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Abstract. Computational Thinking (CT) can play a central role in
fostering students’ integrated learning of science and engineering. We
adopt this framework to design and develop the Water Runoff Challenge
(WRC) curriculum for lower middle school students in the USA. This
paper presents (1) the WRC curriculum implemented in an integrated
computational modeling and engineering design environment and (2) for-
mative and summative assessments used to evaluate learner’s science,
engineering, and CT skills as they progress through the curriculum. We
derived a series of performance measures associated with student learning
from system log data and the assessments. By applying Path Analysis we
found significant relations between measures of science, engineering, and
CT learning, indicating that they are mutually supportive of learning
across these disciplines.

Keywords: Science and engineering · Computational modeling · Log
analysis · Regression methods

1 Introduction

The Next Generation Science Standards (NGSS) call for the inclusion of engi-
neering design activities in K-12 science classrooms and propose that science
investigation and engineering design be closely integrated into the curricu-
lum [19,22]. In addition, computational modeling and analysis have become
c© Springer Nature Switzerland AG 2020
I. I. Bittencourt et al. (Eds.): AIED 2020, LNAI 12163, pp. 598–609, 2020.
https://doi.org/10.1007/978-3-030-52237-7_48

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52237-7_48&domain=pdf
http://orcid.org/0000-0003-0097-7279
https://doi.org/10.1007/978-3-030-52237-7_48


Studying the Interactions Between Science, Engineering, and CT 599

a key component of scientific study [8]. We adopt an integrated approach to
developing science and engineering curricula, bringing in computational think-
ing (CT) concepts through computational modeling activities to develop the
Water Runoff Challenge (WRC) for fifth and sixth grade students [4,34].

This paper discusses the WRC curriculum, the learning environment that
supports the computational modeling and engineering design activities, and the
formative and summative assessments developed for evaluating student learning.
We discuss the results of a study with 99 sixth-grade students. The intervention
produced significant learning gains in science, engineering, and CT with moder-
ate to large effect sizes. Given these results, we applied Path Analysis [1,33] to
model the relationships between measures of student learning in science, engi-
neering, and CT, and interpreted their relative importance. In more detail, we
derived a range of measures from logs of student activities and their assessment
scores to investigate (1) the relations between students’ behavior and perfor-
mance variables in the computational modeling and engineering design activi-
ties and (2) which of these variables contribute to the learning outcomes. Path
analysis also informs us of the importance and significance of pairwise relations.

1.1 Background and Related Work

The majority of people in the U.S. are introduced to science and engineering in
middle and high schools, and the experiences in these formative years shape their
interest in pursuing science and engineering careers [15,25]. However, engineering
had not traditionally been part of the core K-12 curriculum, instead often being
offered as an elective or after-school course, where students primarily work on
design projects with little discussion of the science that supports the design and
implementation [6].

Recently, the “growing inclusion of engineering design in K-12 classrooms”
presents students with opportunities to construct an understanding of the nat-
ural and designed world [19, p. vii]. It has been proposed that science investiga-
tion, which includes students’ investigating scientific phenomena and engineering
design, i.e., applying the learned knowledge to design solutions to challenges of
interest should be more central to the K-12 curricula [19].

Modeling is a key practice in science and an essential mechanism to support
effective engineering design [20,24,28]. A model is defined as an abstract and
simplified representation of a scientific phenomenon built around the important
features that explain and predict the phenomenon [9,28]. Computational model-
ing has become integral to STEM learning and practice [21,30]. Computational
modeling activities can support the learning of science and engineering in virtual
environments by (1) enabling learners to manipulate variables on unobservable
phenomena and (2) improving the efficiency and reducing unanticipated conse-
quences of experimental studies [7]. In other words, learners have more oppor-
tunities to conduct systematic investigations and gather more information as
compared to conducting observations in a physical environment [7]. For exam-
ple, chemical reactions (invisible) and geological changes (long-term) are easier
to study by simulating computational models than trying to conduct physical or
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observational studies. Students’ engagement with computational modeling activ-
ities provides instructional benefits of improved domain knowledge and problem-
solving skills [2,29,31].

2 The Learning Environment in the WRC Curriculum

Our research is motivated by the trends towards integrated learning of science
and engineering. Furthermore, we introduce CT and computational modeling
activities as a platform for integrated engineering and science learning [30,32].
Exploration with models involves manipulating parameters to study the model’s
behaviors. On the other hand, model exploration often does not require invok-
ing the complex cognitive processes required to build models, which includes
scoping the model, developing algorithms to represent model behaviors, com-
puting numerical outcomes, interpreting results, and validating solutions; nei-
ther do students have to fully understand the nuances of the modeling language
employed [18,29]. In our previous work, students used a pre-built computational
model for their engineering task to develop and test playground designs to mit-
igate flooding problems in a school [4,34]. In the present work, we introduce
computational model building activities into the WRC curriculum unit. Stu-
dents used the runoff computational models that they developed themselves to
design a schoolyard that reduced runoff and its associated environmental impact.

Our previous runoff model was dynamic; the model representations needed
to capture the behavior of a system over time [29]. An agent-based approach
to modeling [5] makes the model modular and facilitates decomposition into its
constituent parts. For compatibility with middle school math proficiency, the sys-
tems dynamics model was simplified to a discrete-time algebraic form [29]. This
simplified representation computes the amount of rainfall, absorption, and runoff
with three simultaneous equations. To make this form of modeling representation
explicit and linked to the science concepts, we have created a domain-specific
modeling language (DSML) to support students’ computational modeling activ-
ities [10]. DSMLs specify modeling constructs at a level of abstraction that is
compatible with the students’ ability to build and analyze the model.

Figure 1 shows the DSML blocks created for the computational modeling
activity on the left, and a correct implementation of the runoff model using
these blocks on the right. The DSML, created in the NetsBlox visual program-
ming environment [3], incorporates CT concepts, such as control structures along
with the primary domain concepts to support the modeling of the water runoff
processes: (1) the amount of rainfall (2) absorption of water by different sur-
face materials, and (3) runoff. In addition, the DSML specifies key arithmetic
and algebraic mathematical operations to support model-building. Using the
DSML blocks, students create a rule-based computational model, which is a
simplification of the system dynamics model. The runoff for a specific material
is computed as the difference in the amount of rainfall and the amount of water
that is absorbed by the surface material (see the example implementation in
Fig. 1).
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Fig. 1. DSML of the runoff problem (left) and a correct implementation of the runoff
model using the DSML (right).

Students build schoolyards models for their engineering design tasks. They
do this using a visual interface to populate individual squares with different
surface materials (Fig. 2). The computational models that the students develop
are used to calculate the total absorption and total runoff given a total amount
of rainfall that the student specifies. The students can build and test multiple
schoolyard designs using different combinations of materials. Their overall goal
is to (1) minimize runoff, (2) remain under budget; and (3) ensure that sufficient
squares in the schoolyard have accessible surface materials to meet wheelchair
needs. Students need to generate multiple designs using a search process to find
the optimal design that meets all of the constraints, i.e., minimize runoff, while
meeting the cost and accessibility constraints. This design task is challenging
for young learners. Typically, the more absorbent and accessible materials also
tend to have high costs, so students need to analyze the trade-offs between cost,
absorption, and accessibility in searching for optimal design solutions. A non-
systematic trial-and-error approach may overwhelm a student’s search. Figure 2
(right) depicts the engineering design interface. The current solution is incom-
plete, and students can assign any of the six available materials to the unassigned
yellow square.

3 Methods

We conducted a classroom study with 99 sixth-grade middle school students
in the U.S. using the WRC curriculum. All participating students had vary-
ing levels of prior programming experience with block-structured programming
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Fig. 2. The runoff simulation (left) and material selection (right) interface (Color figure
online)

with Scratch [26] in their programming class. The study was led by two experi-
enced science teachers who received four days of training before the study. Three
researchers provided additional support but mostly acted as observers during the
study. Students worked for 45 min per day, three days a week during their regular
science classes, and 75 min, twice a week with additional personalized-learning
time. The WRC curriculum was covered in 15 school days, with identical pre-post
tests administered in two additional 45-min classes.

The WRC unit also includes (1) hands-on activities in which students con-
duct physical investigations on the absorption of different surface materials; (2)
conceptual modeling of the runoff system as a pictorial representation; and (3)
presenting their methods and final engineering designs. This paper analyzes the
NGSS-aligned science and engineering + CT pre-post assessments and the data
collected on days 8–13. This includes (1) formative assessments administered as
homework that covered science, engineering, and CT topics; and (2) system logs
of students’ model-building and engineering design activities.

Assessments and Grading. Our science and engineering summative assess-
ments align with a number of NGSS Performance Expectations (PEs) [16,17].
The CT assessments are derived from the concepts and practices that students
perform as part of their science modeling activities. The rubrics used for cod-
ing and scoring these assessments were updated from our previous work [16].
Two researchers received 5 h of training on the rubrics, during which 5% of
the test submissions were randomly selected and graded together to establish
initial grading consistency. Another 20% test submissions were then graded by
the two researchers independently to establish inter-rater reliability (Cohen’s κ
at ≥ 0.8 level on all items). All differences in the coding were discussed and
resolved before the remaining 75% of test submissions were graded by a sin-
gle researcher. We also designed formative assessment tasks that mirror the
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curricular tasks students worked on in the WRC. These tasks measured stu-
dents’ understanding of (1) the water conservation relations, (2) the relative
effect of different surface materials on runoff, (3) the ability to compute water
runoff and absorption under different circumstances, (4) the ability to debug
incomplete or incorrect model code, and (5) the method to compare different
design solutions considering trade-offs. We used students’ responses to 14 items
from 6 formative assessment tasks in this work.

Log Analysis. The learning environment logs individual students’ actions dur-
ing their computational model-building and engineering design activities. We
calculated three behavioral measures from students’ computational model-
ing activities: (1) the total number of add, remove, connect, or disconnect blocks
actions, (2) the number of run the model actions to test the computational model,
and (3) the median number of edit actions between tests (because students often
perform a series of edits without testing or a series of testing without editing the
model, the median number is a more robust measure given the skewness in the
data). In addition to deriving behavior measures, we defined a computational
model score for the student-generated models. A correct computational model
scored 6 points (1 point for each correctly implemented function that calculates
and assigns values to an output variable. There were two variables each in the
three rules, see Fig. 1 for reference). To allow students to conduct meaningful
design activities, the researchers made an effort to ensure that all students’ had
correct computational models before they started the design activity. Common
errors were discussed with the whole class, and the students were given a chance
to correct their models. The model scores reported in this work were calculated
before the correction feedback was provided to the students.

Our measurements of students’ engineering design quality and their learn-
ing behaviors have been discussed in our previous work [34]. The two quality
measurements used are: (1) the number of satisfying designs and (2) the small-
est runoff value from all of the satisfying designs created by a student. The
two behavior measurements used are: (1) the number of tests conducted to
evaluate designs; and (2) the total standardized Euclidean distance between
a student’s m consecutive tested designs, i.e.,

∑m−1
i=1 ||(Vi+1 − Vi)2|| where

V = 〈runoffz, costz, accessibliltyz〉. The subscript z indicates the standard-
ized value of runoff, cost, and accessibility of a design. The total standardized
Euclidean distance and the number of tested designs indicate the extent to which
a learner explored the engineering design experiment space [12].

Path Analysis. Traditional regression methods assume that (1) only direct
associations exist between dependent and independent variables and (2) errors
in the dependent variable are uncorrelated with the independent variable [1,33].
When applied to intrinsically related variables, where indirect variables play a
mitigating role, multi-regression or correlation analysis do not provide optimal
model estimates [23]. Path Analysis addresses these problems. It can be seen as
a variation of Structural Equation Modeling [13] without the latent variables. In
this work, we use Path Analysis to study the effects and the relative importance
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Fig. 3. Hypothesized path model.

of effects among the measured performance and behavior values. We hypothesize
that students’ prior knowledge and formative assessment scores influence their
subsequent learning behaviors, computational model building and engineering
design performance, and post-test scores in the WRC curriculum. This is rep-
resented by the causal path model shown in Fig. 3. Each arrow in the diagram
indicates a direct effect on the endogenous variable from the exogenous variable.

4 Results and Discussions

4.1 Learning Performances and Behaviors

Students’ pre-post test scores were compared to determine their learning gains
in science, engineering, and CT. To check the normality of the scores, we first
measured the skewness (z-value = −0.811, p-value = 0.417) and kurtosis (z-
value = −0.567, p-value = 0.571) of the score distributions and confirmed that
they were close to a normal distribution. Therefore, we used the paired t-test
to evaluate the statistical significance of the pre-post score differences. Table 1
shows that all differences are statistically significant with moderate (≥0.5) to
large (≥0.8) effect sizes.

Table 1. Learning gains (N = 99)

Total points Pre-score (stdev) Post-score (stdev) p-value Cohen’s d

Science 7 4.56 (1.03) 5.13 (1.04) <0.001 0.54

Engineering 16 8.73 (2.62) 10.50 (2.67) <0.0001 0.67

CT 13 6.23 (2.60) 8.41 (2.69) <0.0001 0.83

Overall 36 19.52 (4.47) 24.03 (4.39) <0.0001 1.02

Formative Assessment. The average score of the integrated science, engi-
neering, and CT formative assessment was 19.05 points (stdev = 4.57) out of
maximum possible scores of 31 points. This result, along with the pre-post test
gains, indicates that the students were learning the domain content, CT concepts
and skills, and engineering design practices through the intervention.

Computational Modeling. Students showed a large variation in their compu-
tational model-building behaviors. On average, they made 167 edits (stdev = 77)
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to build their computational models, and they performed 43 tests (stdev = 47)
on them. The average of the median number of edits between tests was 1.11,
indicating the student mostly made edits in small chunks between successive
model tests. The average computational model score was 4.67 (stdev = 1.85),
and 59% of the students created a correct computational model before the answer
was disclosed in class. The model component with the least number of correct
implementations (n = 67) was “set total runoff to (total rainfall − absorption
limit)” when “total rainfall is greater than absorption limit” (c.f. Fig. 1).

Engineering Design. The students performed an average of 29.4 tests (stdev
= 22.2) on their schoolyard designs. The average total standardized Euclidean
distance was 18.6 (stdev = 19.0). The average number of unique designs that
satisfied the criteria for cost and accessibility was 6.3 (stdev = 4.2). Ninety
students created and tested at least 1 satisfying design, and the average amount
of runoff for the satisfying design solutions, with 2 inch of rainfall, was 1.23
inch (stdev = 0.94). The global minimal runoff of all satisfying designs was 0.96
inch, and 29 students got at this optimal solution. These results show that most
students created feasible design solutions.

4.2 Path Analysis

We created a path diagram of the measured variables using the IBM R© SPSS R©

Amos 26 software. We modeled a total of 47 direct effects from the 15 variables in
the path diagram. As a pre-analysis suggested by [27], we evaluated the assump-
tions of multivariate normality and then removed four outliers from subsequent
analyses, leaving a sample size of 95 for the Path Analysis. 1000 bootstrap sam-
ples were generated to estimate the standard errors and calculate the confidence
intervals at the 95% level. The standard errors and their critical ratios were later
used to evaluate the statistical significance of the modeled causal effects while
reducing the variance in the observed variables.

We also calculated model-fitting statistics of the path model as compared to
the saturated model [27]: χ2 = 40.89 (DF = 54, p-value = 0.91); the goodness of
fit (GFI) was 0.95 (≥0.95 threshold); the comparative fit index (CFI) was 0.99
(>0.9 threshold); and the root mean square error of approximation (RMSEA)
was 0.01 (<0.06 threshold). These statistics indicate that the path model derived
fitted the measurements well. All of the hypothesized paths in Fig. 3 were con-
firmed as direct or indirect effects. Figure 4 shows the statistically significant
causal paths that are large (β > 0.2).

Computational Modeling. The students’ learning behaviors and performance
in the computational modeling activity (yellow boxes in Fig. 4) were directly
affected by variables in the same category and the formative assessment score.
The CT pre-test score also indirectly related to the comp model score and
comp edits (via formative, comp test, and edit btw tests) with total β’s of 0.28
and 0.28, respectively (indirect effects are not shown in Fig. 4). As one of the
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Fig. 4. Discovered causal paths with statistically significant direct effects. (Color figure
online)

main learning outcomes, the students’ comp model score was also significantly
affected by the median number of model edits between tests (edit btw test),
indicating students who edited their model in small chunks between tests did
better in the computational model-building task. Similar results of smaller edit
chunks being associated with better models have also been reported by [2]. The
engineering pre-test score (pre eng) also had a statistically significant but small
(total β = 0.12) indirect effect on comp model score through formative.

Engineering Design. The number of unique satisfying designs (num satisfy)
and the lowest amount of runoff of satisfying designs (lowest runoff ) were the
two variables evaluating the quality of students’ designs. For num satisfy, the
strongest direct effects came from the number of tests on the designs (engi-
neering test, β = 0.53) and the total standardized Euclidean distance between
the tested designs (eng euclid, β = 0.25). The lowest runoff was most strongly
affected by num satisfy (β = −0.35) and comp model score (β = −0.25).

These results align with our previous findings with a group of fifth-grade
students in another school that students who explored a larger portion of the
problem space were more likely to generate better engineering design solu-
tions [34]. It also matched the scientific discovery as dual search theory [12]
that successful learners connect the hypothesis space and the experiment space
by making inferences with data drawn from their investigations. More impor-
tantly, these results suggest a strong connection between computational mod-
eling (comp model score) and engineering design (lowest runoff ) with a total
standardized effect of −0.32 (β = −0.25, total indirect effect is −0.07). The
negative value indicates that students making better computational models on
their own generated better design solutions, even though all students were shown
the correct implementation of the computational model before the engineering
design activity. It also indicates the benefits of having students develop their
own computational model to use for designing and testing, relative to providing
students with a model that has been developed by experts.

Post-test Scores. The science post-test scores (post sci) were significantly
influenced by lowest runoff (β = −0.23), num satisfy (indirectly, total β’s =
0.08), engineering test (indirectly, total β =0.08), and comp model score (indi-
rectly, total β = 0.04). The engineering post-test scores were mostly affected
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by pre eng (β = 0.52), eng euclid (β = −0.25), and num satisfy (indirectly, total
β’s = 0.20). The effect from num satisfy indicates that students’ success in solv-
ing the engineering design problem by searching for the optimal combinations
of surface materials on the schoolyard reflected better learning outcomes. As of
the CT post-test score, it was only significantly affected by the related pre-test
scores. The variable comp model score had a relatively large total effect of 0.14
on post ct yet the effect was not statistically significant.

These overall positive results suggest that the students’ success with the engi-
neering design activities can be linked to their science and engineering proficien-
cies, providing evidence for the benefit of integrating engineering with science
learning [19]. In addition, the effect of engineering activities on the summa-
tive assessments suggested that the design goals of the WRC curriculum were
achieved, and students’ high learning gains (Cohen’s d = 1.02) illustrated the
benefits of integrating instruction across engineering and science.

Future Work. In the present work, we identified the connections between
computational modeling, engineering design, and the learning outcomes as
effects on the causal paths. Such connections might not be discovered by only
examining the associations between the variables using model-less correlation
methods [23]. For example, the correlation coefficient (Spearman’s ρ) between
comp model score and lowest runoff was −0.11 (p = 0.28). This suggests that
Path Analysis is an effective technique to study the relationship between related
variables, such as the measures derived from the WRC.

This work can be further advanced by employing more sophisticated mea-
sures. For example, we used a simple heuristic to measure the computational
modeling performance. We plan to (1) implement more sophisticated meth-
ods to study the structure of the students’ models (e.g., abstract syntax trees
(ASTs) [14]) and (2) include machine learning methods (e.g., sequence min-
ing [11]) to analyze and understand their learning processes and learning strate-
gies. These measures will help us design online feedback in the system to support
student learning.

5 Conclusions

The Water Runoff Challenge is one of the first examples of NGSS-aligned cur-
ricula that support the interdisciplinary learning of science, engineering, and
CT. In the present work, the curriculum is enhanced by enabling computational
modeling activities for students to develop and practice CT instead of perform-
ing engineering design with a pre-built model. Results from our classroom study
demonstrated the instructional benefits of using the WRC and provided empir-
ical evidence to support the integration of engineering activities with science
learning and computational model building, especially in early K-12 settings.

Our studies point to ways that using computational modeling to integrate
science and engineering can merge insights from two learning research traditions:
developing computational artifacts and engaging in simulation-based problem-
solving. Specifically, our analysis suggests potential benefits of guiding students’
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development of a computational scientific model prior to using the model to
solve a related engineering problem. Further research is needed to better under-
stand the learning processes that produce such benefits and identify instructional
design features that best take advantage of them.
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