
Shredder: Learning Noise Distributions to Protect
Inference Privacy

Fatemehsadat Mireshghallah Mohammadkazem Taram
Prakash Ramrakhyani∗ Ali Jalali† Dean Tullsen Hadi Esmaeilzadeh

{fmireshg,mtaram}@eng.ucsd.edu,prakash.ramrakhyani@arm.com,ajjalali@amazon.com,{tullsen,hadi}@eng.ucsd.edu
Alternative Computing Technologies (ACT) Lab

University of California San Diego ∗Arm, Inc. †Amazon.com, Inc.

Abstract
Awide variety of deep neural applications increasingly rely
on the cloud to perform their compute-heavy inference. This
commonpractice requires sendingprivate andprivileged data
over the network to remote servers, exposing it to the service
provider andpotentially compromising its privacy. Even if the
provider is trusted, the data can still be vulnerable over com-
munication channels or via side-channel attacks in the cloud.
To that end, this paper aims to reduce the information content
of the communicated data with as little as possible compro-
mise on the inference accuracy bymaking the sent data noisy.
Anundisciplinedadditionofnoise cansignificantly reduce the
accuracy of inference, rendering the service unusable. To ad-
dress this challenge, thispaperdevisesShredder, anend-to-end
framework, that, without altering the topology or theweights
of a pre-trained network, learns additive noise distributions
that significantly reduce the information content of communi-
cated data while maintaining the inference accuracy. The key
idea is finding the additive noise distributions by casting it
as a disjoint offline learning process with a loss function that
strikes a balance between accuracy and information degrada-
tion. The loss function also exposes a knob for a disciplined
and controlled asymmetric trade-off between privacy and ac-
curacy. While keeping the DNN intact, Shredder divides infer-
ence between the cloud and the edge device, striking a balance
between computation and communication. In the separate
phase of inference, the edge device takes samples from the
Laplace distributions that were collected during the proposed
offline learning phase and populates a noise tensor with these
sampled elements. Then, the edge device merely adds this
populated noise tensor to the intermediate results to be sent
to the cloud. As such, Shredder enables accurate inference on

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378522

noisy intermediate datawithout the need to update themodel
or the cloud, or any training process during inference.We also
formally prove that Shreddermaximizes privacywithminimal
impact on DNN accuracy while the tradeoff between privacy
and accuracy is controlled through a mathematical knob. Ex-
perimentationwith six real-worldDNNs from text processing
and image classification shows that Shredder reduces the mu-
tual information between the input and the communicated
data to the cloud by 74.70% compared to the original execu-
tion while only sacrificing 1.58% loss in accuracy. On average,
Shredder also offers a speedup of 1.79× overWi-Fi and 2.17×
over LTE compared to cloud-only execution when using an
off-the-shelf mobile GPU (Tegra X2) on the edge.
CCS Concepts. • Security and privacy → Privacy pro-
tections; • Theory of computation→ Nonconvex opti-
mization; • Computing methodologies → Neural net-
works; • Networks → Cloud computing; • Computer
systems organization→ Embedded systems.
Keywords. Privacy; neural networks; deep learning; edge
computing; cloud computing; inference; noise

ACMReference Format:
Fatemehsadat Mireshghallah, Mohammadkazem Taram, Prakash
Ramrakhyani, Ali Jalali, Dean Tullsen, and Hadi Esmaeilzadeh. 2020.
Shredder: Learning Noise Distributions to Protect Inference Privacy.
In Proceedings of the Twenty-Fifth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland.ACM, New
York, NY, USA, 16 pages. https://doi.org/10.1145/3373376.3378522

1 Introduction
Online services that utilize the cloud infrastructure are now
ubiquitous and dominate the IT industry [1–3]. The increas-
ing processing demand of learningmodels [4, 5] has naturally
pushed most of the computation to the cloud [6]. Coupled
with the advances in machine learning, and especially deep
learning, this shift has also enabled online services to offer a
more personalized andmore natural interface to the users [7].
These services continuously receive raw, and in many cases,
personal data that needs to be stored, parsed, and turned
into insights and actions. In many cases, such as home au-
tomation or personal assistants, there is a rather continuous
flow of personal data to the service providers for real-time
inference. While this model of cloud computing has enabled

https://doi.org/10.1145/3373376.3378522
https://doi.org/10.1145/3373376.3378522


Privacy 

Accuracy Loss  

Com
pu

ta
tio

na
l C

os
t~~

Shredder

Undesirable Region

Accuracy-
Agnostic Noise 

Addition

Homomorp
hic 

Encry
ptio

n

Figure 1.Design space for inference privacy and how Shredder fits.

unprecedented capabilities due to the sheer power of remote
warehouse-scale data processing, it can significantly com-
promise user privacy. When data is processed on the service
provider cloud, it can be compromised through side-channel
hardware attacks (e.g., Spectre [8] or Meltdown [9]) or de-
ficiency in the software stack [10]. But even in the absence
of such attacks, the service provider can share the data with
business partners [11] or government agencies [12].Although
the industry has adopted privacy techniques and federated
learning [13] for data collection and model training [14, 15],
scant attention has been given to the privacy of users who
increasingly rely on online services for inference.

As Figure 1 illustrates, researchers have attempted to grap-
plewith this problemby employing cryptographic techniques
such as multiparty execution [16, 17] and homomorphic en-
cryption [18–21] in the context of DNNs. However, these ap-
proaches suffer fromaprohibitive computation and communi-
cation cost,with over three orders ofmagnitude added latency
for CIFAR [22] for instance, exacerbating the already com-
plex and compute-intensive neural network models. Worse
still, this burdens additional encryption and decryption lay-
ers to the already constrained edge devices despite the com-
putational limit being the main incentive of offloading the
inference to the cloud.

This paper, as depicted in Figure 1, takes an orthogonal ap-
proach, Shredder, and aims to reduce the information content
of the remotely communicated data through noise injection
without imposing significant computational cost. However,
as illustrated, noise injection can lead to a significant loss in
accuracy if not administered with care and discipline. Shred-
der resolves this dilemma by finding the noise distributions
through a disjoint offline learning processwith a loss function
that strikes a balance between information loss and accuracy
loss. This loss function also exposes aknob for asymmetrically
trading off a modest loss in accuracy for significant improve-
ment in privacy as illustrated in Figure 1. As such, Shredder
can use the conventional stochastic gradient descent–used

for training machine learning algorithms–to learn the noise
distributions.
Our central idea of learning the noise distributions enables

Shredder to mathematically incorporate accuracy as well as the

measure of privacy, and if available, the information that is

expected to remain private in the loss function. The result is
a collection of Laplace noise distributions that later during
the inference is used by the edge device to scramble the com-
municated data. This offline process of learning the noise
distributions does not require retraining the network weight
parameters or changing its topological architecture. This non-
intrusive approach is particularly appealing as most enter-
prise DNNmodels are proprietary, and changing a carefully
crafted DNN topology and/or its millions of parameters is
undesirable.

For inference, Shredder breaks the DNN between the cloud
and the edge device while balancing out computation and
communication. In this separate phase of inference, the edge
device takes samples from the Laplace distributions that were
collected to populates a noise tensor. Then, the edge device
adds the noise tensor to the intermediate result that is sent
over to the cloud. The number of parameters that Shredder
learns in each epochmatches thenumber of elements in the in-
termediate result. Hence, Shredder only learns a much smaller
collection of parameters–typically <100 KBytes–than the to-
tal number of weights–typically >100 MBytes–whose ratio is
0.16%. As such, the same model can be run on the same cloud
on intentionallynoisydatawithout theneed for retraining the
DNN or the added significant cost of supporting computation
on encrypted data.
This problem of offloaded inference is different than the

classical differential privacy [23] setting where the main con-
cern is the amount of indistinguishability of an algorithm.
That is to say, how the output of the algorithm changes if a
single user opts out of the input set. In inference privacy, how-
ever, the issue is theamountof raw information that is sentout.
Nonetheless, since Shredder employs a Laplacemechanism for
generating noise, it is commensuratewith differential privacy.
As such, Shanon’s Mutual Information (MI) [24] between the
user’s raw input and the communicated data to the cloud is
used as a measure to quantitively discuss privacy.
We provide a formal formulation and show that Shredder

maximizes privacy with minimal impact on DNN accuracy
while the tradeoff between privacy and accuracy is controlled
through a mathematical knob. This formal proof is backed
by empirical analysis that shows Shredder reduces the mu-
tual information between the input and the communicated
data by 74.70% compared to the original execution with only
1.58% accuracy loss over six benchmark networks from text
processing and image classification. It also offers an average
speedup of 1.79× usingWi-Fi for communication, and 2.17×
using LTE when an off-the-shelve mobile GPU (Jetson TX2)
is used on the edge.



Network Partitioner

Intermediate 
Activation Adder

Noisy 
Activation 

Network 
Output 
(logits)

Noise Tensor 

Training Data Transformer 
with Edge Partition 

Loss Input Generator 
with Cloud Partition

Batch of Data
From the 

Training Dataset

Loss Function 
and Optimizer

Calculated 
Gradients

Noise Tensor UpdateNoise Tensor  Initializer 

DNN  Topology and 
Pretrained Weights

Accuracy > 
Desired

Distribution Parameters and Order 
of Noise Elements Collector

 Noise Tensor to  
Laplace 

Distribution Fitter

Yes

Yes

No

No

Collection of Distributions 
and Orders with 

Confidence interval

Computation and 
Communication Costs

Desired Accuracy

1

2

3

4

5

6

7

8

9
Distribution Parameters 

and Order of Noise 
Elements Collector

Distance of the 
Distribution and Noise 

Tensor < Desired

Figure 2.Workflow for offline learning of the noise distribution with Shredder.

With these encouraging results the paper contributes Shredder:

casting accuracy-aware privacy protection as learning noise dis-

tributions through the same algorithm that trains the network,

albeit, without retraining the network, while incorporating both

privacy and accuracy in its loss.

2 Phase I: Learning the Noise Distributions

Shredder is an end-to-end non-invasive solution that consists
of two disjoint phases: (1) learning the noise distributions
offline and (2) noisy inference. As Figure 2 depicts, the first
phase takes theDNN topology, its pre-trainedweights, a train-
ing dataset, the computation and communication costs and
acceptable loss in accuracy as inputs. The training dataset is
the same as the one used to train the DNN. The output of the
phase is a collection of noise tensor distributions coupledwith
an order for the elements of the tensor for the later phase of in-
ference. This phase also determineswhich layer is the optimal
choice for cutting the DNN to strike the best balance between
computation and communication while considering privacy.
The accuracy and privacy requirements are worked into the
mathematics of the learning process. This section elaborates
on the workflow of Shredder in this first phase, while the next
section will discuss the second phase of inference.

1 Network partitioner. The first step is to decide where to
inject the noise to the DNN. The partitioner decides the layer
at which the neural network should be bisected and offloaded
to the cloud. This decision is based on the overall computation
and communication costs of cutting the network at each layer,
and the layer with the lowest cost will be chosen. The deeper
the cutting point, the higher the privacy level, given a fixed
level of loss in accuracy. This is due to the abstract represen-
tation of data in deeper layers of neural networks [25, 26].
We also show this observation in our experiments. There-
fore, to maintain acceptable privacy, the partitioner is set to
never cut at the input layer and it should include at least one
computational layer. Nonetheless, there is a trade-off here,
between computation costs and privacy, whichwill be further
discussed in Section 6.2.3. The partitioning happens only once
at the beginning of each learning process and the network

is cut to two partitions, Edge and Cloud as depicted in Fig-
ure 2. The cut is made such thatCloud Partition starts with
a convolution (or fully connected layer), and Edge Partition
ends in the layer before that–which could be a pooling layer,
or activation functions such as ReLU, depending on the DNN
topology. The rationale is that the pooling layers reduce the
data elements and the ReLU layers suppress some of the val-
ues, which naturally reduces the information content that is
communicated to the cloud.

2 Training Data Transformer with Edge Partition. To
extract the training (inputs, output) pairs for learning the
noise distributions, a batch of the training data is fed to Edge
Partition, and the intermediate activation is attained. These
intermediate activations constitute the input part of the pairs
for the noise learning process. The output part of the pair is
obtained in 5 . Note that in all of the stages of Shredder, DNN
weights are constant and are not altered.

3 Noise tensor initializer. Similar to the network parti-
tioner, the noise tensor initializer is executed only once for
each learning process. It initializes the noise tensor by sam-
pling its elements from an initial Laplace distribution. The
dimension of the noise tensor exactlymatches the dimensions
of the intermediate activation.

4 Adder. The adder adds the noise tensor to the interme-
diate activation, element-wise. This stage imitates how the
noise will be injected in the future inference runs.

5 Loss InputGeneratorwithCloudPartition.Tobeable
to go through the noise learning process, a set of outputs is
required to pair with the intermediate activation generated
in 2 . To generate the set of outputs, the noisy activations are
fed to theCloud Partition, and the logits (the outputs of the
layer before the last classification layer of the neural network,
which is usually softmax) are collected.We use logits because
even normal stochastic gradient uses this layer to find the
parameters. The last layer, typically softmax, uses logits to
calculate the probability of each class and picks the onewhich
has the highest probability as the classification label.



Intermediate 
Activation Adder

Noisy 
Activation 

(to be sent)
Transmission

Noisy 
Activation 
(received)

Classification 
Result

Sampler

Collection of Distributions and Orders Noise Tensor 

Edge

Edge Partition

Cloud Partition

1

2

3 4

5

Cloud

Figure 3.Workflow of noisy inference.

6 Loss function and optimizer. The generated pairs of
(input, output) from 2 and 5 are used to calculate the loss,
and then fed to an optimizer to calculate the gradients and
update the noise tensor using stochastic gradient descent.
What is important here, is that the gradients are calculated
only for theCloud Partition, and then the adder, but they are
not propagated any further.

7 Noise tensor update.With the gradients calculated in
the previous step, only the noise tensor is updated, and
the DNNweights (even those of Cloud Partition) remain un-
changed. We only calculate the gradients with respect to the
weights to be able to update the noise tensor.

8 Noise tensor toLaplacedistributionfitter.During the
noise learning process, after a given number of iterations of
training and updating the noise tensor, the accuracy of the
model ismeasuredusingaheld-out set fromthe initial training
dataset. If the accuracy is within the desired accuracy given
by the user, the noise tensor is fitted to a Laplace distribution.

9 Distributionparametersandorderofnoiseelements

collector. If the distance between the fitted distribution to
the noise tensor and the actual noise tensor is smaller than
a pre-determined amount, the parameters of the fitted distri-
bution are saved. Also, the descending order of the elements
of the noise tensor is saved to be used later during the future
inference phase. The noise tensor elements, themselves, are
discarded and only the order is preserved. The order is impor-
tant to preserve the correlation between the elements. This
stage also reports the confidence interval for the accuracy of
the model as well.
This workflow is repeated until a certain number of noise

distributions are collected. For our experiments, we collect
20 distributions. Now that the noise distributions are learned,
the DNN can be used by the edge device for inference. The
next section discusses this disjoint process of noisy inference.

3 Phase II: Noisy Inference

Figure 3 shows inference with a sampled noise tensor from
the learned noise distributions. This process is very similar to
the normal execution of the DNN except that a noise tensor

is added to the intermediate activations that are sent to the
cloud. Below, we discuss each step.

1 Edge Partition. User’s input data that s/he wants to clas-
sify is fed to theEdge Partition. The output is the intermediate
activations.

2 Sampler. In parallel with 1 , the Sampler takes in the
collection of distribution and orders, i.e. the output of the of-
fline learning phase, and uses that to generate different noise
tensors for each inference pass. This makes predicting the
noise tensor non-trivial for the adversary since for each input
data, a different noise is generated stochastically. To gener-
ate the noise tensor, one distribution is picked randomly from
the collection of distributions. Then, samples are drawn from
this distribution to populate the noise tensor, which has the
same dimensions as the intermediate activation. Then, when
the noise tensor is populated, it’s elements are rearranged,
so as to match the saved order for that distribution. For this,
the sampled elements are all sorted, and they are replaced
according to the saved order of indices in the learning phase.

3 Adder.This rearrangednoise tensor is simply added to the
intermediate activations. Note that, we do not rearrange the
activations and the cloud part of the inference can continue as
usual without the cloud knowing about the noise. The result
is the noisy activations.

4 Transmission.At this point, the noisy activation is trans-
mitted over the network from the edge device to the cloud.
The cloud is completely oblivious to the addition of noise or
its nature.

5 Cloud partition. The noisy activation is fed to theCloud
Partition, and the final classification labels are achieved. At
this point, this result can be sent back to the user or be utilized
in the cloud.

4 Noise Distribution Learning Formulation

This section delves deeper into the details of Shredder, start-
ing from describing the problem formulation and the threat
model, and how the trainable noise tensor fits into the context.
In addition, this section describes the loss function and train-
ing process that Shredder uses for finding the desired noise
tensor.We also describe our privacymodel and the notions of



…

… …+

Edge Cloud

L(x, θ1) R(a′, θ2)

Activation Noisy Activation

n

y = f ′(x, θ, n)
input
x

a a′

Noise Tensor

Figure 4.Mathematical modeling of noise injection and learning in
Shredder.

privacy that we use. Our threat model is based on the fact that
a large number of real-world DNNs cannot be fully executed
on edge devices that range from battery-less devices to more
powerful cellphones and tablets.

4.1 Threat Model

Given a pre-trained network f (x ,θ ) with K layers and pre-
trainedparametersθ ,we choose a cuttingpoint, layerc ,where
the computation of all the layers [0..layerc ] are made on the
edge. We call this the local network, L(x ,θ1), where θ1 is a
subset of θ from the original model.
The remaining layers, i.e., [(layerc+1)..layerK−1], are de-

ployedon the cloud.Wecall this remotenetwork,R(x ,θ2). This
is shown in Figure 4. The f ′ in this image is the noisy network
output (noisy logits) which are the outputs of the last layer
of the neural network before going through softmax layer.

Weassumethecloud isadeep-learning-as-a-serviceprovider
to whom users send their primary data(x ) to get the label(y),
where y = f (x ,θ ). The threat-model assumes the cloud, or
anybody with access to the transmitted data, is untrusted
in that it may try to extract information other than y from
x . We assume the potential adversary(cloud/third-parties) is
computationally unbounded.We don’t assume limitations on
number of queries to the untrusted cloud and its observations,
nor the number of edge-devices that query the service. The lo-
cal DNN(parameters/model) is known to the cloud/adversary.
The user provides input x to the local network, and an inter-
mediate activation tensor a = L(x ,θ1) is produced. Then, a
noise tensorn is added to the output of the first part, a′=a+n.
This a′ is then communicated to the cloud where R(a′,θ2) is
computed on noisy data and produces the resulty= f ′(x ,n,θ )
that is sent back to the user.
The objective is to find the noise tensor n that minimizes

our loss function (Section 4.4). To be able to do this through
a gradient-based method of optimization, we must find the
∂y/∂n:

∂y

∂n
=
∂ f ′(x ,θ ,n)

∂n
=
∂R((a+n),θ2)

∂n

=
∂layerK−1

∂LayerK−2
×...×

∂Layerc+1
∂(a+n)

×
∂(a+n)

∂n︸���︷︷���︸
= ∂n

∂n =1

(1)

Since L(x ,θ1) is not a function of n, it is not involved in this
equation . Gradient of R is also computed through chain rule
as shown above. Therefore, the output is differentiable with
respect to the noise tensor, which allows for the use of opti-
mization methods like stochastic gradient descent.

4.2 Ex Vivo Notion of Privacy

To measure the privacy, we look at how much information
is leaked from input of the network to the data sent across
to the cloud. We define information leakage as the mutual
information between x and a, i.e., I (x ;a), where

I (x ;a)=

∫
x

∫
a

px,aloд2
px,a
pxpa

dxda. (2)

Mutual information has been widely used in the literature
for both understanding the behavior of neural networks [26,
27,27–30], andalso toquantify information leakage inanonymity
systems in the context of databases [31–33]. We also use the
negative of mutual information (−MI ) as our main and final
notion of privacy and call it ex vivo privacy. In our setting, we
quantify the information between the user-provided input
and the intermediate state that is sent to the cloud.

4.3 In Vivo Notion of Privacy

As the final goal, Shredder reduces the mutual information be-
tween x and a′; however, calculating the mutual information
at every step of the training is too computationally intensive.
Therefore, instead, we introduce an in vivo notion of privacy
whose whole purpose is to guide our noise training process
towards better privacy, i.e, higher 1/MI . To this end, we use
the reverse of signal to noise ratio (1/SNR) as a proxy for our
ex vivo notion of privacy. Mutual information is shown to be
a function of SNR in noisy channels [34, 35].

4.4 Loss Function
The objective of the optimization is to find the additive noise
distribution in such away that itminimizes I (x ,a′), themutual
information, and at the same time maintains the accuracy of
theprimary task. In thispoint, thereare twopossible scenarios:
a) we do not have private labels, which means Shredder’s
framework isnotawareofwhat it shouldbeprotectingagainst,
so it tries to remove any excess information and b) we have
private labels,whichmeansShredder shouldapplynoisewhich
aims at obfuscating that private label, alongside removing
other excess information. In the following subsectionswewill
first explain the loss function insight and intuitions with the
formulation for the first case, and then build on that and add
an extra term to achieve the loss function for the second case.

4.4.1 No Private Labels Available. .
Although the two objectives mentioned previously (mini-

mizing I (x ,a′), andmaintaining accuracy) seem to be conflict-
ing, it is still a viable optimization, as the results suggest. The
high dimensionality of the activations, their sparsity, and the
tolerance of the network to perturbations [36, 37] yields such
behavior.



The noise tensor that is added is the same size as the activa-
tion it is being added to. The number of elements in this tensor
would be the number of trainable parameters in our method.
Shredder initializes the noise tensor to a Laplace distribution
with location parameter µ=0 (location is equivalent to mean
of Gaussian distribution).

We evaluate the privacy of our technique during inference
through ex vivo (−MI ) notion of privacy. However, during
training, calculating MI for each batch update would be ex-
tremely compute-intensive. For this reason, Shredder uses
an in vivo notion of privacy which uses (SNR) as a proxy to
MI [35]. In other words, Shredder incorporates SNR in the
loss function to guide the optimization towards increasing
privacy. We use the formulation SNR =E[a2]/σ 2(n), where
E[a2] is the expected value of the square of activation tensor
and σ 2(n) is the variance of the noise we add. Given the in
vivo notion of privacy above, our loss function would be:

−

M∑
c=1

yo,cloд(po,c )+α
1

σ 2(n)
(3)

Where the first term is cross-entropy loss for a classification
problem consisting M classes (yo,c indicates whether the ob-
servation o belongs to class c and po,c is the probability given
by the network for the observation to belong to class c), and
the second term is the inverse of variance of the noise tensor
to help it get bigger and thereby, increase in vivo privacy
(decrease SNR). α is a coefficient that controls the impact of
in vivo privacy in training. Since the numerator in our SNR
formulation is constant, which is because it is the expected
value of activations and it is constant for noisy and original
activations across the training dataset, we do not involve it in
the calculations. The standard deviation of a group of finite
numbers with the range R=max−min is maximized if they
are equally divided between the minimum,min, and the max-
imum,max . This is in line with our observations that show as
wepush themagnitudeof thenoise to bebigger, the invivopri-
vacywould also get bigger. Sincewe initialize the noise tensor
with µ=0, some elements are negative and some are positive.
Thepositive ones get bigger, and thenegative ones get smaller,
therefore, the standard deviation of the noise tensor becomes
bigger after each update. That’s why we employ a formula-
tion opposite to L2 regularization [38], in order to make the
magnitude of noise elements greater. So our loss becomes:

−

M∑
c=1

yo,cloд(po,c )−α
N∑
i=1

|ni | (4)

This applies updates opposite to L2 regularization term
(weight decay and α is similar to the decay factor), instead of
making the noise smaller, it makes its magnitude bigger. The
α exposes a knob here, balancing the accuracy/privacy trade-
off. In general, as the networks and the number of training
parameters get bigger, it is better tomakeα smaller to prevent

the optimizer frommaking huge updates and overshooting
the accuracy.

4.4.2 Private Labels Available. An example of this case
is gender classification and identity classification based on
images of faces, which we will discuss more in Section 6.2.4.
The usermaywant to classifywhether a face ismale or female,
but s/he does not want the cloud to be able to identify who
the person in the image is. In this case, the primary task is
gender classification, and the private task is face identifica-
tion. So, the aim is to minimize the mutual information and
maintaining accuracy, similar to Section 4.4.1, but with an
extra term, to minimize the accuracy of the private task, i.e.
face identification. So, we reformulate our loss function to be:

−

M∑
c=1

yo,cloд(po,c )+γ
T∑
k=1

zo,kloд(po,k )−α
N∑
i=1

|ni | (5)

Where the first term is cross-entropy loss for the primary
classification problem consisting of M classes (yo,c indicates
whether the observation o belongs to class c and po,c is the
probability given by the network for the observation to be-
long to class c), the second term is cross-entropy loss for the
private classification problem consisting of T classes (yo,k in-
dicates whether the observation o belongs to class k and po,k
is the probability given by the network for the observation
to belong to class k) and the last term is the same term from
Equation 4, to increase in vivo privacy (decrease SNR). α is
a coefficient that controls the impact of in vivo privacy in
training, similar to the previous subsection.γ acts similar toα ,
exposing a knob to control the effect of private label accuracy
on the overall loss function.

4.5 Fitting Noise Tensor to Laplace distribution
and Collecting Distribution and Samples

During training, whenever the accuracy of themodel over the
hold-out set of the training dataset exceeds the level desired
by the user, the noise tensor is tested for being collected. We
use Scipy’s stats package to fit each learned noise tensor to
a Laplace distribution. It’s worth mentioning that this stage
is executed offline. Then, the probability density function is
calculated for the fitted distribution. Using the density func-
tion, the distribution collector calculates the Sum of Squared
Errors (SSE) between the fitted distribution’s histogram and
the learned noise tensor’s histogram. If the SSE is less than
a threshold, the parameters of this distribution are collected.
This threshold can be considered as a tunable parameter and
differs frommodel to model and the different desired levels
of accuracy and margin of error. The element orders of the
noise tensor are also saved. By the element orders, the sorted
indices of the elements of the flattened noise tensor aremeant.
For instance, if a tensor looks like [[3.2,4.8],[7.3,1.5]], it’s
flattened version would be [3.2,4.8,7.3,1.5], and the sorted
which is what the collector saves would be [2,1,0,3].



4.6 Loss Function and Noise Learning Analysis

As Equation 4 shows, our loss function has an extra term, in
comparison to the regular cross-entropy loss function. This
extra termis intended tohelpdecrease theSignal toNoise ratio
(SNR). Figure 5 shows part of the training process on AlexNet,
cut from its last convolution layer. The black lines show
how a regular noise training process would work, with cross-
entropy loss and AdamOptimizer [39]. As Figure 5a shows
in black, the in vivo notion of privacy (1/SNR) decreases for
regular training (privacy agnostic, the one without an extra
term for decreasing SNR) as the training moves forward. For
Shredder however, the privacy increases and then stabilizes.
This is achieved through tuning of the α in Equation 4. α

is decayed by 0.1 at every 500 iterations to stabilize privacy
and facilitate the learning process. If it is not decayed, the
privacy will keep increasing and the accuracy would increase
more slowly, or even start decreasing. The accuracy, however,
increases at a higher pace for regular training, compared to
Shredder in Figure 5b. It is noteworthy that this experiment
was carried out on the training set of ImageNet, andwhen the
training isfinished, there is negligible degradation in accuracy
for Shredder on the test set, in comparison to the regularly
trained model.

4.7 Noise Tensor Sampling During Inference
This phase is executed during inference, and it samples noise
from the collected distributions in the previous phase, as dis-
cussed in Section 2. At this point, one of the distributions from
the distribution collection (of 20 distributions) is selected ran-
domly. Then, using samples from the chosen distribution, a
flattened tensor (a vector) with the size of the noise is pop-
ulated. The elements of this vector are then re-ordered to
match the saved order of indices for that distribution and then
reshaped to match the shape of the intermediate activations
and get sent to the adder.

5 Formal Proof and Guarantees

This section provides a formal formulation of the Shredder

noise learning process and proves that it maximizes privacy
with minimal effects on DNN accuracy.

NeuralNetwork:Consideradeterministic function f (x;θ ∗)∈
R
m , where, x ∈ Rp is the flatten input to the function and

θ ∗ ∈ Rr is the parameter that fully determines the func-
tion. Further, assume that f (·) is a composition of k func-
tions, i.e. f = f1 ◦ f2 ◦ ··· ◦ fk , where, fi (·;θ ∗(i)) is fully de-
termined by θ ∗(i) such that θ ∗ =

(
θ ∗(1),θ ∗(2),···,θ ∗(k )

)
. In this

setting, f (·) represents the trained DNN and fi ’s represent
network layers. We further define a κ-split f = f κ

L
◦ f κ

R
where

f κ
L
(·;θ ∗κ

L
)= f1◦···◦ f∗κ and f κ

R
(·;θ ∗κ

R
)= fκ+1◦···◦ fk represent

local and remote parts of the network, respectively. We as-
sume DNN is trained and the parameter θ ∗ remains the same
throughout the process.

Privacy: We define the privacy Pκ of a κ-split as the nega-
tive of the mutual information between the output of the ith

0.2

0.3

0.4

0.5

0.6

0.7

0 50 100 150 200 250
Iteration (x10)

In
 V

iv
o

 P
ri

va
cy

(1
/S

N
R

)

Privacy Agnostic (Regular)
Shredder

(a) In vivo privacy

40.0

42.5

45.0

47.5

50.0

0 50 100 150 200 250
Iteration (x10)

A
cc

u
ra

cy
(%

)

Privacy Agnostic (Regular)
Shredder

(b)Accuracy

Figure 5. (a) In vivo notion of privacy and (b) accuracy per iteration
of training on AlexNet, when cutting at the last convolution layer.
The black lines show regular training with cross entropy loss func-
tion. The orange lines show Shredder’s learning, with loss function
shown in Equation 4.

layer and the input, i.e., Pκ =−I(x;f κL (x)), where, I(·;·) rep-
resents mutual information. The lower mutual information
implies higher privacy. Since f κ

L
is a deterministic function,

we have

Pκ =−H(f κL (x))+H
(
f κL (x)



x) =−H(f κL (x)) (6)

whereH(·) denotes the entropy function.Moreover, applying
Data Processing Inequality, we have P1 ≤ P2 ≤ ··· ≤ Pk , that
intuitively means that as we pass the input through more
layers, the privacy improves.

Noise Injection: Denote a perturbation vector by wκ ∈

R
pκ which is independent of x.We intend to perturb the input

to f κ
R
by changing y= f κ

L
(x,θκ

L
) to ŷ= f κ

L
(x,θκ

L
)+wκ , i.e., the

output of function f (·) changes from f (x;θ ∗)= f κ
R
(y;θκ

R
) to

f̂ (x;θ )= f κ
R
(y+wκ ;θκR ). It is worth reemphasizing that the

parameter θ ∗ remains unchanged. This results in a change
to the privacy measure as P̂κ = −I(x; f κ

L
(x)+wκ ). We can

provide the following lower bound on the perturbed privacy:

P̂κ ≥−I
(
f κL (x);f

κ
L (x)+wκ

)
=−H(f κL (x))+H

(
f κL (x)



f κL (x)+wκ

)
=Pκ+H

(
f κL (x)



f κL (x)+wκ

) (7)



where the last equality is derived from (6). This equation
implies that by noise injection process, we can improve the
privacy at least byH

(
f κ
L
(x)



f κ
L
(x)+wκ

)
.

Optimization Problem: We would like to inject a noise
to maximize P̂κ such that the accuracy does not degrade, i.e.,

w∗
κ = argmax

wκ

P̂κ s.t. L( f̂ )≤L(f )+ϵ (8)

whereL is the neural network’s loss function. Given (7), we
useH

(
f κ
L
(x)



f κ
L
(x)+w

)
as surrogate objective and reformu-

late the problem in terms of a Lagrange multiplier λ as

w∗
κ =argmin

wκ

−H
(
f κL (x)



f κL (x)+wκ

)
+λL

(
x,f κR (f

κ
L (x)+wκ )

)
(9)

Denoting y= f κ
L
(x) and applying the Bayes rule to the condi-

tional entropy, we getH
(
y


y+wκ

)
=H

(
y+wκ



y)+H(y)−

H(y+wκ )=H(wκ )+H(y)−H(y+wκ ),where the last equal-
ity follows from the fact thatwκ is independent of y. Since
H(y) is constant with respect towκ , rewrite (9) as

w∗
κ =argmin

wκ

H(y+wκ )−H(wκ )+λL
(
x,f κR (y+wκ )

)
(10)

Optimization problem (10) has three terms. The termH(y+

wκ ) controls the amount of information that leaks to the
remote part of the DNN and we want to minimize this infor-
mation. The termH(wκ ) controls the amount of uncertainty
that we are injecting in the form of iid noise. This term is typ-
ically proportional to the variance of the noise and we want
this term to be maximized (and hence the negative sign). The
last term controls the amount of degradation in the accuracy
of the DNN and we want to minimize that.
The loss functionL(·) for a q-class classification problem

with z = f (x;θ ∗) ∈ Rq can be L(x,z) = −
∑q

j=1 1x∈Cj log(zj )

where 1· is the indicator function, Cj represents the jth class
and zj is the jth entry of z representing the probability that
x∈Cj . Suppose 1x is a one-hot-encoded q-vector with jth ele-
ment being 1 if x∈Cj and the rest are zero. We then can write
the classification loss in vector form as L(x,z)=−1Tx log(z).
For the remainder of this paper, we target a q-class classifica-
tion problem.

Considern iid observations of x1,···,xn where each entry of
yi = f

κ
L
(xi ) is independently distributed as Laplace distribu-

tionL(μy ,by ) and entries ofwκ are iid drawn fromL(0,bw ). For
Laplace random variables we haveH(y+wκ )∝ log(by+bw )
andH(wκ )∝ log(bw ). Hence, we can rewrite (10) as an opti-
mization problem on bw as follows

b∗w =argmin
bw

log(by+bw )−log(bw )+λn

n∑
i=1

1Tx log
(
f κR (yi+wκ )

)
(11)

In order to solve this optimization problem, we start from an
initialwκ andcompute thevarianceof that asbw .We then take
a gradient step onwκ and then update bw until we converge.
This process gives us an optimalw∗

κ and an optimal b∗w .

Table 1. Platforms used for obtaining the results in Section 6.2. We
used a TitanXpGPU as our cloud server, and a Tegra X2GPU (Jetson
TX2) as our edge device.

Cloud GPU Edge GPU
Chip Titan Xp Tegra X2

Cores 3,584 256
ChipArea (mm^2) 471 -

TDP 250 W 7.5 W

Technology 16 nm 16 nm
Frequency 1,531 MHz 875 MHz

Memory 12 GB 8 GB

Table 2. Benchmark networks and datasets used for obtaining the
results in Section 6.2. They are all real-world application networks,
used for image classification. The last network/dataset is widely
used for text classification in natural language processing.

Edge-CPU Edge-GPU

LeNet 3 2 99.6% 3 3 10

AlexNet 5 3 56.6% 2 5 1000
VGG-16 
(primary)

13 3 77.80% 2 9 2
VGG-16 
(private) 13 3 91.20% 2 9 24
20Newsgr
oups

3 2
96.5% 3 3 20

Neural 
Network

Pre-trained 
Accuracy

No. of 
Classes

No. of Conv 
layers

No. of FC 
layers

SVHN 7 1
CIFAR-10 102

592.5% 10
32 72.3%

Suggested Partitioning 
layer

4
2

Inference: We first draw pκ (same dimension as the di-
mension of w∗

κ ) samples from the Laplace distribution we
learned in (11), i.e., L(0,b∗w ). Then, we sort the samples and
create a noise vectorwκ such that for all indices i and j , if the
ith element ofw∗

κ is larger than its j
th element, then the same

holds for wκ . This process ensures that while we generate
random samples, the order of elements are always preserved
inwκ .
Guarantee: Since in the process of optimizing (11), we

computed the variance from the samples each time, the values
ofw∗

κ tend to be close to the ordered statistics of the Laplace
distribution L(0,bw ). This means that as long as we preserve
the order of the values in the noise vector, we statistically
stay at the optimal point. This justifies our inference method
based on the optimal solution that we get during training.

6 Evaluation

6.1 Methodology

Benchmarkednetworkswithnoprivate labels. Weused
6 real-world application networks as our benchmarks, which
can be seen in Table 2. LeNet, CIFAR, SVHN, AlexNet, and
VGG-16 are all image classification applications, and 20News-
Groups [40] is a widely used news topic classification applica-
tion for natural language processing. For LeNet, the primary
task is digit classification, for CIFAR it is object classification,
for SVHN, number street view house number classification,



for Alexnet it is image classification into 1000 classes of Ima-
geNet dataset. VGG-16, the task is gender classification, over
a subset of the VGG-Face dataset which has images of celebri-
ties [41]. For the 20Newsgroups, the task is classifying the
input textwhich is extracted fromnews into 20 topics. Besides
the aforementioned expected classifications labels, any other
information about the image or text is considered private. For
example, for images, what is in the background of the image,
if it is day or night, or the identity of the celebrity in the image
is considered private.

Benchmarkednetworkswithprivate labels. For thesake
of comparison with the related work [42], we adopt their pri-
vate labels and primary labels for fairness. For the VGG-16
network, we used VGG-Face dataset [41], as seen in Table 2.
Theprivate labels for this dataset are the identityof the celebri-
ties in it. The primary labels are gender classification.

Datasets for experimentation. Each dataset in Table 2
comeswith a training dataset and a validation dataset.We use
the training dataset for learning noise. During the process of
learning, we use a 10% hold-out subset to assess the accuracy.
However, we do not use any of the training datasets for the re-
ported accuracy results. Instead, we use the validation dataset
that is not seen during the learning phase for assessing the
final accuracies.

Communication setup. Wehaveused both privateWi-Fi
and AT&T LTE for communication between edge and cloud.

Network partitioning points. Shredder can cut the net-
work from any given layer and apply the noise distribution.
However, As explained in Section 2, a cutting point that min-
imizes the overall communication and computation costs is
chosen by Shredder. Our methodology for modeling the com-
putation and communication costs is commensurate with
[43]). The partitioning points used in the experiments can be
seen in Table 2. These are the indices of convolution layers,
and by cutting at the 3rd layer, we mean the noise is applied
right before entering the 4th convolution, and from the 4th
convolution to the end of the network, the execution would
be on the cloud.

Edge device specifications. We used Nvidia Jetson TX2’s
off-the-shelfGPUboardasouredgedevicewithCUDAV10.0.166
alongside a quad-coreARMA57 that runs Ubuntu 18.04.2 LTS
(GNU/Linux 4.9.140-tegra aarch64). The specifications of this
GPU is in Figure 1. We used the latest PyTorch version 1.2
built from the source.

Cloud specifications. We used Nvidia Titan Xp off-the-
shelf GPU with CUDA version 10.0.130 with 12GB of RAM
alongside a 12 core Intel Corei9-7920X2.90GHzCPU that runs
Ubuntu 18.04.1 LTS (GNU/Linux 4.15.0-55-generic x86_64).
We used the latest PyTorch version 1.2 installed with pip3.
Table 1 has the specifications of the GPU.

End-to-end cost measurements. For reporting the cost
(computation and communication) of Shredder, we have mea-
sured the end-to-end execution time of the DNN on the edge
and cloud devices. To be more specific, we have measured the
time it takes for the network’s first section is executed on the
Jetson TX2, then the activations are transferred over Wi-Fi
to a Titan Xp server and the rest of network is executed there.
We have executed 100 times and reported the average.

Baseline. We have selected cloud-only execution as our
baseline since it is the widely used approach for edge de-
vices [44, 45].

Offline noise distribution learning phase setup. For
this, we use the same hardware and software setup as the
cloud.

Privacy measurement setup. Mutual Information (MI)
is calculated using the Information Theoretical Estimators
Toolbox’s [46] ShannonMutual Information with KL Diver-
gence. In the results reported in upcoming sub-sections, MI is
calculated over the shuffled test sets onMNIST [47] dataset for
LeNet [48],CIFAR-10dataset forCIFAR-10 [49], SVHNdataset
for SVHN [50], ImageNet [51] dataset for AlexNet [52], a sub-
set of VGG-Face [41] for the VGG-16 dataset and the 20News-
groups [40] dataset for 20Newsgroup’s neural network. These
photos were shuffled through and chosen at random. Using
mutual information as a notion of privacymeans that Shredder
targets the average case privacy, but does not guarantee the
amount of privacy that is offered to each individual user.

α and γ parameters. For the parameters (knobs) men-
tioned inEquations4and5,Weuse−0.01,−0.001, and−0.0001
forα on {LeNet,CIFAR, 20Newsgroups}, {SVHN}and {AlexNet,
VGG-16} respectively. Forγ , we use 0.01 for VGG-16, since it
is the only network with defined private labels.

Optimizer setup for offline noise distribution learn-
ing. We used the cross-entropy loss function with Adam
Optimizer [39], with a learning rate of 0.01 on LeNet, CIFAR
and 20Newsgroups, 0.001 on SVHN and 0.0001 on AlexNet
and VGG-16.

ComparisonwithDPFEsetup. WecompareShredderwith
DPFE[42] over VGG-16 network, for face identification and
gender classification on celebrity faces, which is the exact
setup used by [42] to evaluate their method. DPFE offers
only this benchmark, and we have used the same network
partitioning point as well, to provide fairness. We have used
celebrity faces from theVGG-Facedataset andpartitioned it to
validation/training portions to train and verify the classifiers.
6.2 Experimental Results
This section elaborates on our observations in detail and
brings empirical evidence for the efficacy of Shredder. We
discuss thememory footprint and latency overheads of Shred-
der, accuracy-privacy trade-off, a comparison with another



0

0.25

0.5

0.75

1
Sh

re
dd

er

Cl
ou

d-
On

ly

Sh
re

dd
er

Cl
ou

d-
On

ly

Sh
re

dd
er

Cl
ou

d-
On

ly

Sh
re

dd
er

Cl
ou

d-
On

ly

Sh
re

dd
er

Cl
ou

d-
On

ly

Sh
re

dd
er

Cl
ou

d-
On

ly

Edge Computation Communication Cloud Computation

LeNet CIFAR-10 SVHN AlexNet VGG-16 20NewsGroups

Benchmark Networks 

N
o

rm
al

iz
ed

 E
nd

-t
o

-E
nd

 E
xe

cu
ti

o
n 

T
im

e

Figure 6. Comparison of Shredder’s end-to-end execution time,
compared to a baseline of cloud-only executionwhich iswidely used.
In this evaluation the partitioning points are those mentioned in
Table 2 andWi-Fi is used for communication.

method, and finally, a network partitioning point privacy and
edge computation trade-off analysis. For all the experiments,
except the ones in Section 6.2.4, the loss function formofEqua-
tion 4 has been used since no assumption on the private labels
is given, which is the case in most privacy-related problems.
In Section 6.2.4, we assume private labels (Equation 5) and
compare Shredderwith and without the private labels against
related work, DPFE [42].
Table 3 summarizes our experimental results. We have in-

dicated the margin of error for each benchmark here. Since
the margin is trivial, we have only brought it in the table, and
not in the plots, for the sake of simplicity. It is shown that on
the networks, Shredder can achieve on average 74.70% loss in
information while inducing 1.58% loss in accuracy. The table
also shows that it takes Shredder a short time to train the noise
tensor, for instance on AlexNet on ImageNet and 1000 classes,
it is 0.1 epoch. It is also evident that the memory overhead of
Shredder due to its distribution collector is insignificant.

6.2.1 Overheads of Shredder. As Table 3 shows, Shredder
alleviates the complexities of training an entire neural net-
work, by decreasing the number trainable parameters of the
network to 0.16%. The collection of distributions and element
orders imposes a trivial memory footprint of saving the dis-
tribution parameters (two numbers per distribution, which
are the location and scale , are similar to mean and standard
deviation) and the orders of tensor elements for each distri-
bution, which is a string of numbers. The length of this string
is the same as the size of the noise tensor, and each element is
smaller than or equal to the length of the string, since the el-
ements are the sorted indices of the noise tensor, as explained
in Section 4.5. There are 20 distributions collected for each
benchmark. The average of all these overheads combined is
19.35 KBs.

Figure 6 shows the end-to-end execution time of Shredder,
normalized to a baseline of cloud-only execution. The Figure

shows that Shredder outperforms the baseline for all bench-
marks, except VGG-16 and it has an average speedup of 1.79×.
These results are all commensurate with Neurosergeon and
show the same trends [43]. This speedup is mainly because of
thehigh communication costs and the large size of the input to
thenetwork that shouldbe transmitted to cloud for cloud-only
execution, whereas Shredder sends a much smaller intermedi-
ate layer. It is important to keep inmind that the computation
overhead of the distribution sampler and noise adder is on
average 0.03× the communication time of Shredder, and is
therefore trivial in comparison to the communication costs.
The reason for VGG-16’s slow-down is that for this net-

work, overWi-Fi, the optimal cutting point is the input layer,
and since Shredderdoesnot partitionnetwork from input layer
to provide more privacy, it partitions from the convolution
13th layer which is the second optimal computation and com-
munication point, and at this point, the activation size is still
relatively big, so, it does not help compensate the excess com-
putation time imposed to the edge device by the execution
of the previous 13. Therefore, the overall execution time is
increased by 23%, in comparison to the cloud-only approach.
As mentioned, communication is measured over Wi-Fi,

which is faster than LTE and 3G, so Shredder’s speedup would
be even higher if one of the slower communication meth-
ods were employed. For instance, if LTE is used, the overall
speedup would be 2.17× and VGG-16 would have a speedup
of 1.03×.

6.2.2 Accuracy-Privacy Trade-Off. There is a trade-off
between the amount of noise that we incur to the network
and its accuracy. As shown in Figure 1, Shredder attempts to
increase privacy while keeping the accuracy intact. Figure 7
shows the level of privacy that can be obtained by losing a
given amount of accuracy for LeNet, CIFAR-10, SVHN, and
AlexNet. In this Figure, the number ofmutual information bits
that are lost from the original activation using our method
is shown on the Y axis. The cutting point of the networks
is their last convolution layer. This can be perceived as the
output of the features section of the network, if we divide the
network into features and classifier sections.
The Zero Leakage line depicts the amount of information

that needs to be lost to leak no information at all. In other
words, this line points to the original number of mutual infor-
mation bits in the activation that is sent to the cloud, without
applying noise. The black dots show the information loss
that Shredder provides, given a certain loss in accuracy. These
trends are similar to that of Figure 1, since Shredder tries to
strip the activation from its excess information, thereby pre-
serving privacy and only keeping the information that is used
for the classification task. This is the sharp (high slope) rise
in information loss, seen in sub-figures of Figure 7. Once the
excess information is gone, what remains is mostly what is
needed for inference. That is why there is a point (the low
slope horizontal line in the figures) where adding more noise



Table 3. Summary of the experimental results of Shredder for the benchmark networks.

Benchmark LeNet CIFAR SVHN Alexnet VGG-16 20Newsgroups Average

Original Mutual Information 301.84 236.34 19.2 12661.51 28732.21 27.8 –
ShreddedMutual Information 18.9 90.2 7.1 4439.0 7268.7 7.8 –
Mutual Information Loss 93.74% 61.83% 64.58% 64.94% 74.70% 72.95% 74.70%
Accuracy Loss 1.34% 1.42% 1.12% 1.95% 1.68% 1.99% 1.58%
Margin of Error ±0.39% ±0.87% ±0.22% ±0.12% ±0.11% ±0.41% ±0.35%
Shredder’s Learnable Params over DPFE[42] 0.19% 0.65% 0.04% 0.02% 0.01% 0.05% 0.16%
Number of Epochs of Training 6.3 1.7 1.2 0.1 6.8 7.3 1.99
Shredder’s Distribution Collector Memory Footprint (KB) 2.05 8.70 5.00 315.00 918.75 2.01 19.35

(losing more information bits) causes a huge loss in accuracy.
The extreme to this case can be seen in 7a, where approaching
the Zero Leakage line causes about 20% loss in accuracy.

6.2.3 Partitioning Point Trade-offs. Layer selection for
network cutting point is mostly an interplay of communica-
tion and computation costs of the edge device. As discussed
in Section 2, the network partitioner chooses the layer with
the lowest end-to-end execution cost. The deeper this layer
is, the higher privacy yield for a given accuracy [42], since
the network operations like pooling layers, ReLU and con-
volutions themselves modify the input information and give
the Shredder framework a lower mutual information to begin
with [25, 26]. That’s why the partitioner it set to never choose
the input layer as partitioningpoint (which iswhat cloud-only
execution is similar to) since it compromisesprivacy.However,
if the user wants even higher privacy, they could cut the net-
work deeper and get higher privacy, at the cost of more edge
computation. But the relation is not linear, and the returns for
privacy start diminishing at some point. Figure 8 shows the
highest normalized privacy that can be reachedwith less than
5% loss in accuracy for different edge device computation time
(different partitioning layers) over AlexNet and VGG-16. The
numbers on the x axis show the computation time and each
point on the plot shows a layer. For AlexNet, after the 3rd con-
volution layer, and for VGG-16, after the 8th one, the increase
in privacy is insignificant as we move forward through the
convolution layers. The trend is similar for other networks,
for the sake of space, we have chosen VGG-16 and Alexnet
as representative of other DNNs [53]. The users can weigh
the trade-offs, and sacrifice costs formore privacy and cut
deeper layers. However, as we show in the experiments, the
privacy plateaus at some point and is not ever-increasing. The
suggested partitioning points can be seen in Table 2

6.2.4 Comparisonwith DPFE. Deep Private Feature Ex-
traction (DPFE) [42] is a privacy protection mechanism that
aims at obfuscating given private labels, by modifying the
network topology and re-training all the model parameters.
DPFE partitions the network in two partitions, first partition
to be deployed on the edge and the second on the cloud. It also
modifies the network architecture by adding an auto-encoder

in the middle and then re-training the entire network with
its loss function. DPFE’s loss function is composed of three
terms, first, the cross-entropy loss which aims at maintaining
accuracy, second, a term that tries to decrease the distance be-
tween intermediate activations with different private labels,
and a final term which tries to increase the distance between
intermediate activations of inputs with the same private label.
After training, for each inference, a randomly generated noise
is added to the intermediate results on the fly.
DPFE can only be effective if the user knows what s/he

wants to protect against,whereas Shredderoffers a repetitively
moregeneral approach that tries to obliterate any information
that is irrelevant to the primary task. Table 3 has a row that
compares the number of trainable parameters for Shredder
with DPFE and it can be seen that Shredder’s parameters are
extremely lower than DPFE’s.
To run experiments, the intermediate outputs of the net-

works are fed to two classifiers, for gender and identity, each
of which display an original (before adding noise) accuracy
of 91.56% and 77.8%, respectively. Then DPFE and Shredder
are applied to the neural networks, and the accuracy results
over validation sets are seen in Figure 9.
Figure 9a compares DPFE to Shredderwith its Equation 4

(without private labels) and Equation 5 (with private labels) in
terms of the misclassification rate of the private task, i.e. the
identity classification (identity compromise) for given levels
of accuracy for the main task, which is the same metric used
in [42]. As expected, Shredderwithout private labels has the
lowest misclassification rate, which is due to not having any
knowledge of the private data. At higher levels of primary
accuracy, Shredderwithprivate labels outperformsDPFE.This
can be attributed to Shredder’s loss function, especially the last
term, which aims at maximizing the amount of noise while
keeping the accuracy intact. This could be the reason why
Shredder has a higher misclassification rate in a more con-
strained setting (higher primary accuracy). Whereas DPFE
adds the noise on the fly,which can only help increase themis-
classification rate to a certain degree. In lower accuracy levels
where the state-space is less constrained, DPFE offers higher



Zero Leakage

0

60

120

180

240

300

0 4 8 12 16 20
Accuracy Loss (%)

In
fo

rm
at

io
n

 L
o

ss
 (

b
it

s)

(a) LeNet

Zero Leakage

0

50

100

150

200

250

0.0 0.5 1.0 1.5 2.0 2.5
Accuracy Loss (%)

In
fo

rm
at

io
n

 L
o

ss
 (

b
it

s)

(b) CIFAR

Zero Leakage

0

3

6

9

12

15

0 1 2 3 4 5
Accuracy Loss (%)

In
fo

rm
at

io
n

 L
o

ss
 (

b
it

s)

(c) SVHN

Zero Leakage

2
4
6
8

10
12
14

0 1 2 3 4 5
Accuracy Loss (%)

In
fo

rm
at

io
n

 L
o

ss
(k

b
it

s)

(d)AlexNet

Zero Leakage

20

25

30

0.0 2.5 5.0 7.5 10.0
Accuracy Loss (%)

In
fo

rm
at

io
n 

Lo
ss

(k
bi

ts
)

(e) VGG-16

Zero Leakage

0

6

12

18

24

30

0 1 2 3 4 5 6
Accuracy Loss (%)

In
fo

rm
at

io
n

 L
o

ss
(b

it
s)

(f) 20Newsgroups

Figure 7.Accuracy-Privacy trade-off in 6 benchmark networks. The zero leakage line shows the original mutual information between input
images and activations at the cutting point.

0.00

0.25

0.50

0.75

1.00

1.25

0.00000 0.00125 0.00250 0.00375 0.00500

N
o

rm
al

iz
ed

 In
fo

rm
at

io
n

 L
o

ss

Edge Device Computation Cost (Latency) in Seconds

Normalized Privacy of AlexNet for Different Layers as Partitioning Point

Layer2 Layer4

(a)Normalized privacy over last layer

0.000

0.250

0.500

0.750

1.000

1.250

0.00000 0.01500 0.03000 0.04500 0.06000 0.07500

N
o

rm
al

iz
ed

 In
fo

rm
at

io
n

 L
o

ss

Edge Device Computation Cost (Latency) in Seconds

Normalized Privacy of VGG-16 for Different Layers as Partitioning Point

Layer2 Layer4
Layer6 Layer8 Layer10 Layer12

(b)Normalized privacy over last layer

Figure 8.Normalized privacy over last layer for different levels of
computation on the edge device (different partitioning points) for (a)
AlexNet on ImageNet and (b) VGG-16 on VGG-Face dataset. After a
point (3rd convolution layer for AlexNet and 8th convolution layer
for VGG-16) the improvements in privacy start to diminish.

misclassification, which can be attributed to it’s a higher num-
ber of trainable parameters which can give it more wiggle
room.

55%

61%

68%

74%

80%

84% 86% 88% 90% 92%M
is

cl
as

si
fi

ca
ti

o
n

 R
at

e 
o

f 
th

e 
P

ri
va

te
 T

as
k 

(I
d

en
ti

ty
 C

la
ss

if
ic

at
io

n
 )

Accuracy of Primary Task (Gender Classification) in %

Accuracy Loss of the Private Task for Shredder and DPFE 

DPFE
Shredder, w/o private labels
Shredder, w/ private labels

Better

(a)Misclasification rate of private labels
Privacy Improvement for Shredder and DPFE 

P
ri

va
cy

 Im
p

ro
ve

m
en

t 
N

o
rm

al
iz

ed
 

o
ve

r 
D

P
F

E

0

1

2

3

4

Accuracy Level

92% 91% 87% 85%

DPFE
Shredder, w/o private labels
Shredder, w/ private labels

(b)Normalized privacy improvement over DPFE

Figure9.Misclasification rate of private labels (identity) andprivacy
improvement comparison for different accuracy levels of theprimary
task (gender classification) over VGG-16 on VGG-Face dataset, for
Shredderwith both loss functions and DPFE.

Figure 9b shows the privacy improvement of Shredderwith
both loss functions, over DPFE. It can be inferred from the
Figure that Shredderwithout the private labels performs better
since it has a more general approach which scrambles more
overall information. However, Shredderwith the private la-
bels and also DPFE, take an approach which is directed at a
specific goal, which impedes them from providing privacy



for aspects other than the private task. This is seen more in
DPFE than Shredderwith private labels since the latter still
tries to maximize noise standard deviation.

7 RelatedWork
The literature abounds with a variety of attempts to provide
greater protection to users’ private data in a neural processing
system [19, 21, 54–56]. These efforts span different levels of
the system, from training to inference. The majority of these
studies [55, 56]; however, have focused on preserving the pri-
vacy of contributing users to statistical databases or training
models. [57], for instance, introduces a privacy-preserving
protocol for federated learning. These techniques tackle the
inherent conflict of extracting useful information from a data-
base while protecting private or sensitive data of the individu-
als from being extracted or leaked [58]. As Table 4 illustrates,
the landscape of research in privacy for neural networks can
be categorized into the efforts that focus on training or infer-
ence. These categories can be further grouped according to
whether or not they require retraining the DNNweights or
modifying themodel itself (i.e., intrusive). Shredder falls in the
category of the techniques that are non-intrusive and target
the inference phase.

The other technique in this same category, MiniONN [21],
uses homomorphic encryption that imposes non-trivial com-
putation overheads making it less suitable for inference on
edge. Below, we discuss the most related works, which typi-
cally require obtrusive changes to the model, training, or add
prohibitively large computation overheads.

Adding noise for privacy. The idea of noise injection for
privacy goes back at least to the very first differential privacy
papers [23, 59] where they randomize the result of a query to
a database by adding noise drawn from a Laplace distribution.
More recently, Wang et al. [60] proposes data nullification
and noise injection for private inference.
However, unlike Shredder, they retrain the network. Osia

et al. [42, 61] design a private feature extraction architecture
that uses principal component analysis (PCA) to reduce the
amount of information. Leroux et al. [62] use an autoencoder
to obfuscate the data before sending it to the cloud, but the
obfuscation they use is readily reversible, as they state.We, on
the other hand, cast finding the noise as differentiable noise
tensor while considering accuracy in the loss function of the
optimization that finds the noise.

Trusted execution environments. Several research pro-
pose runningmachine learning algorithms in in trusted execu-
tion environments such as Intel SGX [63] andARMTrustZone
[64] to address the same remote inference privacy [65–68] as
well as integrity [65]. However, the privacy model in that re-
search requires users to send their data to an enclave running
on a remote servers. In contrast to Shredder, this model still
allows the remote server to have access to the raw data and as

the new breaches in hardware [8, 9, 69–71] show, the access
can lead to comprised privacy.

Differential privacy. As a mathematical framework, dif-
ferential privacy [23, 58, 59]was initially proposed to quantify
privacy of users in the context of privacy-preserving data-
mining or statistical databases. To this end, it measures the
degree to which the algorithm behaves similarly if an indi-
vidual record is in or out of the database/training set. This
definition gives a robust mathematical guarantee to the ques-
tion of – given a private training set (or, database entry) as
input, how safe is the trained model (or, aggregate database)
to publish [72]. Naturally, differential privacy has also been
employed in training of deep neural networks [55, 56] where
the datasets may be crowdsourced and contain sensitive in-
formation. The research on differential privacy is largely in
centralizedmodels, where users trust a curatorwho has access
to the whole pool of private data [58]. In a more practical
model, called local differential privacy, the system does not
require users to even trust the curator to inspect their data,
even for the purpose of preserving privacy [14, 15, 73, 74]. In
this setting, which the system is just collecting data and not
performing inference, the data is still scrambled on the edge
devices. This scrambled data is then remotely aggregated and
just provides an average trend across multiple sources. The
existing differential privacymodels are in fact solving a funda-
mentally different problem than Shredder. They are concerned
with data collection while Shredder aims to improve privacy
during a real-time cloud-enabled inference.

Encryptionandcryptographictechniques.Securemul-
tiparty computation (SMC) [16, 17] andhomomorphic encryp-
tion [19, 21, 75] have also been used as attempts to deal with
the privacy on offloaded computation on the cloud [19, 21, 22,
75, 76, 76, 77]. Securemultiparty computation refers toagroup
of protocols that enable multiple parties to jointly compute a
function while each party solely has access to its own part of
the input [17, 77]. To establish trust and isolation, SMC relies
on compute-heavy encryption or obfuscation techniques. To
adopt SMC to the privacy problem, recent works [77] assume
a two-party secure computation in which the cloud holds a
neural network and the client holds an input to the network,
typically an image and the communication happens in the
encrypted domain. Homomorphic encryption, which can be
used to implement SMC, is also used for privacy protection
in neural networks. This cryptographic technique allows (all
or a subset of) operations to be performed on the encrypted
data without the need for decryption. These works [19, 21]
suggest the client/edge device encrypts the data (on top of the
communication encryption, e.g., SSL) before sending it to the
cloud; which it then, performs operations on the encrypted
data and returns the output. Nevertheless, this approach suf-
fers from a prohibitive computational and communication
cost, exacerbating the complexity and compute-intensivity
of neural networks especially on resource-constrained edge



Table 4. Privacy Protecting methods in DNNs.

Non-Intrusive Intrusive

Inference Shredder CryptoNets [19], GAZELLE [75]
MiniONN [21] Arden [60], DPFE [42, 61]

Training/DB
Rappor [15] With Differential Privacy [55, 56],
Apple [14] SecureML [77]

devices. Shredder, in contrast, avoids the significant cost of
encryption or homomorphic data processing.

8 Conclusion
Privacy isa fundamentalhumanright recognized in theUnited
Nations (UN)Declaration ofHumanRights. However, the sys-
tems and computational infrastructure in use seem to have
been designed for offering functionalitywithout foundational
consideration for privacy. Such a gap is more concerning to-
day since cloud-based deep learning service make their way
to the households as home automation devices or shape our
social, political, and economical interactions. A single paper
is not an answer to this brewing epidemic, but it represents an
initial effort to build a mathematically-sound private systems
that offer reliable degrees of utility. As such, this paper exam-
ines the use of noise to reduce the information content of the
communicated data to the cloud while still maintaining high
levels of accuracy. By casting the noise injection as a learning
process that uses differentiation to find the distribution of
the noise, we devise Shredder, which strikes an asymmetric
balance between accuracy and privacy with formal mathe-
matical guarantees. Experimentation with multiple real-life
DNNs showed that Shredder can significantly reduce the in-
formation content of the communicated data with only 1.58%
accuracy loss. These results pave a promising path forward.

9 Acknowledgment
We thank the anonymous reviewers for their insightful com-
ments. This work was in part supported by National Sci-
ence Foundation (NSF) awards CNS#1703812, ECCS#1609823,
CCF#1553192, Air Force Office of Scientific Research (AFOSR)
YoungInvestigatorProgram(YIP)award#FA9550-17-1-0274, Na-
tional Institute of Health (NIH) award #R01EB028350, and Air
Force Research Laboratory (AFRL) and Defense Advanced
Research Project Agency (DARPA) under agreement number
#FA8650-20-2-7009 and #HR0011-18-C-0020. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright no-
tation thereon. The views and conclusions contained herein
are those of the authors and should not be interpreted as nec-
essarily representing the official policies or endorsements,
either expressed or implied, of Arm, Amazon, NSF, AFSOR,
NIH, AFRL, DARPA or the U.S. Government.

References
[1] M. A. Cusumano, “Cloud computing and saas as new computing

platforms.,” Commun. ACM, vol. 53, no. 4, pp. 27–29, 2010.
[2] C. Cachin, I. Keidar, A. Shraer, et al., “Trusting the cloud,”Acm Sigact

News, vol. 40, no. 2, pp. 81–86, 2009.
[3] H. R. Motahari-Nezhad, B. Stephenson, and S. Singhal, “Outsourcing

business to cloud computing services: Opportunities and challenges,”
IEEE Internet Computing, vol. 10, no. 4, pp. 1–17, 2009.

[4] M. I. Jordan andT.M.Mitchell, “Machine learning: Trends, perspectives,
and prospects,” Science, vol. 349, no. 6245, pp. 255–260, 2015.

[5] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[6] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Toward dark
silicon in servers,” IEEE Micro, vol. 31, pp. 6–15, 2011.

[7] J. Hauswald, M. Laurenzano, Y. Zhang, C. Li, A. Rovinski, A. Khurana,
R. G. Dreslinski, T. N. Mudge, V. Petrucci, L. Tang, and J. Mars, “Sirius:
An open end-to-end voice and vision personal assistant and its
implications for future warehouse scale computers,” in ASPLOS, 2015.

[8] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss,W. Haas, M. Hamburg,
M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre
attacks: Exploiting speculative execution,” in 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[9] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn,
S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[10] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of
mycloud:Exploring information leakage in third-partycomputeclouds,”
in Proceedings of the 16th ACM Conference on Computer and Communi-
cations Security, CCS ’09, (NewYork, NY, USA), pp. 199–212, ACM, 2009.

[11] NBCNews), “Facebookdataharvesting scandalwidens to 87millionpeo-
ple.” online accessed May 2019 https://www.nbcnews.com/tech/tech-
news/facebook-data-harvesting-scandal-widens-87-million-people-
n862771.

[12] Axonium), “23andme scandal highlights data privacy concerns shared
by axonium and mr koh boon hwee..” online accessed May 2019
https://medium.com/@Axonium_org/23andme-scandal-highlights-
data-privacy-concerns-shared-by-axonium-and-mr-koh-boon-
hwee-dd2e241f1ef2.

[13] J. Konečný,H. B.McMahan, F. X. Yu, P. Richtarik, A. T. Suresh, andD. Ba-
con, “Federated learning: Strategies for improving communication effi-
ciency,” inNIPSWorkshop on PrivateMulti-PartyMachine Learning, 2016.

[14] Differential Privacy Team, “Learning with privacy at
scale,” tech. rep., Apple, 2017. online accessed May 2019
https://machinelearning.apple.com/docs/learning-with-privacy-at-
scale/appledifferentialprivacysystem.pdf.

[15] Úlfar Erlingsson, V. Pihur, and A. Korolova, “Rappor: Randomized
aggregatable privacy-preserving ordinal response,” in Proceedings of
the 21st ACM Conference on Computer and Communications Security,
(Scottsdale, Arizona), 2014.

[16] A. C. Yao, “How to generate and exchange secrets,” in 27th Annual
Symposium on Foundations of Computer Science (sfcs 1986), pp. 162–167,
Oct 1986.

[17] R. Bahmani, M. Barbosa, F. Brasser, B. Portela, A.-R. Sadeghi, G. Scerri,
and B. Warinschi, “Secure multiparty computation from sgx,” IACR
Cryptology ePrint Archive, vol. 2016, p. 1057, 2016.

[18] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in In
Proc. STOC, pp. 169–178, 2009.

[19] N. Dowlin, R. Gilad-Bachrach, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted
data with high throughput and accuracy,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning - Volume 48, ICML’16, pp. 201–210, JMLR.org, 2016.

 https://www.nbcnews.com/tech/tech-news/facebook-data-harvesting-scandal-widens-87-million-people-n862771
 https://www.nbcnews.com/tech/tech-news/facebook-data-harvesting-scandal-widens-87-million-people-n862771
 https://www.nbcnews.com/tech/tech-news/facebook-data-harvesting-scandal-widens-87-million-people-n862771
 https://medium.com/@Axonium_org/23andme-scandal-highlights-data-privacy-concerns-shared-by-axonium-and-mr-koh-boon-hwee-dd2e241f1ef2
 https://medium.com/@Axonium_org/23andme-scandal-highlights-data-privacy-concerns-shared-by-axonium-and-mr-koh-boon-hwee-dd2e241f1ef2
 https://medium.com/@Axonium_org/23andme-scandal-highlights-data-privacy-concerns-shared-by-axonium-and-mr-koh-boon-hwee-dd2e241f1ef2
 https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf
 https://machinelearning.apple.com/docs/learning-with-privacy-at-scale/appledifferentialprivacysystem.pdf


[20] J. W. Bos, K. Lauter, J. Loftus, and M. Naehrig, “Improved security for a
ring-based fully homomorphic encryption scheme,” inProceedings of the
14th IMA International Conference onCryptography andCoding - Volume
8308, IMACC 2013, (Berlin, Heidelberg), pp. 45–64, Springer-Verlag,
2013.

[21] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network
predictions via minionn transformations,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, (New York, NY, USA), pp. 619–631, ACM, 2017.

[22] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and
F. Koushanfar, “Xonn: Xnor-based oblivious deep neural net-
work inference.” Cryptology ePrint Archive, Report 2019/171, 2019.
https://eprint.iacr.org/2019/171.

[23] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise
to sensitivity in private data analysis,” in Proceedings of the Third
Conference on Theory of Cryptography, TCC’06, (Berlin, Heidelberg),
pp. 265–284, Springer-Verlag, 2006.

[24] C. E. Shannon, “A mathematical theory of communication,” Bell system
technical journal, vol. 27, no. 3, pp. 379–423, 1948.

[25] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?,” in NIPS, 2014.

[26] R. Shwartz-Ziv and N. Tishby, “Opening the black box of deep neural
networks via information,” 2017.

[27] Z. Goldfeld, E. van den Berg, K. Greenewald, I. Melnyk, N. Nguyen,
B. Kingsbury, and Y. Polyanskiy, “Estimating information flow in
neural networks,” 2018.

[28] A. M. Saxe, Y. Bansal, J. Dapello, M. Advani, A. Kolchinsky, B. D. Tracey,
and D. D. Cox, “On the information bottleneck theory of deep learning,”
in International Conference on Learning Representations, 2018.

[29] N. Tishby, F. C. Pereira, and W. Bialek, “The information bottleneck
method,” arXiv preprint physics/0004057, 2000.

[30] N. Tishby and N. Zaslavsky, “Deep learning and the information bottle-
neckprinciple,” 2015 IEEE InformationTheoryWorkshop (ITW), Apr 2015.

[31] W.Wang, L. Ying, and J. Zhang, “On the relation between identifiability,
differential privacy, andmutual-information privacy,” IEEETransactions
on Information Theory, vol. 62, pp. 5018–5029, Sep. 2016.

[32] J. Liao, L. Sankar, V. Y. F. Tan, and F. du Pin Calmon, “Hypothesis testing
under mutual information privacy constraints in the high privacy
regime,” IEEE Transactions on Information Forensics and Security, vol. 13,
pp. 1058–1071, April 2018.

[33] L. Sankar, S. R. Rajagopalan, and H. V. Poor, “Utility-privacy tradeoffs
in databases: An information-theoretic approach,” IEEE Transactions
on Information Forensics and Security, vol. 8, pp. 838–852, June 2013.

[34] D. Guo, S. Shamai, and S. Verdú, “Additive non-gaussian noise channels:
Mutual information and conditional mean estimation,” in Proceedings.
International Symposium on Information Theory, 2005. ISIT 2005.,
pp. 719–723, IEEE, 2005.

[35] Dongning Guo, S. Shamai, and S. Verdu, “Mutual information and
minimummean-square error in gaussian channels,” IEEE Transactions
on Information Theory, vol. 51, pp. 1261–1282, April 2005.

[36] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” CoRR, vol. abs/1510.00149, 2016.

[37] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” SIGARCH Comput. Archit. News, vol. 40,
pp. 356–367, June 2012.

[38] T. van Laarhoven, “L2 regularization versus batch and weight
normalization,” CoRR, vol. abs/1706.05350, 2017.

[39] D. P. Kingma and J. Ba, “Adam: Amethod for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2015.

[40] “The 20 newsgroups data set.” online accessed July 2019
http://qwone.com/~jason/20Newsgroups/.

[41] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015.

[42] S. A. Osia, A. Taheri, A. S. Shamsabadi, M. Katevas, H. Haddadi, and
H. R. R. Rabiee, “Deep private-feature extraction,” IEEE Transactions
on Knowledge and Data Engineering, pp. 1–1, 2018.

[43] Y. Kang, J. Hauswald, C.Gao,A. Rovinski, T.Mudge, J.Mars, and L. Tang,
“Neurosurgeon:Collaborative intelligencebetweenthecloudandmobile
edge,” SIGARCH Comput. Archit. News, vol. 45, pp. 615–629, Apr. 2017.

[44] “Apple moves to third-generation siri back-end, built on
opensource mesos platform.” Online accessed August 2019,
https://9to5mac.com/2015/04/27/siri-backend-mesos/.

[45] “Apple moves to third-generation siri back-end, built on
opensource mesos platform.” Online accessed August 2019,
https://9to5mac.com/2015/04/27/siri-backend-mesos/.

[46] Z. Szabó, “Information theoretical estimators toolbox,” Journal of
Machine Learning Research, vol. 15, pp. 283–287, 2014.

[47] N.YannLeCun (Courant Institute andN.Y.CorinnaCortes (GoogleLabs,
“The mnist dataset of handwritten digits.” online accessed May 2019
http://www.pymvpa.org/datadb/mnist.html.

[48] Y. LeCun, “Gradient-based learning applied to document recognition,”
1998.

[49] A. Krizhevsky, “Convolutional deep belief networks on cifar-10,” 2010.
[50] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. D. Shet,

“Multi-digit number recognition from street view imagery using deep
convolutional neural networks,” CoRR, vol. abs/1312.6082, 2014.

[51] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei,
“ImageNet Large Scale Visual Recognition Challenge,” International
Journal of Computer Vision (IJCV), vol. 115, no. 3, pp. 211–252, 2015.

[52] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
pp. 84–90, 2012.

[53] A. Coates, B. Huval, T. Wang, D. J. Wu, B. Catanzaro, and A. Y. Ng,
“Deep learning with cots hpc systems,” in ICML, 2013.

[54] Q. Xiao, K. Li, D. Zhang, and W. Xu, “Security risks in deep learning
implementations,” CoRR, vol. abs/1711.11008, 2017.

[55] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in
2015 53rd Annual Allerton Conference on Communication, Control, and
Computing (Allerton), pp. 909–910, Sep. 2015.

[56] M.Abadi, A. Chu, I. J. Goodfellow,H. B.McMahan, I.Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” 2016.

[57] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security,
CCS ’17, (New York, NY, USA), pp. 1175–1191, ACM, 2017.

[58] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Found. Trends Theor. Comput. Sci., vol. 9, pp. 211–407,Aug. 2014.

[59] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor,
“Our data, ourselves: Privacy via distributed noise generation,” in
Proceedings of the 24th Annual International Conference on The Theory
and Applications of Cryptographic Techniques, EUROCRYPT’06, (Berlin,
Heidelberg), pp. 486–503, Springer-Verlag, 2006.

[60] J.Wang, J. Zhang,W. Bao, X. Zhu, B. Cao, and P. S. Yu, “Not just privacy:
Improving performance of private deep learning in mobile cloud,”
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, KDD ’18, (New York, NY, USA),
pp. 2407–2416, ACM, 2018.

[61] S. A. Osia, A. S. Shamsabadi, S. Sajadmanesh, A. Taheri, K. Katevas,
H. R. Rabiee, N. D. Lane, and H. Haddadi, “A hybrid deep learning
architecture for privacy-preserving mobile analytics,” 2017.

[62] S. Leroux, T. Verbelen, P. Simoens, and B. Dhoedt, “Privacy aware
offloading of deep neural networks,” CoRR, vol. abs/1805.12024, 2018.

[63] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi,
V. Shanbhogue, and U. R. Savagaonkar, “Innovative instructions and

https://eprint.iacr.org/2019/171
http://qwone.com/~jason/20Newsgroups/
 http://www.pymvpa.org/datadb/mnist.html


software model for isolated execution,” in Proceedings of the 2Nd Inter-
national Workshop on Hardware and Architectural Support for Security
and Privacy, HASP ’13, (New York, NY, USA), pp. 10:1–10:1, ACM, 2013.

[64] T. Alves and D. Felton, “Trustzone: Integrated hardware and software
security,” 01 2004.

[65] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution
of neural networks in trusted hardware,” in International Conference
on Learning Representations, 2019.

[66] T. Hunt, C. Song, R. Shokri, V. Shmatikov, and E. Witchel, “Chiron:
Privacy-preserving machine learning as a service,” 2018.

[67] L. Hanzlik, Y. Zhang, K. Grosse, A. Salem, M. Augustin, M. Backes, and
M. Fritz, “Mlcapsule: Guarded offline deployment of machine learning
as a service,” 2018.

[68] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin,
K. Vaswani, and M. Costa, “Oblivious multi-party machine learning
on trusted processors,” in 25th USENIX Security Symposium (USENIX
Security 16), (Austin, TX), pp. 619–636, USENIX Association, 2016.

[69] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina, T. Prescher,
and D. Gruss, “ZombieLoad: Cross-privilege-boundary data sampling,”
arXiv:1905.05726, 2019.

[70] J. Van Bulck, M. Minkin, O.Weisse, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx, “Foreshadow:
Extracting the keys to the Intel SGX kingdom with transient out-of-
order execution,” in Proceedings of the 27th USENIX Security Symposium,
USENIX Association, August 2018.

[71] O.Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F.Wenisch, andY. Yarom, “Foreshadow-NG:
Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018.

[72] J. F.Reed,A. J.Aviv,D.Wagner,A.Haeberlen,B.C.Pierce, and J.M.Smith,
“Differential privacy for collaborative security,” in EUROSEC, 2010.

[73] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan,
D. Lie, M. Rudominer, U. Kode, J. Tinnes, and B. Seefeld, “Prochlo:
Strong privacy for analytics in the crowd,” in Proceedings of the 26th
Symposium on Operating Systems Principles, SOSP ’17, (New York, NY,
USA), pp. 441–459, ACM, 2017.

[74] B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting telemetry data
privately,” in Proceedings of the 31st International Conference on Neural
Information Processing Systems, NIPS’17, (USA), pp. 3574–3583, Curran
Associates Inc., 2017.

[75] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A
low latency framework for secure neural network inference,” in
Proceedings of the 27th USENIX Conference on Security Symposium,
SEC’18, (Berkeley, CA, USA), pp. 1651–1668, USENIXAssociation, 2018.

[76] H. Chabanne, A. de Wargny, J. Milgram, C. Morel, and E. Prouff,
“Privacy-preserving classification on deep neural network,” IACR
Cryptology ePrint Archive, vol. 2017, p. 35, 2017.

[77] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-
preserving machine learning,” in 2017 IEEE Symposium on Security and
Privacy (SP), pp. 19–38, May 2017.


	Abstract
	1 Introduction
	2 short title
	3 Phase II: Noisy Inference
	4 Noise Distribution Learning Formulation
	4.1 Threat Model
	4.2 Ex Vivo Notion of Privacy
	4.3 In Vivo Notion of Privacy
	4.4 Loss Function
	4.5 Fitting Noise Tensor to Laplace distribution and Collecting Distribution and Samples
	4.6 Loss Function and Noise Learning Analysis
	4.7 Noise Tensor Sampling During Inference

	5 Formal Proof and Guarantees
	6 Evaluation
	6.1 Methodology
	6.2 Experimental Results

	7 Related Work
	8 Conclusion
	9 Acknowledgment
	References

