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Abstract—As deep learning penetrates into wide application
domains, it is essential to evaluate the robustness of deep
neural networks (DNNs) under adversarial attacks, especially
for some security-critical applications. To better understand the
security properties of DNNs, we propose a general framework for
constructing adversarial examples, based on ADMM (Alternating
Direction Method of Multipliers). This general framework can
be adapted to implement L2 and L0 attacks with minor changes.
Our ADMM attacks require less distortion for incorrect clas-
sification compared with C&W attacks. Our ADMM attack is
also able to break defenses such as defensive distillation and
adversarial training, and provide strong attack transferability.

Index Terms—Deep Neural Networks, Adversarial Attacks,
ADMM (Alternating Direction Method of Multipliers)

I. INTRODUCTION

As deep learning is achieving extraordinary performance
[1, 2] and penetrating into wide application domains [3, 4, 5],
it is essential to evaluate the robustness of deep neural
networks (DNNs) under adversarial attacks, especially for
some security-critical applications. Evidence has shown that
audio/visual inputs sound/look like speech/objects to machine
learning algorithms but non-sense to humans [6, 7]. Recently
Kurakin, Goodfellow, and Bengio have demonstrated the exis-
tence of adversarial attacks not only in theoretical models but
also the physical world [8].

To enhance the robustness of DNNs under adversarial
attacks, there are in general two different research approaches:
(i) defend by pre-processing possibly adversarially distorted
inputs [9, 10, 11] and/or by modifying DNN model structures
[12, 13, 14, 15] and (ii) evaluate the robustness by constructing
adversarial examples with negligible distortions added onto
original legal inputs [16, 17, 18, 19, 20]. The two approaches
mutually benefit each other towards hardening DNNs. Al-
though our work follows the latter approach, we do appreciate
any research efforts using the former approach.

Adversarial examples are constructed by adding negligible
distortions onto original legal inputs as shown in Fig. 1, and
usually an optimization problem is formulated for that such
as L-BFGS [16], JSMA [21], Deepfool [22], C&W [17],
and EAD [19]. Currently C&W is the most powerful attack
[17, 20] in that it achieves 100% attack success rate with the
minimum distortion compared with other attacks and it defeats
many state-of-the-art defenses.

This work considers two measures (L2 and L0 norms) of
the distortion, namely, L2 attack and L0 attack. To solve the
optimization problem of constructing adversarial examples, we
introduce a powerful and efficient method from optimization

theory i.e., ADMM (Alternating Direction Method of Multipli-
ers) [23], which provides (i) a general framework for L2 and
L0 attacks, (ii) no additional sub-optimality besides the orig-
inal gradient-based backpropagation method commonly used
in DNNs, and (iii) a faster second-order convergence rate than
state-of-the-art iterative attacks [24, 25]. ADMM decomposes
an original optimization problem into two correlated subprob-
lems, which can be solved individually, and then coordinates
solutions to the subproblems to construct a solution to the
original problem. This decomposition-coordination procedure
of ADMM blends the benefits of dual decomposition and
augmented Lagrangian for solving problems with non-convex
and combinatorial constraints. Our contributions beyond what
appears in C&W are summarized as follows:
• Thanks to ADMM, our L2 and L0 attacks are constructed

through a general framework, while C&W L0 attack
needs to run their L2 attack iteratively to find the pixels
with the least effect and fix them, thereby identifying a
minimal subset of pixels for modification to generate an
adversarial example.

• Our attacks require less distortion for incorrect classifi-
cation compared with C&W attacks, which themselves
require less distortion compared to other methods in the
literature.

Besides comparing with C&W and other attacks, we also
test our L2 and L0 attacks against defenses such as defensive
distillation [12] and adversarial training [26], demonstrating
the success of our attacks. In addition, we validate the trans-
ferability of our attacks onto different defenses.

II. BACKGROUND

A. Notation
This work focuses on DNNs for image classification tasks.

A gray-scale image with height h and width w is represented
by a two dimensional vector x ∈ Rhw. Each element xi
represents the value of the i-th pixel and is scaled to the
range [0, 1]. A colored RGB image with three channels is
represented by a three dimensional tensor x ∈ R3hw. We use
model F (x) = y to denote a neural network, where F accepts
an input x and generates an output y. We use trained neural
networks in this work so the model F is fixed.

Suppose the neural network is an m-class classifier and the
output layer performs softmax operation. Let Z(x) denote the
output of all layers except for the softmax layer, and we have
F (x) = softmax(Z(x)) = y. The input to the softmax layer,
Z(x), is called logits. The element yi of the output vector y
represents the probability that input x belongs to the i-th class.
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Figure 1. Adversarial examples generated by our ADMM L2 attack. The original image is a koala from ImageNet dataset (the leftmost). The nine constructed
adversarial examples are mis-classified as the target labels above the images

The output vector y is treated as a probability distribution and
its elements satisfy 0 ≤ yi ≤ 1 and y1+y2+· · ·+ym = 1. The
neural network classifies input x according to the maximum
probability i.e., C(x) = argmax

i
yi.

B. Assumptions of Adversarial Attacks
When constructing adversarial examples, we assume that

the neural network is completely accessible, which means we
are able to use the architecture and all parameters in a white-
box manner. The adversarial attack can be either targeted or
untargeted. Give an original legal input x with its correct label
t∗ and a target label t 6= t∗, the targeted adversarial attack is
to find an input x′ such that C(x′) = t and x and x′ are close
according to some distance measure between x and x′. The
input x′ is then called as an adversarial example. For targeted
attacks, we employ different ways to choose the target labels:

- Average Case: select at random the target label uniformly
among all the labels that are not the correct label.

- Best Case: perform attacks using all incorrect labels, and
report the target label that is the least difficult to attack.

- Worst Case: perform attacks using all incorrect labels,
and report the label that is the most difficult to attack.

C. Measures of the Distortion
We need to measure the distortion between the original legal

input x and the adversarial example x′. Lp norms are the most
commonly used measures in the literature. When generating
adversarial examples, we use L2 and L0 norms, respectively,
that is, in this work, using a general ADMM-based framework,
we implement L2 attack and L0 attack, respectively, as they
are representative attacks.

III. ADMM-BASED FRAMEWORK FOR ADVERSARIAL
ATTACKS

This section describes our ADMM-based framework for
constructing adversarial examples. We begin by formally
defining the initial problem of constructing adversarial ex-
amples as: Given an original legal input image x, find an
adversarial example x + δ, such that D(δ) is minimized,
C(x + δ) = t, and x + δ ∈ [0, 1]n. δ is the distortion on x.
D(δ) is a measure of the added distortion δ. C(·) is the DNN
classification function and the target label is t.

ADMM provides a systematic way to deal with combi-
natorial constraints by breaking the initial problem into two
subproblems. To do this, we first transform the initial problem
into the following one, introducing an auxiliary variable z:

min
δ,z

D(δ) + g(x+ z)

s.t. δ = z
(x+ z) ∈ [0, 1]n

(1)

where g(x) has the form:

g(x) =

{
0 if max

i 6=t
(Z(x)i)− Z(x)t ≤ 0

+∞ otherwise
(2)

Here Z(x) is the logits before the softmax layer. The
augmented Lagrangian function of problem (1) is as follows:
Lρ(δ,z,u) = D(δ) + g(x+ z) + uT (δ − z) + ρ

2
‖δ − z‖22 (3)

where u is the dual variable or Lagrange multiplier and ρ >
0 is called the penalty parameter. Using the scaled form of
ADMM by defining u = ρs, we have:

Lρ(δ,z, s) = D(δ) + g(x+ z) +
ρ

2
‖δ − z + s‖22 −

ρ

2
‖s‖22 (4)

Problem (1) is solved through iterations. In the k-th iteration,
we follow the steps:

δk+1 = argmin
δ

Lρ(δ, z
k, sk) (5)

zk+1 = argmin
z

Lρ(δ
k+1, z, sk) (6)

sk+1 = sk + δk+1 − zk+1 (7)

In Eqn. (5), we find δk+1 which minimizes Lρ with fixed
zk and sk. Similarly, in Eqn. (6), δk+1 and sk are fixed
and we find zk+1 minimizing Lρ. sk+1 is then updated
accordingly. Note that the two variables δ and z are updated
in an alternating or sequential fashion, from which the term
alternating direction comes. It converges when:∥∥δk+1 − zk+1

∥∥2
2
≤ ε,

∥∥zk+1 − zk
∥∥2
2
≤ ε (8)

Equivalently, in each iteration, we solve two optimization
subproblems corresponding to Eqns. (5) and (6), respectively:

min
δ

D(δ) +
ρ

2
‖δ − z + s‖22 (9)

and
min
z

g(x+ z) +
ρ

2
‖δ − z + s‖22 (10)

The non-differentiable g(x) makes it difficult to solve the sec-
ond subproblem (10). Therefore, we use a new differentiable
g(x) as follows inspired by [17]:

g(x) = c ·max

((
max
i 6=t

(Z(x)i)− Z(x)t

)
,−κ

)
(11)

Then, stochastic gradient decent methods can be used to solve
this subproblem. We use the Adam optimizer [27] due to its
fast and robust convergence behavior. The new g(x) of Eqn.
(11) is inspired by [17], where κ is a confidence parameter
denoting the strength of adversarial example transferability.

A. Box Constraint
The constraint on z i.e., x + z ∈ [0, 1]n is known as a

“box constraint” in the optimization literature. We use a new
variable w and instead of optimizing over z defined above,
we optimize over w, based on:

z =
1

2

(
tanh(w) + 1

)
− x (12)

Since −1 ≤ tanh(wi) ≤ 1 and 0 ≤ xi + zi ≤ 1, the method
will automatically satisfy the box constraint.



B. Discussion on Constants
There are two constants c and ρ in the two subproblems (9)

and (10). We adopt different policies for choosing appropriate
c and ρ in L2 and L0 attacks. In L2 attack, since ρ acts in both
problems (9) and (10), we fix ρ and change c to improve the
solutions. We find that the best choice of c > 0 is the smallest
one that can help achieve g(x) = 0 in the subproblem (10).
Thus, a modified binary search is used to find a satisfying c.
In addition, for the ADMM L2 attack, due to the adaptive
search of c, we find in experiments that changing ρ does not
affect the results significantly. For the ADMM L0 attack, ρ
has stronger and more direct influence on the solutions, so c
is fixed and adaptive search of ρ is utilized. More details are
provided in Section IV-B.

IV. INSTANTIATIONS OF L2 AND L0 ATTACKS USING
ADMM FRAMEWORK

The ADMM framework for adversarial attacks now reduces
to two subproblems (9) and (10). The difference between
L2 and L0 attacks lies in the subproblem (9) and for both
attacks the subproblem (10) is solved using stochastic gradient
descent.

A. L2 Attack
For L2 attack, the subproblem (9) has the form:

min
δ

‖δ‖22 +
ρ

2
‖δ − z + s‖22 (13)

the solution to which can be directly derived in an analytical
format:

δ =
ρ

2 + ρ
(z − s) (14)

Then the complete solution to the L2 attack problem using
the ADMM framework is as follows: for each k-th iteration,

δk+1 =
ρ

2 + ρ

((
1

2

(
tanh(wk) + 1

)
− x
)
− sk

)
(15)

wk+1 =min
w

g
(1
2

(
tanh(w) + 1

))
+
ρ

2

∥∥∥∥δk+1 −
(1
2

(
tanh(w) + 1

)
− x

)
+ sk

∥∥∥∥2

2

(16)

sk+1 = sk + δk+1 −
(
1

2

(
tanh(wk+1) + 1

)
− x
)

(17)

Eqn. (15) corresponds to the analytical solution to the sub-
problem (9) i.e., problem (13) with Eqn. (12) replacing z in
Eqn. (14). Eqn. (16) corresponds to the subproblem (10) with
Eqn. (12) replacing z and g taking the form of Eqn. (11). The
solution to Eqn. (16) is derived through the Adam optimizer
for the stochastic gradient descent.

B. L0 Attack
For L0 attack, the subproblem (9) has the form:

min
δ

‖δ‖0 +
ρ

2
‖δ − z + s‖22 (18)

the solution to which can be derived in this way: let δ be
equal to z − s first, then for each element in δ, if its square
is smaller than 2

ρ , make it zero.
When solving the subproblem (9), we enforce a hidden

constraint on the distortion δ, that the square of each non-
zero element in δ must be larger than 2

ρ . Therefore, a smaller
ρ would push ADMM method to find δ with larger non-
zero elements, thus reducing the number of non-zero elements

and decreasing L0 norm. Empirically, we find the constant ρ
represents a trade-off between attack success rate and L0 norm
of the distortion, i.e., a larger ρ can help find solutions with
higher attack success rate at the cost of larger L0 norm.

Then the complete solution to the L0 attack problem using
the ADMM framework can be derived similar to the L2 attack
Eqns. (15), (16), and (17), except that the optimal distortion
δ is a little different in each iteration.

V. PERFORMANCE EVALUATION

The proposed ADMM attacks are compared with state-of-
the-art attacks, especially with C&W [17], on three image clas-
sification datasets, MNIST [28], CIFAR-10 [29] and ImageNet
[1]. We compare our ADMM L2 attack with C&W L2 attack,
FGM [30] and IFGM [8] L2 attacks in terms of attack success
rate (ASR) and distortion. Our ADMM L0 attack is compared
with C&W L0 attack. We also test our attacks against two
defenses, defensive distillation [12] and adversarial training
[26]. The transferability of ADMM attacks are evaluated too.

We train two networks for MNIST and CIFAR-10 datasets,
respectively, which can achieve 99.5% accuracy on MNIST
and 80% accuracy on CIFAR-10. For ImageNet, we utilize a
pre-trained Inception v3 network [31] which can achieve 96%
top-5 accuracy.

A. Attack Success Rate and Distortion for ADMM L2 attack
We compare our ADMM L2 attack with FGM, IFGM and

C&W L2 attacks. The attack success rate (ASR) represents
the percentage of the constructed adversarial examples that are
successfully classified as target labels. The average distortion
of all successful adversarial examples is reported. For zero
ASR, its distortion is not available (N.A.). We perform the
adversarial attacks on MNIST, CIFAR-10 and ImageNet. For
MNIST and CIFAR-10, 1000 correctly classified images are
randomly selected from the test sets and 9 target labels are
tested for each image, so we perform 9000 attacks for each
dataset using each attack method. For ImageNet, 100 correctly
classified images and 9 target labels are utilized.

The parameter ρ is fixed to 20. The number of ADMM
iterations is 10. When using Adam optimizer in each ADMM
iteration, we do binary search for 9 steps on the parameter
c (starting from 0.001) and runs 1000 learning iterations for
each c with initial learning rate 0.02 for MNIST and 0.002 for
CIFAR-10 and ImageNet.

Table I shows the results on MNIST, CIFAR-10 and Im-
ageNet. As we can see, FGM fails to generate adversarial
examples with high success rate since it is designed to be

Table I
ADVERSARIAL ATTACK SUCCESS RATE (ASR) AND DISTORTION OF

DIFFERENT L2 ATTACKS FOR DIFFERENT DATASETS

Data Set Attack Method Best Case Average Case Worst Case
ASR L2 ASR L2 ASR L2

MNIST

FGM(L2) 99.4 2.245 34.6 3.284 0 N.A.
IFGM(L2) 100 1.58 99.9 2.50 99.6 3.958
C&W(L2) 100 1.393 100 2.002 99.9 2.598

ADMM(L2) 100 1.288 100 1.873 100 2.445

CIFAR-10

FGM(L2) 99.5 0.421 42.8 1.157 0.7 3.115
IFGM(L2) 100 0.191 100 0.432 100 0.716
C&W(L2) 100 0.178 100 0.347 99.9 0.481

ADMM(L2) 100 0.173 100 0.337 100 0.476

ImageNet

FGM(L2) 12 2.29 1 6.823 0 N.A.
IFGM(L2) 100 f1.057 100 2.461 98 4.448
C&W(L2) 100 0.48 100 0.681 100 0.866

ADMM(L2) 100 0.416 100 0.568 97 0.701



Table II
ADMM AND C&W L0 ATTACKS FOR MNIST AND CIFAR-10

Dataset Attack
method

Best case Average case Worst case
ASR L0 ASR L0 ASR L0

MNIST C&W(L0) 100 8.1 100 17.48 100 31.48
ADMM(L0) 100 8 100 15.71 100 25.87

CIFAR C&W(L0) 100 8.6 100 19.6 100 34.4
ADMM(L0) 100 8.25 100 18.8 100 31.2

fast, rather than optimal. Among IFGM, C&W and ADMM
L2 attacks, ADMM achieves the lowest L2 distortion for
the best case, average case and worst case. IFGM has larger
L2 distortions compared with C&W and ADMM attacks on
the three datasets, especially on ImageNet. For MNIST, the
ADMM attack can reduce the L2 distortion by about 7%
compared with C&W L2 attack. This becomes more prominent
on ImageNet that ADMM reduces L2 distortion by 19%
comparing with C&W in the worst case.

B. Attack Success Rate and Distortion for ADMM L0 attack
The performance of ADMM L0 attack in terms of attack

success rate and L0 norm of distortion is demonstrated in this
section. We compare our ADMM L0 attack with C&W L0

attack on MNIST and CIFAR-10.
For ADMM L0 attack, 9 binary search steps are performed

to search for the parameter ρ while c is fixed to 20 for MNIST
and 200 for CIFAR-10. The initial value of ρ is set to 3 for
MNIST and 40 for CIFAR-10, respectively. The number of
ADMM iterations is 10.

The results of the L0 attacks are shown in Table II. We can
observe that both C&W and ADMM L0 attacks can achieve
100% attack success rate. For the best case, C&W L0 attack
and ADMM L0 attack have relatively close performance in
terms of L0 distortion. For the worst case, ADMM L0 attack
can achieve lower L0 distortion than C&W. ADMM L0 attack
reduces the L0 distortion up to 17% on MNIST.

C. ADMM Attack Against Defensive Distillation and Adver-
sarial Training

ADMM attacks can break the undefended DNNs with high
success rate. It is also able to break DNNs with defensive
distillation. We perform C&W L2 attack, ADMM L2 attack
and ADMM L0 attack for different temperature parameters on
MNIST and CIFAR-10. We find that the attack success rates
of C&W L2 attack, ADMM L2 and L0 attacks for different
temperature T are all 100%. Since distillation at temperature T
causes the value of logits to be approximately T times larger
while the relative values of logits remain unchanged, C&W
attack and ADMM attack which work on the relative values
of logits do not fail.

We further test ADMM attack against adversarial training on
MNIST. C&W L2 attack and ADMM L2 attack are utilized
to separately generate 9000 adversarial examples with 1000
randomly selected images from the training set as sources.
Then we add the adversarial examples with correct labels
into the training dataset and retrain the network with the

Table III
ADMM L2 ATTACK AGAINST ADVERSARIAL TRAINING ON MNIST

Adversarial Best case Average case Worst case
training ASR L2 ASR L2 ASR L2

None 100 1.35 100 2.07 100 2.63
C&W L2 100 1.7 100 2.66 100 3.2

ADMM L2 100 1.77 100 2.67 100 3.2
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Figure 2. Transferiablity Evaluation of ADMM L2 Attack on MNIST

enlarged training dataset. Then we perform ADMM attack on
the adversarially trained networks (one with C&W adversarial
examples, and one with ADMM adversarial examples), as
shown in Table III. ADMM L2 attack can break all three
networks with 100% success rate. L2 distortions on the latter
two networks are higher than that on the first network, showing
some defense effect of adversarial training.

D. Attack Transferability
Here we test the transferability of ADMM adversarial

attack. For each value of the parameter κ, we use ADMM
L2 attack to generate 9000 adversarial examples with 1000
random images from MNIST as source. Then these examples
are applied to attack the defensively distilled network with
temperature T = 100. The ASR is reported in Fig. 2.

As demonstrated in Fig. 2, when κ = 0, the generated
adversarial examples are not transferable or not strong enough
to break the defended network. As κ increases, the ASRs
of the three cases also increase. When κ = 50, the ASRs
of three cases can achieve the maximum value and most of
the generated adversarial examples on the undefended network
can also break the defensively distilled network. We also find
that when κ > 50, the ASRs of average case and worst case
decrease as κ increases. The reason is that when κ is very
large, it is quite difficult to generate adversarial examples even
for the undefended network. Thus an decrease on the ASR is
observed for average case and worst case, and the advantages
of strong transferable adversarial examples are mitigated by
the difficulty to generate such strong attacks.

VI. CONCLUSION

In this paper, we propose an ADMM-based general frame-
work for adversarial L2 and L0 attacks. We compare our
ADMM attacks with state-of-the-art adversarial attacks, show-
ing the effectiveness of the proposed ADMM attacks against
the defensive distillation and adversarial training.
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