 0] (M ®I). As we can see, the objective function in this problem

consists of two parts: one is smooth and convex and the other one is possibly non-
smooth. Because of these properties, we can think about using FISTA [2] to solve
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this problem. It not only fits the features of the objective function but also pro-
vides an optimal convergence rate. In addition, we are concerned about the linear
inequality constraints, and in each step, we can maintain these constraints by solving
a projection problem that is based on the 2-norm.

4. FISTA and Projections. In this section, we first briefly present the main
algorithm FISTA. To implement FISTA to solve the target optimization problem, we
need to determine the step size and handle the nonnegative constraints. For the step
size, we introduce how to compute the Lipschitz constant numerically and then choose
a constant step size based on the calculated Lipschitz constant. For the nonnegative
constraints, we build another quadratic programming problem and solve it with a
delicate decomposition and efficient algorithms.

4.1. FISTA. Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) is a first
order method that belongs to the family of Iterative Shrinkage-Thresholding Algo-
rithm (ISTA). This method is proposed by Beck et al., and compared with the O (1/k)
rate of convergence of ISTA, it has a best function value convergence rate O (1 / k:Q),
where k is the number of iterations. Moreover, it is very appropriate for problems in
imaging science because it is usually used to solve the nonsmooth convex problem

(4.1) min  f(x)+g(x),

where f (x) and g () are both convex functions and g () might not be smooth. In
imaging sciences, f (x) is likely to be a least squares loss function to test the goodness
of fit and g (x) can be a regularization term such as a ¢; penalty or a total variation
regularization. For Problem (3.13), we construct an augumented loss function that
merges the generalized Tikhonov regularization term, which corresponds to f (x) in
(4.1). For the regularization term, the ¢; regularization is nonsmooth but convex and
this matches g (x) in (4.1).

The details of this algorithm are shown in Algorithm (4.1). For the main algo-
rithm, we need to compute the smallest Lipschitz constant K at first. Then we can
update the current step using FISTA. Because of the linear inequality constraints, we
need to project the new step onto these constraints to keep the solution feasible. We

Algorithm 4.1 FISTA and Projections [2]
Initialization:
Calculate the smallest Lipschitz constant K in (4.3) by Power Method.
Set up the initial guess Wo; Let yg = vec (Wg), Tog = Yo and ty = 1;
for k=1, 2, --- do
Calculate the gradients, Vf (yx) and Vg (yx), of f (yx) and ¢ (yx) in (4.2);
xr =y — 17y [V (yr) + Vg (yr)];
Reshape x; into a matrix and use CVXGEN to solve the projection problems
to obtain e, as (4.6);

14+4/1+4t2
8: tey1 = —5—;
tp—1 .
9: Yit1l = Tpew + (tI;Hl ) (xnew - wold)a
10: Told = Lnew-

would like to implement FISTA with a constant step size to solve the optimization
problem (3.13). To implement this method, we need several preparations, which we
will discuss in the following sections.
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4.2. Lipschitz Constant. The first step is to calculate the smallest Lipschitz
constant. If we let

s (6 -}
f(ﬁ’):H L2y, SC'~®A) 17’_[20 b] |
(4.2) S L 5

then we need the smallest Lipschitz constant K for Vf (W), which is the largest
eigenvalue for V2 f (w). That is to say,

(4.3) K = Amas {(C*T ® AT) -1 (é ® A) + alf}Tf/] .

Since we only need the largest eigenvalue, it is not necessary for us to construct
these matrices explicitly; instead we can use an iterative approach, such as the power
method [6]. Note that we only need to calculate K once for all FISTA iterations. The
details are shown in Algorithm (4.2).

Algorithm 4.2 Power Method [6]

1: Initialization:

2: Generate a random vector gy and normalize qo;

3: fori=1, 2, --- do

4: zZ; = [(éT X AT) x-! (é X A) + Oél_ET.i/:| q;—1;
5 @i = zif |zl

6 Ni=gq] [(C‘T ® AT) DI (é ® A) + ali;Ti} qi:

4.3. Projections. In addition to the largest eigenvalue, we also need to handle
the linear inequality constraints (M ® I)w > 0. Generally speaking, we can regard
Problem (3.13) as a quadratic programming problem under these specific constraints.
To impose the linear inequality constraints, we can construct another quadratic pro-
gramming problem that offers a nearest solution to satisfy these constraints. If we
assume that we have obtained wy, in the k-th step, then we build a projection problem
of the form:

min | Wnew — wk”;
(4.4) Wnew
subject to (M @ I)Wypew = 0.

For small and medium size problems, we can solve it efficiently by direct implemen-
tation of standard optimization algorithms. For example, we can use CVX [7, §]
to solve Problem (4.4), which turns to be low-cost both in storage and calculation
consumptions. However, there are challenges for large-scale problems. For example,
saving long vectors or constructing sparse matrices might require large storage space.
Therefore, we should find a method to decompose Problem (4.4) into small pieces and
try to solve each small problem accurately and efficiently.

Suppose we reshape vectors into matrices, for example using MATLAB’s “re-
shape” function, Wiew = reshape (Wpew, Ny, Ny) and W, = reshape (W, Ny, Np,),
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then by Kronecker product properties and the connection between the 2-norm and
the Frobenius norm, Problem (4.4) is equivalent to

- _ 2

min HWnew - WkH
(4.5) Wiecw F
subject to WnewMT > 0.

—~

If we focus on each row of Wy, Wy, (i, :), then Problem (4.5) can be rewritten as

2

T - 2

min Woow (i, 1) — Wi (i, - H

o min > [ i, = Wi
subject to Woew G, )MT > o0,

where V~Vnew (i, :) is the corresponding i-th row in Wnew. It is obvious that this
problem is separable, and the original problem (4.5) can be separated into small-sized
problems that only involve each row of Wnew and Wk. Since each row only depends
on the number of materials N,,,, then the size of each problem is usually 2x 1 or 3 x 1.
In this case, we can solve each small-sized problem efficiently and concatenate the
solutions into a large matrix. To realize this idea, we can find a highly efficient solver
for small-sized problems and loop around the number of voxels (pixels if 2D) N,,. In
this paper, we choose CVXGEN [15, 16, 17, 18] to generate a customized solver for
small quadratic programming problems. It is a problem-specific, fast and accurate
code generator which can achieve advance performance in particular for small-sized
quadratic programming problems. In addition, if computer clusters are available, we
can write parallel programming codes, such as MPI or OpenMP, and compute the
solution to this projection problem in parallel. The speedup in this case relies on
the number of available compute nodes, but clearly there is potential for significant
speedup with such an approach.

In conclusion, we can see that this algorithm incorporates the advantages of the
power method, FISTA and the fast solver, CVXGEN, for small-sized problems. With
the power method, we only need to save the Hessian-vector multiplication rather
than the full Hessian, and it is very cheap to compute. Moreover, we can achieve
a rapid convergence by FISTA in the main loop. Finally, the projection problem is
decomposed into many small pieces and each can be solved by CVXGEN efficiently.

5. Numerical Experiments. To test the performance of our preconditioner
and the main algorithm, we set up a test problem that is composed of two materials,
plexiglass and polyvinyl chloride (PVC). The size of each material map is 128 x 128.
The first material map is a circular mask that dominates the object, while the second
material map consists of small “spikes” that are scattered randomly inside the circle.
The number of “spikes” is chosen to be 50. Outside of the circle, we assume that
there exist no weights of the object. These two images are shown in Figure 5.1.

Inside the mask, the darker blue areas for the first material map are mainly
located in the upper left and lower right corners, which corresponds to blank points.
Other areas inside the circle are represented by heavily weighted yellow and green
color. In the second material map, the weights are scattered around the image and
only occupy a small part of the area in total. This test problem can be regarded as
a simplification of a real life application. For example, in medical imaging for cancer
detection, the first material map is similar to a small area of human body or tissue,
while the second material map can represent the calcium located inside this area.
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F1a. 5.1. The original material maps for Plexiglass (Left) and PVC (Right).

In addition to the test images, we also need other parameters in Equation (1.1). To
generate the ray trace matrix A, we use the MATLAB function fanbeamtomolinear
from AIR Tools [13, 10, 9] to simulate a fan-beam geometry with a flat detector.
Other parameters that we need to choose in this function are presented in Table 5.1.
In addition, we use 180 projections in total which are equally distributed from 0 to

Items Parameters (cm)
Width of Domain 2.0
Distance from Source to Rotation Center 3.0
Distance from Source to Detector 5.0
Detector Width 4.0

TABLE 5.1

Geometry Parameters of CT Machine

360 degrees. The spectral energy of the x-ray source is generated by the MATLAB
function spektrSpectrum [22] with 120 keV voltage as input. The detector is assumed
to be photon-counting with 5 energy windows. From the first energy window to the
fifth energy window, we assume that they can detect the range of photon energies 10
to 34 keV, 35 to 49 keV, 50 to 64 keV, 65 to 79 keV and 80 to 120 keV, respectively.

The plot of photon flux density versus photon energy is presented in Figure 5.2.
In Figure 5.2, the red curve represents photon intensity of x-ray source and the gray
boxes indicate energy windows of the detector. Moreover, the black dots are the val-
ues of mean photon energy in each energy window. When we build the test problem,
the full energy spectrum and all the corresponding linear attenuation coefficients are
used, while only the mean photon energies and the corresponding linear attenuation
coeflicients are applied for reconstruction. As it is well-known, this strategy of gen-
erating data on a finer grid and solve it on a coarser grid is a standard approach to
avoiding what is called the inverse crime.

We also plot the curves of linear attenuation coefficients with respect to pho-
ton energy in Figure 5.3. From Figure 5.3, we can see that the slopes of these two
curves are close to each other, which are likely to introduce the collinearity between
coefficients. Moreover, we assume that the entries of the matrix Y follow a Poisson
distribution, and for large scale problems, from the Central Limit Theorem, the Pois-
son distribution is approximated well by a Gaussian distribution. So the assumption
of Gaussian model is valid.
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F1G. 5.2. Detector bins and photon flux density.
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Fic. 5.3. Linear attenuation coefficients and photon flux density.

The reconstructed images are shown in Figure 5.4. From Figure 5.4, we can see
that we achieve almost perfect separation for these two materials. Moreover, the
reconstructed images have excellent quality in terms of visuality. Both two material
maps are relatively close to the true images. In the first material map, the distribution
of weights is clear to identify. The low intensity pixels are located in the upper left
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F1G. 5.4. The reconstructed images for plexiglass (Left) and PVC (Right).

and lower right areas of the circle, while other places are occupied by the yellow and
green colors. Moreover, we can easily recognize the edges of the circle that indicate
the boundary of the object, which is a plus. As we can see, the reconstruction of
small “spikes” are of great difficulty because of the randomness of weights and spots.
However, we can see that the small “spikes” are scattered in the same positions as
the true image, while they are masked by the shade of a circle. These results present
the significance of methods proposed in this paper.

To further validate the results, we plot the relative errors of these two materials
versus the number of FISTA iterations. The decrease of relative errors of correspond-
ing materials is shown in Figure 5.5. From this figure, we can see that the relative

Relative Error Versus Number of lterations

—o-- 15! Material
—%- 2" Material

F o

Relative Error (log)

4 ‘

0 50 100 150 200 250 300
Number of Iterations

F1G. 5.5. The related errors for each iteration (with preconditioner) for plexiglass and PVC.

error of the first material drops sharply as the number of iterations increase. It then
stagnates after around 150 iterations. However, the relative error of the second ma-
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terial only decreases fast in the beginning, and after several iterations, the rate of
change slows down and the relative error cannot reduce further. We can also iden-
tify the same phenomenon by comparing the true and reconstructed images of the
second material map. Even if the spots of these “spikes” are approximately correct,
the numerical weights of these dots might not be the same. Moreover, there are a
large number of small values in the background of the reconstructed image, causing
somewhat large relative errors, even though visually the result looks quite good.
Other accuracy measures illustrate this phenomenon. In Figure 5.6, we plot the
mean squared error (MSE) at each iteration. In Figure 5.7, the structural similarity
index (SSIM) is presented. Not surprisingly MSE produces information very similar

MSE Versus Number of Iterations

-1 Material
=+ 2" Material

MSE (log)

_-1 0 L L L L L |
0 50 100 150 200 250 300

Number of lterations
Fi1G. 5.6. MSE for each iteration (with preconditioner) for plexiglass and PVC.

to the relative errors, but it also shows a clear diminution for the second material from
Figure 5.6. The SSIM is a metric for image quality and large values correspond to
better solutions. From Figure 5.7, it can be found that the quality of the reconstructed
first material map improves slowly in the early iterations but it achieves a higher
quality measure in the end compared with the second material map. In summary,
all of these errors and quality measures illustrate fast convergence to high quality
reconstructions.

It may also be of interest to observe the decay of norm of the gradient at each
iteration, which is shown in Figure 5.8. From this figure, we can see that the norm
of the gradient decreases significantly in the beginning and levels off after a sufficient
number of iterations, indicating the convergence to a minimizer.

To further validate the strength of our proposed preconditioner, we compare the
performance with a preconditioner proposed by Barber [1], and the performance with-
out using any preconditioners. As previously mentioned, the approach proposed in
[1] is based on the eigenvalue decomposition of CTC. The results are shown in Fig-
ure 5.9, where we plot the decay of relative errors for these three cases. To reduce
clutter in this plot, we only show results for the first material; the behavior for the
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SSIM Versus Number of Iterations
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F1G. 5.7. SSIM for each iteration (with preconditioner) for plexiglass and PVC.

Norm of Gradient Versus Number of Iterations
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F1G. 5.8. The norm of the gradient for overall materials, normalized by the 2-norm of the image.

second material is the same. From this figure, we can easily observe that both pre-
conditioners are effective at accelerating convergence, with our approach producing
the fastest convergence and the lowest relative errors.
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Relative Error Versus Number of lterations
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Fic. 5.9. The decay of related errors with new preconditioner, Barber’s [1] preconditioner, and
with no preconditioner.

6. Conclusions and Remarks. In this paper, we use the Gaussian assump-
tion of noise to construct a weighted least squares problem under bound constraints
for energy discriminating x-ray detectors in computed tomography. Based on this
problem, we propose a new preconditioner that includes not only the information of
the linear attenuation coefficient matrix C but also the projected data matrix Y and
the energy spectrum matrix S. With this new preconditioner, the condition number
of the Hessian can be reduced significantly. To implement this new preconditioner
within an optimization framework, we suggest to use a first order method, FISTA,
that can generate fast convergence speed. Because of the introduction of the new
preconditioner, we recommend to construct a projection problem and compute the
nearest step that will satisfy the linear inequality constraints for each iteration. Fi-
nally, numerical experiments also specify the advantages of the method mentioned in
this paper. For future work, it would be interesting to consider other regularization
schemes to emphasize the edges of the object, such as the total variation.
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