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ABSTRACT

Augmented listening devices such as hearing aids often perform
poorly in noisy and reverberant environments with many competing
sound sources. Large distributed microphone arrays can improve
performance, but data from remote microphones often cannot be
used for delay-constrained real-time processing. We present a co-
operative audio source separation and enhancement system that
leverages wearable listening devices and other microphone arrays
spread around a room. The full distributed array is used to separate
sound sources and estimate their statistics. Each listening device
uses these statistics to design real-time binaural audio enhancement
filters using its own local microphones. The system is demonstrated
experimentally using 10 speech sources and 160 microphones in a
large, reverberant room.

Index Terms— Distributed microphone array, audio source sep-
aration, speech enhancement, augmented listening, hearing aids

1. INTRODUCTION

An important application of audio signal processing is to help people
hear better in crowded, noisy environments. Augmented listening
(AL) systems, such as hearing aids and augmented reality headsets,
alter human perception by processing sound before it reaches the
auditory system. Microphone arrays, which are used to filter signals
spatially [1], can improve the performance of AL systems by sep-
arating sounds coming from different directions [2]. Large arrays
can help AL systems to reduce noise more effectively, operate with
lower delay [3], and preserve a listener’s spatial awareness [4, 5].

Large wearable devices with microphones spread across the
body can perform better than small earpieces [6]. Distributed arrays
with sensors placed around a room could perform better still [7].
Microphone arrays are common in mobile and wearable devices,
teleconferencing equipment, and smart-home appliances. If these
devices could be aggregated into room-scale arrays, as shown in
Fig. 1, they could dramatically improve the spatial diversity of
listening systems. There has been significant recent research inter-
est in distributed microphone arrays, including bandwidth-efficient
distributed beamforming algorithms [8, 9], distributed blind source
separation methods [10–13], and blind synchronization to compen-
sate for sample rate mismatch between devices [14–17].

Unfortunately, distributed arrays often cannot be used directly
for AL applications. In addition to bandwidth and computational
limitations, listening devices are subject to severe delay constraints:
they must process sound within a few milliseconds to avoid dis-
turbing distortion or echoes [18, 19]. Even if remote microphones
cannot be used directly for spatial filtering, however, they can still
provide valuable information to the listening device. Spatial fil-
ters rely on estimates of the spatial characteristics of sound sources,

Fig. 1. A room might contain many audio devices, each with multi-
ple microphones, that can cooperate to improve performance.

such as their cross-correlation sequences or acoustic transfer func-
tions [20]. Blind source separation [21] and channel estimation [22]
methods are unreliable in large, reverberant spaces with many com-
peting sound sources—the very environments in which humans most
need help hearing. To reliably separate signals and estimate param-
eters in challenging environments, a single device is not enough.

In this work, we show how AL devices can cooperate with each
other and with other devices to improve performance in a real-time
listening enhancement task. Due to delay, computation, and band-
width constraints, a listening device might not be able to use data
from remote devices to perform spatial filtering. Instead, the dis-
tributed array is used to separate signals and estimate their space-
time statistics, as shown in Fig. 2. Each AL device uses these
estimated parameters to design a real-time multimicrophone audio
enhancement filter for its local microphones.

Because the proposed system would be quite complex to imple-
ment, we make several simplifying assumptions in this work. First,
we assume that the sources and microphones do not move. We also
assume that all devices are perfectly synchronized; for asynchronous
array processing methods, see [23,24]. To emphasize the benefits of
spatial diversity from large arrays, we ignore the temporal structure
of the source signals; for distributed methods that leverage speech
signal sparsity, see [24–26]. Finally, although the reverberant acous-
tic channel is unknown, we assume that the number and rough loca-
tions of the sources are known.

2. REAL-TIME LISTENING ENHANCEMENT

Consider a room, like that in Fig. 1, withN sound sources and a total
of M microphones spread across several devices, including at least
one binaural listening device. All M microphones can be used to
separate the sound sources and estimate the parameters of the acous-
tic channel. However, due to delay constraints, only Mlocal ≥ 2
microphones are available to the listening device for real-time audio
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Fig. 2. Data from many devices is used to perform source separation
and estimate signal statistics. Listening devices perform real-time
filtering using only their own microphones.

enhancement. By convention, microphone 1 is in or near the left ear
and microphone 2 is in or near the right ear.

Let xlocal[t] ∈ RMlocal be the signal received by these lo-
cal microphones. It is modeled as a mixture of N source images,
c1[t], . . . , cN [t] and noise z[t], so that

xlocal[t] =
∑N
n=1cn[t] + z[t]. (1)

In a reverberant environment, each source image cn[t] can be split
into an early component cearly,n[t], which includes the direct path
and early reflections, and late reverberation clate,n[t], as shown in
Fig. 3 [27]. There is no precise boundary between the early and
late components, but it is assumed that each early component can be
modeled by an acoustic impulse response aearly,n[k] so that

cearly,n[t] =
∑∞
k=0aearly,n[k]sn[t− k], (2)

where sn[t] is the signal emitted by source n, for n = 1, . . . , N .

2.1. Source remixing for augmented listening

Human augmented listening differs from other audio enhancement
applications in two important ways. First, binaural devices must pre-
serve spatial perception by maintaining the interaural cues between
the left and right outputs for each source [4, 5]. Second, processing
delay must be no more than a few milliseconds to avoid perceptible
distortion or echoes [18,19]. This delay constraint limits the achiev-
able performance of the system [3].

The AL device enhances the user’s perceived auditory scene by
adjusting the levels of different sound sources, that is, by remix-
ing them. For simplicity, suppose that the desired response for each
source n is a scalar gain gn ≥ 0. The desired output signals yL[t] at
the left ear and yR[t] at the right ear are

yL[t] =
∑N
n=1gne

T
1 cearly,n[t] and (3)

yR[t] =
∑N
n=1gne

T
2 cearly,n[t], (4)

where eTm is the unit vector with a 1 in position m. Applying the
same processing to the signals at the left and right ears ensures that
interaural cues are preserved.

2.2. Delay-constrained listening enhancement

For brevity, we henceforth restrict our attention to the left output.
A causal order-K finite impulse response filter wL[k] ∈ RMlocal

produces an output signal

ŷL[t] =
∑K
k=0w

T
L [k]xlocal[t− k]. (5)

Reference mic
Listening

device

Fig. 3. The signal due to source n is modeled as an early component
and late reverberation.

Let the allowable delay be α samples so that ŷL[t] is an estimate
of yL[t − α]. To derive a minimum-mean-square-error (MMSE)
estimator for the desired output, model xlocal[t] and yL[t] as
zero-mean wide-sense-stationary random processes. Let rxx[k] =
E
[
xlocal[t]x

T
local[t− k]

]
and rxyL [k] = E [xlocal[t]yL[t− k]] be

their auto- and cross-correlation functions, where E denotes expec-
tation. Then the linear MMSE filter that estimates yL[t − α] given
xlocal[t] is the time-domain multichannel Wiener filter [28]

wL[0]
wL[1]

...
wL[L]

=


rxx[0] rxx[1] · · · rxx[K]
rxx[−1] rxx[0]

...
. . .

rxx[−K] rxx[0]


−1

rxyK [α]
rxyL [α− 1]

...
wL[α−K]

.
(6)

The cross-correlation matrix can be decomposed in terms of the
source images. From (3), we have

rxyL [k] =
∑N
n=1gnrxcn [k]e1, (7)

where rxcn [k] = E
[
xlocal[t]c

T
early,n[t− k]

]
for n = 1, . . . , N .

The listening device can easily estimate rxx[k], but it would be dif-
ficult for it to estimate the source statistics rxcn [k] on its own.

3. COOPERATIVE PARAMETER ESTIMATION

Although remote devices cannot be used for real-time process-
ing, they can be used to estimate the spatial statistics of the sound
sources. If the remote devices are spread around and among the
sound sources, then the distributed array will have far greater spatial
resolution than the listening device alone. Furthermore, parameter
estimation does not have a strict delay constraint, so the system can
use several seconds or more of audio data.

3.1. Source separation using reference microphones

To learn the acoustic channel parameters, we would like to estimate
the source signals sn[t] for n = 1, . . . , N . Unfortunately, due to
permutation and scale ambiguities, we cannot directly recover the
sound produced by the source. Instead, we will estimate each source
as observed by a nearby reference microphone.

A key advantage of distributed arrays is that some devices are
much closer to some sources than others. Source separation algo-
rithms can exploit this spatial diversity by, for example, assigning
different sources to different devices [11–13]. Suppose that for each
source n, there is a unique reference microphone m∗n that is closest
to it. Each reference microphone enjoys a higher signal-to-noise ra-
tio and direct-to-reverberant ratio than more distant microphones for
its corresponding source. Let s̃1[t], . . . , s̃N [t] be the set of source
signals as observed by their respective reference microphones.
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Let ŝ1[t], . . . , ŝN [t] be estimates of these reference signals pro-
duced by a source separation algorithm. The cooperative system
of Fig. 1 can be used with any multimicrophone source separation
method. It remains an important open problem to develop scalable
source separation algorithms that can take full advantage of massive-
scale arrays in strongly reverberant environments with many sources.
To assess the impact of source separation on the performance of
the augmented listening system, the experiments in Sec. 4 compare
three methods with different levels of separation performance:

1. A baseline unprocessed estimate, which is the input mixture
at the nearest microphone to each source.

2. A blind source separation method known as independent vec-
tor analysis (IVA), which attempts to maximize the statistical
independence between sources. We use the algorithm of [29]
initialized with the nearest-microphone estimate.

3. An ideal linear MMSE filter that estimates each s̃n[t] using
ground-truth acoustic channel parameters.

3.2. Estimation of second-order statistics

To compute the source-remixing filter derived in Sec. 2.2, we
must find the second-order statistics of the early source images
cearly,1[t], . . . , cearly,N [t]. Because the true source signals sn[t] are
not available, we cannot use the convolutional model (2) directly. In-
stead, we will use the relative early impulse responses (REIRs) [27]
ãearly,n[k] with respect to the reference microphones:

cearly,n[t] =
∑∞
k=−∞ãearly,n[k]s̃n[t− k], (8)

for n = 1, . . . , N . Notice that REIRs are noncausal in general, but if
the reference microphone is close to its source, then the REIR should
closely resemble the true early impulse response.

Because many source separation algorithms, including IVA, op-
erate in the time-frequency domain, it will be convenient to compute
signal statistics using the periodogram method. Let Xlocal[τ, f ] be
the short-time Fourier transform (STFT) of xlocal[t] and let Ŝn[τ, f ]
be the STFT of ŝn[t] for n = 1, . . . , N . The sample statistics are

R̂snsn [f ] = meanτ

∣∣∣Ŝn[τ, f ]∣∣∣2 , n = 1, . . . , N, (9)

R̂xsn [f ] = meanτXlocal[τ, f ]Ŝ
∗
n[τ, f ], n = 1, . . . , N, (10)

R̂xx[f ] = meanτXlocal[τ, f ]X
H
local[τ, f ]. (11)

Note that these sample statistics are only correct if the signals are
wide-sense stationary, which is not true in practice. By using the
long-term average statistics, we ignore the temporal nonstationarity
of the source signals and rely on spatial diversity alone.

If the sources and noise are uncorrelated with each other, then
we can estimate the discrete-frequency relative transfer function of
cn[t] with respect to microphone m∗n as

Ân[f ] = R̂xsn [f ]R̂
−1
snsn [f ], n = 1, . . . , N. (12)

The relative early transfer function Âearly,n[f ] is obtained by time-
domain windowing. The length of this window is a tunable parame-
ter that, based on our experiments, does not appear to have a strong
impact on objective performance.

The estimated cross-spectra between the mixture and images are

R̂xcn [f ] = R̂xsn [f ]Â
H
early,n[f ], n = 1, . . . , N. (13)

The correlation functions required to compute the remixing filter are
obtained by taking the inverse discrete Fourier transform of R̂xx[f ]

and R̂xcn [f ] for n = 1, . . . , N .

Fig. 4. Four wearable arrays (left), twelve tabletop arrays (right),
and ten loudspeakers were spread around a large room.

4. EXPERIMENTS

4.1. Experimental setup

To demonstrate the proposed cooperative source separation and en-
hancement system in a challenging real-world environment, an ex-
periment was conducted using 10 loudspeakers and a total of 160
omnidirectional microphones in a large (9 m by 13 m), strongly
reverberant conference room (T60 ≈ 780 ms), shown in Fig. 4.
Twelve enclosures, designed to resemble voice-assistant speakers,
held eight microphones each in a circular pattern with diameter 10
cm. The remaining 64 microphones were in wearable arrays on four
plastic mannequins. Each had one microphone near each ear canal,
four in behind-the-ear earpieces, two on eyeglasses, and eight on a
shirt. Due to equipment limitations, recordings were captured using
sixteen microphones at a time and the devices were moved between
recordings while the ten loudspeakers remained fixed.

The loudspeakers played quasi-anechoic speech samples from
ten talkers in the VCTK corpus [30]. To quantify the source separa-
tion and enhancement performance of the system, each sound source
was played back and recorded separately to capture the source im-
ages, which can be added together to form test mixtures. The dataset
is available on the Illinois Data Bank [31].

The closest microphone to each source was selected as the refer-
ence for source separation using the baseline, blind, and ideal meth-
ods described above. Source separation and parameter estimation
were performed using 16 seconds of audio data. Different 16-second
speech clips from the same talkers were used to evaluate the result-
ing listening enhancement filters. The filters have a target delay of
16 ms and an impulse response length of 128 ms. The length of the
REIRs used to model the target sources’ acoustics was 32 ms.

To consistently quantify performance, the enhancement filters
(3) were designed to isolate a single source at a time, so that gn = 1
for target source n and 0 for all others. A total of 8N single-target
enhancement filters were designed, one for each source and each
ear. The output signal-to-noise ratio (SNR) for a source separation
or enhancement filter w designed to isolate source n is

SNRn = 10 log10

∑
t

(∑
kw

T [k]cn[t− k]
)2∑

t

(∑
p 6=n

∑
kw

T [k]cp[t− k]
)2 . (14)

Note that separately recording and combining source images has
the effect of amplifying ambient noise. For qualitative evaluation of
enhancement results under more realistic conditions, the experiment
was repeated using a simultaneous recording of all ten sources; bin-
aural samples are available at the first author’s website1.

1http://ryanmcorey.com/demos
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Ideal IVA

Array M N = 4 7 10 N = 4 7 10

Reference 10 13 12 10 5 4 3
Wearable 64 25 26 23 8 7 3
Tabletop 96 23 23 21 7 6 5
All mics 160 23 24 23 8 7 6

Table 1. Median source separation performance measured by SNR
improvement, in dB, between the estimated reference signal and the
noisy signal at the reference microphone.

0 10 20 30

N = 10

Nearest N = 7

N = 4

N = 10

IVA N = 7

N = 4

N = 10

Ideal N = 7

N = 4

SNR Improvement (dB)

Fig. 5. Listening enhancement performance for different numbers
of sources and different separation methods. All 160 microphones
were used for separation. The boxes show the quartile statistics over
all 8N source-output pairs.

4.2. Experimental results

The separation system was evaluated with several array configura-
tions: the 10 reference microphones alone, the 4 wearable arrays,
the 12 tabletop arrays, and all 160 microphones together. Table 1
shows the median SNR improvement of the estimated reference sig-
nal ŝn[t] compared to the unprocessed nearest-microphone signal for
N = 4, 7, and 10 sources. While IVA performs better than the base-
line, especially for small N , it does not scale well with increasing
array size and there is a large gap between its performance and that
of the ideal filter. Notice that the wearable arrays outperform the
tabletop arrays despite having fewer total microphones; the acousti-
cally opaque body improves the spatial diversity of these arrays [6].

Figure 5 shows the SNR improvement of the AL device out-
put compared to the unprocessed input at each ear. Within each ex-
periment, lower SNR improvements generally correspond to distant
source-listener pairs and larger improvements are for nearby source-
listener pairs. For example, for the 7-source mixture using IVA pa-
rameters, the listener in the upper left corner in Fig. 4 achieved an
18 dB SNR improvement for the directly adjacent source but only a
1 dB improvement for the source in the opposite corner of the room.

Listening enhancement performance appears to depend strongly
on source separation performance. There is a roughly 5 dB perfor-
mance difference between the filters designed from the unprocessed
reference microphone signals and those designed from the IVA es-
timates, showing that cooperative source separation did improve the
performance of the individual AL devices. There is also a 5 dB dif-
ference between the IVA-based filters and those designed from ideal
estimates, showing that there is room for improvement in distributed
source separation.
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Fig. 6. Enhancement SNR as a function of separation SNR. Each
point represents one source-to-ear filter. Results are sampled from
all array and source configurations in Table 1.

To further illustrate the relationship between source separa-
tion and audio enhancement performance, Fig. 6 shows enhance-
ment SNR as a function of separation SNR for individual source-
microphone pairs. For the two non-ideal separation methods, there
appears to be a roughly linear relationship: every 1 dB improve-
ment in the separation SNR provides about 1 dB improvement in
enhancement SNR. The ideal unmixing filter shows diminishing
returns above around 10 dB. The vertical spread in the figure ap-
pears to be due to different distances between sources and listeners:
nearby listeners achieve larger enhancement gains compared to
distant listeners for the same source estimate.

5. CONCLUSIONS

The experiments presented above show that a distributed room-scale
array can help listening devices to perform useful audio enhance-
ment in challenging reverberant environments where source sepa-
ration would otherwise be difficult or impossible. In contrast to
other distributed methods, data from the distributed array is not used
for real-time filtering but for parameter estimation. While a 16-
microphone wearable array can provide strong enhancement perfor-
mance on its own, it cannot reliably estimate the space-time statistics
of the sources. The cooperative processing system can.

Because the enhancement filter is designed to match the esti-
mated reference signal, its performance depends strongly on that of
the source separation algorithm. Further research is required to find
separation methods that can take advantage of massive spatial diver-
sity to reliably separate large numbers of sources in strongly rever-
berant environments. With these improvements, the proposed co-
operative audio separation and enhancement system will allow aug-
mented listening devices to leverage all the microphones in a room,
helping users to hear clearly in even the most challenging situations.
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