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Switchable phonon diodes using nonlinear topological Maxwell lattices
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Recent progress in topological mechanics has revealed a family of Maxwell lattices that exhibit topologically
protected floppy edge modes. These modes lead to a strongly asymmetric elastic wave response. In this paper,
we show how topological Maxwell lattices can be used to realize nonreciprocal transmission of elastic waves.
Our design leverages the asymmetry associated with the availability of topological floppy edge modes and
the geometric nonlinearity built into the mechanical systems’ response to achieve the desired nonreciprocal
behavior, which can be further utilized to form a phonon diode via the addition of on-site pinning potentials
that blocks the linear transmission and only allows the signal to transmit in one way. Finally, the nonreciprocal
wave transmission can be switched on and off via topological phase transitions, paving the way to the design of
cellular metamaterials that can serve as tunable topologically protected phonon diodes.
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I. INTRODUCTION

Over the past decade, significant progress on the develop-
ment of mechanical analogs of topological states of matter has
fueled the new field of “topological mechanics” [1–5]. Many
applications of topological mechanical metamaterials have
been proposed, such as unidirectional transport using chiral
edge modes [1,4,6–12], transformable topological materials
[13], structures with programmed buckling or fracturing pat-
terns [14,15], mechanical lasers [16], aperiodic topological
metamaterials [17,18], geared topological metamaterials [19],
and dislocation-localized softness [20].

A particularly interesting potential application of topologi-
cal metamaterials is to obtain a phonon diode, i.e., a device
that only allows sound transmission in one direction. The
main requirement to achieve this goal is to break reciprocity.
Within linear elasticity, systems with time-reversal symmetry
exhibit reciprocity [21]. According to the Maxwell-Betti the-
orem [22–24], reciprocity implies that u j,(1)

B /Fi
A = ui,(1)A /F j

B ,
where i, j = x, y, z are Cartesian components, Fi

A is the ith
component of the external force exerted at input point A,
and u j,(1)

B is the jth component of the linear elastic response
probed at output point B. In the remainder of this paper, we
define the quantity χ

(1)
out,A = u j,(1)

B /Fi
A as the linear transmis-

sion susceptibility. To achieve nonreciprocal transmission one
needs to (1) break spatial-inversion symmetry and (2) either
break time-reversal symmetry or include nonlinear effects.
Major efforts have been devoted to the development of strate-
gies to violate reciprocity by breaking time-reversal symme-
try. For example, several active metamaterial configurations
have been proposed for unidirectional edge wave propagation,
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such as systems of coupled gyroscopes [6,7,25,26], chiral-
active fluids and plasma [27,28], dynamic phononic lattices
[29], spatiotemporally modulated metamaterials [30–37], and
active-liquid metamaterials [38,39].

An alternative route to break reciprocity in mechanical sys-
tems consists of leveraging the intrinsic nonlinearity of their
elastic response. Recent implementations include nonlinear
self-demodulation processes obtained by coupling elastically
distinct layers of metamaterials [40–42], unidirectional guid-
ing of strongly nonlinear transition waves in a bistable lattice
[43], static nonreciprocal elastics [44], acoustic switching and
rectification [45–47], and broadband acoustic diodes [48]. In
this paper, we present an approach for nonreciprocal wave
transmission in lattice systems in which the task of break-
ing space-inversion symmetry is accomplished through the
activation of topological floppy edge modes. The nonlinear
response requirements are fulfilled by the natural geometric
nonlinearity of the lattice deformation, the marriage of which
with the topological edge modes gives rise to large-amplitude
second harmonics. The main advantage of the proposed de-
sign stems from the topological protection of the edge modes,
which endows the nonreciprocal phenomena with robustness
against potential defects and disorder.

Maxwell lattices are central-force lattices with average
coordination number 〈z〉 = 2d (d is the spatial dimension),
which puts them on the verge of mechanical instability
[2,17,49,50]. They host topologically protected edge modes
at zero frequency (floppy modes) which are governed by
the topology of the equilibrium and compatibility matrices
and therefore ultimately depend on the lattice geometry [2].
The topological edge modes lead to strongly asymmetric
edge stiffness, which has been shown to result in asymmetric
wave propagation characteristics, whereby certain edges allow
waves to propagate into the bulk, and others localize energy at
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the boundaries [51]. Despite this asymmetry, the transmission
of linear elastic waves is still reciprocal, meaning that the
linear transmission susceptibilities χ

(1)
out,A and χ

(1)
out,B between

points A and B in space are equal, in accordance with the
Maxwell-Betti theorem.

To achieve nonreciprocal transmission in phonon diodes,
we first localize linear excitations on lattice boundaries by
driving the lattice with frequency ω in the band gap �. These
localized modes do not propagate in space and cannot transmit
elastic stress. On top of this, we propagate second harmonic
bulk modes whose intensity is controlled by the amplitude
of the boundary linear excitation. The generation of higher
harmonics in mechanical systems with multimodal dispersive
behavior and the resulting opportunities for unconventional
wave manipulation and functionality enrichment in elastic
metamaterials have been the subject of a number of recent
studies [52–59].

In this paper we show that second harmonic modes in
topological Maxwell lattices are strongly nonreciprocal, due
to the contrast in stiffness between floppy and nonfloppy
edges, which is a topologically protected property. Further,
we demonstrate that by blocking the linear (first harmonic)
modes via on-site pinning potentials (which can be realized
by placing the lattice on a soft substrate), the system works
as a phonon diode, in which transmission (with frequency
doubled) is effectively observed in only one direction. Finally,
we revisit the notion that topological kagome lattices can be
reversibly transformed between different topological states
with contrasting edge state landscapes through a transforma-
tion known as the “Guest mode,” which involves a soft strain
of the whole lattice. As a result, these lattices can be switched
between strongly nonreciprocal and nearly reciprocal states
through simple reversible operations.

II. NONRECIPROCITY IN A 1D TOPOLOGICAL
MECHANICAL CHAIN

We start our discussion by revisiting the 1D topological
mechanical chain introduced in [2], as shown in Fig. 1(a).
This is the simplest lattice with topologically protected floppy
edge modes that give rise to contrasting boundary rigidity. The
chain consists of rigid rotors connected to fixed pivot points
separated by lattice constant a. The pivot points as well as
the rotors are labeled from 0 to N . The other ends of the
rotors feature particles of mass m, and neighboring particles
are connected with harmonic springs. The chain is subjected
to open boundary conditions (OBCs) at rotors 0 and N . The
equilibrium configuration is such that rotors form an angle
θ̄ relative to the upward and downward normals. The angu-
lar displacements are denoted as u = (rδθ0, rδθ1, . . . , rδθN ),
where δθn = θn − θ̄ . The system consists of N + 1 degrees
of freedom and N constraints, leaving only one topological
floppy mode localized on the right boundary.

Now we imagine driving the chain by a monochromatic
harmonic force F ext

g (t ) = Feiωt applied at the left (right)
end, i.e., on rotor g = 0 (g = N), while F ext

n (t ) = 0 else-
where. F is assumed small enough that δθn � 1, ∀n =
0, . . . ,N , which validates perturbation theory. We denote
Fext
g = (F0,F1, . . . ,FN ) as the array of external forces and,

as we mentioned previously, Fext
0 = (F, 0, . . . , 0) and Fext

N =

(0, 0, . . . ,F ). By expanding u = u(1) + u(2) + O(F 3) in or-
ders of F , we can solve for the linear elastic mode u(1) and for
second harmonic mode u(2), respectively.

We define the input linear response function as χin =
|u(1)in |/Fin, where u(1)in is the linear displacement of the rotor
that is being driven. We also define χ

(1)
out = |u(1)out|/Fin (χ (2)

out =
|u(2)out|/Fin), where u(1)out (u

(2)
out) is the linear displacement (second

harmonic displacement) at the boundary rotor opposite to the
driven side.

To the linear order, Newton’s equation of motion is

mü(1)
g = Fext

g − Du(1)
g − ηu̇(1)

g , (2.1)

where η is the damping coefficient, m is the particle mass,
and the lower index g indicates that the force is applied at
the left end if g = 0 (right end if g = N). The dynamical
matrix is D = KCTC, where Ci j = c1δi j − c2δi, j+1 is the
compatibility matrix, and c1, c2 are coefficients determined
by lattice geometry (see Appendix B). In the static limit, the
linear elasticity is captured by the compatibility matrix C:
the floppy mode is localized on the right (left) end if |c1| >

|c2| (|c1| < |c2|). The topological protection of this floppy
mode arises from the winding number of the compatibility
matrix in the complex plane, and is therefore invariant against
continuous deformations to the geometry of this 1D chain
unless the gap closes [2]. Without losing generality, in the rest
of this paper we always let c1 > c2 > 0 by allowing rotors to
tilt rightward with θ̄ > 0, so the edge floppy mode is localized
on the right end of the chain. Following this convention, it
is convenient to denote χin+ = |u(1)N |/FN , χin− = |u(1)0 |/F0 and
χ

(1,2)
out+ = |u(1,2)0 |/FN , χ

(1,2)
out− = |u(1,2)N |/F0, where + (−) indi-

cates that external driving is applied at the soft (rigid) end.
Above zero frequency, the dispersion relation of the bulk

phonon mode reads ω = [(c1 − c2)2 + 4c1c2 sin2( 12ak)]
1/2,

where k is the wave number. Linear elastic waves driven
by external excitations with c1 − c2 < ω < c1 + c2 are bulk
modes. χin+ and χin− are at the same order of magnitude.
As ω falls below c1 − c2, linear modes localize on lattice
boundaries. χin+/χin− monotonically increases to infinity as
ω approaches the static limit (see Appendix B for details). Al-
though the stiffness differs dramatically (by orders of magni-
tude) on opposite boundaries, the linear elastic transmission is
still reciprocal, meaning that χ (1)

out+ = χ
(1)
out− as a manifestation

of the Maxwell-Betti theorem. We verified this equality both
analytically and numerically, as shown in Fig. 1(d).

Interestingly, higher-order harmonics with ω(n) = nω that
are nonlinearly generated by the edge modes are bulk modes
as long as c1 − c2 < ω(n) < c1 + c2. In what follows, we
study whether these second harmonic modes carry nonrecip-
rocal characteristics. Newton’s equation of motion for second
harmonic modes is

mü(2)
g = f (2)

(
u(1)
g

) − Du(2)
g − ηu̇(2)

g , (2.2)

where f (2)(u(1)
g ) is the second harmonic effective driving

force generated by the linear displacement u(1)
g , as defined

in Eq. (2.1) (see Appendix B for details). Since the effective
driving is quadratic in u(1)

g , it triggers second harmonic modes

with amplitude |u(2)n | ∝ |u(1)in |2 and frequency 2ω. External
excitations with 1

2 (c1 − c2) < ω < min ( 12 (c1 + c2), c1 − c2)
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FIG. 1. Nonreciprocal wave propagation in a 1D nonlinear topological chain. (a) 1D topological mechanical chain [2] subjected to open
boundary conditions with one floppy mode localized on the right edge. The “positive” (“negative”) direction is marked with green (red). We
apply a harmonic force F exteiωt with magnitude F ext = 10−5 and frequency 1

2 (c1 − c2) < ω = 0.5 < c1 − c2 on both edges to excite linear
edge modes and second harmonic bulk waves. (b) Band structure ω = ω(ak) of the 1D chain. (c) Input-end local response function χin. We
denote the bulk wave region with yellow. (d) Reciprocal transmission of linear waves with χ

(1)
out+ = χ

(1)
out−. (e) Nonreciprocal transmission of

second harmonic waves with χ
(2)
out+ � χ

(2)
out− in the frequency region 1

2 (c1 − c2) < ω < min ( 12 (c1 + c2), c1 − c2) marked in gray. We plot the
output second harmonic susceptibility χ

(2)
out (2ω) versus the input driving frequency ω. (f) Input-end response excited by a Gaussian tone burst

with carrier frequency ω = 0.5. (g) Output-end response featuring carrier frequency ω(2) = 2ω. (h) Nonreciprocal transmission of second
harmonic driven by Gaussian tone burst.

excite linear edge modes as well as second harmonic bulk
waves. For a given magnitude of excitation F , the input-end
linear response measured at the right edge is far greater than
its counterpart measured at the left edge (χin+ � χin−). As a
result, the global wave amplitude experienced by the chain is
much greater when the chain is driven from the right, leading
also, in return, to significantly stronger second harmonics gen-
eration, i.e., |u(2)

g=N | � |u(2)
g=0|. Through analytical and numer-

ical calculations we can show that χ
(2)
out+ � χ

(2)
out−, meaning

that the transmission of second harmonics is nonreciprocal,
as reported in Fig. 1(e). This nonreciprocity result can be
generalized to the nth harmonic mode: we obtain that χ (n)

out+ �
χ

(n)
out− if 1

n (c1 − c2) < ω < min ( 1n (c1 + c2), c1 − c2). We note

that besides the low-frequency regime ω < c1 − c2, linear
modes with high frequencies ω > c1 + c2 can also localize on
edges. However, they are not of interest in this paper, because
the associated nonlinear harmonics are also edge excitations
which cannot propagate across the lattice and therefore cannot
contribute to transmission.

It is interesting to ask whether nonreciprocity still holds if
the monochromatic harmonic excitation is replaced by a tone
burst excitation with carrier frequency ω and Gaussian ampli-
tude modulation, having the form F ext (t ) ∼ F exteiωt−(t−t0 )2/τ 2

,
where the parameter τ controls the spread of the Gaussian
and t0 denotes the trigger time of the packet. Since, in
Fourier space, the input signal is a Gaussian function with
full width at half maximum �ω = 2

√
ln 2/ωτ , we expect that
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the transmission of nonlinear modes is still nonreciprocal.
This conjecture is verified by numerical analysis as shown
in Fig. 1(g).

It is important to note that the key ingredient to achieve
nonreciprocity is the contrast in rigidity between opposite
edges, and not the topological protection of the edge modes.
In principle, any system with asymmetric boundary stiffness,
whether this is topological or not, can realize nonreciprocity
if such asymmetry is used in conjunction with nonlinear elas-
ticity [44]. However, topologically protected floppy modes
enjoy the additional attribute of being robust against disorder,
noise, and stochastic damage. More interestingly, topological
lattices are switchable, meaning that the topological polar-
ization can be changed via simple, reversible operations that
modify their geometry. For example, the 1D chain discussed
above can be flipped to have the opposite topological polar-
ization by propagating a soliton through the chain [60]. As
we shall discuss in Sec. IV, 2D topological kagome lattices
can undergo a geometric change through a soft strain of the
whole lattice, called the “Guest mode” [61], to manipulate
topological phases and control floppy mode localization [13]
and thus boundary stiffness. Consequently, the transmission
of nonlinear waves can be switched from nonreciprocal to

reciprocal by reconfiguring the lattices from their topological
to their nontopological form.

III. NONRECIPROCITY IN A TOPOLOGICAL
KAGOME LATTICE

Having established nonreciprocity for a 1D topological
chain, we now ask whether the same is true for a 2D topo-
logical lattice [2]. To this end, we consider the topological
kagome lattice shown in Fig. 2(a). The lattice is ideal; i.e.,
it consists of point masses connected by nearest-neighbor
linear springs. The unit cell contains one equilateral and
one isosceles triangles, which are constructed from 6 bonds
and 3 nodes marked by A, B, and C. The side length of
the equilateral triangle and the longer edge of the isosceles
triangle are l0, while the shorter edge is l0/

√
3. The twist

angle of the isosceles triangle is 5◦ counterclockwise, which
makes the longer edge of the isosceles triangle inclined by 5◦
relative to the bottom edge of the equilateral triangle [marked
AB in Fig. 2(a)]. �a1 and �a2 are the lattice primitive vectors. The
lattice, spanning the area |N1�a1 × (N2 − 1)�a2| in real space, is
composed of N1 × (N2 − 1) unit cells and an additional layer
of C sites at the bottom edge of the lattice to complete the

FIG. 2. Nonreciprocal wave propagation in a 2D nonlinear topological kagome lattice. (a) Topological kagome lattice, with unit cell shown
in the inset, where A, B, and C label the sites and (�a1, �a2) are the primitive vectors. The floppy modes are localized on the top boundary. Total
floppy mode amplitude on each site is shown by the size of the orange disks on the site. The lattice consists of 40 × (40 − 1) unit cells and
an additional layer of 40 C sites at the bottom boundary. The lattice is subjected to periodic boundary conditions in �a1 and open boundary
conditions on the top and bottom sides. The supercell strip used in our analysis is marked with cyan. (b) Supercell band structure, where
k1 = �k · �a1. The dispersion branch of topological floppy modes is marked with red. In (c), (d), (e), and (f) we employ both analytic calculations
(curves) and Newtonian mechanics simulations (dots) to measure the input local response function χin and the output linear (second harmonic)
susceptibilities χ

(1)
out (χ

(2)
out ). (c) Strongly asymmetric edge response function χin (ω, k1) with χin+(ω, k1) � χin−(ω,−k1) for waves below the

bulk band (ω � 0.06). The lattice is driven by a monochromatic excitation force which is spatially periodic in �a1, with the wave number k1
for the top boundary (−k1 for the bottom). (d) Reciprocal transmission curves of linear elastic waves with χ

(1)
out+(k1) = χ

(1)
out−(−k1), where

the external driving force amplitude F ext = 10−8. (e) Nonreciprocal transmission curves of second harmonic waves with χ
(2)
out+(2ω, 2k1) �

χ
(2)
out−(2ω,−2k1), where the external force amplitude F ext = 10−4. It is worth of emphasizing that for ω � 0.04, the one-way transmission

of second harmonics is comparable to that of linear elastic modes in (d). (f) Nonreciprocal transmission of linear and second harmonic
modes with monochromatic point driving force. The transmission of second harmonic waves is less nonreciprocal compared to (e) since the
point shaking force has all k1 wave number components. The first harmonic modes are bulk modes since long-wavelength components are
in the band.
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triangles. It is subjected to periodic boundary condition in �a1
and open boundary conditions at the top and bottom edges.

We start by introducing a supercell analysis of this lattice.
For convenience we denote k1 = �k · �a1 and k2 = �k · �a2 as
the wave numbers along the primitive vectors. We further
decompose the lattice in supercell strips directed along �a2, as
marked in cyan in Fig. 2(a), and we apply Bloch’s conditions
along �a1. Within a supercell, the unit cells are labeled from
1 to N2 − 1 going from top to bottom, and the C sites on
the bottom layer are labeled as N2. The internal nodal dis-
placements of unit cell n2 (with 1 � n2 � N2 − 1) are denoted
as un2 = (uxn2A, u

y
n2A

, uxn2B, u
y
n2B

, uxn2C, uyn2C ). The displacement
field of the supercell strip is therefore denoted as u =
(u1,u2, . . . ,uN2 ). The lattice is driven by a monochromatic
harmonic force acting vertically and with amplitude varying
periodically in the �a1 direction, i.e., �F ext

n1,g(t ) = eiωt−ik1n1 �FC
with �FC = (0,F ) at the top boundary (bottom boundary) of
C sites labeled by g = 1 (g = N2) and �F ext

n1,n2 (t ) = 0 otherwise.
F is assumed to be small such that all |�un1n2,A|, |�un1n2,B|, and
|�un1n2,C | � l0, validating perturbation theory. By expanding
u = u(1) + u(2) + O(F 3), we can solve Newton’s equation of
motion for the linear mode u(1) and for second harmonic mode
u(2), as detailed in Appendix C.

The analysis of wave propagation in the 2D lattice follows
the steps used for the 1D chain, albeit with the additional
wave number k1 describing spatial variation in the horizon-
tal direction (with periodic boundary conditions). Specifi-
cally, the dynamical matrix of this supercell strip is D =
KC†(k1)C(k1). C(k1) is the compatibility matrix given by
Ci j (k1) = C1(k1)δi j + C2(k1)δi+1, j , where C1(k1) and C2(k1)
are intracell and intercell compatibility matrices, respectively
(see Appendix C for details). To the linear order of displace-
ment, Newton’s equation of motion is the same as Eq. (2.1),
where η and m are damping coefficient and particle mass,
respectively, and g indicates that the input force is applied at
the layer of C sites indexed g = 1 at the top (layer of C sites
indexed g = N2 at the bottom) of the lattice. The static system
is characterized by the polarization vector �RT , which is a
topological invariant. Mechanical lattices with a well-defined
polarization exhibit topological floppy edge modes exponen-
tially localized at the boundary toward which �RT points. The
configuration of Fig. 2(a) has a polarization vector �RT =
�a1 − �a2. The floppy modes are therefore localized on the top
edge, making this edge much softer than the bottom one. We
use lower index + (−) to indicate that the external signal is
applied where the floppy modes are localized (opposite to the
floppy mode localization). It is therefore convenient to denote
χin+ = |uy,(1)1 |/Fy

1 and χin− = |uy,(1)N2
|/Fy

N2
as the soft edge and

rigid edge linear response functions, respectively. Similarly,
we denote χ

(1)
out+ = |uy,(1)N2

|/Fy
1 (χ (2)

out+ = |�u(2)N2
|/Fy

1 ) and χ
(1)
out− =

|uy,(1)N2
|/Fy

1 (χ (2)
out− = |�u(2)N2

|/Fy
1 ) as the linear (second harmonic)

transmission susceptibilities driven by external forces applied
at the soft and rigid boundaries, respectively.

Linear wave propagation is governed by the supercell
band structure which stems from the eigenvalue problem
det(D − mω2I) = 0. The band structure is gapped except for
the trivial translational zero mode point at k1 = 0. Given the
wave number k1 of the applied force, the linear response is
a bulk mode if ω > �(k1), where �(k1) is the lowest bulk

eigenvalue in the band structure, and χin+ and χin− are of
the same order of magnitude. As ω falls below �(k1), linear
modes localize on the soft boundary of the lattice. χin+/χin−
monotonically increases to infinity as ω approaches zero. De-
spite the contrasting boundary stiffness at low frequencies, the
linear elastic transmission is still reciprocal, i.e., χ

(1)
out+(k1) =

χ
(1)
out−(−k1), similar to what we obtained for the 1D topolog-

ical chain. We validate this equality through analytical and
numerical calculations, as shown in Fig. 2(d).

While linear modes can localize on the lattice bound-
aries, nonlinearly generated components with (ω(n), k(n)1 ) =
(nω, nk1) can be bulk waves as long as ω(n) > �(k(n)1 ). The
equation of motion for the second harmonic mode is given
by Eq. (2.2). External excitations with frequency 1

2�(2k1) <

ω < �(k1) generate linear boundary modes and second har-
monic bulk waves. Moreover, given the same magnitude F
of external force, the input-end frequency response function
of the floppy edge is far greater than that of the hard edge
(χin+ � χin−), which renders second harmonic bulk modes
excited at the floppy edge much greater than those excited
at the hard edge, i.e., |u(2)

g=N2
| � |u(2)

g=1|. The transmission of
second harmonics is therefore strongly nonreciprocal, with
χ

(2)
out+ � χ

(2)
out−, which is verified numerically as shown in

Fig. 2(e). We note that because of the strong localized linear
excitations for small frequencies ω � 0.04 [Fig. 2(c)], this
asymmetric transmission of second harmonic modes could
be as great as the linear reciprocal transmission [Fig. 2(d)].
This conclusion can be generalized to the nonreciprocal trans-
mission of the nth harmonic mode with χ

(n)
out+ � χ

(n)
out− if

1
n�(nk1) < ω < �(k1).

While, so far, the analysis has followed almost verbatim the
same steps of the 1D problem, one important difference is that
the 2D lattice phonon band depends on k1 (the wave number
in the horizontal direction imposed along the boundary).
Thus, the width of the gap � and the resulting availability
of nonreciprocal propagation depend on the choice of k1.
In particular, the lattice always has translational zero modes
since limk1→0 �(k1) → 0. As a result, if we drive the system
with a point force applied at a given location on the boundary
(which ostensibly excites all values of k1), we are bound to
observe weaker signatures of nonreciprocity. In other words,
the differences in behavior observed by exciting the soft and
hard edges will be vastly reduced, as the long-wavelength
components of the excited linear waves are in both cases bulk
modes that do not display asymmetry. Moreover, despite the
strong nonreciprocity, this kagome lattice cannot be, strictly
speaking, defined as a proper phonon diode. This is because
the linear mode, which is reciprocal and always transmitted
both ways, is much stronger than the second harmonic mode
and always dominates the total response, completely over-
shadowing any asymmetry in the nonlinear response. In order
to mitigate the aforementioned issues, in the next section we
propose an evolution of the lattice design meant to work as a
proper phonon diode for all wave numbers.

IV. NONRECIPROCITY IN A KAGOME LATTICE
WITH AN ON-SITE POTENTIAL

We consider a modification of the topological kagome
lattice discussed in Sec. III, where a weak on-site pinning
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potential is added to every mass point i, with Vi = 1
2K

′ �u2i
and K ′ � K . This operation, which practically elastically
connects each site to a fixed ground point, can be thought
of as the equivalent model of placing the lattice on a soft
substrate (or soft elastic foundation). It penalizes particles
from moving away from their rest positions, and therefore
eliminates the lattice trivial translational zero modes. Since
the weak pinning rigidly shifts the band up by �′ = √

K ′/m,
now the signals with frequency below �′ will excite edge
modes. The weak pinning does not change the landscape
of asymmetric boundary stiffness of the lattice, meaning
that χin+ � χin− still holds as long as ω < �′. Thus, lin-

ear edge modes are still preferentially localized on the soft
boundary.

The fundamental consequence of having a full low-
frequency gap is that, as long as 1

2�
′ < ω < �′, an external

excitation that is periodic along the boundary will excite
linear edge modes and second harmonic bulk modes for any
arbitrary wave number k1. Consequently, the nonreciprocal
behavior will be observed in the response to a point excitation
prescribed at a given location on the boundary, thus eliminat-
ing the limitation of the previous configuration. As shown in
Fig. 3(d), the second harmonic positive transmission is indeed
stronger than the linear transmission for a point excitation. We

FIG. 3. One-way propagation of second harmonic waves in a topological kagome lattice with on-site pinning potentials. (a) Schematic
illustration of the lattice with on-site potential. (b) Band structure of supercell strip with on-site potential K ′ = K/100, which fully gapped
the spectrum at low frequency. We mark the edge mode excitation with red at ω = √

K ′/m, and the frequency range where second harmonics
2ω are in the band with green. In (c), (d), (e), (h), and (i) we employ Newtonian mechanics simulations to measure the input local response
function χin and the output susceptibility χout against point shaking force at an arbitrary C site on top or bottom. (c) Asymmetric stiffness
of the boundary at which the point harmonic excitation is applied (with force amplitude F ext = 10−4). (d) Nonreciprocal transmission of
second harmonic modes. The transmission susceptibility in the positive direction (i.e., transmission from soft edge to hard edge), marked
in blue, is much larger than that in the negative direction marked in red, and also much larger than the first harmonics (dashed lines).
(e) Nonreciprocal transmission of second harmonic modes calculated including bending stiffness κ = 10−5K . (f) Input-end displacement time
history for monochromatic point excitation in the form of Gaussian tone burst (frequency spectrum in the inset). (g) Output-end displacement
time history for tone burst excitation where the frequency is twice the input wave frequency. (h) Input-end frequency response for tone burst
excitation. (i) Output linear and second harmonic transmission susceptibilities for tone burst excitation. The result is very similar to panel (d),
confirming the robustness of the results in transitioning from steady-state to transient regimes of excitation.

104106-6



SWITCHABLE PHONON DIODES USING NONLINEAR … PHYSICAL REVIEW B 101, 104106 (2020)

can conclude that the topological lattice with pinning potential
is now a well-defined phonon diode.

These results still hold when finite bending stiffness at the
hinges is included [51]. In Fig. 3(e) our numerical results
indeed show that when bending stiffness is introduced by
adding the contribution of next-nearest-neighbor interactions,
the nonreciprocal transmission is still significant. Finally, the
results also hold for a Gaussian tone burst excitation F ext (t ) ∼
F exteiωt−(t−t0 )2/τ 2

. The numerical analysis results reported in
Fig. 3(i) show that the transmission is still nonreciprocal,
similarly to the result of the 1D topological mechanical chain.

V. LATTICE RECONFIGURATION AND
NONRECIPROCITY SWITCHING

An interesting feature of Maxwell lattices with spring-mass
interactions is that they can undergo uniform soft deforma-
tions, in which all the unit cells are twisted in the same fashion
while leaving the bond lengths unstretched. Such uniform
deformation, known as the “Guest mode,” can manipulate
the geometrical parameters that control the topological phase
of the kagome lattice and, consequently, its polarization and
the rigidity established on opposite boundaries [13]. Starting
from the unit cell configuration in Fig. 2(a), by uniformly
rotating all the isosceles triangles counterclockwise by 30◦
relative to the hinges on the equilateral triangles, the lattice
enters a nontopological phase, as shown in Fig. 4(a). The total
number of floppy modes remains the same, but, instead of

being all localized on the top edge, they localize on both lattice
boundaries with nearly comparable stiffness.

The discussion of reconfiguration above applies directly
to the case where there is no substrate. It is clear that by
reconfiguration, the second harmonics transmission changes
by orders of magnitude, whereas the linear transmission
is always open. Similarly to what has been discussed in
Sec. IV, the substrate can be used to open a gap and block the
linear transmission, making the system a true diode. In order
to allow the substrate and the reconfiguration to be realized in
the same system, we have the following two proposals. First,
by preparing a double-layered lattice in which the top and
bottom layers work as the kagome lattice and the substrate,
respectively, we can reconfigure both layers together. We fix
the bottom substrate while letting the top lattice capable of
propagating waves serve as the acoustic diode. The second
design is to place the kagome lattice on a continuous board.
The kagome lattice can be detached and reattached to the soft
board for lattice reconfiguration.

Consequently, given an external force excitation with am-
plitude F and frequency 1

2�
′ < ω < �′, the transmission of

any nonlinearly generated second harmonics is reciprocal,
because the linear modes driven from opposite lattice bound-
aries, which are ultimately responsible for second harmonic
generation, have the same order of magnitude. In conclusion,
through uniform soft twisting modes that allow reversible re-
configuration between topological and nontopological phases,
Maxwell lattices have the ability to switch between reciprocal
and nonreciprocal transmission regimes of nonlinear elastic

FIG. 4. Near-reciprocal wave propagation in nontopological kagome lattice, which is related to the topological kagome lattice by a
soft-strain reconfiguration. (a) Kagome lattice in the nontopological regime. The floppy mode amplitudes shown by the size of the orange
disks on each site are localized on both the top and the bottom boundaries. (b) Supercell band structure of nontopological kagome lattice.
(c) Different from the topological kagome lattice, the edge response functions χin (ω, k1) are significantly more symmetric between top
and bottom boundaries. We drive the lattice with spatially periodic harmonic force with wave numbers k1 = +π,+π/2,+π/4 on top
boundary (k1 = −π,−π/2,−π/4 on bottom). (e) Almost reciprocal transmission of second harmonic waves with various wave numbers
(force amplitude F ext = 10−4). The second harmonic transmission χ

(2)
out+(2ω, 2k1) is always comparable to χ

(2)
out−(2ω,−2k1).
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waves without the need to physically disassemble and re-
assemble the system.

VI. DISCUSSION AND CONCLUDING REMARKS

In this paper we have studied the connection between the
nonreciprocity and topology in Maxwell lattices. Here, the
conditions required for the establishment of nonreciprocal
behavior come from the interplay between two factors: on one
hand, the availability of floppy edge modes, which yield large
boundary deformations and trigger a nonlinear response; on
the other hand, the topological polarization, which guarantees
asymmetry across the lattice.

Differently from the previous work by Coulais et al. [44],
who studied static nonreciprocal elasticity in both topologi-
cal and nontopological quasi-1-dimensional (1D) mechanical
metamaterials, our design focuses on nonzero frequencies.
The concept is developed first using a 1D topological mechan-
ical chain and subsequently generalized to 2D topological
kagome lattices [2], paving the way to applications in realis-
tic mechanical metamaterials. The foundational argument of
the proposed concept is that topological floppy edge modes
produce contrasting stiffness on opposite lattice boundaries.
We find that signals with frequency ω < �, where � is the
onset of a (partial or total) band gap, excite edge modes.
These modes localize asymmetrically, leading to larger de-
formation that promotes second harmonic generation at the
floppy edge. Second harmonic contributions are bulk modes if
ω > 1

2�, and, in these conditions, they can propagate through
the medium. Finally, because of the asymmetry mentioned
above, such transmission is highly nonreciprocal. Interest-
ingly, this second harmonic transmission could be as large as
linear transmission since the amplitudes of second harmonics
A(2) ∝ A2 grow faster than linear amplitudes.

By adding an on-site pinning potential to every particle, the
band structure of the topological kagome lattice is shifted up
by �′. In these conditions, external signals with 1

2�
′ < ω <

�′ excite linear modes that remain localized at the edges and
second harmonic bulk modes that propagate across the lattice.
Hence, the second harmonic positive transmission is greater
than the fundamental mode transmission and is therefore
not trivially overshadowed by the linear response. With this
improved configuration, this effect is found to be true for any
external harmonic excitation applied at the edges, regardless
of the wave number established along the boundary. Con-
sequently, the result also holds for point excitations, which
represent realistic conditions in practice. We have concluded
that the lattice with on-site pinning potential fulfills all the
requirements to be labeled a phonon diode. In addition, one
can control the geometry of the Maxwell lattice through a
Guest mode to switch between topological and nontopological
phases. This lattice reconfiguration allows us to manipulate
reciprocal and nonreciprocal transmission of elastic waves
without disassembling or reassembling the structure.

The idea of nonlinear bulk waves driven by linear edge
modes is not limited to second harmonics. One can observe
nth-order harmonic bulk modes at the output end as long as
the input frequency satisfies the condition 1

n� < ω < 1
n−1�

(n � 2), while all lower-order harmonics are localized on the
boundaries and cannot propagate. A methodological problem

to be considered in performing such an extension is associated
with the intrinsic limitations of perturbation theory. Since
the amplitude of the output signal becomes exponentially
small when the order increases, i.e., A(n) ∼ An, higher-order
harmonic bulk modes become progressively more difficult
to be observed. It would thus be interesting to study these
phenomena in regimes of strong nonlinearity which invalidate
perturbation theory. This kind of study would likely present
new challenges arising from the interplay between topological
states of matter and nonlinear chaos dynamical theory.

It is worth exploring experimental realization of the pro-
posed nonlinear phonon diode. In a recent experiment [51],
Ma et al. studied the specimen of topological kagome lattice
manufactured via a water jet cutting from a sheet of acry-
lonitrile butadiene styrene. The ideal hinges that appear in
the theoretical models are replaced by ligaments capable of
supporting bending deformation, which is ubiquitous in real-
istic physical structures. This experimental system provides a
natural setup to test our theory.

Finally, our investigation so far has been limited to 1D
and 2D topological Maxwell lattices. An analogous study of
nonreciprocal transmission in 3D topological lattices appears
to be possible as a natural extension within the proposed
framework. This would open the doors to a broader range of
engineering applications and will be one of the next directions
in our research.
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APPENDIX A: RECIPROCITY OF LINEAR ELASTIC
SYSTEMSWITH TIME-REVERSAL SYMMETRY

With time-reversal symmetry, the transmission of linear
elastic modes is reciprocal, meaning that the transmission
susceptibilities from point A to point B and from point B to
point A are equal. This is the essence of the Maxwell-Betti
theorem [22–24]. In this section we verify this theorem by
considering a d-dimensional general lattice based on spring-
mass interactions. Within linear elasticity, Newton’s equation
of motion is

m �̈un = −η �̇un − �∇nV + �F ext
n (t ), (A1)

where n denotes a lattice site, η is the damping coefficient,V is
the lattice potential energy, �∇n = ∑d

i=1 êi∂u(i)n , and �F ext
n is the

external driving force. We rewrite the displacement field as an
Nd-dimensional vector u = (�u1, �u2, . . . , �uN ) and rewrite the
external driving as an Nd-dimensional vector Fext. The linear
elastic mode can be calculated as

u(ω) = G(ω)Fext (ω), (A2)

where G(ω) = [D + (−mω2 + iηω)I]−1 is the frequency re-
sponse function, and D is the dynamical matrix. By using
an orthogonal transformation S that relates un to the normal
modes uα through uα = ∑

n Sαnun, we can express the normal
modes as follows,

uα (ω) = GαF
ext
α (ω), (A3)
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where Gα (ω) = [εα + (−mω2 + iηω)]−1, and εα is the αth
eigenvalue of the dynamical matrix D. We plug in the driving
force at point A to calculate the displacement at B, with
uB(ω) = ∑

α SαBGα (ω)SαAF ext
A (ω). Similarly, we plug in the

driving force at B to calculate displacement at A with uA(ω) =∑
α SαAGα (ω)SαBF ext

B (ω). It is evident that uA(ω)/F ext
B (ω) =

uB(ω)/F ext
A (ω), meaning that the transmission of linear modes

is reciprocal in real space in any elastic system with time-
reversal symmetry.

APPENDIX B: ANALYTICAL CALCULATION OF LINEAR
AND SECOND HARMONIC MODES IN A 1D
TOPOLOGICAL MECHANICAL CHAIN

As shown in Fig. 1(a), the 1D topological mechanical chain
consists of rigid bars of length r, free to rotate about hinges
separated by the distance a, creating repeated 2-site unit cell
of length 2a. A mass point m is attached to the end of each
bar, and the neighboring ends are connected by harmonic
springs with spring constant K . The equilibrium configuration
is such that each rotor makes an angle θ̄ relative to the
upward or downward normals. The angular displacement of
rotor n is un = rδθn. We label the rotors from 0 to N , with
open boundary conditions at rotors 0 and N . We apply an
external angular driving along the tangential direction of rotor
g with F ext

n (t ) = Feiωtδng. F is not large, making angular
displacements of all rotors un � r, which further validates
perturbation theory. It is convenient to rewrite the external
force as F → λF , where λ � 1. The full Newton equation of
motion is

mün,g = ( �Tn−1 − �Tn) · t̂n + F ext
n − ηu̇n,g, (B1)

where the lower index g indicates that the elastic mode is in
response to the external driving at rotor g. The open boundary
conditions at rotor 0 and rotor N are given by

�T−1 = �TN = 0, (B2)

where �Tn = Tnn̂n is the tension in bond n connecting sites
n and n + 1. n̂n is the unit vector of bond n, and t̂n is
the tangential unit vector of rotor n. We expand the tan-
gential component of bond tension in orders of un/r, de-
noted by ( �Tn−1 − �Tn) · t̂n = f (1)n + f (2)n + O(u3). The leading
order is

f (1)n = m[c1c2(un+1 + un−1) − (c21 + c22 )un], (B3)

with

c1,2 =
√
K

m

(a ± 2r sin θ̄ ) cos θ̄√
a2 + 4r2 cos2 θ̄

, (B4)

where θ̄ > 0 is assumed in this paper, leading to c1 > c2. The
second-order term is

f (2)n (un) = mr−1
(
C1u

2
n−1 +C2un−1un +C3u

2
n

)
+mr−1

(
C4u

2
n+1 +C5un+1un +C6u

2
n

)
, (B5)

with C1,2,3,4,5,6 being constants determined by the geometric
parameters of the chain. In our calculations, we choose a = 2r

and θ = π/4. The coefficients are given by

2C1 = C5 = K

4m
(−1 +

√
2),

2C4 = C2 = K

4m
(−1 −

√
2),

C3 = K

24m
(5 −

√
2), C6 = K

24m
(5 +

√
2). (B6)

We denote u = (u0, u1, . . . , uN ) as the angular displace-
ment of the particles, and expand it in orders of λ, with
u = u(1) + u(2) + O(λ3), where u(1) and u(2) are linear and
second harmonic modes, respectively. We further denote
Fext = (λF, 0, . . . , 0)T [Fext = (0, 0, . . . , λF )] as the exter-
nal driving force driven at rotor g = 0 (g = N), and denote
f (2)(u(1) ) = ( f (2)0 , f (2)1 , . . . , f (2)N ) as the second harmonic ef-
fective feedback force generated by the linear elastic modes.
By expanding Eq. (B1) up to the second order of λ, one
obtains

mü(1)
g + mü(2)

g + O(λ3) = (
Fext − Du(1)

g − ηu̇(1)
g

)
+ [

f (2)g

(
u(1)
g

) − Du(2)
g − ηu̇(2)

g

] + O(λ3), (B7)

where D = K[(c21 + c22 )δi j − c1c2(δi, j+1 + δi, j−1)] is the dy-
namical matrix. By matching the equations of motion in
orders of λ, we solve for the linear mode

u(1)
g (ω) = G(ω)Fext (ω), (B8)

and for the second harmonic mode

u(2)
g (2ω) = G(2ω)f (2)g

(
u(1)
g

)
, (B9)

subjected to the open boundary conditions at rotors 0 and N .
The frequency response function of the 1D chain is

G(ω) = [D + (−mω2 + iηω)I]−1. (B10)

The dispersion relation of the only bulk phonon mode
is ω(k) = [(c1 − c2)2 + 4c1c2 sin2 (ak/2)]1/2, where k is the
wave number. The band has lower limit � = |c1 − c2| and
upper limit �′ = |c1 + c2|. Thus, the linear mode is a bulk
mode if � < ω < �′, while it is an edge mode if ω < �.
According to Eq. (B8), the generic solution for a linear
mode is

u(1)n,g = agλ
n
1 + Agλ

n
2, 0 � n � g,

u(1)n,g = bgλ
n
1 + Bgλ

n
2, g� n � N, (B11)

where λ1,2 are given by

λ1,2 = 1
2 (−γ ±

√
γ 2 − 4), (B12)

with γ = ω2

c1c2
− c1

c2
− c2

c1
− iηω

c1c2
. Through Eq. (B8) and

Eq. (B11) we can solve for ag,Ag, bg,Bg. We let g = 0 and
g = N to obtain the linear modes when the external driving
is applied at rotors 0 and N . Given the definition of the local
response function, χin(ω) = |u(1)in (ω)|/Fin(ω), at rotor 0 (rigid
end, χin−) and rotor N (soft end, χin+), the local response
functions are given by

χin+(ω) = (mc1|c1 − c2λ1|)−1,

χin−(ω) = (mc2|c2 − c1λ1|)−1, (B13)
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where we have used limN→∞ |λ2/λ1|N = 0 when ω < c1 −
c2. The ratio χin+/χin− tells which end of the 1D chain has
greater displacement in response to external loading. In the
limit of η → 0, analytical calculations reveal that

χin+/χin− > 1, ω < ω∗,
χin+/χin− < 1, ω∗ < ω < c1 − c2,

(B14)

where ω∗ = (c21 − c22 )/
√
2(c21 + c22 ). As long as ω < ω∗, the

response linear edge mode of the right end is greater than that
of the left side. The linear transmission susceptibility, defined
by χ

(1)
out (ω) = |u(1)out (ω)|/F (ω), is given by

χ
(1)
out−(ω) = χ

(1)
out+(ω) = 1

m

λ−N−1
1 (λ2 − λ1)

ω2 − iηω
. (B15)

The fact that the linear transmission susceptibilities are equal
is a testament to the reciprocity of linear waves.

We further study the second harmonic modes based on
Eq. (B9). To calculate the second harmonic mode displace-
ment u(2)

g , we notice that u(2)
g = ∑N

g′=0 u
(2)
g′g , where u(2)

g′g is
the displacement field of the chain in response to external
force f (2)g′g applied at a single rotor g′. The displacement field
is given by

u(2)
g′g (2ω) = G(2ω)f (2)g′g (2ω), (B16)

where we denote the external driving at rotor g′ as an N × 1
vector f (2)g′g = (0, 0, . . . , f (2)g′g , . . . , 0). The generic solution of
Eq. (B16) is of the following form,

u(2)n,g′g = cg′gμ
n
1 +Cg′gμ

n
2, 0 � n � g′,

u(2)n,g′g = dg′gμ
n
1 + Dg′gμ

n
2, g′ � n � N, (B17)

where μ1,2 satisfy

μ1,2 = 1
2 (−ν ±

√
ν2 − 4), (B18)

with ν = 4ω2

c1c2
− c1

c2
− c2

c1
− 2iηω

c1c2
. Through Eq. (B16) and

Eq. (B17) we solve for cg′g,Cg′g, dg′g,Dg′g to determine
u(2)
g′g (2ω). Finally, given the definition of second harmonic

transmission susceptibility, χ
(2)
out = |u(2)out (2ω)|/F (ω), we

obtain

χ
(2)
out+ = 1

F

N∑
g′=0

(cg′,g=N +Cg′,g=N ),

χ
(2)
out− = 1

F

N∑
g′=0

(
μN
1 dg′,g=0 + μN

2 Dg′,g=0
)
. (B19)

The second harmonic transmission susceptibility is deter-
mined by f (2)g′g , which in turn is proportional to the square of the
linear elastic wave amplitude. This consideration is essential
in explaining how the asymmetric local response function
χ

(1)
in+ � χ

(1)
in− results in the nonreciprocal transmission of sec-

ond harmonic modes (χ (2)
out+ � χ

(2)
out−).

APPENDIX C: ANALYTICAL CALCULATION OF LINEAR
AND SECOND HARMONIC MODES IN A 2D

TOPOLOGICAL KAGOME LATTICE

In this section we calculate linear and second harmonic
modes in a 2D topological kagome lattice. The unit cell is
shown in Fig. 2(a) and consists of 6 bonds, with rest lengths li
and unit vector directions n̂i = (cos θi, sin θi ), i = 1, 2, . . . , 6.
We define the 2 × 2 “dynamical matrix” of bond i as

Di = Kn̂in̂i, i = 1, 2, . . . , 6. (C1)

�a1 and �a2 are primitive vectors. The lattice has the periodic
boundary condition in �a1 and the open boundary condition in
�a2, leaving the top and bottom boundaries open.

The compatibility matrix of the quasi-1D strip of the de-
formed kagome lattice is Ci j (k1) = C1(k1)δi j + C2(k1)δi+1, j ,
where C1(k1) and C2(k1) are intracell and intercell compati-
bility matrices, respectively:

C1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

cos θ1 sin θ1 − cos θ1 − sin θ1 0 0
0 0 cos θ2 sin θ2 − cos θ2 − sin θ2

− cos θ3 − sin θ3 0 0 cos θ3 sin θ3

−eik1 cos θ4 −eik1 sin θ4 0 0 0 0
eik1 cos θ5 eik1 sin θ5 − cos θ5 − sin θ5 0 0

0 0 cos θ6 sin θ6 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

C2 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 cos θ4 sin θ4
0 0 0 0 0 0
0 0 0 0 − cos θ6 − sin θ6

⎞
⎟⎟⎟⎟⎟⎠

. (C2)

We simplify the lattice to a quasi-1D strip by applying the
Bloch condition along �a1 to obtain a finite supercell strip with
N2 unit cells. Thus, the elastic wave un1n2 = eik1n1un2 , with
k1 = �k · �a1. We denote the displacement of cell n2 as un2 =
(uxn2A, u

y
n2A

, uxn2B, u
y
n2B

, uxn2C, uyn2C ), and further denote the dis-
placement of the entire strip as u = (u1,u2, . . . ,uN2 ). To fully

gap the band structure of the lattice, we introduce an on-site
potential 1

2K
′uuT by embedding the lattice on a soft substrate.

Before calculating the elastic waves, we first derive the
tension of a bond connecting two sites i and j. The bond
rest length is l0 and its unit vector is n̂ = (cos θ, sin θ ). We
denote the relative displacement of the bond as ��ui j = �u j −
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�ui, and expand the tension in orders of it, with �Ti = �Fi + �fi +
O(�u3i j ). The leading-order term is

�Fi = K (n̂n̂)��ui j (C3)

and the second-order ones are

f xi = K

4l0

{
6 cos θ sin2 θ

(
�uxi j

)2
− [3 sin(3θ ) − sin θ ]�uxi j�uyi j

− 2 cos θ (3 sin2 θ − 1)
(
�uyi j

)2}
, (C4)

f yi = K

4l0

{
6 sin θ cos2 θ

(
�uyi j

)2
+ [3 cos(3θ ) + cos θ ]�uxi j�uyi j

− 2 sin θ (3 cos2 θ − 1)
(
�uxi j

)2}
. (C5)

Equations (C4) and (C5) are useful to derive the effective
second harmonic feedback force.

We now apply an external driving at cell g of the strip,
denoted as F ext

n1n2 (t ) = eiωt−ik1n1Fy
C δn2g. Thus, we further de-

note the external force as a 6N2-dimensional vector Fext
g =

(Fext
1 ,Fext

2 , . . . ,Fext
N2
). We assume Fy

C is not too large, rendering
all displacements |�uA,B,C | � li=1,2,...,6, which further validates

perturbation theory. Thus, we expand u in orders of Fy
C , as

u = u(1) + u(2) + O(F 3), where u(1) and u(2) are linear and
second harmonic modes. We define the frequency response
function as

G(ω, k1) = [D(k1) + (−mω2 + K ′ + iηω)I]−1, (C6)

where D(k1) = KC†(k1)C(k1) is the dynamical matrix of the
supercell strip. Thus, the linear mode is

u(1)
g (ω, k1) = G(ω, k1)Fext (ω, k1). (C7)

The second harmonic mode is

u(2)
g (2ω, 2k1) = G(2ω, 2k1)f (2)(u(1)

g ), (C8)

where f (2)(u(1)
g ) = (f1, f2, . . . , fN2 ) is the second harmonic

effective feedback force generated by the linear mode u(1)
g ,

as shown in Eqs. (C4) and (C5).
The generic form of linear mode u(1)

g is given as follows:

u(1)
n2,g =

4∑
α=1

agαλn2
α φα, 1 � n2 � g,

u(1)
n2,g =

4∑
α=1

bgαλn2
α φα, g+ 1 � n2 � N2, (C9)

where λα , α = 1, 2, 3, 4 are the eigenvalues of [D(k1, λ) +
(−mω2 + K ′ + iηω)I], and φα are the corresponding 6 × 1
eigenvectors. D(k1, λ) is the following 6 × 6 matrix,

D(k1, λ) =
⎛
⎝D1 + D3 + D4 + D5 −D1 − e−ik1D5 −D3 − λe−ik1D4

−D1 − eik1D5 D1 + D2 + D5 + D6 −D2 − λD6

−D3 − λ−1eik1D4 −D2 − λ−1D6 D2 + D3 + D4 + D6

⎞
⎠. (C10)

agα and bgα , α = 1, 2, 3, 4, are constants determined by the open boundary condition at cell 1,

(D4e
ik1 ,D6,−D4 − D6) · (

u(1)x0,gA, u
(1)y
0,gA, u

(1)x
0,gB, u

(1)y
0,gB, u

(1)x
1,gC, u(1)y1,gC

)T = 0, (C11)

and the open boundary condition at cell N2,

(D3,D2,−D2 − D3)u
(1)
N2,g

= 0. (C12)

Together with Eq. (C7), we solve agα and bgα to obtain the
linear mode u(1)

g .
We then calculate the second harmonic mode based on

Eq. (C8). However, it is not easy to solve u(2)
g , because the

effective second harmonic feedback force, f (2)g (2ω, 2k1), is
applied at every cell. In order to simplify this problem, we
consider the mode u(2)

g′g (2ω, 2k1) in response to the second har-

monic effective feedback force f (2)g′g applied at a single cell g′,

u(2)
g′g (2ω, 2k1) = G(2ω, 2k1)f

(2)
g′g (2ω, 2k1). (C13)

The generic form of u(2)
g′g (2ω, 2k1) is given by

u(2)
n2,g′g =

4∑
β=1

cg′gβμ
n2
β ϕβ, 1 � n2 � g′,

u(2)
n2,g′g =

4∑
β=1

dg′gβμ
n2
β ϕβ, g′ + 1 � n2 � N2, (C14)

where μβ , β = 1, 2, 3, 4, are the eigenvalues of
[D(2k1, μ) + (−4mω2 + K ′ + 2iηω)I], and ϕβ are the
corresponding 6 × 1 eigenvectors. cg′gβ and dg′gβ are constants
determined by the boundary condition at cell 1,

(D4e
ik1 ,D6,−D4 − D6) ·(

u(2)x0,g′gA, u
(2)y
0,g′gA, u

(2)x
0,g′gB, u

(2)y
0,g′gB, u

(2)x
1,g′gC, u(2)y1,g′gC

)T = 0,

(C15)

and the open boundary condition at cell N2,

(D3,D2,−D2 − D3)u
(2)
N,g′g = 0. (C16)

Together with Eq. (C13), we solve cg′gβ and dg′gβ to
obtain u(2)

g′g . Finally, the second harmonic displacement is

u(2)
g = ∑N2

g′=1 u
(2)
g′g .
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APPENDIX D: NUMERICAL SIMULATION OF THE INPUT
LOCAL RESPONSE FUNCTION AND OUTPUT

TRANSMISSION SUSCEPTIBILITY

1. Numerical details of the 1D topological mechanical chain

We perform Newtonian mechanics simulations to study the
nonreciprocal transmission in a 1D topological mechanical
chain. In the numerics, the chain is composed of N = 100
rotor particles (i.e., it is composed of N/2 = 50 diatomic
unit cells) and is subjected to OBCs at rotors N = 0 and
N = 99 [Fig. 1(a)]. We set the particle mass m = 1, the spring
constant K = 1, and the damping coefficient η = 0.01. The
equilibrium configuration of the particles is that they make
an angle θ̄ = π/4 to the upward and downward normals. The
particles can rotate about fixed hinges with the radii r = 1,
and the nearest-neighbor hinges are separated by the dis-
tance a = 2. Hence the springs connecting nearest-neighbor
particles make an angle arctan(2r cos θ̄/a) = 35.3◦ to the
horizontal line. Consequently, in this geometric configuration,
c1 = 0.986, c2 = 0.169 [c1, c2 are defined in Eq. (B4)], and
the band gap is � = c1 − c2 = 0.817 [Fig. 1(b)]. We apply
a monochromatic angular shaking force F ext (t ) = F exteiωt

at rotor N = 99 (the floppy boundary) and at rotor N = 0
(the rigid boundary), with the magnitude F ext = 10−5 and
the frequency ω = 0.5, 1

2� < ω < �, to illustrate the ex-
citation of linear edge modes and second harmonic bulk
waves. In order to confirm the establishment of the steady-
state conditions, we wait 1000 × (2π/ω) before we make
any displacement measurements. We further plot the linear
response function χin±(ω) in Fig. 1(c), linear transmission
susceptibility χ

(1)
out±(ω) in Fig. 1(d), and second harmonic

transmission susceptibility χ
(2)
out±(ω) in Fig. 1(e) by varying

the driving frequency from ω = 0.01 to ω = 1.25. Finally, we
replace the harmonic excitation with a Gaussian tone burst
F ext (t ) ∼ F exteiωt−(t−t0 )2/τ 2

and ask whether the nonreciproc-
ity still holds. By driving the lattice with the Gaussian tone
burst with carrier frequency ω = 0.5, force amplitude F ext =
10−5, and the spread parameter τ = 10π/ω, we illustrate
the input response displacement in Fig. 1(f) and the second
harmonic transmission signal in Fig. 1(g). We plot the second
harmonic transmission susceptibility curve in Fig. 1(h) to
verify nonreciprocal transmission against Gaussian tone burst
by varying the driving force frequency from ω = 0.01 to
ω = 1.25 (τ = 10π/ω varies accordingly).

2. Numerical details of the 2D generalized kagome lattice

In the simulation, a finite topological kagome lattice which
spans N1�a1 × (N2 − 1)�a2 area in real space (N1 = N2 = 40)
is considered. The lattice is made of 40 × (40 − 1) unit cells
with an additional layer of C sites at the bottom. We connect
the leftmost particles to the rightmost ones with harmonic
springs to provide the periodic boundary condition in the �a1
direction, and we leave the C sites of top and bottom bound-
aries free to realize open boundary conditions. By applying a
vertical harmonic force �F ext = (0,F ext ) either on the top edge
or bottom edge C sites, we drive the lattice and we compute
the displacement of mass points using a Newtonian dynamics
scheme with damping. Here we set the particle mass m = 1,
the spring constant K = 1, the damping coefficient η = 0.01,

and the side length of the equilateral triangle l0 = 1. We let
the force amplitude F ext = 10−8 to measure the reciprocal
transmission of linear waves, and we let the force amplitude
F ext = 10−4 when measuring the nonreciprocal transmission
of second harmonics. We vary the driving frequency from
ω = 0.0055 to ω = 0.1210 to plot the input response func-
tion χin(ω, k1) in Fig. 2(c), linear transmission susceptibility
χ

(1)
out (ω, k1) in Fig. 2(d), second harmonic transmission sus-

ceptibility χ
(2)
out (2ω, 2k1) in Fig. 2(e), and second harmonic

transmission susceptibility χ
(2)
out (2ω) against point shaking

force in Fig. 2(f). In order to make sure steady-state conditions
are established, we wait 400 × (2π/ω) before we make any
displacement reading. We collect displacements �u1C (t ) and
�uN2C (t ) on the two edges. By applying fast Fourier trans-
formation, we convert displacement time histories into their
frequency spectra, �u1C (ω) and �uN2C (ω). The elastic response
is obtained via summation of multiple modes,

�un2C (ω) = �u(1)n2C
(ω) + �u(2)n2C

(2ω) + · · · , (D1)

where �u(1)n2C
(ω) = (ux,(1)n2C

(ω), uy,(1)n2C
(ω)) and �u(2)n2C

(2ω) = (ux,(2)n2C

(2ω), uy,(2)n2C
(2ω)). ux,(1)n2C

(ω), uy,(1)n2C
(ω), ux,(2)n2C

(2ω), and uy,(2)n2C
(2ω)

are the amplitudes of x and y components of linear and second
harmonic modes. The input linear response function is defined
as χin+ = |uy,(1)1C (ω)|/F ext, and the output linear transmission
susceptibility is defined as χ

(1)
out+ = |uy,(1)N2C

(ω)|/F ext. The out-
put second harmonic transmission susceptibility is calculated
through χ

(2)
out+ = |�u(2)N2C

(2ω)|/F ext.
All aforementioned numerical parameters, such as N1, N2,

m, K , η, l0, �F ext, and ω, are carried over to the simulations
of the nontopological kagome lattice, and the topological lat-
tice with on-site pinning potentials. Here the on-site pinning
strength is K ′ = K/100 = 1/100. In the simulation of the
topological kagome lattice with on-site pinnings, we further
illustrate the input response displacement in Fig. 3(f) and
the second harmonic transmission displacement in Fig. 3(g)
when the harmonic driving is replaced by Gaussian tone burst
F ext (t ) ∼ F exteiωt−(t−t0 )2/τ 2

with the amplitude F ext = 10−4,
the carrier frequency ω = 0.06, and the spread parameter τ =
10π/ω. By varying the carrier frequency from ω = 0.0055
to ω = 0.1210 (and by varying τ = 10π/ω accordingly), we
plot the input linear response function in Fig. 3(h) and the
output linear and second harmonic transmission susceptibility
curves in Fig. 3(i) to verify linear reciprocity as well as second
harmonic nonreciprocal transmission against the Gaussian
tone burst.

APPENDIX E: ENERGY TRANSMISSION EFFICIENCY
OF PHONON DIODES

An important feature of acoustic diodes which quantita-
tively characterizes their functionality is the energy transmis-
sion efficiency. There has been considerable discussion on the
efficiencies of phononic diodes and efforts to improve them,
such as Refs. [47,62]. Here we discuss this quantity of our
phonon diodes in detail.

In Ref. [47], Liu et al. proposed a nonreciprocal acoustic
device which transmits linear elastic waves with very high en-
ergy transmission efficiency R+ ≈ 1 and R− ≈ 0, where R+ =
Ėout+/Ėin+ (R− = Ėout−/Ėin−) is the power-transmission rate
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of the phonon diode in the positive (negative) direction de-
fined as the ratio between the output and input wave power.
By leveraging the unified techniques of asymmetric incident
wave magnification and amplitude-dependent dispersion ω =
ω(A), their scheme transmits linear waves in one direction
by allowing the frequency to fall into the passband, while it
blocks the sound in the opposite since the frequency falls into
the band gap. The energy transmission efficiency is extremely
high since the linear modes carry most of the acoustic energy.

In Ref. [62], Fu et al. offer a different nonreciprocal
metamaterial consisting of an asymmetric frequency converter
and linear wave filter. In contrast to Ref. [47], their device
transmits nonlinear waves, which is a closer idea to our
work. However, unlike our scheme which transmits second
harmonic waves, the nonreciprocal transmission of Ref. [62]
stems from subharmonic waves which carry the most signif-
icant amount of energy, with very high primary transmission
efficiency R+ ∼ 61% and a wide working bandwidth.

While our results take advantage of the novel topologi-
cal protection and boundary floppy modes in uniform meta-
materials, the energy transmission efficiency is pretty low
compared to Refs. [47,62]. To demonstrate this, we estimate
the highest energy transmission rates R+ = 4(χ (2)

out+/χin+)2

and R− = 4(χ (2)
out−/χin−)2 in the 1D topological chain [data

depicted in Figs. 1(c) and 1(d)] and in a 2D topological lattice
with on-site pinnings [data from Figs. 3(c) and 3(d)]. The

highest energy transmission rates in 1D and 2D topological
lattices are max[(R+,R−)1D lattice] ∼ (2 × 10−10, 10−13) and
max[(R+,R−)2D kagome] ∼ (10−5, 4 × 10−10), respectively. At
first glance, one may argue that two ways can largely improve
the energy transmission efficiency of our work. First, we could
try increasing the shaking force amplitude F ext by orders of
magnitude, and the second harmonic transmission suscepti-
bilities χ

(2)
out± should increase together. However, this proposal

is disproved because chaos naturally arises for huge nonlin-
earities, especially the lattice boundary on which topological
floppy modes are localized. In fact, the driving force ampli-
tude F ext = 10−4 is already as far as we could to have nonlin-
ear modes without exciting chaos. The second way to improve
energy transmission is to construct smaller lattices. The unit
cell numbers N1D lattice = 50 and N2D kagome = 40 adopted in
our simulations are too large compared to N = 16 in Ref. [47]
and N = 7 in Ref. [62]. Smaller lattices can indeed largely
improve the transmission efficiency, but is still not as high as
R+ ∼ O(1). Second harmonic modes do not carry the majority
of elastic energy, in sharp contrast to linear and subharmonic
waves. In conclusion, our results simply present a possible
design of the interplay between topological protection and
unidirection transport, rather than the optimized version of
acoustic diodes. It is therefore interesting to ask whether the
combined techniques of topological protection and optimized
acoustic diodes can be realized in future research.
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