
978-1-7281-1957-1/19/$31.00 c⃝2019 IEEE

TURTLE: A Low-Cost Fault Injection Platform for
SRAM-based FPGAs

Corbin Thurlow, Hayden Rowberry, and Michael Wirthlin
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Brigham Young University
Provo, Utah, USA

{corbin.thurlow, wirthlin}@byu.edu, hayden.rowberry@byu.net

Abstract—This paper presents the TURTLE fault injection
platform for inserting faults into SRAM FPGAs. The TURTLE
system is designed to gather significant fault injection data to
test and validate radiation-induced single-event upset (SEU) mit-
igation techniques for FPGAs. The TURTLE is a low-cost fault
injection platform that emulates upsets within the configuration
memory (CRAM) of an FPGA through partial reconfiguration.
This work successfully implemented the proposed architecture
and performed several successful fault injection campaigns on
multiple designs and SEU mitigation techniques. Results in this
paper show large amounts of data collected from a fault injection
campaign used to validate the PCMF SEU mitigation technique.
Over 170 million injections were performed using the TURTLE
for this campaign.
Index Terms— Field Programmable Gate Array; Fault

injection; SEU Mitigation

I. INTRODUCTION

Like most semiconductor devices, FPGAs are sensitive to
radiation-induced single-event upsets (SEU). In SRAM-based
FPGAs where the configuration of the FPGA is determined
by the state of the configuration memory or CRAM, SEUs
within the CRAM can alter the operation of the circuit. Such
alterations of the circuit are problematic in safety-critical or
high-reliable systems such as those typically used in space
systems. It is important to understand how FPGAs and FPGA
designs behave in the presence of CRAM upsets before using
them in such systems.
A common approach for understanding the behavior of

FPGAs in radiation environments is to perform accelerated
radiation testing. In a radiation test, an FPGA configured with
a specific design is placed in front of a high-energy radiation
beam and carefully monitored for anomalous behavior. Such
testing, including neutron, proton, and heavy-ion beamlines,
are available at a variety of radiation test facilities. These beam
facilities provide radiation at a sufficient energy level to cause
upsets within the FPGA and are used to understand device
behavior that might occur in space.
Radiation testing, however, is expensive and difficult to ac-

cess. Another approach for evaluating the behavior of FPGAs
with CRAM upsets is through fault injection. With fault injec-
tion, upsets can be inserted into the CRAM artificially through
partial reconfiguration. Although the mechanism for inserting

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

faults into the CRAM is different from radiation testing, fault
injection can provide essential information on the sensitivity of
FPGA designs to CRAM upsets and provide early estimates on
the effectiveness of SEU mitigation techniques [1]. In many
cases, fault injection is often used to prepare for radiation
testing.
This paper presents the TURTLE (Testing Ultra-Reliability

Techniques using Low-cost Equipment) fault injection system
that provides a low-cost approach for artificially injecting
faults within an SRAM FPGA. The goal of the TURTLE
system was to develop a fault injection system that can be
used to evaluate SEU mitigation approaches at a relatively
low-cost. This system is based on the Xilinx Artix-7 FPGA,
but the concept can be applied to any FPGA family. This paper
will describe the TURTLE fault injection system and provide
an example of the results obtained using this system for an
SEU mitigation strategy.

II. BACKGROUND AND RELATED WORK

FPGA fault injection is not a new idea, and a variety of
different FPGA fault injection approaches have been demon-
strated [2]. These approaches all vary, but in general, all of
them include the following: inject faults into the FPGA design,
operate the FPGA design under the fault condition with test
vectors, identify design or system failures, and report results.
The approach used for each of these varies from system to
system, but all of these approaches seek to understand how
faults affect the behavior of FPGA designs subject to radiation-
induced faults.
One approach created a fault injection platform to evaluate

the effectiveness of triple-modular redundancy (TMR) [3].
This fault injection platform is composed of two separate
FPGA boards: one board contains the design under test (DUT),
while the other board has a golden copy of the design. The
results of both boards are compared, and discrepancies in their
operation indicate a system failure. The fault injection results
obtained on this system were validated and correlated through
radiation testing.
Other work created the FLIPPER fault injection platform

[4], which operates with two FPGA devices. One FPGA
is the control device, which injects faults into CRAM and
sends input vectors to the second DUT FPGA. A simulation
environment generates input test vectors and produces a golden

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

output vector used for comparing system output. This platform
can inject a single CRAM fault quickly to provide rapid fault
injection data (50µs per fault).
The fault injection platform presented in this paper is similar

to those discussed above. The TURTLE system uses one
FPGA for a golden reference design and a second for a DUT.
Fault injection is performed through partial reconfiguration via
JTAG interface. This platform provides a low-cost solution to
simplify the implementation of fault injection campaigns on
FPGAs designs. This goal facilitates the generation of very
large amounts of fault injection data with relatively little cost.

III. STATISTICAL CONFIDENCE OF FAULT INJECTION

One of the most important purposes of fault injection is to
estimate FPGA design sensitivity to single-event upsets. The
sensitivity of an FPGA design is the percentage of CRAM
bits within the FPGA that will cause the design to operate
incorrectly if upset. This sensitivity measure can be used to
estimate failure rates and the mean-time to failure (MTTF) of
a design in a variety of radiation environments.
The sensitivity of an FPGA design can be estimated with

fault injection by injecting a predetermined number of CRAM
faults (n) into the design and observing the number of system
failures (k). After injecting a fault, the fault injection system
must observe the FPGA design and determine whether the
given fault caused any design failures. If the injected CRAM
fault caused the design to deviate from its expected behavior,
the CRAM bit is labeled as sensitive. If the fault did not cause
any problems, it is labeled as insensitive. In most cases, it is
not possible to test every CRAM bit, and an estimate of the
sensitivity must be made. This sensitivity estimator, r̂, of the
Binomial distribution can be computed by dividing k by n as
follows:

r̂ =
k

n
(1)

A large number of faults is needed to obtain an accurate
estimate of the sensitivity. The standard deviation of the
sensitivity estimator is calculated with the following equation:

σ =

√
k

n2

(
1− k

n

)
(2)

The standard deviation of the sensitivity estimator reduces with
1/n2, suggesting that a large number of faults must be injected
to obtain statistical confidence in the estimate. A related metric
for measuring the variation of the sensitivity estimate is the
“coefficient of variation”, which shows the extent of variability
in relation to the mean population. This measure is obtained
by dividing the standard deviation by the mean as follows:

Coefficient of Variation =
σ

r̂
(3)

As SEU mitigation techniques are developed that success-
fully reduce the sensitivity of FPGA designs to CRAM upsets,
it is more difficult to obtain statistically accurate estimates of
the design sensitivity. To obtain statistically accurate estimates,
FPGA designs with lower sensitivity (i.e., those with SEU

TABLE I: Fault Injection Data for MD5 Encryption Core

Description Unmitigated TMR
Faults Injected (n) 2,000,000 14,000,000
Failures (k) 129,677 486
Est. Sensitivity (r̂) 6.48% .0035%
Coefficient of Variation 2.69E-3 4.54E-2

mitigation) must have significantly more faults injected than
FPGA designs with higher sensitivity (i.e., those without SEU
mitigation).
The need for large numbers of fault injection can be

demonstrated with the SEU mitigation technique of Triple
Modular Redundancy (TMR). TMR is a well-known SEU
mitigation technique that involves triplicating circuit resources
and voting on the results [5]. Errors in one circuit copy are
masked by the correct results in the remaining two good
copies. TMR has been applied to FPGA circuits and has been
shown to significantly reduce design sensitivity. As an example
of this technique applied to an MD5 encryption core, Table
I demonstrates the effectiveness of TMR with the results of
a fault injection campaign completed on this platform. The
unmitigated design has a sensitivity of 6.48%, and with TMR,
the sensitivity is reduced to .0035% (over 1000x reduction in
design sensitivity).
Although the TMR design has a much lower estimated

sensitivity, the relative variation of the estimate is much higher
than that of the unmitigated design. Even though the TMR
fault injection campaign involved 7x more faults than that
of the unmitigated design, its relative variation is over 20x
larger than that of the unmitigated design. More injections
and observed failures are needed to reduce this coefficient
and obtain tighter interval bounds in the estimated design
sensitivity.
The example from Table I demonstrates the need for a fault

injection platform capable of providing a large number of
faults. The TURTLE platform was designed to address this
need by providing a low-cost platform that is able to inject a
large number of faults for FPGA designs. The primary goal
was to design a fault injection platform that could collect
statistically sufficient data with as little cost as possible.

IV. TURTLE ARCHITECTURE

The actual TURTLE architecture was driven by the goal of
building a low-cost fault injection platform that is relatively
easy to use. The TURTLE platform must inject faults at a
sufficient rate to collect statistically significant amounts of
data for a wide variety of FPGA designs and SEU mitigation
techniques. This section will provide a high-level overview of
the TURTLE fault injection approach implemented to meet
these goals.
The TURTLE approach follows a typical golden/DUT ap-

proach, as shown in Figure 1. In this approach, two identical
circuits operate in parallel, and CRAM faults are injected
into the DUT. Comparator logic checks the behavior of both
circuits each clock cycle, and when the behavior of the golden

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: The TURTLE architecture includes two FPGAs, one
golden copy of the design, and the DUT, which is tested
through fault injection

copy and the DUT deviate, a system error is detected and
logged. An advantage of this approach is that it is relatively
easy to implement – the circuitry needed for both the golden
design and DUT is the same. A disadvantage of this approach
is that more FPGA logic is required: one FPGA to implement
the golden design and one FPGA for the DUT. Also, the need
for comparator logic introduces timing delays into the system.
The fault injection system is controlled and monitored over

JTAG using an external device called the JTAG Configuration
Manager (JCM) [6]. This device injects the CRAM faults into
the DUT, monitors the status of the designs over JTAG, and
controls the overall fault injection procedure. The following
subsections describe each of these components in more detail.

A. Digilent Nexys Video Board
Within the TURTLE architecture, the golden and DUT

circuits are implemented in separate FPGA boards, requir-
ing two FPGA boards for a single TURTLE system. The
TURTLE uses the Digilent Nexys Video board [7], a low-
cost FPGA prototyping board used primarily for video related
circuits (see Figure 2). The Nexys Video board contains
a single Xilinx Artix-7 series FPGA (Xilinx part number

Fig. 2: Two Digilent Nexys Video Boards are paired in the
TURTLE architecture [7]

XC7A200T-1SBG484C), which contains 215,360 logic cells
(32,650 slices). The FPGA is connected to a variety of I/O
interfaces such as Ethernet, USB, HDMI video and is used
primarily for prototyping FPGA video application circuits.
An important component of the Nexys Video board used

by the TURTLE system is the FPGA Mezzanine Card (FMC)
connector. This board implements the 160-pin FMC low pin
count (LPC) standard connector and is used in the TURTLE
system for transmitting control signals and test data between
the golden design and DUT. The two FPGA boards are coupled
through the FMC connector by a custom FMC coupler card
described in the next section.
The FPGAs on the Nexys Video board can be configured in

a variety of ways including USB-JTAG, an onboard EEPROM,
a microSD card, and JTAG using a 6-pin JTAG through-hole
port. The external JCM system connects to the Nexys board
using the 6-pin JTAG header for programming, monitoring,
and testing purposes. The Nexys board also contains a variety
of LEDs, push buttons, and switches that are used for the
configuration, control, and monitoring of a TURTLE system.

B. FMC Coupler Card

A custom-built printed circuit board (PCB) was designed to
connect two Nexys Video boards using the FMC ports (see
Figure 3). This board, called the FMC coupler card, provides
a mechanical connection between the FMC ports of the two
Nexys Video boards of a single TURTLE system. This card
also provides onboard clocks distributed to both FPGA boards
so that both boards can operate synchronously during fault
injection.

Fig. 3: The FMC coupler card couples the I/O of two Nexys
Video boards

The FMC coupler card uses 32 differential I/O pairs for
a total of 64 data signals between the two FPGA boards.
While the LPC connector provides 160 physical pins, the
LPC specification calls for only 68 of those to be data lines.
The other signals are dedicated to JTAG, I2C, power, ground,
and other purposes. The data signals between the boards are
swapped, allowing for the same FPGA design to operate on

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: FMC signal swapping through the FMC connectors on
the golden and DUT FPGA boards

either board without additional I/O customization. Figure 4
shows the swapping architecture of these signals.
In addition to the 64 data signals, the FMC coupler card

provides three reset signals, two control signals, and up to
three synchronous clock signals1 for both FPGAs. The layout
and routing of these signals were carefully controlled to make
sure the timing of the clocking and resets are identical for both
FPGAs. The coupler card also links the JTAG chain of both
boards, as described in the next section.

C. JTAG
The TURTLE fault injection approach relies primarily on

JTAG to inject faults, monitor system status, and control the
fault injection flow. While there are other methods that provide
faster configuration and fault injection speeds, many off-the-
shelf boards do not support all these configuration modes [8].
JTAG was selected because of its wide use in development
boards such as the Nexys Video board. The JTAG standard
provides the ability to control multiple devices on a single
chain.

Fig. 5: The JTAG chain in the TURTLE architecture for test
control

The FPGA designs used in fault injection incorporate the
BSCAN primitive to provide status on the designs to the JTAG
chain. The FMC coupler card unifies the JTAG chains of both
boards to provide a single JTAG chain for the JCM system.
The organization of the JTAG chain is shown in Figure 5. The
JTAG chain, beginning with the JCM, first connects to the

1Three clock signals are provided to support triple modular redundancy
designs.

golden device. The chain then continues to the FMC coupler,
where a custom cable is used to jump the JTAG chain to the
test device, where the JTAG signals then loop back to complete
the JTAG chain.

D. JCM
The JTAG Configuration Manager, or JCM, controls the

fault injection process in the TURTLE system. The JCM is a
Linux-based embedded system that operates on the Zynq 7010
programmable SOC and was designed to generate high-speed
custom JTAG command sequences [6]. The programmable
logic (PL) portion of the Zynq device contains a custom
hardware circuit for controlling JTAG TAP controllers. The
JCM has custom software for communicating with the JTAG
control firmware. Combining a dedicated circuit for controlling
the JTAG chain along with custom JTAG software allows
the system to provide both high-speed JTAG communication
as well as flexibility in creating complex JTAG command
sequences.
With control of the JTAG chain shown in Figure 5, the JCM

is able to control all aspects of the fault injection process. The
JCM can communicate with the configuration circuit of either
FPGA on the chain to perform initial FPGA configuration,
inject faults into the FPGA CRAM, repair FPGA CRAM
faults, and read the configuration status. The JCM is also able
to send or receive data from either FPGA by communicating
with the BSCAN primitives embedded within the FPGA
designs. The BSCAN primitive allows FPGA designs to have
access to the external JTAG communication protocol and is
used in TURTLE for managing control and data transfer of
the fault injection process.
The JCM also contains a network interface and commu-

nicates with the outside world through TCP/IP. In a typical
configuration, an external host computer connects to the JCM
using Ethernet, and the user logs into the JCM Linux system
remotely to execute the fault injection code. After the fault
injection activities are complete, the user transfers the logs
from the JCM to the host computer for post-processing.
A complete TURTLE system that includes two Nexys Video

boards, an FMC coupler card, and a JCM is shown in Figure
6. As seen in this figure, the TURTLE system is made
from relatively inexpensive FPGA boards and commodity
components. The following section will describe how designs
are prepared for fault injection on the TURTLE system.

Fig. 6: A JCM controlling a fault injection test on a single
TURTLE configuration

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

V. TURTLE DESIGN PREPARATION

In the TURTLE platform, special design preparations and
considerations must occur before a design is ready to be
tested with fault injection. These preparations include inserting
submodules, shown in Figure 7, into both the golden device
and DUT. The following subsections will discuss the special
design submodules and considerations.

Fig. 7: Different submodules are inserted into each device for
design preparation before testing

A. Design Under Test

In both the golden and DUT FPGAs, the majority of
available logic is dedicated to implementing the DUT. A
limitation of the TURTLE platform is the limited I/O across
the FMC coupler card (only 64 data signals are available). For
applications and designs that require more I/O, a reduction
network needs to be implemented to reduce the I/O to the
number of signals available through the FMC coupler card. In
the TURTLE architecture, the DUT FPGA contains minimal
additional logic for resets and control signals. The golden
FPGA, however, contains other submodules that are explained
in detail in the following subsections.

B. Error Detection Logic

To achieve synchronous lockstep comparison between the
responses of the golden device and DUT, the golden FPGA
implements an error detection submodule. For each input test
vector, the error detection logic receives corresponding output
responses (see Figure 7) from both devices. The responses
are compared to determine if there is an error in the DUT
response. An error is detected when the DUT response does
not match the one given by the golden DUT.

C. Master Finite State Machine

An additional submodule implemented in the golden FPGA
is a finite state machine (FSM) that aids in synchronizing the
two devices. This FSM has four states. They are the initialize,
reset, delay, and compare states.
Initialize The initialize state initializes reset and control

signals when both devices are programmed for a fault
injection test.

Reset The reset state is used to help synchronize the designs
as well as issue internal resets when necessary during
fault injection.

Delay The delay state is used in the golden FPGA to deter-
mine when the output response from the DUT is valid.
The total time delay is design-dependent and is necessary
to ensure the golden FPGA compares valid output data
from both circuits.

Compare The compare state enables the golden FPGA to
compare output responses from both devices and deter-
mine if a failure has occurred.

This FSM plays an important role in ensuring the DUT
and golden device operate synchronously as well as aids in
the fault injection approach that will be discussed in a later
section.

D. User BSCAN Interface
The golden FPGA implements BSCAN primitives along

with custom HDL code to make the system status and internal
data signals available through JTAG. The TURTLE platform
uses a system status that is 32 bits. The least significant byte
in the 32-bit value is updated when failures are detected.
The most significant bit in this byte is the system failure bit,
which is set to 1 when a failure occurs. The lower 7 bits of
this byte contains information about individual domains when
implementing TMR designs. The rest of the bits in the system
status are driven by a predetermined constant value. When
the lower byte is all zeros, and the rest of the system status
reflects the predetermined constant, the system is in a known
good state with no errors. During fault injection, the JCM
queries and monitors the system status through this BSCAN
submodule.

VI. TURTLE FAULT INJECTION APPROACH

The fault injection approach implemented in the TURTLE
system uses custom software and hardware on the JCM. This
section describes the fault injection algorithm implemented
on the TURTLE platform, as shown in Figure 8. The flow
explained in the section is a fault emulation methodology that
injects faults into the CRAM of the DUT.

A. Initialization
The first step in a fault injection test on the TURTLE is ini-

tialization. An important aspect of initialization is calibrating
the operating clock speed of the JTAG chain. Speed calibration
is performed to determine the maximum operating clock speed
for data transfer through the JTAG chain. Calibration for
maximum speed must account for cable length and number
of devices on the JTAG chain. The maximum data transfer
speed determined during calibration affects the overall fault
injection speed. After calibration of the JTAG clock speed,
the golden device and DUT are programmed with bitstreams
through JTAG.
After the devices are programmed, the two designs must be

synchronized to ensure both circuits receive and process the
same test vectors on the same clock cycle. The golden device
FSM helps with the synchronization process. Internal resets
are applied by the FSM to reset and synchronize the circuits
in the devices. This synchronization is essential to be able to

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Fault injection flow in the TURTLE platform

run both designs in lockstep and compare output results from
the golden device and DUT cycle-by-cycle. Once the system
status shows the designs are synchronously operating, the fault
injection test can proceed.

B. Fault Location Selection and Injection
After initialization, software on the JCM selects a CRAM

bit where the fault will be injected (see Figure 8). At this
stage of fault injection, the test enters a continuous loop.
Figure 8 shows this loop that starts with fault location selection
and terminates when there are no more faults to be injected.
There are a variety of ways that fault location selection can
be performed on the TURTLE. These selection methods are
random, targeted, sequential, and multi-cell.
Random Random fault injection consists of selecting a ran-

dom frame, word, and bit in the CRAM as the fault
to inject. This form of bit selection is similar to what
might occur in a radiation test facility and is often used
to predict what will happen during radiation testing.

Targeted Targeted fault injection selects specific CRAM bits
or device tiles to inject as specified by a user-generated
file. This form of bit selection is often used to “replay”
faults that occurred at a radiation test facility.

Sequential Sequential fault injection injects faults sequen-
tially in the bitstream from the first location to the last
location. This form of bit selection is used to exhaustively
test the full bitstream.

Multi-Cell Multi-cell fault injection injects multiple faults
into the bitstream according to predetermined multi-cell
fault injection patterns. This bit selection is used to
more accurately emulate what occurs during radiation
where multiple CRAM bits are upset by a single ionizing
particle.

After selecting the fault location within the CRAM, the JCM
injects the fault through partial reconfiguration. To inject the
fault, the JCM performs the following steps:
1) Read the target frame(s) from the DUT,
2) Invert the value at the target frame, word, and bit within

the CRAM data,
3) Write the corrupted CRAM data using partial reconfigu-

ration to the DUT, and
4) Read the target frame, word, and bit to verify the fault

injection.

C. Design Execution
After the fault is injected in the DUT, both designs operate

on input test vectors, as shown in Figure 8. While faults
are being injected, the two circuits execute continuously and
synchronously on the same input test vectors provided by
the golden device. After each fault injection, a predetermined
delay occurs before the JCM can check the system status.
This delay is calculated using the clock frequency, and the
number of input vectors applied to the DUT. The delay must
be sufficient enough such that the DUT has time to process all
input vectors with the fault present in the system. This delay
allows time for errors caused by CRAMS to propagate to the
outputs of the design.

D. Error Checking and Recovery
After every input test vector, a corresponding output re-

sponse from both devices is sent to the golden device. These
two responses are compared to determine if there is an
error in the DUT response, and the system status is updated
accordingly. The JCM continuously monitors the system status
to log when an error is detected. This section will discuss the
specific steps performed for when an error is detected, and
then when no error is detected. First, if an error is detected,
the following steps take place:
1) The golden device sets the failure bit in the system status

to 1,
2) The status is written to a BSCAN register,
3) Cycle-by-cycle data of output responses from both de-

vices are logged to BSCAN registers,
4) The JCM reads the system status from the BSCAN

registers on the golden device through JTAG,

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

5) The injected bit is classified as sensitive and logged with
the system status,

6) The CRAM bit is repaired,
7) The system status is reset, and
8) If more faults are to be injected, testing proceeds, other-

wise the test terminates.
The response data logged in step 3 is for post-processing of

data in both fault injection and radiation testing. During the
fault injection campaign, the system status must be reset after
an error occurs. In the TURTLE, the method used to reset the
status varies depending on the severity of the error. First, the
system status is reset in the BSCAN register through JTAG. If
the error persists, the JCM issues a reset signal to the golden
device, which then applies resets to both circuits. Finally, if
the error continues, the DUT is reprogrammed.
Second, if no error is detected, the designs completely

process all input test vectors. After processing all test vectors,
the CRAM bit is repaired. If more faults are to be injected,
testing proceeds, otherwise the test is terminated.
Upon test termination, all logged data, including each

injection and recorded failure with their corresponding system
status, are written to output files. Precise error detection
and data logging ensure each injection and DUT response is
recorded for further analysis.

E. Performance
The rate of fault injection on the TURTLE plays an impor-

tant role in collecting significant amounts of fault injection
data. A single injection consists of reading, writing, and
rereading the target frame. The last read operation is to verify
the fault injection. In addition to reading and writing the
target frame, the speed of fault injection is affected by the
length of the implemented propagation delay in the fault
injection algorithm. These factors affect the overall speed of

fault injection on the TURTLE. Taking into consideration these
factors, the JCM, with a JTAG clock speed of 50 Mhz, injects
faults at an average rate of 95 injections per second. The
Artix-7 device bitstream contains 77,845,216 total bits. Given
this bitstream length and the average rate of fault injection
on the TURTLE, it would take approximately 238 hours
to exhaustively test all bits in the bitstream using a single
TURTLE.

VII. PCMF FAULT INJECTION CAMPAIGN

The TURTLE has been used in many successful fault
injection campaigns to estimate the sensitivity of a variety
of FPGA designs and to test a variety of SEU mitigation
techniques. Tests were performed on B13 FSMs, MD5 Hash
cores, AES cores, and SHA3 cryptographic hash functions.
For each baseline design, different SEU mitigation techniques
were applied to create different design variations. A fault
injection campaign was created to test these different designs
and SEU mitigation techniques.
The TURTLE was used to perform an important fault

injection campaign to test a specific SEU mitigation technique.
This technique is called Placement Common Mode Failure
(PCMF) [10]. Common mode failures refer to potential single
CRAM bits that can cause TMR to fail within a mitigated
FPGA design. This mitigation technique addresses low-level
common mode failures that can occur in TMR designs due to
the physical placement of the FPGA design. A placed design
is analyzed to determine potential placed resources within the
device that could experience common mode failures. After this
analysis, the PCMF technique modifies the placement of an
FPGA design to reduce the risk of common mode failures. The
rest of this section will summarize how the TURTLE platform
was used to validate the PCMF SEU mitigation technique.

TABLE II: Fault Injection Results for B13 [9]

Metric/
Technique

Number of
Injections

Number of
Failures

Bit
Sensitivity

Coefficient of
Variation

Improvement

Unmitigated 45, 542 617 1.35× 10−2 4.01× 10−2 1×
Common-IO (1-Voter) 2, 000, 000 12, 027 6.01× 10−3 9.10× 10−3 2.3×
Common-IO (3-Voter) 2, 000, 000 2, 791 1.40× 10−3 1.89× 10−2 9.7×
Split-IO 2, 000, 000 39 1.95× 10−5 1.60× 10−1 695×
Split-clock 373, 836 307 8.21× 10−4 5.71× 10−2 16.5×
Split-clock-PCMF 336, 939 200 5.94× 10−4 7.06× 10−2 22.8×
ES 3, 255, 262 70 2.15× 10−5 1.20× 10−1 630×
ES-PCMF 2, 000, 000 31 1.55× 10−5 1.80× 10−1 874×
Trip-IO (1-Voter) 2, 000, 000 14, 872 7.44× 10−3 8.17× 10−3 1.8×
Trip-IO (3-Voter) 2, 000, 000 26 1.30× 10−5 1.96× 10−1 1, 042×
PCMF 2, 000, 000 6 3.00× 10−6 4.08× 10−1 4, 516×
Striping 2, 000, 000 0* 5.00× 10−7 1.00 27, 096×

* one error is assumed for metric calculations.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

A fault injection campaign was developed and implemented
to validate the PCMF technique and collect enough data
to obtain statistical confidence that the technique reduced
design sensitivity. This campaign tested a variety of different
mitigation techniques on the 4 different designs mentioned
at the beginning of this section. However, results in Table II
are only for the B13 benchmark circuit [11]. The resulting
estimated design sensitivities were compared to determine the
improvement provided by the PCMF technique. 11 different
mitigation techniques were applied to the B13 design. These
B13 design variations were created using the design prepara-
tion strategy described in Section V.
The unmitigated technique is the baseline design. The

common-IO techniques apply TMR to all logic expect the
I/O of the device coming from the FMC coupler card. There
are two variations of this technique, both triplicated and
single voter networks. Like common-IO, triplicated-IO (trip-
IO) applies TMR to all logic in the design, including I/O
from the FMC coupler card [9]. There are three split-IO/clock
techniques, including one that uses PCMF. These techniques
split the I/O or clock signals within the design to attempt to
reduce design sensitivity. The early split (ES) techniques force
I/O and clock signals to split early in the device close to the
physical pin. TMR is not applied to the split signals but is
applied to other design logic. Finally, PCMF and striping are
techniques that, in addition to applying TMR, constrain the
placement of the design to reduce design sensitivity.
Table II shows the improvement of each technique compared

to the unmitigated baseline B13 design. After the unmiti-
gated design, there is a gradual increase in improvement as
each technique attempted to apply implements an improved
mitigation scheme. The best technique, striping, showed a
27,096× improvement over the unmitigated. The duration of
the fault injection campaign was 58 days. This period included
preliminary fault injection as well as verification of data
through replaying the data. A total of 20,011,579 injections
were performed on the TURTLE for this campaign on the B13
design. Table II also shows that the coefficient of variation for
each technique. It should be noted that through the TURTLE
platform, enough faults were observed to obtain relatively low
variations in the estimated sensitivity values.
The TURTLE platform provided the ability to inject a large

number of faults at a relatively low cost. This large amount of
data helped reduce the coefficient of variation for the estimated
sensitivity. The reduction in the coefficient of variation shows
the TURTLE was successful in collecting statistically signifi-
cant data to help validate the PCMF mitigation technique.
Table II shows results only for the B13 design, but a total of

170,346,105 injections were performed across the B13, MD5,
SHA3, and AES cores with multiple mitigation techniques.
This campaign was accomplished using 15 different TURTLE
platforms. These 15 TURTLEs operated in parallel during the
fault injection campaign to inject as many faults as possible.
These TURTLE platforms were successful in performing the
fault injection campaign and collecting data that was used to
help validate the PCMF mitigation technique.

VIII. CONCLUSION AND FUTURE WORK

The TURTLE fault injection platform presented in this
paper was built using relatively low-cost hardware. The fault
injection system implemented in this work was successful in
testing and implementing a variety of FPGA designs and SEU
mitigation techniques.
A successful fault injection campaign of over 170 million

injections was conducted using the TURTLE to help vali-
date the PCMF SEU mitigation technique. Using multiple
TURTLEs in parallel, the campaign was able to provide a
statistically significant amount of injections. The TURTLE
provides a platform where SEU mitigation can be injected
with large amounts of faults to observe failures. The amount
of data collected on the TURTLE can be used to calculate the
coefficient of variation, and help establish greater statistical
confidence in SEU mitigation techniques.
Future areas of research will include improvements to fault

injection speed. This includes improved methods for executing
parallel fault injection tests on the TURTLE platform. Future
work will also expand the TURTLE concept and architecture
to other FPGA devices and designs. Specifically, fault injection
tests for different designs and SEU mitigation techniques on
the UltraScale FPGA will be pursued and researched.

REFERENCES

[1] H. M. Quinn, D. A. Black, W. H. Robinson, and S. P. Buchner, “Fault
simulation and emulation tools to augment radiation-hardness assurance
testing,” IEEE Transactions on Nuclear Science, vol. 60, no. 3, pp. 2119–
2142, June 2013.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, April 1997.

[3] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and R. Reis, “A
fault injection analysis of Virtex FPGA TMR design methodology,” in
RADECS 2001. 2001 6th European Conference on Radiation and Its
Effects on Components and Systems (Cat. No.01TH8605), Sep. 2001,
pp. 275–282.

[4] M. Alderighi, F. Casini, S. D’Angelo, S. Pastore, G. R. Sechi, and
R. Weigand, “Evaluation of single event upset mitigation schemes for
SRAM based FPGAs using the FLIPPER fault injection platform,” in
22nd IEEE International Symposium on Defect and Fault-Tolerance in
VLSI Systems (DFT 2007), Sep. 2007, pp. 105–113.

[5] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, “On the
optimal design of triple modular redundancy logic for SRAM-based
FPGAs,” in Design, Automation and Test in Europe, March 2005, pp.
1290–1295 Vol. 2.

[6] A. Gruwell, P. Zabriskie, and M. J. Wirthlin, “High-speed FPGA
configuration and testing through JTAG,” 2016 IEEE AUTOTESTCON,
pp. 1–8, 2016.

[7] “Nexys Video FPGA board reference manual,” vol. 82, no. 6, Mar 2017.
[Online]. Available: https://reference.digilentinc.com/ media/reference/
programmable-logic/nexys-video/nexysvideo rm.pdf

[8] “7 series FPGAs configuration (ug470),” Aug 2018. [Online].
Available: https://www.xilinx.com/support/documentation/user guides/
ug470 7Series Config.pdf

[9] M. Cannon, “Improving the single event effect response of triple
modular redundancy on SRAM FPGAs through placement and routing,”
Ph.D. dissertation, Brigham Young University, August 2019.

[10] M. J. Cannon, A. M. Keller, H. C. Rowberry, C. A. Thurlow, A. Prez-
Celis, and M. J. Wirthlin, “Strategies for removing common mode
failures from TMR designs deployed on SRAM FPGAs,” IEEE Trans-
actions on Nuclear Science, vol. 66, no. 1, pp. 207–215, Jan 2019.

[11] F. Corno, M. S. Reorda, and G. Squillero, “RT-level ITC’99 benchmarks
and first ATPG results,” IEEE Design Test of Computers, vol. 17, no. 3,
pp. 44–53, July 2000.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:54:21 UTC from IEEE Xplore. Restrictions apply.

