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Abstract—Deep neural networks (DNNs) have been shown
to be powerful models and perform extremely well on many
complicated artificial intelligent tasks. However, recent research
found that these powerful models are vulnerable to adversarial
attacks, i.e., intentionally added imperceptible perturbations
to DNN inputs can easily mislead the DNNs with extremely
high confidence. In this work, we enhance the robustness of
DNNs under adversarial attacks by using pruning method and
logits augmentation, we achieve both effective defense against
adversarial examples and DNN model compression. We have
observed defense against adversarial attacks under the white box
attack assumption. Our defense mechanisms work even better
under the grey box attack assumption.

Index Terms—robust DNN, defending adversarial attacks,
weight pruning, logits augmentation

I. INTRODUCTION

Deep neural networks (DNNs) are powerful models that
achieve state-of-the-art performance in various speech and
visual recognition tasks, including speech recognition, natural
language processing, scene understanding, object recognition,
etc. As a key enabler of DNNs, the large model size also
demands increasing computation and memory resources from
the computing platforms. It has been investigated that DNNs
are robust to random perturbations [1]. However, recent study
[2], [3], [4] show that DNNs are vulnerable to adversarial
attacks, that is, intentionally added imperceptible perturbations
to DNN inputs can easily mislead the DNNs with extremely
high confidence [5], [6].

Goodfellow et al. [3], Kurakin et al. [4], Papernot et al. [7]
and Carlini & Wagner [8] have implemented the adversarial
attacks by generating adversarial examples. If the neural net-
work classifies a legal input x with label C(x), an adversarial
example x′ is the one that very similar to x according to some
distance metrics and will be labeled by the neural network as
C(x′) 6= C(x).

Goodfellow et al. [3] proposed Fast Gradient Sign Method
(FGSM) that uses the gradient of the loss function to determine
the direction of the perturbation and sets a constant for the
intensity of the perturbation. This method features very fast
speed for generating adversarial examples.

Kurakin et al. [4] enhanced the FGSM by taking multiple
smaller steps in the direction of gradient sign, which is known
as Basic Iterative Method (BIM).

Carlini & Wagner [8] claimed to generate the strongest
attacks (the C&W method) by solving an optimization problem

with minimizing some distance metrics, i.e., Lp norm, where
p = 0, 2, and ∞ are used. C&W is the strongest attacks in
that it conquered multiple defense methods in the white box
assumption, i.e., the attacker has perfect knowledge about the
targeted DNN model and data set.

Previous works have been done on improving the robustness
of DNNs under adversarial attacks [2, 3, 4, 7, 8, 9, 10, 11,
12, 13, 14, 15]. Papernot et al. [16] proposed their defensive
mechanism called defensive distillation by using tempriture
in the softmax function in order to increase the robustness
of DNNs. Others [17], [18] tried to defend the adversarial
examples by attempting to detect them. Feinman et al. [17],
through modeling the outputs from the final hidden layer
of DNNs, indicated that there exists the difference in the
distribution of adversarial examples and legal examples, while
Bhagoji et al. [18] proposed a defense mechanism based on
dimensionality reduction.

In this work, we enhance the robustness of DNNs under
adversarial attacks by using pruning method and logits aug-
mentation, therefore, we achieve both higher defense against
adversarial examples and more compressed DNN models. We
have observed defense against adversarial attacks under the
white box attack assumption. Our defense mechanisms work
even better under the grey box attack assumption.

II. RELATED WORKS

A. Preliminaries

In this paper we focus on neural networks used as image
classifiers. In this case, the input images can be denoted as
3-dimensional tensors x ∈ Rh×w×c, where h, w and c denote
the height, width and number of channels. For a gray scale
image (e.g. MNIST), c = 1; and for a colored RGB image
(e.g. CIFAR-10), c = 3. For both attacks and defends, all pixel
values in the images are scaled to [0, 1] for easy calculation,
and therefore a valid input image should be inside a unit cube
in the high dimensional space. We use model F (x) = y to
denote a neural network, where F accepts an input x and
generates an output y.

Here we denote the neural network as an m-class clas-
sifier and the output layer performs softmax operation. The
logits, Logit(x), are the output of all layers except for
the softmax layer, and the input to the softmax layer. So
F (x) = softmax(Logit(x)) = y. The elements of the output
vector y denote the probability that input x belongs to each



class. They must be in the range of [0, 1] and their sum should
be one. The classifier assigns the label C(x) = argmax

i
yi to

input x according to the maximum probability.
Adversarial attacks can be either targeted or untargeted. The

targeted adversarial attacks is to find an input x′ such that it’s
classified as label t while it is close to the original input x
according to some distance metrics. Note that the correct label
of x, t∗, is different from the target label t. The malicious input
x′ satisfying these requirements is an adversarial example.
The untargeted adversarial attack is to find an input x′ that
satisfying C(x′) 6= t∗ and x and x′ are close according to
some distance metrics. The untargeted adversarial attack does
not specify any target label t to mislead the classifier.

The general problem of constructing adversarial examples
can be formulated as: Given an original legal input x,

minimize D(δ)
subject to C(x+ δ) = t

x+ δ ∈ [0, 1]n
(1)

where δ is the distortion added onto input x, D(δ) is a measure
of the added distortion.

We need to measure the distortion between the original legal
input x and the adversarial example x′ = x+ δ. Lp norms are
the most commonly used measures in the literature. The Lp
norm of the distortion is defined as:

‖x− x′‖p =

(
n∑
i=1

|xi − x′i|
p

) 1
p

(2)

We see the use of L0, L1, L2, and L∞ norms in different at-
tacks. L0 norm measures the number of mismatched elements
between x and x′. L1 norm measures the sum of the absolute
values of the differences between x and x′. L2 norm measures
the standard Euclidean distance between x and x′. And L∞
norm measures the maximum difference between xi and x′i
for all i’s.

B. Attacks

1) Fast Gradient Sign Method (FGSM) [3]:: is an L∞ at-
tack and utilizes the gradient of the loss function to determine
the direction to modify the pixels. They are designed to be fast,
rather than optimal. They can be used for adversarial training
by directly changing the loss function instead of explicitly
injecting adversarial examples into the training data. FGSM
generates adversarial examples following:

x′ = x− ε · sign(∇(lossF,t(x))) (3)

where ε is the magnitude of the added distortion, t is the target
label. Using backpropagation, FGSM calculates the gradient
of the loss function with respect to the label t to determine
the direction to change the pixel values.

2) Basic Iterative Method (BIM) [4]:: gives a further
modify of FGSM. Instead of taking a single step ε, BIM takes
multiple steps α Given an initial setting:

x′0 = x

for each iteration

x′i = x′i−1 − clipε(αsign(∇(lossF,y(x′i−1))))

Notice that here BIM clips pixel values of intermediate
results after each step to ensure that they are in an ε-
neighbourhood of the original image.

3) Jacobian-based Saliency Map Attack (JSMA) [7]:: is
an L0 attack and uses a greedy algorithm that picks the
most influential pixels by calculating Jacobian-based Saliency
Map and modifies the pixels iteratively. The computational
complexity of this attack method is very high.

4) C&W [8]:: is a series of L0, L2, and L∞ attacks that
achieve 100% attack success rate with much lower distortions
comparing with the above-mentioned attacks. In particular, the
C&W L2 attack is superior to other L2 attacks because it uses
a better objective function. C&W formulates the problem of
generating adversarial examples in an alternative way that can
be better optimized:

minimize D(δ) + c · f(x+ δ)
subject to x+ δ ∈ [0, 1]n

(4)

where c > 0 is a constant to be chosen and the objective
function f has the following form:

f(x+δ) = max( max{Logit(x+δ)i : i 6= t}−Logit(x+δ)t,−κ)
(5)

Here, κ is a parameter that controls the confidence in attacks.
Stochastic gradient decent methods can be used to solve this
problem. For example, the Adam optimizer [19] is used due
to its fast and robust convergence behavior.

III. METHODOLOGY

A. Model Compression Using Pruning

To reduce model size and facilitate implementing DNNs
for customer applications, [20] proposed the DNN pruning
method that reduces the number of weights while preserving
the accuracy of the compressed DNN models. The pruning
process starts from learning the connectivity through normal
network training, followed by pruning the connections whose
weights are below a given threshold. After making it a sparser
network, the DNN is retrained to finalize weights of the
remaining connections. This pruning-and-retraining process is
performed iteratively until the network is pruned to the largest
extent without accuracy loss.

In this work, we use a network structure with 4 convolu-
tional layers and 3 fully connected layers. In each iteration, we
prune 10% nonzero weights for fully connected layers and 5%
nonzero weights for convolutional layers. We prune and train
for 20 iterations maintaining the accuracy and the network
model can be compressed by 7×. We demonstrate in the later
Section that the pruning-based model compression method
can defend the adversarial attacks, that is, by using pruning
method we can achieve both compressed network model size
and defense against adversarial attacks.



TABLE I: Adversarial attack successful rate (and distortion) of the unprotected model M0, Level One model M1, and Level
Two model M2 under four attacks (untargeted FGSM, targeted FGSM, targeted BIM, and C&W) using MNIST dataset.

Attack
Method

Untargeted
FGSM

Targeted
FGSM

Targeted
BIM C&W

Parameters ε=
0.1

ε =
0.15

ε =
0.25

ε =
0.1

ε=
0.15

ε =
0.25

ε=
0.1

ε =
0.15

ε =
0.25

iter =
100

M0 9.0% 17.0% 45.6% 1.97% 4.52% 12.0% 3.89% 14.81% 39.64% 99.6%
(2.19) (3.28) (5.45) (2.17) (3.25) (5.39) (2.11) (3.11) (5.28) (2.03)

M1 7.4% 8.7% 20.2% 1.17% 1.68% 4.04% 3.14% 9.9% 31.26% 96.97%
(2.16) (3.25) (5.38) (2.15) (3.22) (5.35) (2.14) (3.13) (5.07) (2.28)

M2 1.1% 1.1% 1.1% 1.04% 1.5% 3.87% 2.71% 7.9% 21.12% 95.93%
(2.28) (3.41) (5.65) (2.15) (3.22) (5.35) (2.15) (3.1) (5.1) (2.5)

The experiment is evaluated on 1000 source samples from MNIST. We set the search step for line search in C&W
as 10.

TABLE II: Adversarial attack successful rates (and distortion) of the unprotected model C0, Level One model C1, and Level
Two model C2 under four attacks using CIFAR-10 dataset.

Attack
Method

Untargeted
FGSM

Targeted
FGSM

Targeted
BIM C&W

Parameters ε=
0.1

ε =
0.15

ε =
0.25

ε =
0.1

ε=
0.15

ε =
0.25

ε=
0.1

ε =
0.15

ε =
0.25

iter =
100

C0 84.6% 86.3% 87.1% 17.71% 14.78% 11.49% 63.59% 65.83% 65.73% 99.54%
(5.43) (8.05) (13.0) (5.43) (8.05) (13.0) (4.48) (6.66) (10.8) (2.06)

C1 70.3% 75.3% 80.9% 11.2% 10.5% 10.1% 25.3% 23.8% 19.3% 85.0%
(5.43) (8.05) (13.0) (5.42) (8.05) (13.03) (4.47) (6.64) (10.8) (3.55)

C2 24.6% 24.5% 25% 11.12% 11.25% 11.16% 43.41% 44.9% 41.2% 83.9%
(1.42) (2.11) (3.41) (5.33) (7.91) (12.8) (4.43) (6.5) (10.7) (4.31)

The experiment is evaluated on 1000 source samples from CIFAR-10. We set the search step for line search in C&W
as 10.

B. Logits Augmentation

To further improve the robustness of DNNs under adver-
sarial attacks, we propose to use the logits augmentation on
top of the pruning method. Inspired by the gradient inhibition
method [21], which changes the weights in the last few layers
as

w = w + τ ∗ sign(w). (6)

In our logits augmentation, we modify the weights in the last
fully connected layer by

w = τ × w (7)

In our experiments, we set the value of τ to fine-tune the
defense effectiveness. Through a detailed analysis, we find
that both the pruning and the logits augmentation can change
the distribution of weights in a DNN and therefore achieve
some level of defense against adversarial examples.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

In order to test our defense mechanisms against adversar-
ial examples, we use three adversarial example generating
methods i.e., FGSM [3], BIM [4], and C&W [8]. We use
both MNIST [22] and CIFAR-10 [23] datasets to train the
network models. The three attacks have been implemented
in Cleverhans [24], a Python library to benchmark machine

learning systems’ vulnerability to adversarial examples, and
we use those source codes directly for generating adversarial
examples. We are using the white box assumption when
generating the adversarial examples, i.e., the attackers have
perfect knowledge of all the targeted neural network models,
training and testing datasets.

We start from training unprotected neural network models
i.e., M0 and C0, achieving near state-of-the-art accuracy,
i.e., 99.4% and 80%, respectively, on MNIST and CIFAR-
10 datasets. For defense mechanisms, we test two defending
levels: Level One exploits the pruning method [20] only as
defense, while Level Two exploits both pruning and logits
augmentation as defense. We have M1 and C1 network models
for Level One defense, respectively, for the MNIST and
CIFAR-10 datasets. We have M2 and C2 network models for
Level Two defense. Please note that we do not lose any test
accuracy under Level One and Level Two models.

B. Experiment Results

Table I and Table II demonstrate the adversarial attack
successful rates of unprotected models, Level One models,
and Level Two models under four attacks (untargeted FGSM,
targeted FGSM, targeted BIM, and C&W) on MNIST and
CIFAR-10 datasets, respectively. We also report with the attack
successful rate and the average distortion (the one in the
parentheses) of the adversarial examples compared to the legal



examples. The ε parameter is related to the distortion. When
a larger ε value is used, the resulted distortion is higher. For
the untargeted FGSM, the adversarial attack successful rate
for MNIST dataset (the fourth column in Table I) is reduced
from 45.6% by unprotected model M0 to 20.2% by Level One
model M1 and to 1.1% by Level Two model M2. Similarly,
we can observe decrease in the adversarial example successful
rate under other attacks and for CIFAR-10 dataset. Here we
find that our defense mechanisms do not defend the C&W
attacks as much as we do for the other attacks under the pure
white box assumption.

Furthermore, we test our defense mechanisms against C&W
attacks on a grey box attack assumption when generating
the adversarial examples, i.e., the attackers know the pruning
percentage used on each layer and have perfect knowledge
of all the training and testing datasets. Whereas black box
attack assumes the adversary has no information about the
DNN model, only observe labels assigned by the DNN for
chosen inputs. Under the grey box assumption, we generate
adversarial examples using C0 and attack the Level One model
C1. We reduce the adversarial example successful rate by
Level One model C1 to 18.63%, which was 85.0% under
white box attack. It demonstrates that our defense mechanism
is more effective under grey box attacks.

V. CONCLUSION

In this paper, we enhance the robustness of deep neural
networks by using pruning method and logits augmentation.
Providing a solution through compressing DNN models and
modifying the weights in the last layer, we achieve both
effective defense against adversarial attacks and DNN model
compression. We test our Level One models, and Level Two
models under four attacks (untargeted FGSM, targeted FGSM,
targeted BIM, and C&W) on MNIST and CIFAR-10 datasets,
respectively. We have observed defense against adversarial
attacks under the white box attack assumption. Experiment
results demonstrate our defense mechanism is more effective
under grey box attack assumption.
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