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Abstract— Many recent studies demonstrate that
state-of-the-art Deep neural networks (DNNs) might
be easily fooled by adversarial examples, generated
by adding carefully crafted and visually imperceptible
distortions onto original legal inputs through adversar-
ial attacks. Adversarial examples can lead the DNN
to misclassify them as any target labels. In the liter-
ature, various methods are proposed to minimize the
different ¢, norms of the distortion. However, there
lacks a versatile framework for all types of adversar-
ial attacks. To achieve a better understanding for the
security properties of DNNs, we propose a general
framework for constructing adversarial examples by
leveraging Alternating Direction Method of Multipli-
ers (ADMM) to split the optimization approach for
effective minimization of various ¢, norms of the dis-
tortion, including ¢y, /1, {2, and /- norms. Thus, the
proposed general framework unifies the methods of
crafting /o, (1, {2, and /- attacks. The experimental
results demonstrate that the proposed ADMM attacks
achieve both the high attack success rate and the mini-
mal distortion for the misclassification compared with
state-of-the-art attack methods.

I. INTRODUCTION

In recent years, deep learning is achieving extraordinary
performance [1,2]| and penetrating into wide application
domains [3-5], such as natural language processing, com-
puter vision and speech processing. However, despite these
success stories, many recent studies demonstrate that even
state-of-the-art DNNs might be vulnerable or fooled by
adversarial misclassification attacks [6,7], which find visu-
ally imperceptible noises and essentially lead to the DNN
misclassification after adding the noise to an original le-
gitimate input image. Kurakin, Goodfellow, and Bengio
have demonstrated the existence of adversarial attacks not
only in theoretical models but also the physical world [§].
Thus it is essential to evaluate the DNN robustness under
adversarial attacks, especially for some security-critical
applications.

The robustness of DNNs under adversarial attacks can
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be evaluated and enhanced from two aspects: 1) adversar-
ial defenses, such as detecting and pre-processing possible
adversarial examples [9-11] and/or modifying DNN model
structures [12-15] and 2) adversarial attacks, such as the
L-BFGS and the C&W attacks |7,16-19]. The two ap-
proaches mutually benefit each other towards hardening
DNNs under adversarial attacks. Our work follows the
latter approach, but we do appreciate any research efforts
on the former approach.

Adversarial examples are constructed by adding neg-
ligible distortions onto original legal inputs, and usually
the distortions are crafted by formulating and solving an
optimization problem such as L-BFGS [7], C&W [16] and
EAD [18]. The objectives of the optimization problem
have two aspects: (1) misleading the DNN classifier to
label the adversarial example as a target class, which is
different from the original correct class, and (2) minimiz-
ing the £, norm of the added distortion to keep the noise
imperceptible.

In the optimization problem of constructing adversar-
ial examples, we consider and minimize various ¢, norm
measures ({g, {1, {2 and ¢, norms) of the distortion, and
generates the corresponding ¢y, ¢1, {5 and ¢, attacks. Usu-
ally it is not easy to design various ¢, norm attacks as one
attack is often heavily customed for a certain £, norm and
if switched to design another £, attack, some vital modifica-
tions are required. To solve the optimization problem with
different ¢, norm minimization requirements, a powerful
and efficient method from optimization theory i.e., ADMM
(Alternating Direction Method of Multipliers) [20] is intro-
duced, which provides (i) a general framework for various
¢, attacks, (ii) no additional sub-optimality besides the
original commonly used gradient-based backpropagation
method, and (iii) a faster second-order convergence rate
than state-of-the-art iterative attacks [21,22]. By leverag-
ing ADMM, the original optimization problem is split into
several correlated subproblems, which can be solved indi-
vidually. Then their solutions are coordinated to construct
a solution to the original problem. This decomposition-
coordination procedure of ADMM blends the benefits of
dual decomposition and augmented Lagrangian for solving
problems with non-convex and combinatorial constraints.
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Fig. 1. Adversarial examples generated by our ADMM /5 attack.
The original image is a wallaby from ImageNet dataset. It can be
classified to other classes by adding visually undetectable noise.

We show an example of the generated adversarial examples
on ImageNet in Fig. 1.

Our contributions beyond what appears in the C&W
attack are summarized as follows:

e By leveraging ADMM, we propose a general frame-
work to craft £y, {1, {5, and ¢, attacks with minor
modifications, which is quite different from the C&W
attack. The C&W /5 attack is easy to solve while
it is quite hard to minimize the ¢y or /o, norm due
to their non-differential characteristics. Thus a much
more complex method is proposed. For example, the
C&W ¢ attack needs to run their £5 attack iteratively
to find and fix the least influencing pixels, thereby
identifying a minimal subset of pixels which can be
modified in an adversarial example.

e Our attacks achieves high success rate and smaller
distortion for the misclassification compared with
state-of-the-art attacks.

II. RELATED WORK

The representative attacks and defenses are introduced
in this section.

A. Adversarial Attacks

L-BFGS Attack [7] first proposes to minimize the ¢y
norm of the perturbation in the objective function to keep
the distortion undetectable during adversarial attacks.
JSMA Attack [23] leverages a greedy algorithm to find
out the most influential pixels through computing the
Jacobian-based Saliency Map and modifies the pixels iter-
atively, leading to the minimization of the ¢y distortion.
However, the prohibitive computational complexity limits
its application to large scale datasets like ImageNet.
FGSM [24] and IFGSM [8] Attacks utilize the sign of
the gradients of the loss function to determine the direction
for modifying the pixels. They are fast /., attacks but

lack optimal guarantee. The improvements of FGSM and
IFGSM, that is, the fast gradient method (FGM) and the
iterative fast gradient method (IFGM), can perform 1, ¢,
and /., attacks.

C&W Attacks [16] can generate £y, {2, and ¢, attacks
which is able to achieve 100% attack success rate with much
lower distortions compared with the above-mentioned at-
tacks. In particular, the superior performance of the C&W
{5 attack compared with the L-BFGS attack (they are
both optimization-based ¢5 attacks) is achieved by a more
effective objective function.

EAD Attack [18] solves an elastic-net regularized op-
timization problem during adversarial attacks, that is,
minimizing a linear combination of ¢/; and /5 norms in
the objective function. It can craft ¢;-oriented adversarial
attacks and includes the C&W /5 attack as a special case.

B. Representative Defenses

Defensive Distillation [12] first trains a teacher model
to produce soft labels for the training dataset and then
trains a distilled model using soft labels as target labels.
During the testing phase, a new parameter, temperature,
is introduced into the softmax layer to produce outputs
with almost hard labels.

Adversarial Training [25] enlarges the training dataset
by including the adversarial examples with their correct
labels and then retrains the neural network, thus enhancing
the robustness of DNNs.

III. FORMULATION: AN OPTIMIZATION PERSPECTIVE

In this paper, we would like to investigate the problem
of designing the perturbation, so that 1) the classification
of the image after adding the perturbation can be changed
to any target label and 2) the perturbation can be as
small as possible under certain distance measure. The
optimization problem can be formulated as below,

D(8) +g(x +9)
(x+4) € [0,1]",

minimize

2 (1)

subject to

where D(d) denotes the distance measure of perturbation
d, and g(z) has the following form,

(x) = 0 if max;x{Z(x);} —Z(x): <0
9=\ o« otherwise.

(2)

Z(x); represents the i-th element of the logits Z (), which
is the output of all layers except the final softmax layer in
the DNN model. D function is usually in the form of ¢,
norm as the following,

D(&) = 8], = (Daﬁp) p ®)

{9 norm measures the number of nonzero elements in §.
Lo norm denotes the standard Euclidean distance of 4.



ls norm represents the maximum absolute value of 4. In
the paper, we investigate the problem where D function
takes the form of £y, £1, {5 and /..

It is known from (2) that g(x) = 0 iff

Z(x)s > Z(x);, foralli,

(4)

otherwise it would be co. So the solution of problem (1)
exists only if g(x) = 0, that is, the classification of & + 4 is
changed to the target label t. Meanwhile, the perturbation
is minimized as the D function is optimized in the problem.

Since the function g(x) is non-differential, we use the
following form inspired by [16]:

g(a + &) = ¢~ max ((Tﬁtx (Z(z +8)) — Z(z + 5%) ,0)
(5)

The original problem can be transformed into as follows,

miniamize D(d)+
¢ - max ((mﬁtx (Z(x+9)) - Z(x+ J)t) ,0)
subject to (x4 ) € [0,1]",

(6)

where ¢ > 0 is a regularization parameter. Note that when
¢ = 0, the solution attempts to minimize D(§) only. In the
other extreme case of ¢ — oo, the solution moves towards
the direction that « + 6 must be an adversarial example.

IV. ADMM FORMULATION

To apply ADMM, we introduce two auxiliary variables
z and w, so that problem (6) can be rewritten as,

D(8) + g(x + 2) + h(w)

subject to z =19
W =X+ 2Z,

minimize
8,z,w

(7)

where h(w) is the indicator function,

) = {

The augmented Lagrangian of problem (7) is given by

0 welo,1)
oo otherwise.

(8)
L(d,2,w,u,v) =D(8) + g(x +2) + h(w)
+u?l(—2z) +vi(w—2z—x)
p p
+ 5”‘5 —z|3+ §||W —z—x[3 (9)

where u and v are Lagrangian multipliers.
ADMM yields the following alternating steps

{61 w1y = argmin L(8, 2*, w, u”, v¥) (10)
2" = argmin L(6", z, w1 uf vF) (11)
uF = ub (ot — 2R (12)
VEHL = yh 4wl gkl gkt (13)

In problem (10), the optimal §**! and w**! are obtained
by minimizing the L function with fixed z*, u* and v*.
Similarly, the optimal 2511 is achieved by solving problem
(11) with fixed 61, w**! uw*F and v*. In Eq. (12)
and (13), we update u* and v* with u**! and v**+1,
respectively.

The major advantage of the formulation (7) lies in the
step (10). We note that the minimization over § and w
can be split into two problems, each of which has the
closed-form solution. Specifically, problem (10) can be
equivalently transformed into problem (14) and (15),

mini(smize D(6) + g||6 —z" + (1/p)u”||3 (14)

and
minimize h(w)+ g”w — 2" —x+ (1/p)vF3. (15)
In problem (11), we need to solve the following problem,

minuize g(x +2) + 644 —a+ (ptE o
FEIWE — =t (1o,

As specified above, the original problem is split into
three subproblems, (14), (15) and (16), through ADMM.
Note that in each subproblem, we only need to deal with
one constraint, which is much easier to solve compared
with the original problem dealing with multiple constraints
at the same time.

V. ADMM SOLUTION

A. S-minimization: a universal solution framework

In what follows, we investigate how to obtain the solu-
tion to problem (14) through proximal operator. We first
introduce the proximal operator [26] defined as,

1
prox,p(s) = argrr%in ()\D((S) + 5 6 — s|§) (17)

where prox,p(s) means the optimal solution §* which can
achieve the minimal value of AD(6) + 5 [|6 — s||§ given s.

In problem (14), multiple choices of D(d) are taken
into consideration: 1) D(8) = [|8]o, 2) D(8) = [|6]]1, 3)
D(38) = ||d]|2, and 4) D(d) = ||d]|co- Each choice of D(d)
yields an analytic solution of problem (14) by evaluating
the corresponding proximal operator with s = z¥ — 1/pu”
and A = 1/p as specified in the following.

A.1 /y attack

For the case of /o norm (D(d) = |[|d]|,), the proximal
operator is,

. 1
proxaa(s) = argimin (Al3l, + 5 16 sl)  (15)



The solution can be obtained elementwise,

0 |52| < V2A
0ors; [si] = V22X
S |51| > V2

(proxao(s)); = (19)

where s = z¥ — 1/pu® and \ = 1/p.

A.2 /(; attack

For the case of L1 norm, that is, D(8) = ||d|,, the proximal
operator is,

. 1
prox(s) = arginin (AI3], + 316 - sl)  (20)

By performing the (elementwise) soft thresholding oper-
ator, we can get the solution,

S; — A S; Z A
(proxyi(s)); = 0 [si| < A (21)
i+ A s; < —A

where s = z¥ — 1/pu® and A\ = 1/p.

A.3 /5 attack

For the case of Ly norm, that is, D(8) = ||d]|,, the proximal
operator is,

1
proxaa(s) = arginin (A3, + 5 15 sl3)  (22)

By the ’block soft thresholding’ operator [26], we can
get the solution,

(1 =X lsllp)s slly = A
proxys(s) = 23
R e * S
where s = z¥ — 1/pu” and \ = 1/p.
A.4 [, attack
For the ¢, norm, problem (14) becomes
minimize [|6]]u + gna —s|2, (24)

where s = z¥ — (1/p)u”.
By introducing epigraph variable r, then problem (24)
becomes

. . . 2
minimize + 5110 — sl

(25)
subject to 0; <r, i=1,2,...,n,

where the solution is given by the KKT conditions. The
Lagrangian is

L(8,t, 1) =1+ (p/2) |8 — sl + p"(6— 1) (26)

where g is the dual variable, and the optimality conditions
are

O <t',pl>0,ui (8 —t*) =0,

p(; —si) +p; =0,1Tp" =1 (27)

If 67 < ¢*, then the third condition implies that p} = 0,
and if 67 = ¢*, the fourth condition implies that p} =
p(s; —t*). Since pf > 0, we have

Hi = p(si —t%)+ (28)
Substituting for p} in the fifth condition gives
S plsi— 1), =1 (29)

i=1
This equation can be solved for ¢* by bisection using the
initial interval [min;s; — (1/n), max;s;]. After solving (29)
and obtaining t*, we recover the solution to the original

problem (24) via the following,
0 = min{t*, s;} (30)

This follows by applying the third and fourth conditions.

B. w-minimization step

We solve problem (15) in this section. Based on the def-
inition of the indicator function h, problem (15) becomes
a projection problem onto a box constraint,

minimize gHw — 2" —x+ (1/p)vF||3 (31)
w
subject to w € [0,1]™. (32)
The solution is given by
[wh i =
0 if [z* +x — (1/p)v¥]; <0
1 if [zF +x — (1/p)vF]; > 1
[z* +x — (1/p)vF]; otherwise,
(33)

where [w]; denotes the i-th entry of w.

C. z-minimization step

In this section, we solve problem (16). We note that the
g function in problem (16) depends on the DNN model
and is usually non-convex, thus it’s almost impossible to
obtain its closed-form solution. But we can try to find
its solution through gradient descent method. Stochastic
gradient descent methods have been widely applied in
deep learning for non-convex optimization. There are
several gradient descent optimizers including standard
gradient descent, gradient descent with momentum [27],
and Adam [28]. We use Adam optimizer to solve problem
(16) as Adam converges more quickly.



TABLE I
ADVERSARIAL ATTACK SUCCESS RATE (ASR) AND DISTORTION OF DIFFERENT L2 ATTACKS FOR DIFFERENT DATASETS

Best Case Average Case Worst Case

Data Set | Attack Method ASK Is I T ASK I, . I ASE Is . I
FGM(Ls) 99.3 | 2.158 23.7 0.562 43.2 3.18 37.6 0.761 0 N.A. N.A. N.A.

MNIST IFGM(L2) 100 1.61 18.2 0.393 99.7 2.43 31.8 0.574 99.3 | 3.856 54.1 0.742
C&W (L2) 100 1.356 | 13.32 0.394 100 1.9 21.11 0.533 99.6 2.52 30.44 0.673

ADMM(L32) 100 1.268 | 15.93 0.398 100 1.779 | 25.06 0.444 99.9 | 2.269 34.7 0.561

FGM(Ls) 99.7 | 0.418 | 13.85 0.05 40.6 1.09 37.4 0.62 1.2 4.17 119.3 0.43
CIFAR-10 IFGM(L2) 100 0.185 6.26 0.021 100 0.419 14.9 0.043 100 0.685 22.8 0.0674
C&W (L2) 100 0.170 | 5.721 | 0.0189 100 0.322 | 11.28 | 0.0347 100 0.445 | 15.79 | 0.0495
ADMM(L32) 100 0.163 5.66 0.0192 100 0.315 | 10.97 | 0.0354 100 0.427 | 15.05 | 0.0502

FGM(LQ) 15 2.37 815 0.129 3 7.51 2104 0.25 0 N.A. N.A. N.A.

ImageNet IFGM(L2) 100 0.984 328 0.031 100 2.38 795 0.079 97.6 4.59 1354 0.177
g C&W (L2) 100 0.449 | 126.8 | 0.0159 100 0.621 198 0.0218 100 0.81 272.3 0.031
ADMM(L32) 100 0.412 | 112.5 0.017 100 0.555 | 166.7 0.021 100 0.704 | 225.6 | 0.0356

VI. PERFORMANCE EVALUATION TABLE 11

We demonstrate the experimental results of the proposed
ADMM attacks compared with state-of-the-art attacks,
including C&W attacks [16], EAD attack [18], FGM and
IFGM attacks (8], on three image classification datasets,
MNIST [29], CIFAR-10 [30] and ImageNet [1].

A. Experiment Setup and Parameter Setting

Based on C&W attack setup', we train two networks for
MNIST and CIFAR-10 datasets, respectively, and utilize
a pre-trained network, Inception-v3 [31], for ImageNet.

For targeted attacks, we show the results of different
methods to choose the target labels: 1) the average case
randomly selects the target label from all the labels except
the correct label, 2) the best case performs attacks using
all incorrect labels, and report the target label that is the
easiest to attack, and 3) the worst case performs attacks
using all incorrect labels, and report the label that is the
most difficult to attack.

The network architecture for MNIST and CIFAR-10 is
the same with four convolutional layers, two max pooling
layers, two fully connected layers and a softmax layer. It
is able to achieve 99.5% accuracy on MNIST and 80%
accuracy on CIFAR-10. On ImageNet, the Google Incep-
tion model can achieve 96% top-5 accuracy with input
images of size 299 x 299 x 3. We conduct all experiments
on machines with NVIDIA GTX 1080 TT GPUs.

The implementations of FGM and IFGM are based on
the CleverHans package [32]. The key distortion parameter
€ is determined through a fine-grained grid search. For
IFGM, there are 10 FGM iterations and the distortion
parameter in each FGM iteration is set to ¢ = ¢/10, as
demonstrated in [25] for its effectiveness.

The implementations of C&W attacks and EAD attack?
are based on the GitHub code released by the authors. In

Thttps://github.com/carlini/nn_robust_attacks
2 https://github.com/ysharmal126 /EAD-Attack

ADVERSARIAL ATTACK SUCCESS RATE AND DISTORTION OF ADMM
AND C&W Lo artacks For MNIST anp CIFAR-10

Dataset Attack ‘ Best case ‘ Average case ‘ Worst case
method | ASR Lo | ASR Lo | ASR Lo

MNIST C&W (Lo) 100 | 7.88 | 100 | 16.58 | 100 | 29.84
ADMM(Ly) | 100 | 6.94 | 100 | 13.35 | 100 | 23.66

CIFAR C&W (Lo) 100 | 8.16 | 100 | 20.82 | 100 | 35.07
ADMM(Ly) | 100 | 7.64 | 100 | 18.78 | 100 | 32.81

the EAD attack, we use the ¢; distortion measurement
(£1) to select the final adversarial examples since it can
usually obtain lower ¢; distortion than the least elastic-net
(EN) measurement. The key parameter § is set to 0.001.

B. Attack Success Rate and Distortion for ADMM {5 at-
tack

The attack success rate (ASR) is the percentage of the
adversarial examples which are successfully misclassified
to target labels by the DNN model. We report the average
distortion of all successful adversarial examples and the
distortion for zero ASR is not available (N.A.).

We perform adversarial attacks on MNIST, CIFAR-10
and ImageNet. For MNIST and CIFAR-10, 1000 correctly
classified images are randomly selected from the test sets
with 9 target labels for each image, so we craft 9000
adversarial examples for MNIST or CIFAR-10 using each
attack method. For ImageNet, we randomly select 100
correctly classified images with 9 random target labels for
each image.

We compare the ADMM /5 attack with FGM, IFGM
and C&W /5 attacks. Table I shows the results on MNIST,
CIFAR-10 and ImageNet. As we can see, FGM fails to
generate adversarial examples with high success rate as
it does not have any success guarantee. Among IFGM,
C&W and ADMM /5 attacks, ADMM achieves the lowest



TABLE II1
ADVERSARIAL ATTACK SUCCESS RATE (ASR) AND DISTORTION OF
DIFFERENT L1 ATTACKS FOR DIFFERENT DATASETS

TABLE IV
ADVERSARIAL ATTACK SUCCESS RATE (ASR) AND DISTORTION OF
DIFFERENT Loo ATTACKS FOR DIFFERENT DATASETS

Best Case Average Case | Worst Case

Data Set Methods ASR I, ASR L, ASR I,
IFGM(L1) 100 17.3 100 34.6 100 58.4
MNIST EAD(L:) 100 7.74 100 | 14.16 | 100 | 21.38
ADMM(Ly) | 100 6.29 100 | 12.35 | 100 17.9

IFGM(L1) 100 5.96 100 15.8 100 20.8

CIFAR-10 EAD(L:) 100 1.94 100 4.62 100 7.25
ADMM(Ly) | 100 1.75 100 | 3.750 | 100 5.92

IFGM(L:) | 100 | 298 | 100 | 580 | 100 | 685

ImageNet EAD(L:) 100 | 60.98 | 100 | 112.7 | 100 185
ADMM(L+) 100 | 49.17 100 75.2 100 127

£y distortion for the best case, average case and worst
case. IFGM has larger /5 distortions compared with C&W
and ADMM attacks on the three datasets, especially on
ImageNet. For the worst case, the ADMM attack can
reduce the ¢y distortion by about 10% compared with
C&W {5 attack on MNIST and 12.5% on ImageNet.

C. ASR and Distortion for ADMM {, attack

We demonstrate the performance of ADMM ¢, attack
in terms of attack success rate and ¢y norm distortion
in this section. The ADMM /; attack is compared with
C&W [{y attack on MNIST and CIFAR-10. 500 images
are randomly selected from the test sets of MNIST and
CIFAR-10, respectively, each with 9 target labels.

As observed from Table II, both C&W and ADMM /¢,
attacks can achieve 100% attack success rate and ADMM
fo attack can achieve lower ¢, distortion than the C&W £
attack. For the worst case, the ADMM attack can reduce
the ¢y distortion by about 20% on MNIST compared with
the C&W /¢ attack.

D. ASR and Distortion for ADMM /¢, attack

We compare the ADMM /¢; attack with IFGM and EAD
01 [18] attacks. We report The ASR and the average
distortion of all successful adversarial examples.

The results of the /1 attack are shown in Table III. We
can observe that the IFGM, EAD and ADMM /; attacks
can achieve 100% attack success rate. ADMM /¢; attack
can achieve the lowest ¢; distortion. As demonstrated in
Table III, in the best case, the ADMM /; attack can craft
adversarial examples with a ¢; norm about 19% smaller
than that of the EAD ¢; attack on MNIST and ImageNet.
For the worst case, the £; norm of ADMM /; attack is
about 33% lower on CIFAR-10 or ImageNet compared
with the EAD /; attack.

E. ASR and Distortion for ADMM /. attack

We compare the ADMM /¢, attack with the IFGM /£,
attack and report the ASR and the average distortion of

Data Set ‘ Methods } ASI?:St Cfe } AAstc{ragc gasc } AVSVE{)rst C;sc
MNIST IFGM(L) 100 0.1535 100 0.234 100 0.367

ADMM(Ls) | 100 0.1439 100 0.191 100 0.234
CIFAR-10 IFGM(L) 100 | 0.00655 | 100 0.0149 100 | 0.0262
ADMM(Ls) | 100 | 0.00548 | 100 0.011 100 | 0.0161
ImaseNet IFGM(Lo) 100 0.0035 100 0.01 100 | 0.0152
g ADMM(Lo) | 100 | 0.00268 | 100 | 0.00466 | 100 | 0.0065

all successful adversarial examples.

The results of the ADMM /., attack are demonstrated
in Table IV. We can observe that both IFGM and ADMM
{ attacks can achieve 100% attack success rate. ADMM
l~ attack can achieve lower £, norm compared with the
IFGM /., attack. In the worst case, the improvement
of the ADMM /., attack over the IFGM /., attack is
much more obvious. The /., distortion measure of the
ADMM attack is about 40% smaller than the IFGM attack
on MNIST or CIFAR-10 dataset for the worst case. On
ImageNet, the ¢, norm of ADMM attack is 58% lower
than that of IFGM attack.

VII. CONCLUSION

In this paper, we propose the ADMM attack for DNNs
with undetectable distortions. Under the general ADMM
attack framework, £y, {1, ¢ and /., attacks are proposed
and implemented to minimize various ¢, norms. We com-
pare the ADMM attacks with state-of-the-art adversarial
attacks, demonstrating the effectiveness of the ADMM
attacks.

ACKNOWLEDGEMENTS

This work is partly supported by the National Sci-
ence Foundation (CCF-1733701, CNS-1704662, and CNS-
1739748), Air Force Research Laboratory FA8750-18-2-
0058, and U.S. Office of Naval Research.

REFERENCES

[1] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei, “Imagenet: A large-scale hierarchical image database,” in
Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pp. 248-255, IEEE, 2009.

[2] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface:
Closing the gap to human-level performance in face verification,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1701-1708, 2014.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 770-778, 2016.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed,
N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,



(]

[6

[7]

(8]
(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

(19]

[20]

21]

[22]

et al., “Deep neural networks for acoustic modeling in speech
recognition: The shared views of four research groups,” IEEE
Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershel-
vam, M. Lanctot, et al., “Mastering the game of go with deep
neural networks and tree search,” nature, vol. 529, no. 7587,
pp. 484-489, 2016.

I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” 2015 ICLR, vol. arXiv preprint
arXiv:1412.6572, 2015.

C. Szegedy, W. Zaremba, 1. Sutskever, J. Bruna, D. Erhan,
I. Goodfellow, and R. Fergus, “Intriguing properties of neural
networks,” arXiv preprint arXiv:1312.6199, 2013.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” arXiv preprint arXiv:1607.02533, 2016.

C. Guo, M. Rana, M. Cissé, and L. van der Maaten, “Countering
adversarial images using input transformations,” arXiv preprint
arXiv:1711.00117, 2017.

G. K. Dziugaite, Z. Ghahramani, and D. M. Roy, “A study
of the effect of jpg compression on adversarial images,” arXiv
preprint arXiw:1608.00853, 2016.

C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille, “Mitigat-
ing adversarial effects through randomization,” arXiv preprint
arXiw:1711.01991, 2017.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami,
“Distillation as a defense to adversarial perturbations against
deep neural networks,” in Security and Privacy (SP), 2016
IEEE Symposium on, pp. 582-597, IEEE, 2016.

G. S. Dhillon, K. Azizzadenesheli, Z. C. Lipton, J. Bernstein,
J. Kossaifi, A. Khanna, and A. Anandkumar, “Stochastic acti-
vation pruning for robust adversarial defense,” arXiv preprint
arXiw:1803.01442, 2018.

S. Wang, X. Wang, P. Zhao, W. Wen, D. Kaeli, P. Chin, and
X. Lin, “Defensive Dropout for Hardening Deep Neural Networks
under Adversarial Attacks,” ArXiv e-prints, Sept. 2018.

R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner,
“Detecting adversarial samples from artifacts,” arXiv preprint
arXiv:1703.00410, 2017.

N. Carlini and D. Wagner, “Towards evaluating the robustness
of neural networks,” in Security and Privacy (SP), 2017 IEEE
Symposium on, pp. 39-57, IEEE, 2017.

P. Zhao, S. Liu, Y. Wang, and X. Lin, “An admm-based universal
framework for adversarial attacks on deep neural networks,”
CoRR, vol. abs/1804.03193, 2018.

P.-Y. Chen, Y. Sharma, H. Zhang, J. Yi, and C.-J. Hsieh,
“Ead: elastic-net attacks to deep neural networks via adversarial
examples,” arXiv preprint arXiv:1709.04114, 2017.

A. Athalye, N. Carlini, and D. Wagner, “Obfuscated gradi-
ents give a false sense of security: Circumventing defenses to
adversarial examples,” arXiv preprint arXiv:1802.00420, 2018.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al.,
“Distributed optimization and statistical learning via the al-
ternating direction method of multipliers,” Foundations and
Trends® in Machine Learning, vol. 3, no. 1, pp. 1-122, 2011.

M. Hong and Z.-Q. Luo, “On the linear convergence of the
alternating direction method of multipliers,” Mathematical Pro-
gramming, vol. 162, pp. 165—199, Mar 2017.

H. Wang and A. Banerjee, “Bregman alternating direction
method of multipliers,” in Advances in Neural Information
Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes,
N. D. Lawrence, and K. Q. Weinberger, eds.), pp. 2816-2824,
Curran Associates, Inc., 2014.

23]

[24]

[25]

[26]

27]

28]

[29]

[30]

31]

32]

N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik,
and A. Swami, “The limitations of deep learning in adversarial
settings,” in Security and Privacy (EuroS&P), 2016 IEEE
European Symposium on, pp. 372-387, IEEE, 2016.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and har-
nessing adversarial examples,” arXiv preprint arXiv:1412.6572,
2014.

F. Trameér, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh,
and P. McDaniel, “Ensemble adversarial training: Attacks and
defenses,” 2018 ICLR, vol. arXiv preprint arXiv:1705.07204,
2018.

N. Parikh, S. Boyd, et al., “Proximal algorithms,” Foundations
and Trends® in Optimization, vol. 1, no. 3, pp. 127-239, 2014.

N. Qian, “On the momentum term in gradient descent learning
algorithms,” Neural Networks, vol. 12, no. 1, pp. 145 — 151,
1999.

D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” 2015 ICLR, vol. arXiv preprint arXiv:1412.6980,
2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, pp. 2278-2324, Nov 1998.

A. Krizhevsky and G. Hinton, “Learning multiple layers of
features from tiny images,” Master’s thesis, Department of
Computer Science, University of Toronto, 2009.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Re-
thinking the inception architecture for computer vision,” 2016
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 28182826, 2016.

N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, and
P. McDaniel, “cleverhans v1.0.0: an adversarial machine learning
library,” arXiv preprint arXiv:1610.00768, 2016.



