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We realize the Agrawal-Obied-Vafa (AOV) swampland proposal of fading dark matter by the model of
Salam-Sezgin and its string realization of Cveti¢-Gibbons-Pope. The model describes a compactification of
6-dimensional supergravity with a monopole background on a 2-sphere. In 4 dimensions, there are 2 scalar
fields, X and Y, and the effective potential in the Einstein frame is an exponential with respect to Y times a
quadratic polynomial in the field e=*. When making the volume of the 2-sphere large, namely for large
values of Y, there appears a tower of states, which according to the infinite distance swampland conjecture
becomes exponentially massless. If the standard model fields are confined on Neveu-Schwarz 5-branes the
6-dimensional gauge couplings are independent of the string dilaton in the string frame, and upon
compactification to 4 dimensions the 4-dimensional gauge couplings depend on X (rather than the dilaton
Y) which is fixed at the minimum of the potential. This avoids direct couplings of the dilaton to matter
suppressing extra forces competing with gravity. We show that this set up has the salient features of the
AQOV models, and ergo can potentially ameliorate the tension between local distance ladder and cosmic
microwave background estimates of the Hubble constant H,. Indeed, the tower of string states that emerges
from the rolling of Y constitutes a portion of the dark matter, and the way in which the X particle and its
Kaluza-Klein excitations evolve over time (refer to as fading dark matter) is responsible for reducing the H,
tension. Although the AOV proposal does not fully resolve the tension in H, measurements, it provides a
dynamical dark energy model of cosmology that satisfies the de Sitter swampland conjecture. We comment
on a viable solution to overcome the tension between low- and high-redshift observations within the AOV

background and discuss the implications for the swampland program.
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I. INTRODUCTION

Over the past decade or so, and through many experi-
ments, it has become indisputable that cosmological
observations favor an effective de-Sitter (dS) constant H
that nearly saturates the upper bound given by the present-
day value of the Hubble constant, H,. The ACDM model,
in which the expansion of the universe today is dominated
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by the cosmological constant A and cold dark matter
(CDM), is the simplest model that provides a reasonably
good account of all the data. However, various discrepan-
cies have persisted. In particular, with the increase in
precision of recent cosmological datasets, measurements
of H, provided by high- and low-redshift observations
started to be in tension [I]. In the front row, separate
determinations of H at low-redshift, including those from
Cepheids and Type-la supernovae (SNe), point to Hy =
74.03 4+ 1.42 kms~! Mpc~! [2-7]. Far from it, when the
sound horizon is calibrated using data from baryon acoustic
oscillations (BAO) and the all-sky map from the temper-
ature fluctuations on the cosmic microwave background
(CMB), the inferred value of the Hubble constant within
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ACDM is H,=67.4+0.5kms™! Mpc™' [8-11]. The
discrepancy with the latest SHOES estimate of H, =
74.03 4 1.42 kms~! Mpc~! [7] is significant at 4.4c level
[7,11], and systematic effects do not seem to be responsible
for this inconsistency [12-16]; see however [17].

Among the many possible explanations of the H,
tension, those connecting this discrepancy to the swamp-
land program stand out. The objective of this program is to
extract a set of relatively simple quantitative requirements
for low-energy effective field theories that admit a UV
completion to a consistent theory of quantum gravity [18].
By now, various swampland conjectures have been pro-
posed [19-34]; for reviews see [35,36]. Of particular
interest here is the distance swampland conjecture that
can be expressed by the following statement: If a scalar
field, coupled to gravity with reduced Planck mass Mp, =
(87G)~/2, transverses a trans-Planckian range in the moduli
space, a tower of string states becomes light exponentially
with increasing distance [20,21,28,37-39]. The exponen-
tially large number of massless string states saturate the
covariant entropy bound in an accelerating universe [40,41],
and force the scalar field to satisfy the so-called de Sitter
swampland conjecture [28]: The gradient of the potential V/
of a canonically normalized scalar field in a consistent
gravity theory must satisfy either the bound, Mp|VV/| >
¢V or must satisfy M3 min(V;V;V) < —c'V, where ¢ and ¢’
are positive order-one numbers [24,28]. Note that the
constraint above precludes dS vacua where VV = 0, and
therefore rules out ACDM, even when ¢ < 1 [42].

Studies of dynamical dark energy models that alleviate
the H tension have been carried out independently of the
validity of the swampland conjectures [43,44]. One inter-
esting type of models in this category deals with the scalar
field playing the role of early dark energy, viz. the field
could behave like a cosmological constant at early times
(redshifts z = 3000) and then dilute away like radiation or
faster at later times [45—48]. If this were the case, the sound
horizon at decoupling would be reduced resulting in a larger
H, value inferred from BAO and CMB data. However, the
CMB-preferred value of og (the rms density fluctuations
within a top-hat radius of 8151 Mpc, with & the dimension-
less Hubble constant) increases in early dark energy models
as compared to ACDM, increasing the tension with large-
scale structure (LSS) data. More concretely, it is the
combination Sg = 0g4(Q,,/0.3)*3 that is constrained by
LSS data, where Q,, is the matter density. The Planck
Collaboration reported Sg = 0.830 0.013 [10] whereas
local measurements find the smaller values; namely, ng =
03(Q,,/0.27)%3 = 0.78 0.01 from Sunyaev-Zeldovich
cluster counts [49], Sg = 0.77370:9:8 from DES [50] and
Sg = 0.745 £0.039 from KiDS-450 [51] weak-lensing-
surveys. The physical origin for the increase of oy in early
dark energy models is fairly straightforward, because the
new dark-energylike component acts to slightly suppress

the growth of perturbations during the period in which it
contributes non-negligibly to the cosmic energy density.
Henceforth, if we want to preserve the fit to the CMB data we
must increase the CDM component to compensate for the
suppression in the efficiency of perturbation growth [52].

A second type of interesting models emerges if dark
energy and dark matter interact with each other [53-62].
The identification of the infinite tower of string states
(following the swampland distance conjecture) as inhab-
iting the dark sector automatically provides a string
framework for a concomitant coupling of the scalar field
to the dark matter [63,64]. Within this framework there is a
continually reduction of the dark matter mass as the scalar
field rolls in the recent cosmological epoch. Such a
reduction of the dark matter mass is actually compensated
by a bigger value of dark energy density, which becomes
visible in the present accelerating epoch calling for an
increase of H. In this paper we present a well motivated
realization of the cosmological string framework put
forward by Agrawal, Obied, and Vafa (AOV) [63]. A point
worth noting at this juncture is that the AOV models do not
fully resolve the tension in H, measurements, as they can
raise the ACDM predicted value of the Hubble constant
only up to Hy = 69.067058 km s~ Mpc~! [63]. Indeed, this
maximum value of Hy is characteristic of all models with late
dark energy modification of the ACDM expansion history.
This is because the local distance ladder calibrates SNe far
into the Hubble flow and if dark matter fading takes place too
recently then it would raise H () but without actually changing
the part of the Hubble diagram where the tension is inferred.
More concretely, by substituting the SHOES calibration to the
Pantheon SNe dataset, the ability of late times dark energy
transitions to reduce the Hubble tension drops effectively to
Hy = 69.17 & 1.09 kms~! Mpc~! [65]. However, the AOV
proposal provides a novel cosmological set up that improves
the fit to data compared to ACDM, while satisfying the dS
swampland conjecture. Moreover, the smaller content of
CDM at late times in AOV models as compared to ACDM
yield a slight decrease of Sg, which can help reduce some-
what the tension between the CMB and LSS datasets.

Our starting point is Salam-Sezgin 6-dimensional super-
gravity (SUGRA) model, where a supersymmetric solution
of the form Minkowskiy x S? is known to exist, with a
U(1) monopole serving as background in the two-sphere
[66]. This model can be lifted to string (and M) theory [67]
and is asymptotic at large distances to the near-horizon
limit of NS5-branes described by the linear dilaton back-
ground which is an exact string solution [68]. Moreover, the
cosmological content of this supergravity model provides a
solution of the field equations that can accommodate both
the observed dark energy density and a fraction of CDM [69].
(Time dependence in the moduli fields vitiates invariance
under supersymmetry transformations.) The carrier of the
acceleration in the present dS epoch is a quintessence field
slowly rolling down its exponential potential. Intrinsic to this
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model is a second modulus, which is automatically stabilized
and acts as a source of CDM, with a mass proportional to an
exponential function of the quintessence field. The expo-
nential functional form of the mass spectrum characterizes
the infinite tower of mass states (inherent to the swampland
distance conjecture), which emerges when the quintessence
field moves a distance in field space ZO(1) in Planck units.

In the proposed cosmological framework, the standard
model (SM) fields are confined to a probe brane and arise
from quantum fluctuations. On the other hand, by comput-
ing the quantum fluctuations of the U(1) field associated to
the background configuration it is easily seen that the Kalb-
Ramond field generates a mass term of horizon size [69].
These “paraphotons” (denoted herein by T) have been
redshifting down since the quantum gravity era without
being subject to reheating. The presence of any additional
relativistic particle species with g degrees of freedom is
usually characterized by

10.75 \4/3 4/7 boson
AchfENeff—N‘g%:.g( > X{

9 (Taee) 1/2 fermion’

(1)

where Ny quantifies the total relativistic “dark” energy
density (including the three left-handed SM neutrinos) in
units of the density of a single Weyl neutrino species [70]
and NS¥ = 3.046 [71], and where T g is the temperature at
which particle species decouple from the primordial plasma
and the function g, (T4..) is the number of effective degrees
of freedom (defined as the number of independent states
with an additional factor of 7/8 for fermions) of the SM
particle content at the temperature 7g4... Comparing the
106.75 degrees of freedom of the SM with the 10.75 degrees
of freedom of the primordial plasma before neutrino
decoupling it is straightforward to see that for a massless
(real) spin-O scalar, spin—% (Weyl) fermion, and massive
spin-1 vector boson the contributions to N asymptote to
specific values of AN = 0.027, 0.047, and 0.080; respec-
tively [72].1 Hence, fluctuations in the Kalb-Ramond field
do not influence the primordial abundances of the nuclides
produced at big-bang nucleosynthesis (BBN) as the T’s
only count for AN < 0.080 and the 95% CL limit from a
combination of current CMB, BAO, and BBN observations
is AN, < 0.214 [10].2

The layout of the paper is as follows. In Sec. II we
briefly describe the geometrical properties of unified

' Asymptote here refers to relativistic species decoupling just
before top quark freeze-out.

This limit combines the helium measurements of [73,74] with
the latest deuterium abundance measurements of [75] using the
PARTHENOPE code [76] considering d(p.y)3He reaction rates
from [77]. Should one instead use the helium abundance
measurement of [78] in place of [73,74], the 95% CL limit on
the equivalent neutrino species shifts, Noir = 3.37 £ 0.22, and is
in 2.9¢ tension with the SM value.

dS-Friedmann models when embedded into Salam-Sezgin
6-dimensional supergravity. In Sec. III we interpret numeri-
cal results from data analysis that feature estimates for
each free parameter in the model. We show that the
Salam-Sezgin cosmological set up has the salient features
of the generic Agrawal-Obied-Vafa model, and ergo can
potentially ameliorate the tension between local distance
ladder and cosmic microwave background estimates of H,.
In Sec. IV we comment on a viable solution to overcome the
tension between low- and high-redshift observations within
the AOV background. The paper wraps up with discussion
and conclusions presented in Sec. V. Before proceeding, we
note that other ideas relating cosmological observations to
the swampland conjectures have been presented in [79-95].

II. EMBEDDING OF dS-FRIEDMANN MODEL
INTO SALAM-SEZGIN SUGRA

Concentrating on the purely bosonic field content of
Salam-Sezgin 6-dimensional SUGRA, we can express the
bulk action of the system by

1 2 _
SO 4]('2/ d6x\/g6 |:R6 — K2(6M0)2 — KQEKGFJQWN —?e Ko
K2
- ?esz%/INP] ) (2)

where g = detgyy, Re is the Ricci scalar of gyy, o
is a scalar field, Fyy = OyAyn;, Gunp = OyByp +
kA Fyp), Ay s a gauge field, Byp is the Kalb-Ramond
field, g is the U(1) coupling constant, k the gravitational
coupling constant, and capital Latin indices run from O to 5
[66]. With redefinition of constants G4 = 2> and & = 447,
and rescaling of ¢» = —ko the action (2) takes the form

1 Gs _
532—G6/d6x gG[R6—(8M¢)2——e 5 ¢ P Fun

Go 5y
_Fe 2(/G12VINP:|’ (3)

where the length dimensions of the fields are [G¢] = L4,
€] =L% [¢] =lgiun] =1. [A}]=L"" and [F},]=
[Ginp) = L7

Note that by rescaling the 6-dimensional metric as
gun = € ?gyn. one finds the action at the string frame
where ¢-dependence enters as an overall exponential factor
e2?. ¢ is then identified with the string dilaton, defining
the string coupling e? and having a tree-level potential
corresponding to a noncritical string with the parameter &
determined by the central charge deficit. The latter is
induced by the compactification of the four internal
dimensions on a manifold with nonvanishing curvature.
Its sign implies that the internal curvature is negative, such
as the noncompact H2 x §! space considered in [67] to
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compactify from 10 to 6 dimensions. Its compact analytic
continuation is $* x S!, which has an exact (super)-con-
formal field theory description, since S° corresponds to an
SU(2), Wess-Zumino-Witten model with curvature fixed
by the level k. The total internal 6-dimensional space of our
model is then H??) x §' x §2, with the monopole field on
§%. The exponential dilaton potential does not allow for
static solutions. One solution is the linear dilaton back-
ground along a space direction which has an exact string
description in terms of a free coordinate with background
charge. It corresponds to the near horizon limit of
NS5-branes which is holographic dual to a little string
theory [96]. In our case of interest, £ is positive and the
solution becomes linear dilaton in the time coordinate with
flat metric in the string frame (o-model) [68]. In the
Einstein frame, the scale factor of the metric in FRW
coordinates grows linearly with time while the dilaton
dependence becomes logarithmic. This exact time depen-
dent “vacuum” solution is the only asymptotic at large
times, even in the presence of matter, as we will see later.
We can now carry out a spontaneous compactification
from six to four dimensions, considering the 6-dimensional
manifold M of the base spacetime to be a direct product
of 4 Minkowski directions (hereafter denoted by M,) and
the 2-sphere, R!3 x $2. The line element on M locally is
given by
ds? = dsy(1,%)% + XN r2(d9? + sin®9dg?),  (4)
where (t, X) denotes a local coordinate system in My, r, is
the compactification radius, and f is the breathing mode of
the compact space. We assume that the scalar field ¢
depends only on the point of My, i.e., ¢ = ¢(t,X). We
further assume that the gauge field A, is excited on S and
is of the form
Ag=0 and A, =bcosd; (5)
this is the monopole configuration detailed in [66]. For the
purpose of this work, we will set the Kalb-Ramond field to
its zero background value, Byp = 0, and since the term
Ay Fyp) vanishes on $2, we have Gyyp = 0. The field
strength becomes

F2,y =2b%e™Y /1t (6)

Taking the variation of the gauge field A,, in (3) we obtain
the Maxwell equation

Oml/Gar/gze* = FHN] = 0. (7)

It is straightforward to verify that the field strength in (6)
satisfies (7).

Without loss of generality, the Ricci scalar can be
written as

= R[M,] + e R[S?] —400f - 6(d,f)*. (8)
where R[M], R[M,], and R[S?] = 2/r? denote respectively
the Ricci scalars of the manifolds M, M, and S?, with
Greek indices running from 0 to 3 [97]. To simplify the
notation hereafter R, and R, indicate R[M,] and R[S?],
respectively. The determinant of the metric can be written

as /g = €/ \/ga\/92, where g, =detg,, and g, =
r¥sin? 9 is the determinant of the metric of $? excluding
the factor e?/. We define the gravitational constant in the

four dimension as

1 M 2712
=75 = / VR (dd A dp) =< (9)
G, Ge

Thus and so, by using the field configuration given in (5)
the action in (3) can be recast as

SD (i/ d*x 94{32f[R4 +e ¥R, + Z(G”f)z - ((‘)ﬂqﬁ)z}
4

Geb?
_£ 2+ _ 6_4

G
e~2f~0 _ =20 er—r/lFl%U} i (10)
6 re 2

where we included the last term that does vanish identically
to show what is the 4-dimensional coupling of gauge fields
that come from 6 dimensions in the Neveu-Schwarz (NS)
sector. In the spirit of [42], we now consider a rescaling of
the metric of M, such that j,, =e* g, and therefore
Vi, = €*/g;. The preceding metric transformation
brings the model into the Einstein frame, in which the
action given in (10) can be rewritten as
1 — | s £
53 g [ /i Rl = 40,07 - 0,07 = &0
G4 6
Geb?

Te

. . G
R L (11)

and we can use §, in this frame to define a metric which we
use to measure distances in the field space. The effective
Lagrangian density in 4 dimensions takes the form

£5YIR - 40,1

G4 (aﬂ¢)2 -

V(if.¢)]. (12)
with

Geb?

rc

V(f,¢) z e U 4 = o700 — =R, (13)

where to simplify the notation we have defined: g = g,
and R = R[74].

Next, we define a new orthogonal basis, X = (¢ + 2f)/
VG, and Y = (¢ — 2f)/+/Gy, so that the kinetic energy
terms in the Lagrangian are both canonical, i.e.,
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Lo \/g[g—%(axy ~(9Y)? - V(X, Y)] (14)

where the potential V (X, Y) = V(f, ¢)/G,4 can be rewritten
(after some elementary algebra) as [98]

N VGiY 2
V(X,¥)= e [Gﬁb

_ _ ¢
Y JG—4X+G_} (15)

4
re 6

Note that Y corresponds to the 4-dimensional dilaton.
The equations of motion for the X and Y fields are

OX =0xV and 0OY = 0, V, (16)

and the FEinstein field equations are

1 Gy Guv .
R, ngR 3 Ka X0,X axax>
+ (a,,YaHY - 9"”8 Yé?”Y)
— gV (X, Y)] + T, (17)

where we have added the matter and radiation stress-energy
tensor 77, which also contributes to the evolution of the
Universe. To allow for a dS era we assume that the metric

takes the form
ds? = —dt* + e*"\dx?, (18)

and that X and Y depend only on the time coordinate, i.e.,
X=2X(t)and Y = Y(1).

Before proceeding, we pause to present our notation.
Throughout, the subindex zero indicates quantities which
are evaluated today. As usual, we normalize the Hubble
parameter to its value today introducing an adimensional
parameter H, = 100k, kms~' Mpc~!. Note that the func-
tion A(7) in the metric measures the evolution of H, with
h(ty) = hy. Now, we can rewrite (16) as

X +3hX =—-0xV and ¥ +3hY =-08,V, (19)
and the nonzero independent components of (17) are

2 Ga [1

o 2(X2 + V%) + V(X, Y)] +%/ (20)

and

. . 1 . . -
2h+3h2—%{—5(X2+Y2)+V(X,Y)}—P/’ (21)

where p and p’ are the pressure and energy density
contained in T7,.

The terms in the square brackets in (15) take the form of
a quadratic function of e~VGX_This function has a global
minimum at e~V%¥Xo = R,r*/(2G¢b?), and so we expand
(15) around the minimum,

) VY[
V(X,Y) = K+ (X = Xo)> + O((X = X)) |,
Gy 2
(22)
where
My = (23)
vz
and
MZ
K=—35(b%-1). (24)

2b2

Obviously the scalar field X is stabilized around its
minimum X,. Its physical mass is Y-dependent,

T2
My,
VG

and characterizes the mass scale of the tower of string
states, which according to the infinite distance conjecture
becomes exponentially massless [20,21,28,37-39]. Indeed,
as Y runs to large and negative values the 4-dimensional
Planck mass grows exponentially as Mp ~ e in string
units, and thus string excitations become exponentially
light in Planck units. Note though that these states cannot
play the role of dark matter since part of the string modes
carry also SM gauge charges. The X particle on the other
hand can play the role of fading dark matter, as we show in
the next section.

In the absence of matter and radiation described by the
stress tensor T, the equations of motion (19)—(21) have no
dS or inflationary solution. As we mentioned above, there is
an exact string solution with both functions 4 and Y
logarithmic in time describing a linearly expanding universe,
which corresponds in the string frame to the well know linear
dilaton and flat metric background. This requires the param-
eter /C in Eq. (22) to be positive. As we will see later,
this solution becomes asymptotic at large times in the
presence of matter and radiation. Moreover, there is a period
in time of approximate exponential expansion. The dS
(vacuum) potential energy density is given by

MX(Y) -

(25)

oVGaY

V pum—
Y Gy

K. (26)

Now, the requirements for preserving a fraction of super-
symmetry (SUSY) in spherical compactifications to four
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dimension imply b*£ = 1, corresponding to winding number
n = +1 for the monopole configuration [66]. From (24) and
(26) it follows that the condition for the potential to show a dS
rather than an AdS or Minkowski phase is &b% > 1.
Therefore, we conclude that a (Y-dependent) dS background
can be obtained only through SUSY breaking; see Appendix
for details.

We finish this section with a comment on possible SM
embeddings. In principle, excitations of the electromag-
netic field would seemingly induce variation in the electro-
magnetic fine structure constant, as well as a violation of
the equivalence principle through a long range coupling of
the dilaton to the electromagnetic component of the stress
tensor [99]. A similar variation would be induced in the
QCD gauge coupling and thus in the hadron masses.
Although a preliminary analysis seems to indicate that
such variations may still be compatible with experimental
limits because the resulting range of variation of the
quintessence field is about 2.5 Planck units (see next
section), a very light dilaton would also mediate extra
forces at short and larger distances [100] which are
excluded in particular by microgravity experiments
[101]. A possible way out would be to confine the SM
fields on NSS5-branes [102]. The 6-dimensional gauge
couplings are then independent of the string dilaton in
the string frame and thus come with a factor e? instead of
e~? in the Einstein frame, see Eq. (3). It follows that upon
compactification to four dimensions, gauge kinetic terms
couple to e*/*% see Eq. (11), and thus the 4-dimensional
gauge couplings depend on the scalar X (instead of the
dilaton Y) which is fixed at the minimum of the potential,
and SM couplings do not vary. Moreover, one avoids direct
couplings of the dilaton to matter suppressing extra forces
competing with gravity.

III. REDUCING THE H, TENSION WITH
FADING DARK MATTER

We now turn to investigate the cosmological implica-
tions of the Salam-Sezgin model, by accommodating recent
cosmological observations, while seeking to diminish
the tension between low- and high-redshift measurements.
To do so, we adopt the best fit value of H, =
69.0670% kms™' Mpc™! in the AOV study [63] and
analyze the dependence of the quantities relevant to
cosmology on the model parameters.

The total energy density of the Universe, p =, p;,
drives the evolution of the Hubble parameter H, where i =
{X,Y,X,b, r} accounts for the X and Y fields, for other
types of dark matter X, and for the usual SM components
of baryonic matter b and radiation r. For a spatially flat
Universe, H> = p/3, where we have adopted reduced

Planck units, i.e., Mp, = 1 and G, = v/2. For convenience,
herein we consider the evolution in u = —In(1 + z) rather
than 7, where 7 is the redshift parameter. With this in mind,

we express the evolution of the matter and radiation
components as

Py = Proe", (27a)

Px = Proe ", (27b)

and

Pr= pr.Oe_4uf(u)? (27C)
where we remind the reader that the subindex zero indicates
quantities which are evaluated today, and f(u) parametrizes
the u dependent number of radiation degrees of freedom.
For the sake of interpolating the various thresholds appear-
ing prior to recombination (among others, QCD and
electroweak), we adopt a convenient phenomenological
form derived elsewhere f(u) = e™*/15 [103]. To simplify
notation we also conveniently define p, = p, +pr. A
point worth noting at this juncture is that the leading term
in the expansion of the potential V around the local
minimum X, is quadratic, and therefore the coherent
X-field energy behaves like nonrelativistic dark matter
[104]. Thus, the X pressureless dark matter and X add up
to the CDM of our model. All in all, the number density of
the field X evolves like that of a matter term (i.e., proportional
to e~3*), while its mass evolves with ¥ according to (25).
Therefore, as in the AOV scheme [63], we have

Y-Y,
px = Mxnx = pxoexp NG —3u

Y
=Aexp|—=—-3u|. 28
’ <ﬁ > 28)
Finally, the energy density for Y is found to be
Looyn

Now, making use of the preceding formulas, we can give
an explicit expression for the evolution of the Hubble
parameter:

Ps
H? = EPS Y (30)

where p, = p, +p, + Ve stands for the steady-state
energy density in moduli space, in the sense that the field
Y is not evolving (Y’ = 0), with V4 = Vy + px. These
definitions allow us to rewrite the evolution equation (19)
for Y as

Y L3y +%Y/aups + 30y Vs _

0. 31
1—1y? Ps (31)
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Next, to simplify the numerical solution to the last
equation, we introduce the parameters

V

a=—"2, (32a)
Px,0

ﬂ = Pro ) (32b)

Px0

and

A
= s 32¢c
p*,O ( )

where Vo= Vy|y_o = K/+/2. Further definition of p, =
pPioPs and Vi = /)*,OVeff, which depend only on the
parameters introduced in (32), makes explicit the depend-
ence of the solution to (31) on just @, f, and y. Following
[69], we take as initial conditions Y(—30) =0 and
Y'(-30) = 0.08, which are in accordance to equipartition
arguments [105,106].

In order to understand to which extent this model can
represent cosmological data, we introduce the density
parameters Q; = p;/3H? and the equation of state for
the field Y:

1oy,
Wy ==y (33)
Py §H Y + Vy

At this stage, it is worthwhile to note that although the
solution for ¥ only depends on a, f and y, the cosmological
quantities depend on additional parameters. For instance,
the use of (30) and (33) requires the introduction of p,, , =
Py0 + Pxo and hy as additional parameters. This amounts
to a total of five free parameters in this model. For future
convenience, they are chosen to be hy, €0, ,9, a =
A/(3H3) and vy = V,/(3H3). These parameters are con-
strained by five conditions. One is the use of (30) as an
internal consistency condition on the total energy density.
Four additional constraints will come as an attempt to
reproduce experimental data with this model. In particular,
we will fix 4, to an experimental value /o, and sub-
sequently fixing the radiation content of the universe, since
this model does not provide any mechanism to modify it,
with the additional constraint

Qr,oh(z)|ex
r.0 = ~72p . (34)
hy

The total matter content of our model is similarly adjusted
to an experimental value and is given by

2
~ Qm,oh0|exp

Qm,O = Q*.O =+ QX.O = Qm,O = 72 (35)
0

Before we go any further, we clarify that a tilde on top of a
given parameter of the model, identifies its direct exper-
imental measurement, and when the measured quantity is a
product of two model parameters then we adopt the
subindex exp to indicate the experimental measurement.
Finally, the equation of state for Y today is fixed to the
value of the dark energy equation of state wyy = Wy .
In our calculations we take Wy o = —0.8070%}, as derived
from a combination of multiple observational probes in the
Dark Energy Survey (DES) supernovae program (including
207 type Ia supernovae light curves, the BAO feature, weak
gravitational lensing, and galaxy clustered, but independent
of CMB measurements) [107]. This value of Wy, is
consistent at the lo level with the one derived from a
combination of DES data and CMB measurements [108].

Making use of (33) and (32a), we can rewrite the
constraint on the equation of state as

iry? - er‘/iy(’
Wy.0

_sfo T e (36
%Y/Oz + er\/iyo )

Making use of (30) at # = 0 together with (34) and (35) we
arrive at

1 ~ ~
8 Y62 =1- Qr.O - Qm,O - UOeﬁYO’ (37)

which can be substituted into (36) to find the constraint
voeVHo = c_. (38)

Moreover, this result can be substituted back into (37) to
find a second constraint: Y{> = 6¢,. We have defined the
experimentally determined constants

1+w ~ -
Cy = #(1 - Qm,o - Qr,())' (39)

The third independent constraint between the still free
parameters Q, o, a, and v, can be found as a result of (38)

and Qy o = ae’/V2, and is given by

a 2 a \?
—e ()= (1) o
e (Qm,o—Q*,()) ‘ (QX,0> (40)

unless a = Q= 0. Under this condition, v, can be
determined from a and Qy , in which case the full solution
comes from the solution to the system

Yo=+V2In (Q“), (41a)

a

Y2 = 6c,. (41b)
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FIG. 1. Allowed region in the (/, wy ) parameter space, in terms of the ratio of present energy densities for the X-field and the total

CDM. The star indicates the preferred 4, value in the AOV analysis [63].

It must be noted that both Y, and Y}? are functions of
Qo and a through their dependence on the parameters
a, ff and y from (32). Solving separately (41a) and (41b) we
can obtain two solutions Qg}})(a) and Qg?})(a) respectively.

A common solution exists if there is some a such that
nglvz)(a) = Qg(z_z)(a). In the case that a = Qy (=0 and
Q.o = £, 0, the remaining parameter v, cannot be deter-
mined through (40), and its values vél) and 1162) will come
from the solutions to (38) and (41b), respectively, express-
ing Y, and Y|, as functions of v.

In the following we will consider the matter and radiation
parameters as given by the Particle Data Group, €, o/13| exp =
0.02226(23), QCDM.Oh%kXp = 0.1186(20), and Qr.oh%|exp =
2.473 x 107(T, /2.7255)*, where T, is the temperature
of the relic photons [109]. The existence of solutions to (41)
is conditioned by the values of h, and Wy through the
constants c_.. For example, for (g, Wy o) = (0.71,-0.62),
there exists a solution for (Qyg,a)~ (0.019,0.107) but
there is no solution for (%, Wy o) = (0.71, —1). A systematic
analysis of the (A, Wy,) parameter space is necessary to
study the potential of this model.

For large values of a, it can be seen that Qg?}) is
consistently larger than QQ}J, in a wide region of the
(hy, Wyo) parameter space. This can be used to study the
existence of solutions. As Qy( and a go to zero simulta-
neously, they do it as

C_
QX,O = —d,
Vo

as follows from (40). To ensure consistency with the
solutions at a = Qy, = 0, each function Qg(’?o must have

a different slope

(42)

Ay = |- (43)

0
Using this, if 1)(()2) > v(()l), both curves must cross, guarantee-
ing the existence of a solution. The limiting condition
1182) = v(()l), which determines the existence of a solution
with a = 0, separates both regions in the (%, Wy ) param-
eter space. In Fig. 1 we show this limiting condition together
with several solutions for a # 0. The best fit value of [63],
hy = 0.69, is indicated by a star. We note that models with
Qyx0/Qcpmo 2 40% are in 30 tension with current deter-
minations of wy .

We now take the best fit solution derived in [63] as the
experimental value of H(, and check for consistency of the
relevant cosmological parameters. For hy = 0.69 and
Qyx0/Rcpmo = 0.1, we obtain wy o = —0.63, which gives
a=0.178, vy =353, and V, = 3H3v, =3.87 x 1071
in reduced Planck units.

The main results of the consistency investigation are
encapsulated in Figs. 2—-6, where we show the evolution of:
(i) Y(u) and Y’ (u), (ii) the various contributions to the total
energy density, (iii) w,, (iv) the acceleration parameter
—q(u) =1+ K (u)/h(u), and (v) the Hubble parameter.
The results shown in the left panels of these figures are
based on the best fit value of the AOV analysis (corre-
sponding to a = 0.178), whereas those displayed in the
right panels correspond to a = 0. For a = 0, we take hy =
0.66 and wyy = —0.70; a choice justified below. We can
see in Fig. 3 how the X-Y coupling depletes dark matter
into dark energy, yielding a larger Qy, = 0.704 for a =
0.178 than for a = 0 where Qy oy = 0.673. This is the so-
called “fading dark matter” effect [63], which tends to favor
larger values of h, when a # 0; namely, iy = 0.69 for
a=0.178, and hy =0.66 for a = 0. The dark energy
equation of state also shows striking differences. As we can
see in the left panel Fig. 4, for —10 < u < —2. the dark
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FIG. 2. Evolution of Y(u) and Y'(u), for a = 0.178 (left) and a = 0 (right).
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FIG. 3. Evolution of the density parameters Q,, Q,, Qy, and Qy. We have taken a = 0.178 (left) and a = 0 (right).
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FIG. 4. Evolution of the equation-of-state parameter for dark energy wy, for a = 0.178 (left) and a = O (right).

energy equation of state wy > 0, so that the energy density
redshifts faster than that in ACDM [63]. For a =0,
however, the dark energy equation of state mimics that
of a cosmological constant, wy = —1, between
—10 S u £ —2. This translates into smaller values of
wy o for the decoupled system with a = 0, and closer to
the ACDM prediction of w, = —1.

In the left panel of Fig. 7 we show 1, 3 and 5¢ probability
contours in the (hg, wy o) parameter space after performing

a least squares fit of the model to the Hubble parameter
data. The minimum, which corresponds to a = 0, corrob-
orates that quintessence models exacerbate the H, tension
since the dark energy density decreases in recent times [63].
As can be seen in the right panel of Fig. 7, the best fit value
of hy in the OAV-study is consistent with determinations of
wy o at < 20 level. We conclude that the set up introduced
in Sec. II has the salient cosmological features of the AOV
fading dark matter proposal.
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FIG. 5. Evolution of the acceleration parameter —¢, for a = 0.178 (left) and a = 0 (right), showing the existence of an accelerated
phase that asymptotically approaches a constant velocity expansion in the future.
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determination of h from [7] together with a compilation [110] of 38 measurements /(z) in the range 0 < z < 2.36 [111-120]. These 38
h(z) measurements are not completely independent. For example, the 3 measurements taken from [119] are correlated with each other,
and the 3 measurements of [120] are correlated too. In addition, in these and other cases, when BAO observations are used to measure
h(z), one has to apply a prior on the radius of the sound horizon, r, = f°f cs(z)dz/H(z), evaluated at the drag epoch z,, shortly after

recombination, when photons and baryons decouple. This prior value of r; is usually derived using CMB observations.
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FIG.7. Leftpanel. 1, 3 and 56 probability contours in the (4, wy () parameter space after performing a least squares fit of the model to
the Hubble parameter data. The minimum corresponds to a = 0. Right panel. Structure of the (hg, wy ) parameter space around the
point (hg, wy o) = (0.69, —0.626), indicated with a “x.” The diagonal line separates the regions with Qy o/Qcppo larger (above) and
smaller (below) than 0.1. The green bands indicate the 1 and 2¢ confidence intervals for the value of %, as determined by SHOES. The
colored contours show constant x> lines, after the fit shown in the left panel. The first from the left shows the values as likely as (0.69,
—0.626), and the other three show the values such that Ay? is 1, 3 and 5, from left to right.
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FIG. 8. Rescaled posterior distributions of % (due to marginalization over additional free parameters) with different choices of N

from the 7 parameter fir of [130]. The rescaled posterior distribution of 4, for the AOV fit is indicated with the dashed curve [63].
The shaded areas indicate the 1o and 26 regions as determined by SHOES [7].

IV. HUBBLE HULLABALOO AND D-BRANE
STRING COMPACTIFICATIONS

In this section we comment on additional phenomena
that would influence the time evolution of the model
parameters and may help solving the H, problem. It is
common knowledge that D-brane string compactifications
provide a collection of building block rules that can be used
to build up the SM or something very close to it [121-123].
Gauge bosons of the brane stacks belong to N = 1 vector
multiplets together with the corresponding gauginos. At
brane intersections chiral fermions belong to chiral mul-
tiplets denoted by their left-handed fermionic components
0O, L, U¢, D¢, E°, N°, where the superscript ¢ stands for the
charged conjugate in the familiar notation.

For such D-brane constructs, superpotentials of the form
MNN¢ or SN°N¢ are precluded by the U(1), lepton and
U(1),, isospin-right gauge invariances, where M is a
Majorana mass matrix in flavor space and S is a gauge
singlet. Because of this, there is no equivalent to the seesaw
mechanism to generate the Weinberg term [124] which
gives rise to Majorana neutrinos.’ Neutrino masses could
then depend upon the addition of 3 Dirac right-handed
neutrinos. If we now adopt the phenomenological structure
of D-brane models to describe the matter fields in the
visible sector, then the model parameters of the cosmo-
logical set-up introduced herein could be (in principle)
affected by the right-handed neutrinos, which would
contribute to the total radiation energy density. For a
decoupling temperature =1 TeV, we have ¢,(Tge) 2
106.75 and via (1) we find that the vy contribution to
the non-SM relativistic energy density, AN < 0.14, is

*However, it is possible that D-brane instantons can generate
Majorana masses for these perturbatively forbidden operators
[125,126].

well within the existing 95% CL upper limit. On the other
hand, if vz’s decouple near the QCD phase transition, a
D-brane-like description of the matter fields in our cos-
mological setup can accommodate the larger value of
AN derived using the helium abundance measurements
of [78], while providing interesting predictions for LHC
searches [127-129].

More concretely, in Fig. 8 we show the normalized
posterior distributions of % for different choices of N
from the 7 parameter fit of [130]. It is evident that the 95%
CL limit on AN from the combination of CMB, BAO,
and BBN observations [10] severely constrains a solution of
the H, problem in terms of additional relativistic degrees of
freedom. Consideration of the larger helium abundance
measured in [78], with AN < 0.544 at the 95% CL still
precludes a full solution of the H, problem in terms of
additional light species at the CMB epoch. However,
the combined effect produced by fading dark matter and
the extra relativistic degrees of freedom at the CMB epoch
appears to have the potential to resolve the H tension;
see Fig. 8. A comprehensive study of the parameter space is
beyond the scope of this paper and will be presented
elsewhere. Needless to say, the helium abundance reported
in [78] is in tension with Planck observations, so this solution
would require a combination of two datasets which are in
tension. On the one hand, the addition of extra relativistic
degrees of freedom at the CMB epoch can accommodate the
local calibration of SNe luminosities well out into the Hubble
flow, avoiding the constraints of late times dark energy
transitions [65]. On the other hand, we have noted that
increasing the amount of radiation in the early universe leads
to a higher value of Sg. Solutions that could mitigate this
problem have been presented in [131].

Future experiments, such as CMBPol (which is expected
to reach a 2¢ precision of AN = 0.09 [132]) and
eventually CMB-S4 (which is expected to reach a 2o
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precision of AN = 0.06 [133]) will be able to probe the
contributions from Y’s and wvg’s, providing additional
constraints on the (extended) string cosmological set-up
proposed in this section.

V. CONCLUSIONS

We have realized the Agrawal-Obied-Vafa swampland
proposal of fading dark matter for relaxing the H tension
[63] by the model of Salam-Sezgin [66] and its string
realization of Cvetic-Gibbons-Pope [67]. The model is
fairly simple, it describes a compactification from six to
four dimensions of a 6-dimensional SUGRA with a
monopole background on a 2-sphere, allowing for time
dependence of the 6-dimensional moduli fields while
assuming a 4-dimensional metric with a Robertson-
Walker form. In terms of linear combinations of the $?
moduli field and the 6-dimensional dilaton, the
4-dimensional effective potential consists of a pure
exponential function of a quintessence field ¥ which is
the 4-dimensional dilaton and the field X which deter-
mines the 4-dimensional gauge couplings of NS5-branes.
This avoids direct couplings of the dilaton to matter
suppressing extra forces competing with gravity. It turns
out that X is a source of CDM, with a mass proportional to
an exponential function of the quintessence field. The
asymptotic behavior of the Hubble parameter, 4 ~ Int,
leads to a conformally flat Robertson-Walker metric for
large times. The dS (vacuum) potential energy density is

characterized by an exponential behavior Vy « eV,
Asymptotically, this represents the crossover situation
with wy = —1/3, implying expansion at constant velocity
with Y varying logarithmically Y~ —Int [68]. The
deviation from constant velocity expansion into a brief
accelerated phase encompassing the recent past (z < 6)
makes the model phenomenologically viable.

We have shown that this set up is well equipped to
reproduce the salient features of the AOV fading dark
matter proposal. For a = 0.178, the model features a tower
of light states X originating in the rolling of the Y field.
These X particles constitute a portion of the CDM, and the
way in which their mass evolve over time demonstrates that
the model may help reducing (though not fully eliminate)
the H, tension.

As a natural outgrowth of this work, we intend to study
higher dimensional SUGRAs, which also admit monopole-
like solutions [134]. In some cases, however, there are no
compactifications to Minkowski vacuum [135]. Of particu-
lar interest is the gauged 8-dimensional SUGRA with
matter couplings [136] where a solution of the form
Minkowskis x S? is known to exist. In addition, because
the Salam-Sezgin model has N = (1,0) SUSY in 6
dimensions the U(1) coupling is not fixed. In general it
may be a combination of ¢? and e~ determined by chiral
anomalies [137]. These may offer new possibilities for
models of the type discussed in this paper. However, we

remind the reader that late time dark energy transitions do
not fully resolve the true source of tension between the
distance ladder and high redshift observations [65] and
therefore some additional assumptions (like those dis-
cussed in Sec. IV) must be adopted in order to solve the
H, problem in the AOV-type string backgrounds.

In summary, the string cosmological framework put
forward in this paper calls for new CMB observations
and stimulates the investigation of complex theoretical
models of the swampland as possible solutions of the H,,
problem.
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APPENDIX

Since we have set to zero the fermionic terms in the
background, the condition for the SUSY of the background
is the vanishing of the supersymmetric variations of the
fermionic fields; namely,

1
51 =5 Ou)T e + 2 PGy TVPe =0, (A1)

1 i
SA=——eP2F, TMNe - ge=#/2¢ = (), A2
and
1 I POR
&:UM = —DME + ﬁe ¢GPQRF 0 FM€ = 0, (A3)
K

for the axino, the dilatino, and the gravitino; respectively
[66]. Here, TPCR = TI'PTOTRl is the fully antisymmetric
product of three I'-matrices of the 6-dimensional Clifford
algebra. The covariant derivative of the gravitino,

1 )
Dyyy = <8M + ZwMABrAB - lgAM)‘//Nv (A4)

is given in terms of the torsionfree spin connection w4 .
(The Christoffel connection is not needed because of the
contraction with the antisymmetric gamma-matrix.) Using
the vielbein e}, we have
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P = ZeN[Aa[MeN]B] — eMAeBIPey OneS.  (AS)

In familiar notation: I', = yﬂ xo', I's =ysxo!, Ty =
1x0% {Ty,Ty} = 211MN, r:=1 and $0 I'sg = 75 X io
and I, =T, -- - Ty = 1 x 6> [138].

With this in mind, the nonzero components of the spin
connection are found to be @l = e"(f + h), 0P =r, f,

0¥ =r, fsind, ®2° = cos 9, where we adopted the also

familiar notation of carets on the curved indices (which are
lowered or raised with the spacetime metric gpy) to
distinguish them from the flat indices (that are lowered
or raised with the flat Minkowski metric 745), so that
GMN = pBell el lowercase latin indices are used for the
3 spatial components of My, and run from 1 to 3. The
contraction FyyI"M" in (A2) takes the form

3

- - b ,
FynTMN = 2F ;15 = 2b sin 9268156 = 2 — ¢/ T'ss.
rC
(A6)
Substituting (A6) into (A2) we obtain
1 :
— e 2 [be HTsge — ige?e] = 0. A7
T3¢ R lbe e —igetd (A7

Remarkably, the field equations fixed the monopole
charged to be +1, and lead to the condition [66]

F56€ = *ie. (Ag)
Using (A8) we rewrite (A7) as
YAV (A9)
g
In a similar fashion, oy = 0 leads to
Ope =0 (A10)

from which we conclude that e is not a function of ¢.
The condition dy; = 0 yields

1 .
8,~€ + Ea)%o

and oy = 0 gives

1 ..
[je = ;e +§€h(f +h)lpe =0, (All)

1 1 .
656 + Ewgors()G - lgAge = 856 + Ercfrsoe = 0 (A12)
Next, oyg = 0, leads to
L 1 s :
Og€ + > %% Tgo€ + 593 I'se — igAge = 0, (A13)
which translates into
1 .
Og€ + 3 rof sindgpe = 0 (A14)
and
1 :
50058F56€— igh cos 8¢ = 0. (A15)

Substituting the relation g = +/£/2 into (Al5) while
imposing (A8) we obtain the constraint »*>¢ = 1. Finally,
the variation of gy implies

g@oq’zroe =0 (A16)
which sets 4’) =0.

The constraints from imposing the SUSY background
can be summarized as follows: the relation (A16) demands
¢ to be a constant and when this condition is combined with
(A9) we see that f must also be a constant. Because f is a
constant, we can immediately see by inspection of (A10),
(A12), and (A14) that € is independent of both ¢ and the
coordinates of the compact space 9 and ¢. Likewise, we
rewrite (All) as

1 .
3,~€ + zehhr‘ioe =0. (A17)
The temporal dependence of (A17) then becomes
ehh = x, (A18)

and so the scale factor for a SUSY background is found
to be

h

e" = xit+ x5, (A19)

with »; and x, constants.
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