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Abstract: We articulate a framework for using computational modeling to coherently integrate 
the design of science and engineering curricular experiences. We describe how this framework 
informs the design of the Water Runoff Challenge (WRC), a multi-week curriculum unit and 
modeling environment that integrates Earth science, engineering, and computational modeling 
for upper elementary and lower middle school students. In the WRC, students develop 
conceptual and computational models of surface water runoff, then use simulations 
incorporating their models to develop, test, and optimize solutions to the runoff problem. We 
conducted a classroom pilot study where we collected students’ learning artifacts and data 
logged from their use of the computational environment. We illustrate opportunities students 
had to integrate science, engineering, and computational thinking during the unit in a pair of 
contrasting vignettes. 
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Introduction 
The emergence of computation as the third pillar (alongside theory and experiment) of science and engineering 
requires schools to incorporate computational thinking (CT) into the K-12 curriculum. Consequently, students 
need opportunities to learn the CT skills that will enable them to contribute to scientific discoveries, engineering 
solutions, and computing innovations (Wing, 2008). One place where deep connections among CT, science, and 
engineering can be strongly featured is in the practice of modeling. In science and engineering, modeling involves 
selecting aspects of a phenomenon to be modeled, identifying relevant variables and their relations, developing 
formal representations, implementing the relations using the formal representation language, and analyzing system 
representations to predict system behavior and achieve problem solutions (e.g., Basu, et al., 2012; Lehrer & 
Schauble, 2006). Relevant aspects of CT that align with the practice of modeling include development of 
computational artifacts, abstraction, problem decomposition, and debugging.  

Recent research has produced successful activities where learners develop computational models of 
science phenomena (e.g., Basu, Biswas, & Kinnebrew, 2017; Wilkerson-Jerde, Wagh, & Wilensky, 2015), but 
relatively few that also ask learners to develop, test, and refine engineering solutions related to those phenomena. 
Connecting both engineering and science with computational modeling provides opportunities to foster student 
learning of all three disciplines (NRC, 2011). Computational models address numerous shortcomings of physical 
materials for engaging in engineering activities by emphasizing engineering as an approach to problem-solving 
(rather than as building physical artifacts). Computational models also support the modeling of complex systems 
and data-driven iterative refinement of designs. In these ways, computational modeling is particularly well suited 
to both explaining scientific phenomena and developing engineering solutions related to those phenomena.  

This paper addresses the question: How can curriculum materials use computational modeling to 
coherently integrate the science and engineering disciplines? We describe the design approach for the Water 
Runoff Challenge (WRC) (Chiu et al., 2019), a multi-week curriculum unit that integrates Earth science, 
engineering, and CT for upper elementary and lower middle school students. We illustrate opportunities students 
had to integrate the disciplines during the unit using a pair of contrasting vignettes from a classroom pilot study. 

Design perspectives 
Our design approach integrates numerous perspectives on the design of STEM and computing curriculum 
materials and learning technologies.  

● Evidence-centered design. We use evidence-centered design (Mislevy & Haertel, 2006) to 
systematically unpack the target science, engineering, and computing concepts and practices and specify 
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anchor points for curriculum and technology design. To guide design, we articulate a set of learning 
performances (Harris, Krajcik, Pellegrino, DeBarger, 2019; Krajcik, McNeill, & Reiser, 2008), which 
are learning goals that integrate disciplinary content knowledge, disciplinary practices, and crosscutting 
content that students need to attain as they progress toward broad learning goals. Learning performances 
integrate smaller aspects of performance across disciplines, thereby providing specific targets for the 
design of curricular activities and helping identify associated formative assessment opportunities. 

● Integrating science and engineering. Our work extends research and design that integrate students’ 
participation in science and engineering (e.g., Burghardt & Hacker, 2004; Fortus et al., 2005; Kolodner 
et al., 2003; Penner, Lehrer & Schauble, 1998). These approaches strengthen scientific understanding by 
making science concepts consequential for students’ engineering decisions and strengthen engineering 
by requiring students to articulate design rationales based on scientific principles. Because engineering 
is a relatively new addition to many precollege education frameworks, much existing research examines 
how engineering practices can support science learning outcomes. The relatively recent positioning of 
engineering as having equal footing as science in contemporary science education frameworks such as 
the U.S. Next Generation Science Standards (NGSS) (NGSS Lead States, 2013) motivates our design 
approach, which places engineering at the center and examines how science (and CT) can support it. 

● Domain-specific modeling language (DSML). We have created a DSML for the computational 
modeling activities to reduce the challenges that learners face when modeling scientific scenarios (Hasan 
& Biswas, 2017). The concept of DSML emerges from domain-specific language—a programming 
language that focuses on a particular problem domain with an appropriate level of abstraction (van 
Deursen, Klint, & Visser, 2000). The use of a DSML simplifies the problem by adapting the level of 
system abstraction to an age-appropriate level. Relative to using a general-purpose language to develop 
scientific models, students can place greater focus on the science concepts and system variables without 
having to attend to the details of model implementation. 

● Developing computational simulations for science inquiry and using them for problem-solving. 
This paper integrates two strands of work on models and simulations in STEM learning. We draw from 
research that examines how to design computational environments that enable students to model science 
phenomena (e.g., diSessa, 1991; Wilensky & Rand, 2015). We also build on work that investigates how 
students use simulations to engage in problem-solving (e.g., de Jong & van Joolingen, 1998; Xie et al., 
2018). In this paper, we merge these two perspectives—students first develop the underlying 
computational model driving the behavior of the simulation, then use the resulting simulation to design 
and test problem solutions.   

A framework for integrating science, engineering, and computational modeling 
Figure 1 illustrates our framework for integrating engineering, science, and CT (in the form of computational 
modeling). The investigation is framed around an engineering design challenge. The engineering challenge is 
defined so that its solution is governed by an underlying science phenomenon aligned with science learning goals 
for the unit. This science phenomenon must be modeled computationally so that the computational model can be 
used to achieve the engineering solution. 

After students define and delimit the engineering problem, they explain the science phenomenon that 
drives the engineering problem (e.g., water runoff in the WRC). Toward this end, students investigate the 
phenomenon (such as using hands-on activities) and develop a conceptual model (e.g., physical representation or 
a drawing) that attends to the system behavior produced by the phenomenon and specifies appropriate variable 
relationships in mathematical terms.  

After students develop a working computational model that predicts system behavior, the model output 
is incorporated into a simulation that supports design, testing, and optimization of engineering solutions. Students 
are expected to rely on a variety of testing approaches to compare multiple engineering solutions and iteratively 
determine solutions satisfying all design criteria.  
 This framework for using computational modeling to integrate science and engineering has given rise to 
three emergent design guidelines for designing curricular activities that leverage this framework: 

● Identify a problem and underlying phenomenon that leverages computational affordances. To 
maintain authenticity in the curriculum design, the investigation should be driven by questions where 
computational affordances and tools are leveraged authentically as part of the science inquiry and 
engineering design activities. This principle promotes the CT practice of Recognizing and defining 
computational problems (K-12 CS Framework, 2016). 
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● Maintain coherence across system representations. To integrate views of the underlying science 
phenomenon with tools supporting engineering design, students develop multiple types of system 
representations, including pictorial, mathematical, narrative, and computational. These representations 
need to be conceptually coherent if, together, they are to help students understand the system behavior 
(Ainsworth, 2006). For instance, in the WRC, each system representation is explicit about the matter 
conservation relationship among rainfall, absorbed water, and water runoff, and what quantities 
constitute system inputs and outputs. 

● Ensure that a computational model can be developed using a minimal set of CT concepts and 
provide opportunities to learn and apply these requisite concepts. Because our curriculum design 
assumes no prior programming experience, we ensure that the model can be developed using a minimal 
set of CT concepts. Accordingly, we provide opportunities for students to engage with those CT concepts 
in an unplugged (offline) context before developing computational models.  
 

 
Figure 1. Relationships among engineering, science, and computational modeling in the WRC. 

Curriculum unit and computational modeling environment description 
The WRC is a three- to four-week unit addressing NGSS performance expectations in Earth science and 
engineering design. Students are presented with the problem of flooding of a schoolyard during periods of heavy 
rainfall. They are challenged to resurface the schoolyard in a way that minimizes the amount of surface water 
runoff during a storm, while also adhering to constraints on the total cost, accessibility of schoolyard, and uses of 
different surface materials. The science investigation involves hands-on activities contrasting absorption 
capabilities of different surface materials and students developing a conceptual model that expresses the amount 
of water runoff as the difference between the total rainfall and water absorbed by surface materials.  

Students are then introduced to the CT concepts of variables, expressions, and conditionals in a series of 
unplugged activities. They apply these concepts to the development of a computational water runoff model and 
are supported in testing and debugging their code to refine their models. The computational runoff model simulates 
the effect of surface materials on water runoff from the schoolyard to the surrounding area and includes six 
materials, each having a predefined absorption limit. In the model, students must specify that when the total 
rainfall on any type of material exceeds the absorption limit of the material, the remainder will become runoff.  

Figure 2 shows the DSML created for the computational modeling activity (left) and a correct 
implementation of the runoff model (right). The DSML defines a layer on top of the NetsBlox visual programming 
environment (Broll et al., 2018) and adapts CT concepts and practices to support the modeling of water runoff. In 
addition to the domain-specific constructs such as rainfall, water absorption, and runoff, the DSML blocks specify 
key mathematical operations (e.g., arithmetic, algebraic) and computational concepts (e.g. conditionals) to support 
model building.  

Students’ runoff model code for one part (one square) of the schoolyard is then incorporated into a 
simulation environment comprising 16 squares for the engineering design task (Figure 3). As part of the design 
task, the students need to select appropriate materials for the different parts of the schoolyard to minimize the 
amount of runoff. Their designs are also subject to two additional criteria: (1) not exceeding a total budget of 
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$750,000 and (2) having at least 6 squares built with wheelchair accessible surfaces. Because the most absorbent 
and accessible materials tend to have the highest cost, the students must consider trade-offs among these design 
variables as they refine and optimize their solutions. 

   
Figure 2. DSML of the runoff problem and a correct implementation of the runoff model. 

 

   
Figure 3. Screenshots of the runoff simulation environment. The left image shows the single square 

computational model being tested with wood chips (having a 1-inch absorption limit) using 1.4 inches of 
rainfall. The rain gauge icons report the amount of rainfall, absorption, and runoff. The right image shows the 

schoolyard simulation, where students change the design by selecting from the six available materials.  

Methods 

Setting and participants 
We conducted a classroom study with two teachers and 99 sixth grade students (52 female, 47 male) in an 
academic magnet school in the southeastern U.S. serving grades 5-8. Of the total school population, 33% were 
from underrepresented ethnic groups in STEM and 10% were eligible for free or reduced-price lunch. The study 
was conducted daily for 15 school days, for 45-70 minutes per day. The students had varying degrees of prior 
experience in programming with a visual programming language. The two teachers participated in about four days 
of professional development training prior to the study, during which they completed the entire curriculum, 
constructed conceptual and computational runoff models, and created engineering designs of the schoolyard. The 
teachers were highly experienced with teaching science, but neither had any prior programming experience. 

Data sources and analysis 
We examined two primary types of student data: paper-based artifacts and students’ actions in the computational 
environment. Students completed paper-based activities in class and as homework that included a range of tasks 
across science, engineering, and CT. The tasks captured students’ understanding of the properties of different 
surface materials and relationships among rainfall, absorption, and surface runoff; their ability to comprehend and 
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debug model code; their recognition of the need to conduct fair tests of runoff designs; and their ability to compare 
multiple solutions relative to design criteria.  

We also logged students’ design and testing choices as they used the 16-square schoolyard simulation 
(Figure 3, right). We represented students’ solution approaches as a series of points in a 3-dimensional solution 
space (Figures 4 and 5), with the three primary design criteria comprising the dimensions of the space: inches of 
water runoff, total cost, and the number of wheelchair-accessible squares contained in the design (Zhang et al., 
2019). We conjectured that successful students would initially explore a wide range of combinations of surface 
materials, then narrow down the scope of the search in the design space to arrive at an optimized solution by using 
subtle refinements. To characterize the nature of students’ solution approaches, we computed the Euclidean 
distance between points representing consecutive tests in the 3-D solution space. We computed the average 
distance for the first third and last third of each student’s test sequence. The difference between the two, the testing 
variability index, indicates a change in solution approach from early tests to the later ones, with positive values 
indicating increasing variability over time.  

To illustrate opportunities the WRC provided for students to integrate science, engineering, and CT, we 
summarize students’ solution approaches and present two contrasting student vignettes. Where appropriate, we 
position the performance of the two students relative to the range of student performances we observed. 

Findings 
Students completed the WRC activities as intended. In the paper-based activities, students exhibited wide variation 
in their ability to make conceptual runoff models, comprehend and debug model code, and compare engineering 
solutions relative to design criteria. We illustrate some of this variation in the vignettes below. In the 
computational environment, the 99 students performed a total of 2915 tests on their schoolyard designs. The mean 
number of unique designs made by a student was 10.85 (SD=7.22), and a mean of 6.24 (SD=4.27) of these unique 
designs satisfied the given criteria for cost and wheelchair accessibility. Ninety students tested at least one 
satisfying design, and 29 students achieved an optimal solution representing the lowest possible water runoff for 
2 inches of rainfall while simultaneously satisfying the other two criteria (0.9625 inches runoff, $750,000 cost, 6 
accessible squares). These results indicate that students were generally able to create feasible engineering designs 
for the WRC. Additionally, the mean testing variability index for the 72 students who conducted at least 15 tests 
(indicating a concerted effort to test solutions) was +0.09 (SD=0.87), suggesting that students were about equally 
likely to vary the test variables more widely in the later tests as in the earlier ones. Below, we use two contrasting 
vignettes to illustrate students’ learning process and performance in the WRC curriculum. 

Vignette #1: Lucas 
We selected Lucas (pseudonym) as the subject of the first vignette based on his high level of completion of the 
curricular activities and systematic testing approach using the computational environment. 

Conceptual and computational modeling 
From the outset, Lucas demonstrated a strong understanding of the underlying conceptual model. He made an 
accurate and complete pictorial model and included an accurate explanation comparing the resulting runoff from 
a high-absorbing and low-absorbing material. (“I made [the models] different because grass and concrete have 
different absorption limits. ...[Concrete] wouldn’t absorb as much rain, so the runoff would be higher.”) In 
addition, given a set of specific scenarios with a given amount of rainfall and an absorption limit, Lucas was able 
to consistently determine the expected absorption and runoff values based on a correct underlying runoff model. 
Only 36 of 99 students were able to determine the expected values correctly for each scenario. 

In response to a series of computational model code comprehension and interpretation tasks, Lucas was 
also able to correctly predict the absorption and runoff output for incompletely and/or incorrectly coded 
computational runoff models and describe how to elaborate or debug the code. (“One error is that she said if 
absorption limit is less than total rainfall. That should be switched. Also, it should set total absorption to total 
rainfall, not the other way around.”) This performance illustrates the extent to which Lucas was able to integrate 
science modeling and CT by applying his understanding of the conceptual runoff model to code comprehension 
and debugging tasks.  

Engineering design 
In the paper-and-pencil engineering tasks, Lucas demonstrated a strong understanding of the central engineering 
concepts of design trade-offs and fair tests. Asked to compare two hypothetical schoolyard designs, Lucas was 
among 10 students who explicitly discussed the trade-off between runoff performance and cost. (“[Onir’s design] 
would be the better design because it costs less money. Although [Onir’s] has more runoff, Pelayo’s model costs 
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more money than the school could handle.”) Lucas was also among the 20 students who identified a flaw in a 
given design test (“She can’t tell which design is better because she did not have the same rainfall inputs for both 
of them. So, the outputs would be different”) and correctly justified a new test based on the need for fair tests.  
 In using the simulation to develop, test, and optimize designs, Lucas was one of the 29 students who 
achieved the optimal design solution. Consistent with our conjecture, Lucas’s solution approach using the 
simulation (Figure 4) exhibited two clear phases: broad exploration characterized by highly contrasting designs 
that reach the boundary values of the solution space, followed by a series of smaller changes representing apparent 
attempts to optimize the solution iteratively. Lucas’s testing variability index of -1.50 was the seventh lowest 
achieved by any student in the study, indicating a decrease in variability over time. Using the two-phase approach, 
Lucas was able to test both low-cost/high-runoff (tests 5-7) and high-cost/low-runoff (test 11) solutions that 
exemplify a central trade-off students must make in this design problem. Lucas proceeded to the optimization 
phase, where he returned to the optimal solution six different times (tests 17, 33, 35, 39, 42, and 46) and avoided 
testing clearly infeasible solutions. This approach was informed by an underlying understanding of the 
relationship among surface materials, absorption limits, and resulting runoff, as Lucas was able to narrow his 
problem space search in a way that focused on solutions exhibiting good runoff performance.  
 

     
Figure 4. Lucas’s solution testing sequence. Blue markers represent designs satisfying all criteria. The dashed 

lines on the 2-D plots represent the optimal runoff performance for a satisfying solution (0.9625 inches), and the 
cost ($750,000) and accessibility (6 squares) criteria. The plots reveal two distinct solution approaches: 

exploration (tests 1-12) and optimization (tests 13-47). 

Vignette #2: Adam 
Adam (pseudonym) was less successful with the paper-based tasks and used a less systematic testing approach 
than Lucas. Adam struggled with some of the initial conceptual modeling tasks; for example, Adam indicated 2 
inches of water absorption in a model where there was only 1 inch of rainfall. He was also unable to correctly 
predict the output of given runoff model code. In the computational environment, Adam did not focus his solution 
search in a way that is consistent with either an understanding of the underlying runoff model or the computational 
affordances of the environment for solution refinement (Figure 5). Adam’s testing variability index of +1.18 was 
the 11th highest of all students in the study, indicating an increase in variability over time. Part of this variability 
increase was a result of Adam frequently repeating tests early in the search. However, Adam’s late-stage tests 
clearly exhibit drastically diverging designs having either poor runoff performance (tests 35, 40, 43, and 44) or 
low accessibility (test 38, 39, 41, and 42). Though Adam was able to achieve several satisfying solutions, his 
testing approach did not iteratively improve on any of them, and at no time during the search did Adam reach the 
optimal solution. 

Discussion and conclusions  
Our analysis illustrates opportunities students have to use both “science” and “engineering” experimentation 
approaches (e.g., Schauble, Klopfer, & Raghavan, 1991). Science approaches aim to characterize variable 
relationships by systematically establishing the effect of each potentially relevant variable, while engineering 
approaches aim to achieve specific outcomes by comparing contrastive cases and refining promising solutions. 
The WRC presents students with the “semi-specific” goal to minimize runoff (rather than achieve a specific 
threshold). Solution optimization can, therefore, benefit from science-oriented approaches that systematically 
examine individual design variables, rather than compelling students to stop testing after achieving a specific goal. 
We also highlight the important role of prior knowledge in how learners test problem solutions (e.g., Klahr & 
Dunbar, 1988). In the WRC, the conceptual runoff model (relating materials to their absorption capacity and 
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consequently to runoff performance) enables students to rapidly pare down the problem space and use an 
optimization approach reflecting the relationships among design variables such as runoff performance and cost. 
We conjecture that providing students like Adam with adaptive, just-in-time guidance could help them conduct 
tests more informatively. For example, such guidance could help students articulate trade-offs between design 
variables and identify promising solutions to optimize in subsequent tests. 
 

 
Figure 5. Plots representing Adam’s solution testing sequence, where variation between consecutive tests 

increases over time.   

We also note the affordances of CT for supporting engineering design processes. Enabling students to 
develop an underlying scientific computational model before using it to solve a related engineering problem 
contributes to the authenticity of the activity, provides students with greater agency, and appropriately 
demonstrates the role of CT in professional science and engineering. This approach, rather than presenting the 
simulation as a “black box,” allows students to determine for themselves “what’s under the hood,” consequently 
reinforcing the scientific concepts driving the simulation and helping students make the scientific rationale behind 
design decisions explicit. Our approach also aligns with frameworks recommending constructive learning 
activities over active ones (e.g., Chi & Wylie, 2014). In the WRC, because students have constructed the 
underlying model driving the schoolyard simulation, students’ subsequent use of the simulation to test solutions 
becomes a meaningful extension of a prior constructive activity, rather than merely an active one.  

We present a design framework for using computational modeling to coherently integrate science and 
engineering curricular activities and provide guidelines for instructional designers to apply our framework to new 
activity designs. The framework uses computational modeling perspectives to merge two salient research 
traditions in STEM learning: developing computational models of science phenomena and using computational 
simulations to solve problems. The framework responds to recent calls to integrate learning opportunities across 
STEM and computer science driven by the vanishing boundaries between disciplines in professional practice. 
Future work will entail analysis of pre/posttest assessments that measure student learning across science, 
engineering, and CT; analyses of students’ approaches to developing computational models; and examining 
factors that promote successful classroom implementation of integrated STEM curriculum materials. 
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