
978-1-7281-1957-1/19/$31.00 ©2019 IEEE

Reconfigurable Real-Time Video Pipelines on
SRAM-based FPGAs

Andrew E. Wilson and Michael Wirthlin
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Brigham Young University
Provo, Utah, USA

{andrew.e.wilson, wirthlin}@byu.edu

Abstract—FPGAs are an excellent target for real-time video
processing as they provide large amounts of low-level parallelism,
low latency, and high bandwidth. However, creating real-time
video processing systems on an FPGA is tedious and requires
significant effort and low-level digital design skills. This paper
presents a technique for creating complex real-time video pro-
cessing pipelines relatively quickly and easily using partial recon-
figuration (PR). A static FPGA system is created that provides a
template for a variety of partially reconfigurable video processing
cores. A library of video filters has been created that can be
inserted into the template regions. At run-time, the user can select
the topology of video cores and customize these cores to create
complex and unique video pipelines without any understanding of
low-level FPGA details. This paper demonstrates this technique
with a library of 11 partial reconfigurable regions and 16 video
processing cores operating on the Xilinx PYNQ system.

Index Terms—FPGA, Video Processing, Partial Reconfigura-
tion

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are an ideal
target for high performance and low latency video processing
[1], [2]. They contain a large number of configurable look-
up tables (LUT)s, flip-flops (FFs), high-speed I/O, digital
signal processing (DSP) units, and block RAMs (BRAMs)
to process video data in real-time. Custom video pipelines
can be created in configurable hardware to match the com-
putation and throughput of the video processing operations.
When using an FPGA, the video processing can be pipelined
to maximize throughput with latency defined down to the
individual clock cycle. Each stage of these real-time video
pipelines contains unique filtering and manipulation functions
that together provide complex real-time video functionality.
These video processing stages can be implemented in FPGAs
as custom hardware circuits to provide low latency video
while simultaneously processing video data at high through-
put [3], [4]. Creating video pipelines within an FPGA requires
the designer to use traditional FPGA design tools such as
logic synthesis and FPGA implementation tools. Although the
productivity of video processing design can be increased by
using FPGA video processing libraries or high-level synthesis
(HLS), designing video pipelines on an FPGA is ultimately
a low-level, digital hardware design flow. Any changes or

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

customization to an existing FPGA video pipeline must go
through the time-consuming FPGA implementation tools.
This paper introduces a method for creating complex video

processing pipelines on an FPGA very quickly using dynamic
partial reconfiguration (PR). This approach involves the fol-
lowing key components: (1) a static FPGA circuit that contains
all static video interfacing logic such as video encoders,
decoders, and video memory interfaces, (2) a set of partially
reconfigurable regions (PRRs) dedicated for custom video
processing modules, and (3) a flexible interconnect to facilitate
the communication of video data between video processing
cores. At run-time, the user of this system can customize
the video pipeline by choosing video filters for the various
partial regions and customizing the interconnect between the
processing cores. A large number of possible video pipelines
can be created in seconds through partial reconfiguration and
video pipeline customization.
This approach is demonstrated on the Xilinx PYNQ system

that provides interfaces for real-time video, programmable
logic, and a host processor system. The PYNQ system has
various video sinks and sources including the HDMI interfaces
and DDR video direct memory access (VDMA). The pro-
grammable logic is organized into a static region to connect to
these PYNQ interfaces and 11 different PRRs to hold custom
video processing cores. In addition, an AXI interconnect is
used to connect these regions to each other for a custom
communication topology. A library of cores consisting of 16
different video processing operations is created to fit within the
PRRs of the pipeline. A variety of interesting video processing
pipelines are demonstrated on this system by configuring
the regions with different cores and programming the AXI
interconnect appropriately. The video pipeline can easily be
changed using a Jupyter notebook running on the PYNQ
system.

II. PYNQ VIDEO SUB-SYSTEM

The run-time reconfigurable video pipeline described in this
paper was developed for the Xilinx PYNQ-Z1 system [5]. This
system contains a Zynq 7020 device, DRAM, various I/Os
and the PYNQ framework. The PYNQ framework includes
a large set of pre-programmed hardware functions for I/O
interfaces, Ubuntu Linux, Jupyter notebooks, and a Python
interpreter. The default PYNQ bitstream or “Base Overlay" is

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

a programmable logic circuit that allows users with no FPGA
experience to immediately interact with the board and all its
I/O. The PYNQ-Z1 was chosen as the implementation device
because of the HDMI I/O, the “Base Overlay" containing a
basic video processing pipeline to build from, and a Linux
operating system capable of driving the partial reconfiguration.
The base overlay for the PYNQ-Z1 system contains a

real-time video pipeline that can sample an incoming video
stream and generate an outgoing video stream using the DVI
protocol. The video pipeline is implemented in the Zynq’s
Programmable Logic (PL) and interfaces with the HDMI input
port, HDMI output port, and the AXI bus. This low-cost FPGA
platform can sample video streams up to 1080p resolution and
60 Hz frame rate. The PYNQ installation provides a number
of tutorials for manipulating the video stream using Python
code and OpenCV software filters. These examples can be
displayed in the Jupyter window or over the HDMI output
port.
A high-level overview of the PYNQ video pipeline is shown

in Figure 1. This pipeline uses IP blocks developed by Digilent
[6] and Xilinx [7]. The “DVI to RGB" module extracts the
timing signals from the video display, generates a pixel clock,
and converts the incoming DVI signal into a 24-bit RGB color
signal. The “Video In to AXI4-Stream" module packages the
data and incorporates an AXI4-Stream interface so the video
data can be transferred in real-time over the AXI bus. The
“AXI VDMA" module provides a DMA engine for transferring
the video-in to main memory and transferring video data
from main memory to the video-out pipelines. The “AXI4-
Stream to Video Out" provides an AXI4-Stream interface for
the video data in main memory. The “RGB to DVI" module
generates timing signals for the HDMI output and converts
the RGB signals into the corresponding DVI output signal.
These modules can support monitor resolutions of 1920x1080,
1280x1024, 1280x720, 800x600, and 640x480.

Fig. 1. PYNQ Video Sub-System

The video pipeline can be configured in a number of ways
including image frame capture into DRAM, streaming to
the HDMI output port, and streaming through the DRAM
frame buffer. When the video is streamed through DRAM,
custom video processing routines can operate on the video
stream in software by the ARM processor. Several software
examples within the PYNQ distribution demonstrate the ability
to capture input video data, perform software-based image
processing, and then stream the result to the HDMI output port.
These examples, written in Python and linked to an OpenCV
library, include: changing RGB values, edge detection, and
face detection. Running in software, these examples are not
able to run at the full 60 Hz frame rate, but run at around

2-3 frames per second due to the limitations of processing the
video in the processor. This video pipeline provided on the
default PYNQ overlay provides a convenient and easy way to
experiment with real-time video streams and learn about video
systems.

III. PROGRAMMABLE VIDEO PIPELINE

Although the default video pipeline on the PYNQ system
provides the ability to capture and produce real-time video
data, it is not organized to easily support custom hardware
circuits using the available PL. If custom video pipelines are
needed, the designer must modify the design of the PL and
resynthesize that design using vendor tools. Those interested
in making custom video pipelines must have the expertise and
tools necessary for modifying the logic circuits and correctly
implementing this logic on the PYNQ system.
This paper introduces a method to simplify the deployment

of custom video pipelines without the need to redesign the
logic of the PYNQ video pipeline. This approach relies on par-
tial reconfiguration to reconfigure various regions of the FPGA
with precompiled partial bitstreams that implement discrete
video processing functions. By interconnecting these video
functions at run-time, complex and unique video pipelines can
be configured with little understanding of the digital logic used
to implement each function. Furthermore, the video pipeline
can be changed at run-time to implement a variety of different
video pipelines on the same PYNQ system. This work is an
extension of a class project that demonstrated the use of a
single PRR for simple video functions [8]. The single PRR
operated on the raw VGA video signals and implemented
filters defined with hardware description language (HDL)
code.
Other works have shown effective, FPGA-implemented

video processing cores capable of handling live video at
600×800 pixel resolution with a 60 Hz frame rate. These
cores included Harris Corner [9], Sobel, Robert, Prewitt, and
Laplacian filters [10]. The Canny edge detector has been
implemented in the PYNQ hardware that is capable of the
full 1080p bandwidth at 60 frames per second [11]. Additional
works have demonstrated the benefits of using dynamic PR for
video processing cores to save resources and add configura-
bility to the video processing pipeline [12]–[15]. One of these
dynamic reconfigurable pipelines was able to process 720p
video at 60 frames per second [16].
The dynamically reconfigurable video processing pipeline

presented in this paper is composed of two distinct compo-
nents: a static logic circuit and a library of partially recon-
figurable video processing functions. The static logic circuit
contains the fixed logic for the video I/O interfaces, dedicated
“stubs" or PRRs for the reconfigurable video circuits, and an
interconnect network to customize the communication between
circuit functions. The library of video processing functions
each implement a distinct function that when combined with
other functions can produce interesting and complex video
processing pipelines. Complex video processing pipelines can
be created without the long process of re-implementing the

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

whole bitstream. The following two sections will describe
the static video processing circuit and the library of video
functions.

IV. STATIC VIDEO PROCESSING FRAMEWORK

The first component of the programmable video process-
ing pipeline is a static logic circuit that provides the fixed
functionality of the video pipeline and the fixed framework
for partially reconfigurable video processing units. This logic
never changes and is configured once at boot time in the
PYNQ system. This static circuitry provides the following
three essential functions: (1) static interfacing logic, (2) recon-
figurable regions, and (3) interconnect for the reconfigurable
regions. An overview of this static framework is shown in
Figure 2.

Fig. 2. Static Video Processing Circuit

A. Static Logic

The static interfacing logic defines all the circuitry of the
FPGA digital design that is consistent for any possible config-
uration. There are a number of important functions that must
be provided within the static logic to support the operation
of the video processing pipeline. This static logic contains
the main AXI-Lite bus connected to the ARM processor and
allows the processor to interact with the PL. All of the I/O
interfaces such as LEDs, switches, and HDMI interfaces also
remain in the static logic.
The video processing pipeline is split between the static

and dynamic logic. Although the PYNQ base overlay is not

used in this project, the logic used to create the video sub-
system within the PYNQ base overlay is used within the
static region of this video processing system. As shown in
Figure 2, the components of the PYNQ video sub-system
have been included in the new pipeline. This includes the
conversion of the HDMI input to RGB data stream over AXI4-
Stream and the conversion for the HDMI output. The original
video sub-system includes video processing cores to perform
color conversion and data packing in the PL. These cores are
included in the static logic around the video DMA interfaces
to the DDR memory. The video pipeline clock did not change
from the 142 MHz in order to process real-time video of up
to 1080p resolution and 60 Hz frame rate.

B. Video Processing Template

In addition to the static logic, basic video processing tem-
plates were instantiated as black boxes to later be defined by
the dynamic logic. The video processing cores implemented
in these templates operate on the data within the AXI4-Stream
interfaces similar to the “Color Convert" processing units
found in the original PYNQ base overlay. The AXI4-Stream
interface can deliver 24-bits of RGB video data, a flag for the
start of the frame, and a flag for the end of a line within the
frame every clock cycle. The basic template for the dynamic
video processing logic includes two AXI4-Stream interfaces as
input and another as output. Additional inputs were added to
allow the processor to configure video processing core-specific
parameters during run-time. Ten of these templates were added
to the design to allow for ten separate video processing cores.

C. Video Stream Mixing

Besides the basic video processing template that uses one
input and one output stream, two additional modules were
chosen. The first module is a Xilinx AXI4-Stream Broadcaster
that takes one input stream and broadcasts it to two output
streams. This allows for more complex video pipelines or for
the final processed video to be broadcast to both the DDR and
the HDMI out-port. This module operates on the video within
the static logic of the pipeline.
The second module is a special video processing template,

the “Mux". This module takes two inputs, mixes them ac-
cording to the dynamic logic provided, and outputs to one
or both of the available AXI4-Stream outputs. This provides
the useful function to combine two different video processing
streams into one stream. This unique template could be used
for applications such as a “green screen" filter, split screen, or
the absolute difference between the incoming streams. Only
the “green screen " filter was implemented in this pipeline.
To guarantee that two input video streams are synced for

this module, an additional custom HDL solution was added to
this special template. The custom HDL stalls a non-real-time
video stream driven by the VDMA output until the frame start
flag of the AXI4-Stream is aligned with the real-time video
stream.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

D. Partially Reconfigurable Regions
The PRRs define the configurable FPGA resources dedi-

cated to the dynamic logic that will be configured during
run-time. The physical locations must be specified for each
PRR to separate them from the static logic. Through several
iterations of implementing different sizes for the PRRs, three
different sizes where chosen for the 10 basic templates to
allow for the greatest number of PRRs and support video
processing cores of various resource utilizations. Six small
PRRs were created for use by the video processing cores that
required few resources such as LUTs, FFs, DSPs, and BRAMs.
Some of the video filters used within this design required
additional logic resources to be properly implemented within
the bounds of a PRR. Three medium PRRs were added to
the design for these video filters. One large PRR was created
for video cores that required a significant amount of BRAMs.
Any core that can be implemented in a small PRR can also
implemented the medium or large PRR, and any medium PRR
filter can be implemented in the large PRR. The “Mux" has a
unique PRR because it is a template with a different number
of I/O interfaces and can not be exchanged with the other
video processing cores in this design. The “green screen"
filters implemented within this template does not require many
resources in this implementation and is given the smallest
PRR.
The placement of these PRRs was based upon the location

of special resources such as BRAMs and DSPs while meeting
the timing constraints of the HDMI input and output. The
Vivado floorplan in Figure 3 shows the placed and routed static
logic and the resources dedicated to the PRRs. Although the
static region contains logic that does not change, most of the
programmable logic on the system is reserved for run-time
configurable logic. Table I shows the utilization of the static
region and the resources each PRR has available to implement
the video processing cores.

TABLE I
COMPARISON OF PR REGIONS

PR Region Utilization
Region LUT FF BRAM DSP
Static 14434 24582 15 12
Large 5200 10400 20 20

Medium 3200 6400 10 20
Small 2400 4800 10 20
Mux 1200 2400 0 0

Each PRR was instantiated as a black box in the digital
design prior to synthesis. Once synthesis was completed,
Xilinx pblocks were assigned to each black box to define
the resources and physical placement of the PRRs. Video
processing cores were temporarily added to allow the tools to
account for average timing when the design was implemented.
After the design was placed and routed, the video cores were
removed and the design was locked down to prevent future
partial designs from affecting the static region, as depicted in
Figure 3. A TCL script was generated to automate this process
for future changes to be added to the static design.

Fig. 3. Floorplan

E. Pipeline Interconnect

This video processing pipeline allows multiple video
streams to be processed, mixed, and/or copied with the use of
multiple video sources, the “Mux" processing template, and
the AXI4-Stream Broadcaster. To provide the high amount
of configurability to support a variety of different processing
paths, a Xilinx AXI4-Stream Switch is implemented in the
static logic. This provides an interconnect between the differ-
ent components of the static and dynamic logic. The switch
allows for the controlled flow of 16 input and output streams
configured by registers that can be accessed by the processor
over an AXI-Lite bus. This dynamic switch adds an additional
two cycles of delay between every connection.
Figure 2 shows the layout of the AXI4-Stream Switch that

directs the video stream between the static logic and the
dynamic video processing cores. The HDMI input and output
stream are connected directly to the switch. This requires
that the pixel clock be passed from the input to the output
in the case of the “AXI VDMA" not being included in the
pipeline to act as a frame buffer. The “AXI VDMA" was also
included as an optional port on the switch with the original
PYNQ Xilinx modules that allow for color conversion and
data packing to optimize the use of the DDR and processor.
These video sources and sinks can be pipelined with the ten
basic processing templates, the “Mux", and the AXI4-Stream
Broadcaster available on the switch interconnection.

V. PARTIALLY RECONFIGURABLE VIDEO FILTERS

The second primary component of this programmable video
pipeline system is the library of partially reconfigurable video
processing cores. These cores are designed to operate within

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

the PRRs defined in the static region. Most of the video filters
operate on a single real-time video stream and produce a modi-
fied video stream (filters designed for the ‘Mux’ reconfigurable
region operate on two video streams). The incoming video
stream includes 24-bits of RGB data, a flag for the start of the
frame, and a flag for the end of the line within the frame.
A variety of video processing cores of different functionality

and resource utilizations were developed to demonstrate this
reconfigurable video processing pipeline concept. The follow-
ing cores were included in this work:

• Pass: Passes data through with no changes.
• Threshold: Performs a threshold function that converts

each pixel into a binary value.
• Color Limiter: Limits the max color value for each of

the three RGB channels.
• Draw Lines: Draws four lines over the image, two

horizontal and two vertical, with variable locations and
widths.

• Invert: Inverts the color values of each pixel.
• Grayscale: Calculates the grayscale value for each pixel

and outputs to all three channels.
• Mirror: Mirrors the image from left to right.
• Emboss: Applies an embossing algorithm on the full

image.
• Erode: Performs the erosion morphological operation.
• Dilate: Performs the dilation morphological operation.
• Sobel: Performs Sobel edge detection.
• Kernel 3x3: Applies a parameterizable 3x3 kernel filter

to support custom operations such as sharpen, outline,
and blur.

• ASCII Overlay: Overlays ASCII characters on screen
with variable size and location.

• Hirigana Overlay: Overlays Japanese Hirigana charac-
ters on screen with variable size and location.

• Image Overlay: Applies a static image stored in BRAM
on the image at a parameterizable location.

• Green Screen: Segments the image into a foreground and
background based on a parameterizable range of RGB
values.

The library of filters can easily be extended by designing other
filters that fit within any of the PRRs and meet the interfacing
requirements.
The video processing cores are designed using C++ and

synthesized using HLS. Each core was fully pipelined with
an iteration interval of one, allowing the function to begin
processing one pixel every clock cycle. Some filters required
video line buffers to allow for more complex functions that
required additional video frame information. Other filters
required BRAM memory to store dynamic images and static
fonts that were overlaid on the video image. Each video core
used the AXI4-Stream for video data to simplify the design
of the interfacing logic as the Vivado HLS tools automatically
handled the acknowledgement protocol for the AXI4-Stream
interface.
Each filter was mapped to as many of the PRRs as possible

to maximize the flexibility of building complex pipelines at

run-time. Those filters that fit within the Small regions are
mapped to each Small, Medium, and Large region within the
static design. Filters fitting in the Medium regions are mapped
to the Medium and Large regions. The build process for
generating this set of bitstreams involved HLS synthesis, out-
of-context HDL synthesis, and then placement, routing, and
bitstream generation for each potential PRR. A custom TCL
script was written to allow for the automated implementation
and generation of the partial bitstreams.
Table II summarizes implementation time of creating bit-

streams for all 16 filters using a computer with a i7-4770 CPU
at 3.40GHz and 16GB of RAM. The first row also includes
the time to implement one static pipeline that includes a large
set of these filters. Generating individual filter circuits is much
faster than generating a full static design, suggesting that faster
to generate partial circuits for the complex pipeline than to
create a custom static pipeline for each pipeline variation.

TABLE II
COMPARISON OF IMPLEMENTATION TIMES

Designs Time (min)
Static 62.94
Pass 11.87

Threshold 12.10
Color Limiter 11.75
Draw Lines 13.45

Invert 11.53
Grayscale 11.90
Mirror 12.13
Emboss 13.13
Erode 12.91
Dilate 12.81
Sobel 18.17

Kernel 3x3 17.54
ASCII Overlay 16.97
Hirigana Overlay 17.35
Image Overlay 15.03
Green Screen 13.49

The resource utilization of each of the filters is summarized
in Table III. This table also includes the latency in clock cycles
of each filter as well as its potential PRR placement (small,
medium, and/or large). The video filters of Mirror, Erode,
Dilate, Sobel, and Kernel 3x3 use line buffers to perform their
operations and require additional latency to fill the buffers.

VI. VIDEO PIPELINE OPERATION

Once the bitstreams have been generated for the PRRs and
uploaded to the PYNQ file system, custom video pipelines can
be created. Python classes and Juypter interfaces were created
to automate this process for the user. The process for creating
a custom pipeline is as follows:
1) The partial bistreams are first configured into the appro-

priate FPGA region using the xdevcfg drivers to access
the the processor configuration access port (PCAP).

2) Each filter can be customized with run-time specific
parameters (such as filter coefficients, text strings, etc.)
using a custom control bus. The user can change these
settings at run-time using the Jupyter interface to cus-
tomize the pipeline as needed.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Edge Detection Video Processing Example

Fig. 5. Green Screen Video Overlay Example

TABLE III
COMPARISON OF HLS VIDEO FILTERS

Filters LUT FF BRAM DSP Latency PRR
Pass 70 130 0 0 2 S,M,L

Threshold 117 274 0 1 6 S,M,L
Color Limiter 127 263 0 0 3 S,M,L
Draw Lines 547 579 0 0 5 S,M,L

Invert 70 130 0 0 2 S,M,L
Grayscale 91 172 0 1 6 S,M,L
Mirror 121 172 3 0 4* S,M,L
Emboss 175 232 3 0 6 S,M,L
Erode 217 533 1.5 1 8* S,M,L
Dilate 193 445 1.5 1 8* S,M,L
Sobel 1254 3978 1.5 6 51* M,L

Kernel 3x3 1297 3222 1.5 10 51* M,L
ASCII Overlay 545 1346 1 0 11 S,M,L
Hirigana Overlay 671 1364 0.5 0 11 S,M,L
Image Overlay 479 1166 16.5 0 9 L
Green Screen 295 533 0 0 4 MUX

3) The topology of the communication between video
filters is set by configuring the AXI4-Stream Switch.

Once these steps have been completed, the custom video
pipeline is ready to process real-time video streams.

A. Python Pipeline API

For the PYNQ to support the configurable video processing
pipeline, additional Python functionality is needed. Using the
“MMIO" class provided by the PYNQ Python API, a subclass
was created to configure the AXI4-Stream Switch and send
commands to each filter. The “MMIO" class allows Python to
memory map Linux protected memory and have read and write
access to these addresses. The AXI4-Stream switch and CMD
Bus were connected to the main AXI-Lite interface of the
processor. The Python class PRControl used a map to simplify
the process of configuring the AXI4-Stream Switch.
Listing 1 shows a Python example of configuring the video

processing pipeline with a single color limiter core. One
of the small PRRs is reconfigured with the correct partial
bitstream on line 2. The PRControl class also has a function to

send commands to each filter. The function, filter_cmd, takes
the name of the filter, the address of the variable, and the
data. Line 4 shows an example usage of this function to set
the maximum red color value in the color limiter core. The
command on line 6 connects the hdmi input to PRR S0 by
writing to the control registers of the AXI4-Stream Switch.
Lines 8 and 10 connect that S0 PRR to the VDMA to allow
the processor access the video data over the AXI-Lite bus,
and forwards the VDMA to the HDMI output, displaying the
final frame on an external display. The final output will show
the processed image limiting the red portion of the pixels to
a max value of 0xA0.

Listing 1. Pipeline Contols
1 # Reconfigures S0 PRR with the color limiter core
2 PartialBitstream("limit_s0.bit"). download ()
3 # sets register 0 of S0 PRR to 0xA0
4 prcontrol_i.filter_cmd("S0" ,0,0xA0)
5 # Connects the live HDMI to S0 PRR
6 prcontrol_i.connect("HDMI_IN","S0")
7 # Connects S0 PRR to the DDR VDMA frame buffer
8 prcontrol_i.connect("S0","VDMA")
9 # Connects the DDR VDMA frame buffer to the HDMI output

10 prcontrol_i.connect("VDMA","HDMI_OUT")

B. Example Video Pipelines

A number of unique video pipelines have been created on
the PYNQ system using this static video region and the library
of video filters. Two examples will be described here: an edge
detection pipeline and a “green screen" mixing pipeline. The
topology of the edge detection pipeline is shown in Figure
4. This pipeline includes the following filters organized into
a linear sequence of video processing steps: grayscale, 3x3
kernel (using a blur configuration), threshold, erode, dilate,
Sobel filter, and a 3x3 kernel (using a sharpen configuration).
Several of these filters require parameters that can be set by the
user to create a very effective real-time video edge detector.
A second example is a “green screen" video overlay as

shown in Figure 5 . This pipeline uses all 11 filter slots
and mixes two real-time video streams. The first stream is
generated from an image in DDR memory using the AXI
VDMA channel and undergoes the following steps: invert, text

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

overlay (with a user customizable message), and line insertion.
The second video stream is driven by the HDMI input port
and is mirrored and augmented with both custom text and
lines. The “green screen" mux filter identifies regions within
the incoming video stream that fit within a range of color
values (i.e., "green screen" values) and then replaces these
pixels with those of the background image. The resulting video
stream then undergoes the following final steps: emboss, color
limiting, text overlay, and small image overlay.
Each of these two sample pipelines were easily created in

a matter of seconds by a user interacting with the PYNQ
Jupyter pages. Many other interesting video pipelines can be
created by organizing these library functions in other unique
topologies.

C. Dynamic Pipeline Specifications

The video processing pipeline consists of one full bitstream,
15 large partial bitstreams, 42 medium partial bitstreams,
and 72 small partial bitstreams. All of these sum to to 131
bitstreams consisting of 64137 KB that can create billions
of possible hardware configurations using the small, medium,
and large PRRs1. The average times to reconfigure the large,
medium, and small PRRs are 50.5, 32.8, and 30.9 milliseconds
respectively, using the xdevcfg Linux driver. The PYNQ
system can reconfigure the whole pipeline in under a second
with any configuration. All the possible configurations support
the full 1080P video at 60Hz bandwidth. The max cycle
latency of the pipeline, ignoring any necessary row buffering,
is 600 clock cycles of a 142 MHz clock or 4.23 µs. The power
utilization ranges from 2.063 W for the empty static design to
2.515 W for a fully loaded design.
This configurable video processing pipeline tested the lim-

itations of the PYNQ with 11 different PRRs and 16 various
video processing cores. The PYNQ Jupyter demonstration files
can be found in this public repository2. The hardware and TCL
build scripts are available at this repository3.

VII. CONCLUSION

This paper describes a unique approach for generating
custom video pipelines in real-time by reconfiguring the FPGA
with pre-built video processing filters. This approach involves
creating a static circuit with fixed I/O interfaces, reconfigurable
regions, and a programmable interconnect. In addition, a li-
brary of video processing cores was created in C++ using HLS
and then mapped to each of the partial reconfigurable regions.
This approach significantly reduced the implementation time
needed to create a custom video pipeline. Custom pipelines
can be organized in a matter of seconds rather than the hours
required to fully implement a custom pipeline using traditional
FPGA tools.
A number of future enhancements to this work are being

pursued. First, this work is being upgraded to the recently

1126 × 143 × 15 = 1.23× 1011 possible combinations
2https://github.com/byuccl/BYU_PYNQ_PR_Video_Pipeline
3https://github.com/byuccl/BYU_PYNQ_PR_Video_Pipeline_Hardware

released ZCU104 PYNQ system that supports higher perfor-
mance quad-core processors and more FPGA configurable
resources. Further, this system uses the more advanced and
efficient UltraScale+ FPGA architecture using FinFET tech-
nology. Second, additional and more complex video filtering
circuits are being investigated including the Xilinx xfOpenCV
HLS library based upon the OpenCV software library.

REFERENCES

[1] M. Genovese and E. Napoli, “ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 3, pp. 537–547, March 2014.

[2] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-
Based real-time pedestrian detection on high-resolution images,” in
2013 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, June 2013, pp. 629–635.

[3] A. Tumeo, S. Borgio, D. Bosisio, M. Monchiero, G. Palermo, F. Fer-
randi, and D. Sciuto, “A multiprocessor self-reconfigurable JPEG2000
encoder,” in 2009 IEEE International Symposium on Parallel Distributed
Processing, May 2009, pp. 1–8.

[4] G. A. Vera, D. Llamocca, M. s. Pattichis, and J. Lyke, “A dynamically
reconfigurable computing model for video processing applications,” in
2009 Conference Record of the Forty-Third Asilomar Conference on
Signals, Systems and Computers, Nov 2009, pp. 327–331.

[5] “Python productivity for zynq.” [Online]. Available: http://www.pynq.io/
[6] Digilent. (2019) Digilent vivado library. [Online]. Available:

https://github.com/Digilent/vivado-library
[7] Xilinx, “Xilinx ip catalog,” 2019.
[8] B. Hutchings and M. Wirthlin, “Rapid implementation of a partially

reconfigurable video system with PYNQ,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), Sep.
2017, pp. 1–8.

[9] E. Onat, “FPGA implementation of target detection algorithm at real
time video signal processing using harris corner detector filter,” in 2018
26th Signal Processing and Communications Applications Conference
(SIU), May 2018, pp. 1–4.

[10] ——, “FPGA implementation of real time video signal processing
using sobel, robert, prewitt and laplacian filters,” in 2017 25th Signal
Processing and Communications Applications Conference (SIU), May
2017, pp. 1–4.

[11] B. C. Maheshwari, J. Burns, M. Blott, and G. Gambardella, “Imple-
mentation of a scalable real time canny edge detector on programmable
SOC,” in 2017 International Conference on Electrical and Computing
Technologies and Applications (ICECTA), Nov 2017, pp. 1–5.

[12] R. Khraisha and J. Lee, “A scalable h.264/avc deblocking filter architec-
ture using dynamic partial reconfiguration,” in 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, March 2010,
pp. 1566–1569.

[13] L. S. U. Rani, G. Jagajothi, and P. T. Selvan, “Digital filter for real-time
impulse noise suppression in video processing using dynamic partial
reconfiguration technique,” in 2015 International Conference on Control
Communication Computing India (ICCC), Nov 2015, pp. 433–436.

[14] S. U. Bhandari, S. Subbaraman, S. Pujari, and R. Mahajan, “Real time
video processing on FPGA using on the fly partial reconfiguration,” in
2009 International Conference on Signal Processing Systems, May 2009,
pp. 244–247.

[15] S. Bhandari, S. Subbaraman, S. Pujari, F. Cancare, F. Bruschi, M. D.
Santambrogio, and P. R. Grassi, “High speed dynamic partial recon-
figuration for real time multimedia signal processing,” in 2012 15th
Euromicro Conference on Digital System Design, Sep. 2012, pp. 319–
326.

[16] M. Nguyen and J. C. Hoe, “Time-shared execution of realtime computer
vision pipelines by dynamic partial reconfiguration,” in 2018 28th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Aug 2018, pp. 230–2304.

Authorized licensed use limited to: Brigham Young University. Downloaded on August 14,2020 at 21:57:12 UTC from IEEE Xplore. Restrictions apply.

