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Abstract— Kinematic control approaches for exoskeletons
follow specified trajectories, which overly constrain individuals
who have partial or full volitional control over their lower limbs.
In our prior work, we proposed a general matching framework
for underactuated energy shaping to provide task-invariant,
energetic exoskeletal assistance. While the proposed shaping
strategies demonstrated benefits such as reduced human torques
during walking, it remains unclear how the parameters of
these shaping strategies are related to different gait benefits.
Meanwhile, research indicates that customizing assistance via
online optimization can substantially improve exoskeleton’s
performance for each individual. Motivated by this fact, we com-
bine derivative-free, sample-efficient optimization algorithms
with our energy shaping strategies to propose a task-invariant
learning framework for lower-limb exoskeletons. Through rapid
online optimization, this framework enables exoskeletons to
adjust shaping parameters for minimizing human joint torques
across users and tasks. Simulation results show that shaping
strategies with optimal parameters effectively reduce human
joint torques and estimated metabolic cost during simulated
walking. In addition, the optimal exoskeleton torques calculated
using able-bodied subjects’ kinematic data closely match the
real human joint torques for different walking gaits.

I. INTRODUCTION

The majority of powered lower-limb exoskeletons adopt

kinematic control methods to replicate normative joint kine-

matics [1]–[4]. These devices follow trajectories associated

with one specific task and user at a time [5], which do

not translate well across continuously varying locomotor

tasks or changes in user behavior. While this may be useful

for individuals who cannot volitionally control their lower

limbs, individuals with at least some volitional control

ability should be allowed to choose their preferred gait

patterns or make corrections during gait therapy. Moreover, in

order to accurately track different reference trajectories, task

recognition is often required in practice, which is currently

difficult to achieve [6]. A paradigm shift from task-specific,

kinematic control approaches to task-invariant approaches is

needed for exoskeleton control design.

Instead of enforcing kinematic trajectories, we can enforce

energetic goals to provide exoskeletal assistance with greater

freedom and flexibility. As a kinetic control method, energy

* indicates both authors contributed equally to this work.
G. Lv is with the Department of Mechanical Engineering, Clemson

University, Clemson, SC 29634. H. Xing, and C. Atkeson are with the
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213. J. Lin
and R. Gregg are with the Robotics Institute, University of Michigan, Ann
Arbor, MI 48109. glv@clemson.edu

This work is supported by NSF Awards 1734449, 1652514, and 1949869.
R. D. Gregg holds a Career Award at the Scientific Interface from the
Burroughs Wellcome Fund. The content is solely the responsibility of the
authors and does not necessarily represent the official view of the NSF.

shaping has been applied to bipedal locomotion to create

natural, efficient gaits based on passive dynamics [7], regulate

a biped’s walking speed [8], and facilitate 3D walking gaits

via control reduction [9]. In our prior work [10], we proposed

an energetic control approach that shapes the potential and

kinetic energies of the human body through the actuators

of an exoskeleton in the closed loop. By shaping potential

energy, torques can be generated to counteract gravity to yield

the so-called body-weight support (BWS), which offloads

the perceived weight of the user’s lower extremities and

center of mass (COM). By shaping kinetic energy, we can

assist the subject’s acceleration/deceleration by compensating

inertial terms along the diagonal [11] or in all entries

[10] in the bottom-right part of a mass matrix. Simulation

results on total energy shaping [12] and experimental results

on potential energy shaping [10], [13] have demonstrated

potential beneficial results in assisting different gaits.

Despite these promising results, it remains unclear how the

choices of energy shaping parameters are related to different

gait benefits. The shaping parameters in prior work, i.e.,

the BWS ratio and the inertia scaling factors, were chosen

arbitrarily based on intuitions. In stroke gait rehabilitation, the

BWS ratio is usually chosen by clinicians based on empirical

data [14]. As the subjects make progress through training,

the clinicians will gradually lower the BWS percentage to

provide less support and allow more independence. While this

is apparent for gait rehabilitation, choosing parameters for gait

augmentation is not straightforward. For gait augmentation,

a key metric for evaluating an exoskeleton is whether it

reduces the human user’s metabolic cost of walking [15].

Prior work [16], [17] showed that rapid, customized assistive

strategies obtained via human-in-the-loop optimization led

to substantial metabolic reduction during walking. However,

these approaches only focus on optimizing exoskeleton torque

for one joint during certain phases of a gait cycle. Generalizing

these results to simultaneously optimize control parameters

for multiple actuators throughout the entire gait cycle can

possibly yield more benefits for gait augmentation.

To address these issues, we present a task-invariant

learning framework for lower-limb exoskeletons to optimize

exoskeleton actuator torques during various activities. Instead

of optimizing parameters for a single joint’s kinematic

trajectory, we optimize parameters of the previously proposed

energy shaping strategies for multiple human joints. To

formulate the framework, we choose the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [18] and Bayesian

Optimization (BO) [19] given their prevalence in bipedal

locomotion related research [16], [20]. We use the integral
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of squared human joint torques proposed in [21] as our cost

function, where the human torque is calculated through the

Euler-Lagrange dynamics. By minimizing this cost function,

we minimize the correlated muscle activation, which in

turn is believed to be correlated with metabolic cost [22].

Because of the task-invariant property of our energy shaping

strategies, the proposed framework enables an exoskeleton

to automatically select optimal control parameters to assist

individuals with various activities.

The rest of the paper is organized as follows: we begin in

Section II by reviewing the human-exoskeleton dynamics and

prior results on energy shaping. In Section III, we introduce

CMA-ES and BO to formulate the task-invariant learning

framework. Finally, we show benefits for gait augmentation

with simulations on an 8-degree of freedom (DOF) biped

and the exoskeleton torques computed based on able-bodied

subjects’ kinematic data in Section IV.

II. DYNAMICS AND ENERGY SHAPING

A. Human and Exoskeleton Model

We first review the sagittal biped model and its dynamics

presented in [10]. For simplicity, we combine the biped’s two

hip joints into one and assume the biped’s mass consists of

the mass of exoskeleton links and human legs. The planar

biped shown in Fig. 1 is modeled as a kinematic chain with

respect to an inertial reference frame (IRF). Depending on

whether the exoskeleton is unilateral or bilateral, we choose

to model the stance and swing legs separately (unilateral case

[12]) or the entire lower body as a kinematic chain from

the stance foot to the swing foot (bilateral case [11]). By

explicitly modeling contact constraints in the dynamics, the

equations of motion can be expressed as

Mq̈ + Cq̇ +N +ATλ = τ, (1)

where M ∈ R
n×n is the positive-definite mass matrix

with n being the number of DOFs, C ∈ R
n×n is the

Coriolis/centrifugal matrix, and N ∈ R
n is the gravitational

forces vector. The configuration space is given as Q =
R

2 × T
(n−2), and the corresponding configuration vector

is q = (θx, θy, θab, q
T
s )

T ∈ R
n, where T

(n−2) is the (n− 2)
torus, θx and θy are the Cartesian coordinates with respect

to the IRF, and θab ∈ S
1 is an absolute angle defined with

respect to the vertical axis. The shape vector qs ∈ R
n−3

contains joint angles based on the biped model. The matrix

AT ∈ R
n×c is the constraint matrix defined as the gradient

of the holonomic constraint functions, and c is the number

of contact constraints that change during different contact

conditions. The Lagrange multiplier λ is calculated using the

method in [23] as

λ = λ̂+ λ̄τ, (2)

where

λ̂ = W [Ȧq̇ −AM−1(Cq̇ +N)], (3)

λ̄ = WAM−1, W = (AM−1AT )−1.

Because we are modeling the human body and the exoskeleton

as a whole, the torque τ = τhum+ τexo at the right-hand side

of (1) comprises both the human and the exoskeleton input

terms, τhum = Bv + JTF and τexo = Bu, respectively. The

mapping matrix B ∈ R
n×p maps both the human muscle

input term v ∈ R
p and the exoskeleton actuator torques

u ∈ R
p into the dynamics. Without loss of generality, we

assume B takes the form of [0p×(n−p), Ip×p]
T . In general,

the vector F includes the interaction forces between the

modeled subsystem and the connected un-modeled links. For

unilateral models, the body Jacobian matrix JT ∈ R
n×3 maps

the interaction forces F = (Fx, Fy,Mz)
T ∈ R

3 in τhum into

the dynamics, where (Fx, Fy)
T indicates two linear forces,

and Mz indicates a moment in the sagittal plane. For bilateral

cases, we combine stance and swing leg models and implicitly

model F in the equations of motions of the kinematic chain.

Fig. 1. Kinematic model of the human body and the exoskeleton(s). The
stance leg is shown in solid black and the swing leg in dashed black. The
IRF is defined at the heel (shown here), and (θx, θy) is chosen as the heel
position (px, py) for the model used in simulation.

B. Holonomic Contact Constraints

The single-support period of human walking can be

separated into heel contact, flat foot, and toe contact phases,

as shown in [10, Figure 11]. The general form of holonomic

contact constraints encountered during these conditions can

be expressed as relations between the position variables, i.e.,

a(q1, q2, ..., qc) = 0c×1, (4)

where qi denotes the i-th element of the configuration vector

q. Based on different contact conditions, there are c = 2
constraints for heel contact and toe contact, whereas flat foot

has c = 3. In this paper, we assume the constraint matrix A
has the constant form

A = ∇qa(q1, q2, ..., qc) = [Ic×c 0c×(n−c)]. (5)

The constant form (5) (i.e., Ȧ = 0) can be achieved by

defining the IRF at the stance toe during toe contact and

at the stance heel during heel and flat foot contact. Note

that for a unilateral model’s swing leg, there are no contact

constraints defined, i.e., A = 0.

C. Shapeable Dynamics

In this section, we review the equivalent constrained

dynamics (ECD) and our prior results on the shapeable
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dynamics of ECD. We omit the detailed matching proof

and refer the readers to [10].

By plugging the expressions for A and λ into (1), we can

obtain the ECD of (1) as

Mλq̈ + Cλq̇ +Nλ = Bλv + JT
λ F +Bλu, (6)

where

Mλ = M,

Cλ = (I −ATWAM−1)C,

Nλ = (I −ATWAM−1)N,

Bλ = (I −ATWAM−1)B,

JT
λ = (I −ATWAM−1)JT . (7)

Dynamics in the form of (6) has fewer or zero unactuated

DOFs compared to the generalized dynamics (1) without

constraints. Given the open-loop dynamics (6), we define the

desired closed-loop ECD as

M̃λq̈ + C̃λq̇ + Ñλ = B̃λv + J̃T
λ F, (8)

where M̃λ = M̃ is the mass matrix in the closed-loop ECD

and is assumed to be positive-definite. The remaining terms

in (8) are given by

C̃λ = (I −AT W̃AM̃−1)C̃,

Ñλ = (I −AT W̃AM̃−1)Ñ ,

B̃λ = (I −AT W̃AM̃−1)B̃,

J̃T
λ = (I −AT W̃AM̃−1)J̃T ,

W̃ = (AM̃−1AT )−1, (9)

with C̃ and Ñ being the dynamics terms of (1) in closed

loop. The detailed choices of these closed-loop dynamics

terms will be specified later in the simulation section.

Our prior work [10] shows that the matching condition for

mechanical energy is satisfied with the following choice of

closed-loop dynamics

M̃ =

[
M1 M2

MT
2 M̃4

]
, Ñ =

[
N(1,n−p)

Ñ(n−p+1,n)

]
,

where M1 ∈ R
(n−p)×(n−p), M2 ∈ R

(n−p)×p, M4 ∈ R
p×p.

By shaping these dynamics, the matching condition for the

human input term will be automatically satisfied. The control

law that brings (6) into (8) becomes

u = B+
λ [Cλq̇ +Nλ −MλM̃

−1
λ (C̃λq̇ + Ñλ)], (10)

where B+
λ = (BT

λBλ)
−1BT

λ is the left pseudo inverse of Bλ.

III. LEARNING FRAMEWORK FORMULATION

In this section, we first review the algorithms of CMA-

ES and BO. We then incorporate them with the previously

proposed energy shaping to propose a task-invariant learning

framework.

A. Covariance Matrix Adaptation Evolutionary Strategy

CMA-ES is a sample-efficient method for real-parameter

optimization of nonlinear, non-convex function [18]. This

optimization strategy comprises both measurement noise

during real-time experiments and human adaptation [16],

which makes it an ideal candidate for our approach. The

detailed algorithm is shown in Algorithm 1, where definitions

for hyper-parameters are shown in Table I.

The basic two perspectives of this algorithm, recombination

and mutation, can be interpreted as selecting a new mean

value m(i+1) for the distribution and adding a random vector

zi+1
k . The next generation mean value m(i+1) represents the

best estimation of optimal control parameters obtained after

current population, and new candidate solutions are sampled

according to a multivariate normal distribution N(0, I) ∈
R

n. The terms C, σ, pσ, and pc are updated following

the standard procedure in [18], and ωj is chosen based on

empirical data.

Algorithm 1 CMA-ES

1: Initialize X � shaping parameters

2: Initialize [q, q̇] � conditions for simulation

3: Initialize m(0), σ(0),C(0),pσ
(0),pc

(0) � CMA-ES

parameters

4: for i = 0 to Iter do
5: for k = 1 to χ do � sample new population

6: z
(i+1)
k ∼ N(0, I)

7: X
(i+1)
k = m(i) + σ(i)BDz

(i+1)
k � sample

candidate solution

8: simulate walking until convergence

9: if stability guaranteed then
10: i = i+ 1, compute cost function

11: end if
12: end for
13: m(i+1) =

∑γ
j=1 wjX

(i+1)
j∈[1, χ] � sort the best γ

candidates

14: if gait stable with m(i+1) then
15: update [q, q̇], C(i+1), σ(i+1),pσ

(i+1),pc
(i+1)

16: else
17: i = i− χ
18: end if
19: end for

B. Bayesian Optimization

BO is a noise-tolerant and sample-efficient global op-

timization method, which selects new parameters using

non-parametric regression models and principled metrics

[24]. BO consists of two main components: a Bayesian

statistical model for modeling the objective function, and

an acquisition function for deciding where to sample next

[25]. After evaluating the objective function based on some

initial conditions, BO optimizes the acquisition function to

select the next sample point.

The whole algorithm is shown in Algorithm 2. Similar to

CMA-ES, the input X is the set of energy shaping strategy
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TABLE I

PARAMETERS OF CMA-ES

Parameter Definition

χ Population size
Iter Total iteration number
X Control parameters set
γ Number of shaping parameters

m(i) Mean value of the i-th iteration

σ(i) Step size of the i-th iteration

C(i) Covariance matrix of the i-th iteration
B,D Orthogonal and diagonal matrices

ωj Weight of Xj ,
∑γ

j=1 ωj = 1

pσ Evolutionary path for σ
pc Evolutionary path for C

parameters, Iter is the total iteration number. The cost function

is denoted as f , and data set D composes of different sets

of previously generated X. As in standard literature [24],

P (f) is a Gaussian process prior, P (f |D) is the distribution

posterior, and C(X|P (f |D)) is the acquisition function. The

state [q, q̇] will be updated corresponding to the change of

X only if the generated gait is stable and the value of cost

function is lower than previous iterations.

Algorithm 2 Bayesian Optimization

1: Initialize X � shaping parameters

2: Initialize [q, q̇] � conditions for simulation

3: f(X) � objective function

4: BAYESOPT(f , X, Iter) � Bayesian optimization

5: function y = f(X)
6: simulate walking until convergence in [q, q̇]
7: if stability guaranteed then
8: compute cost function

9: end if
10: end function
11: function BAYESOPT(f , X, Iter)

12: fmin = f(X)
13: for n = 1 to Iter do
14: P (f |D) =

∫
P (D|f, θ)P (f)P (θ)dθ � Bayes

rule

15: Xn = argmax C(X|P (f |D))
16: Call yn = f(Xn)
17: if yn < fmin then
18: fmin = yn
19: end if
20: D = D ∪ {Xn, yn} � augment data

21: if yn = fmin and gait stable then
22: update [q, q̇]
23: end if
24: n = n+ 1
25: end for
26: end function

C. Optimization Formulation

Prior research [22] indicates that muscle activation squared

is correlated with metabolic cost. By assuming that human

joint torque squared is correlated to muscle activation squared,

authors of [21] proposed a simulation-based metric for

metabolic cost as

p∑
j=1

α2
j =

∫ T

0
τ2hum(t)dt

T (mgl)2
≈

∑NT

i=1τ
2
hum(i)Δt(i)

T (mgl)2
, (11)

where T is the step time period, NT is the number of

timesteps in the simulation, Δt(i) is the i-th timestep, m
is the overall mass of the biped, and l is the length of the

leg. We divide the human torque squared by T (mgl)2 in (11)

to isolate the effects of changing gait characteristics so that

human joint torque squared can be compared across different

shaping strategies. Finally, our optimization problem can be

formulated as:

minimize
X

p∑
j=1

α2
j ≈

∑NT

i=1τ
2
hum(i)Δt(i)

T (mgl)2

subject to τhum = M̃λq̈ + C̃λq̇ + Ñλ,

eig(M̃λ) > 0,X ⊂ X̄,

|τexo| < sat,

Stability checked by Poincaré section method

where “sat” is the saturation for exoskeleton torques, and

X̄ is the set of parameter ranges (will be specified later

for different shaping strategies). Based on prior results [10],

reducing mass and/or inertial parameters in the shapeable

part of the inertia matrix can possibly reduce metabolic cost

during simulated walking. However, reducing inertial and

mass parameters arbitrarily in M̃4 cannot ensure the positive

definiteness of M̃λ. We therefore include eig(M̃λ) > 0 as a

constraint in the formulation to avoid non-positive definite

inertia matrix in the closed loop.

Note that the Poincaré section method is only used in

simulation to ensure gait stability. In practice, we can establish

a passive relationship from human input to joint velocity

similar to [12] to ensure safe human-robot interaction. Also,

estimating human joint torque in the cost function depends

on the available sensors of an exoskeleton, e.g., IMU sensors

and encoders for measuring joint kinematics.

IV. SIMULATION RESULTS AND DISCUSSION

To simulate human-like walking gaits, we consider the

coupled dynamics of the two legs shown in Fig. 1, which is

termed as the full biped model and is modeled as a kinematic

chain with respect to the IRF defined at the stance heel. The

configuration vector of the full biped model is given as θ =
(θx, θy, θab, q

T
s )

T = (px, py, φ, θa, θk, θh, θsk, θsa)
T ∈ R

8,

where (θx, θy)
T = (px, py)

T are the Cartesian coordinates

of the stance heel, θab = φ is the stance heel angle defined

with respect to the vertical axis. The shape vector is defined

as qs = (θa, θk, θh, θsk, θsa)
T , θa and θsa are angles of the

stance and swing ankle, θk and θsk are angles of the stance

and swing knee, and θh is the hip angle between the stance

and swing thighs. The model and simulation parameters were

adopted from [10, Table I].
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A. Hybrid Dynamics and Stability

Biped locomotion can be modeled as a hybrid dynamical

system that includes continuous and discrete dynamics. For

the biped model we used in this paper, impacts happen

when the swing heel contacts the ground and when contact

constraints change between the heel contact and flat foot

conditions. The following sequence that includes hybrid

dynamics and impact maps during one step is a review of

Section V-B in [12]:

1. Mθ̈ +N +AT
heelλ = τe + τh if aflat �= 0,

2. θ̇+ = (I −W(AflatW)−1Aflat)θ̇
− if aflat = 0,

3. Mθ̈ +N +AT
flatλ = τe + τh if |cp(θ, θ̇)| < lf ,

4. θ̇+ = θ̇−, (θ(1)+, θ(2)+)T = R if |cp(θ, θ̇)| = lf ,

5. Mθ̈ +N +AT
toeλ = τe + τh if H(θ) �= 0,

6. (θ+, θ̇+) = D(θ−, θ̇−) if H(θ) = 0,

where M ∈ R
8×8 is the inertia matrix of the full biped model,

and N ∈ R
8 groups the model’s Coriolis and gravitational

forces. The definitions for other dynamic terms can be found

in [10]. Note that the vector cp(θ, θ̇) is the COM position

defined with respect to the heel IRF and is used as a flag to

detect contact conditions in simulation.

The overall torque input consists of both the human input

vector τh ∈ R
8 and the exoskeleton input vector τe ∈ R

8.

We assume the human input takes the form of a set-point PD

controller that generates a stable limit cycle while walking

down a shallow slope:

τTh = [01×3, −(θi − θ̄i)
TKT

pi − θ̇Ti K
T
di]

T ,

where Kpi, Kdi, θi, and θ̄i are constant values corresponding

to the stiffness, viscosity, actual angle, and equilibrium angle

of each joint, respectively. This form of human input is merely

an assumption we make to simulate human walking, which

does not represent real human neuromuscular input.

Due to the difficulty of analytically proving stability for hy-

brid systems in general, we checked local stability numerically

by applying the Poincaré method. Letting x = (θT , θ̇T )T be

the state vector of the full biped, a walking gait corresponds

to a periodic solution curve x̄(t) of the hybrid system such

that x̄(t) = x̄(t + T ), for all t ≥ 0 and some minimal

T > 0. The set of states occupied by the periodic solution

defines a periodic orbit O := {x|x = x̄(t) for some t} in the

state space. The step-to-step evolution of a solution curve

can be modeled with the Poincaré map P : S → S, where

S = {x|H(θ) = 0} is the switching surface indicating initial

heel contact [26]. The intersection of a periodic orbit with

the switching surface is a fixed point x∗ = P(x∗). We can

linearize the Poincaré map about this point to analyze the

local stability of the hybrid dynamical system according to

the standard result in [27]. If the eigenvalues of the Jacobian

∇xP(x
∗) are within the unit circle, where x∗ = S ∩ O, then

the periodic orbit O is locally exponentially stable in the

hybrid system. The eigenvalues are calculated in simulation

by first allowing the biped to converge to a fixed point and

then by performing the perturbation analysis [28].

B. Energy Shaping Strategies

In our prior work, we chose to compensate for lower-limb

inertia in the actuated part of a mass matrix, leaving the mass

terms unshaped. In this section, we propose energy shaping

strategies to shape all inertial terms in M̃4.

1) Defining M̃4: An interesting fact about the inertia

matrix is the “cyclic-like” property on where the mass and

inertia terms show up [9]. While traversing from the top-

left corner to the bottom-right corner of the mass matrix,

the number of links whose parameters appear in the matrix

gradually decreases, indicating that each “layer” of the matrix

carries a different weight in the overall kinetic energy. We

respect this inherent property of the inertia matrix and choose

the definition as

M̃4 =

⎡
⎢⎢⎢⎣
k1M(4,4) k1M(4,5) . . . k1M(4,8)

k1M(5,4) k2M(5,5) . . . k2M(5,8)

...
...

. . .
...

k1M(8,4) k2M(8,5) . . . k5M(8,8)

⎤
⎥⎥⎥⎦ , (12)

where K1 = [k1, k2, . . . , k5] ∈ R
5 is the parameter set to be

determined and optimized. During simulation, we found out

that for M̃ being positive definite, k1 and k2 have to equal

one. Therefore, the optimization problem reduces to finding

the parameter set K1 = [k3, k4, k5] ∈ R
3.

As an alternative, we define M̃λ by scaling only the

diagonal terms in M4 by K2 = [kπ, kθ, kγ ] ∈ R
3 , i.e.,

M̃4 =

⎡
⎢⎢⎣
. . . . . . . . . . . .
. . . kπM(6,6) M(6,7) M(6,8)

. . . M(7,6) kθM(7,7) M(7,8)

. . . M(8,6) M(8,7) kγM(8,8)

⎤
⎥⎥⎦ . (13)

2) Defining Ñ: Our prior definition of Ñ in [29] scales

all the shapeable rows by the same BWS ratio μ. However,

this definition is only valid during fully-actuated contact

conditions, e.g., the flat-foot condition. During heel and toe

contact conditions, we cannot retrieve a valid closed-loop

potential energy from this definition. Therefore, we adopt

the definition presented in [30], i.e., only shape gravitational

forces of each link that are perpendicular to the stance foot,

to define Ñ so that a valid potential energy can be retrieved

across the entire gait cycle. These two strategies for potential

energy can be represented as

μs = μ̄ · I1×5 ∈ R
5, μd = [μ1, μ2, . . . , μ5] ∈ R

5,

where μs indicates using the same scaling factor μ̄ and μd

indicates having a different μi for each row of N, respectively.

Having parameters μ̄ = 1 or μi = 1 implies not shaping the

potential energy, i.e., Ñ = N. More details regarding these

definitions can be found in [30].

C. Results and Discussion

During simulation, we first tuned human joint impedance

by trial and error to find a stable nominal gait. We then

applied CMA-ES and BO to generate new populations of

control parameters given some initial conditions. For both

optimization algorithms, we simulated walking for 10 steps to
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allow the gait to converge before computing the corresponding

metrics. Once the gait converges, we applied the Poincaré

section method to check the stability of the hybrid period

orbit after each generation for CMA-ES, while for BO this

stability was checked after each iteration. This corresponds

to the “stability guaranteed” in Algorithms 1 and 2.

We chose different values for parameters in the sets K1, K2,

μs, and μd to conduct simulation, where all eight different

cases were chosen as shown in Table II. Note that strategy

1 includes the best hand-tuned parameters we found that

yielded the most human torque reduction.

To ensure credible performance, we ran both the CMA-ES

and BO six trials for each case in Table II. For safety reasons,

we set the saturation for exoskeleton torque to be 50 Nm,

and confined the values of μ̄ and μi, i ∈ {1, . . . , 5} to be

within [0.4, 1.6] and ki to be within [0.75, 1.25], respectively.

As opposed to the previous definitions in [10] which confined

shaping variables to be less than one for providing assistance,

we relaxed this condition in this paper, as adding virtual

weight could possibly help humans swing their legs forward

during late swing phase [31].

TABLE II

ENERGY SHAPING STRATEGIES FOR OPTIMIZATION

Strategy Number Control Parameters X

1 k3 = 0.9, k4 = 0.8, k5 = 0.5, μ̄ = 0.9
2 Only k4 of K1, μs

3 K1, μs

4 μd

5 K1, μd

6 Different K1, μd for each contact phase
7 K2, μs

8 K2, μd

1) Human Torque Reduction: We show torque reduction

(11) with different strategies in Fig. 2. Each bar represents the

average of calculated metabolic cost over six trials. In general,

CMA-ES and BO output similar results for each strategy.

Based on the ascending trend from strategy 2 to 3, we can

conclude that shaping more limb mass and inertia in M̃4 leads

to more torque reduction. The similarity between strategies 4

and 5 shows that potential energy shaping is more dominant

in deciding the overall reduction compared to kinetic energy

shaping. The ascending trends from strategy 3 to 5 as well as

strategy 7 to 8 indicate that having different potential energy

shaping parameters are more helpful. Comparing strategies 3

and 7, as well as strategies 5 and 8, we can see that shaping

the diagonal elements in M̃4 plays a more significant role

than shaping the off-diagonal terms, i.e., the effect of shaping

non-diagonal terms is almost negligible.

Finally, strategy 6 adopts three different sets of (K1, μd)

for each contact condition, and this strategy outmatches the

other cases in terms of reduction percentage. The optimal

parameters of this strategy are given in Table III, where

each cell includes both the parameters from CMA-ES and

BO (before and after “/”, respectively). We can see that

some of the parameters are greater than one, which verifies

our assumption that adding virtual weight and inertia can

TABLE III

OPTIMAL CONTROL PARAMETERS OF STRATEGY 6

CMA-ES/BO Heel Contact Flat Foot Toe Contact

k3 1.009/1.072 0.931/0.862 0.958/1.011
k4 1.096/1.098 1.051/0.894 1.075/0.981
k5 1.005/1.101 0.924/0.918 0.984/1.038
μ1 0.936/1.022 0.993/1.088 0.994/1.090
μ2 1.084/0.743 1.056/1.146 1.025/0.868
μ3 1.078/1.108 0.763/0.874 0.993/1.011
μ4 1.094/0.834 0.729/0.570 1.139/1.152
μ5 1.029/0.743 0.584/0.530 1.101/1.140
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Fig. 2. The human torque sum reduction (compared to the passive gait)
for different strategies using CMA-ES and BO with ±1 standard deviation.

be actually helpful in providing assistance. We also tried

to simulate walking using different sets of K1 and μs for

each contact condition. However, positive definiteness of M̃λ

cannot be ensured.

2) Metabolic Cost Reduction: To further study the benefits

of the proposed framework, we adopted the following metric

Ewalking = (E3LP + ECR + EGC)/η + EWS, (14)

E3LP =

∫ T

0

[
d

dt
(
1

2
q̇T M̃q̇)]+dt,

ECR =
1

2
M̃v2z , EGC = 2mlegH(θ)g,

EWS =

∫ T

0

mlegg cos(β)lt sin(
θk
2
)θ̇kmaxΦ(

θ̇k

θ̇kmax

)dt,

proposed in [32] to compute the metabolic cost of simulated

walking with each strategy. The first term E3LP in (14)

represents the swing and torso balance cost of the 3-link

linear pendulum model, the second term ECR denotes the

energy cost to compensate for the COM vertical velocity

change due to impacts. The third term EGC denotes the

cost of maintaining proper ground clearance, and the last

term EWS indicates the weight support cost. Among these

definitions, mleg is the overall mass of the leg, vz is the

vertical COM velocity, β is the stance leg angle with respect

to gravity, lt is the thigh length, η = 0.25 is the assumed

muscle efficiency, and Φ(·) is the Alexander-Minetti’s cost

curve [32].
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Fig. 3. The mean and ±1 standard deviation of Ewalking calculated based
on different strategies with optimal parameters. The zero line in y-axis
indicates the metabolic cost of passive gait.

Similar to Fig. 2, we computed the mean value and the

standard deviation of Ewalking across six trials for each

strategy and compare them with the cost of the passive gait.

From Fig. 3, we can see that all strategies are able to reduce

metabolic costs, among which strategy 6 yields the most

reduction. These data not only comply with the conclusion we

draw from Fig. 2 but also indicate the proposed strategies can

effectively reduce metabolic cost during simulated walking.

3) Normative Kinematic Data: To demonstrate the pro-

posed framework is capable of providing task-variant assis-

tance across subjects and tasks, we compute exoskeleton

torque (10) using able-bodied human subjects’ normative

kinematic data [33] with parameters from Table III. Fig. 4

compares estimated exoskeleton joint torques for the decline,

level and incline conditions, respectively.

The main phases during stance that require exoskeleton

assistance are weight absorption and push-off [34]. To assist

able-bodied persons, knee extension and ankle plantar flexion

torque should be provided via exoskeleton at terminal stance

to swing the limbs upwards. From Fig. 4, we can see

exoskeleton torques with optimal parameters closely match the

real human torques, especially at the ankle joint. Compared

to the aggressive ankle torque at terminal stance in [10], the

optimal strategies in this paper provide mild assistance, which

is critical in assisting human locomotion [31]. In addition, the

optimal shaping strategies provide necessary knee extension

torques in weight absorption as well as in late stance to

propel the body forward for all three conditions. This again

is an improvement compared to the potential energy shaping

strategy proposed in [12], which provides flexion torques

during level and incline conditions that are counterproductive.

With our prior experimental results on energy shaping across

various activities [10] and the results presented in Fig. 4, we

can safely assume the proposed task-invariant framework is

capable of finding optimal parameters across subjects and

daily activities such as stair ascent and descent.

CONCLUSION AND FUTURE WORK

In this paper, we present a task-invariant learning frame-

work for lower-limb exoskeletons to minimize human joint

torques and metabolic cost across locomotor tasks. Built

upon our prior framework on underactuated energy shaping,

we incorporate derivative-free, sample efficient optimization

algorithms, i.e., CMA-ES and BO, to automatically update the

parameters of task-invariant energy shaping strategies through

online iteration. Simulation results on a human-like biped

demonstrated that all the optimized strategies can effectively

reduce human joint torque and estimated metabolic cost.

Among these strategies, the optimal exoskeleton torques

calculated using able-bodied subjects’ kinematics closely

match real human joint torques. These torques also provide

milder assistance during weight absorption and terminal

stance, which is an improvement compared to our prior

results on potential energy shaping. Future work includes

experimental implementation on physical exoskeletons and

refining the framework to automatically search for assistive

strategies.
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