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A B S T R A C T

Identification of thresholds associated with key climate, catchment and morphological variables for hydrological
droughts can further improve our understanding of evolution and propagation of droughts in a complex water
resource system. These thresholds are associated with complex interaction between climate and catchment
variables and they are often connected through hierarchical as well as non-linear relationships. The advantage of
selecting a multi-factor predictor domain can detect multiple thresholds that may not be observed by analyses
limited to single predictors. In the present study, we developed a conceptual modeling framework by integrating
a hydrological model developed based on the Soil and Water Assessment Tool (SWAT) and statistical models to
quantify the potential influence of climate, catchment, and morphological variables and their thresholds on
hydrological drought duration and severity for the watersheds located in Savannah River Basin (SRB). The
concept of standardized runoff index (SRI) was used to derive the multiscale hydrological drought time series
(i.e., SRI 1, SRI 6, and SRI 12) to investigate short term, medium term, and long term drought events based on
their duration and severity. It was observed that the linear models developed based on the climate variables may
not be capable for predicting the duration of multiscale hydrological droughts, whereas, the performance of
statistical models can be significantly improved by the addition of catchment and morphological variables. In
addition, among the morphological variables stream order seems to have a significant control over short,
medium and long term drought duration across the study area. In the second phase of our analysis, we employed
classification and regression tree (CART) algorithm for quantifying the thresholds associated with climate,
catchment, and morphological variables that have potential influence on the hydrological drought. The result
indicates that the variables and its associated threshold vary for short, medium, and long term drought. The
proposed modeling framework can be extended for ungauged basins to improve the drought management.

1. Introduction

A prolonged drought has a significant impact on the socio-eco-
nomic, environmental and ecological systems that affects millions of
people around the world each year (Domeisen, 1995; Carlowicz, 1996;
Wilhite, 2000; Mishra and Singh, 2010; Dai, 2011; Konapala and
Mishra, 2020). Drought has direct or indirect impact on multiple sectors
(Wilhite et al., 2007), such as economic loss (Wilhite, 2000), mortality
and conflicts (García-Herrera et al., 2010; Hsiang et al., 2013), ecology
(Choat et al., 2012), agriculture (Mishra et al., 2015) and water re-
sources planning and management (Rajsekhar et al., 2015; Mishra and
Singh, 2011). Drought affects water quantity (Lund and Reed, 1995)
and quality (Van Vliet and Zwolsman, 2008) of surface and ground-
water systems (Mishra and Singh, 2010). Due to the complex interac-
tion between climate, catchment, and morphological processes, the

quantification of drought events initiation and termination are often
challenging (Van Loon and Laaha, 2015; Veettil and Mishra, 2018;
Konapala and Mishra, 2017, 2020).

The drought events in the future are anticipated to increase in the
continental United States due to the climate change (Sheffield et al.,
2012). For instance, in 2002 more than 50% of the North American
continent witnessed moderate to severe drought (Lawrimore and
Stephens, 2003; Cook et al., 2007). The drought severity in the last
decades increased not only in the west, but also in the southeastern part
of the USA (Clark et al., 2016). For example, the southeast United States
experienced significant drought during 1965 to 1971, 1980 to 1982,
1985 to 1988, 1998 to 2002 (Weaver, 2005) and 2006 to 2009 (Veettil
and Mishra, 2016).

A number of drought indices are used for quantifying different types
of drought (Mishra and Singh, 2010), such as Palmer Drought Severity
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Index (PDSI; Palmer, 1965), Crop Moisture Index (CMI; Palmer, 1968),
and standardized precipitation index (SPI; McKee et al., 1993). In this
study, we applied the concept of Standardized Runoff Index (SRI,
Shukla and Wood, 2008) for quantifying the hydrological drought for
the watersheds located in Savannah River Basin. Hydrological drought
has direct impact on multiple stakeholders such as irrigation, electricity
generation, and recreation purpose within a river basin (Van Vliet et al.,
2012; Mishra and Singh, 2010). Therefore, better understanding of
hydrological drought can be more meaningful for surface and ground-
water water resources management.

Hydrological drought occurs when the surface flow (river flow) and
lakes or reservoirs levels decline below long term mean (Mishra and
Singh, 2010; Van Loon, 2015). It can be also termed as streamflow
drought (Clausen and Pearson, 1995). Hydrological drought assessment
at a catchment scale is often difficult due to limited observed data sets.
Moreover, from a water resources management point of view, the
duration and severity analysis of a hydrological drought is essential.
The information on duration of hydrological drought is predominantly
crucial for lives in an aquatic ecosystem (Humphries and Baldwin,
2003), and quantifying the drought severity is more important for ab-
straction of water from a stream for different purposes (e.g. hydropower
production, mining, and domestic use). Similar to the other categories
of drought, the anomalies in atmospheric processes initiates the hy-
drologic drought.

The propagation of hydrological drought is not only related to the
climate characteristics but it is also influenced by the catchment
properties (Peters et al., 2006; Tallaksen et al., 2009; Mishra and Singh,
2010; Van Loon 2015; Konapala and Mishra, 2020; Wanders et al.,
2010) and morphology of stream network (Bond et al., 2008). For in-
stance, a decrease in soil moisture storage in a catchment causes de-
pletion in the amount of water contributed to the aquifer system which
further causes gradual drying of ground water discharge (base flow)

and tapering of stream flow (Huntington and Niswonger, 2012) leading
to hydrological drought. Additional catchment characteristics, such as
land use type (e.g. forest area, grass land, and agriculture), catchment
elevation, and soil type also influence initiation of hydrological
drought. There are few studies that investigated the combined influence
of climate and catchment variables on hydrological droughts (e.g., Van
Loon and Laaha, 2015; Konapala and Mishra, 2020).

Although the definition of hydrological drought is straightforward,
the challenge remains to understand the process that triggers these
drought events (Van Loon, 2015; Konapala and Mishra, 2020), there-
fore it is important to identify key variables and associated thresholds
that controls these hydrological droughts. The quantification of
thresholds can result from complex interaction between climate and
catchment variables and they are often connected through hierarchical
as well as non-linear relationships. The identification of thresholds from
a set of multi-factor predictor domains can detect multiple thresholds
that may not be observed by analyses limited to single predictors. The
specific objectives of this study are: (a) to investigate the influence of
(either individually or combined) climate, catchment and morpholo-
gical variables responsible for triggering hydrological drought in Sa-
vannah River Basin, and (b) to identify the threshold limits for the
climate, catchment and morphological variables that triggers the hy-
drological drought using the concept of decision tree. The identification
of threshold limit can provide useful information for decision makers to
identify appropriate variables that can trigger the short, medium and
long term hydrological drought.

2. Study area and data

The Savannah River Basin (SRB) is located in Southeastern USA
with a total drainage area of 27171 km2, and it is partly located in the
state of South Carolina (11875 km2), Georgia (14965 km2) and North

Fig. 1. (a) Land use and land cover map, and (b) topography of the Savannah River Basin.
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Carolina (331 km2) (SCDHEC, 2010; Veettil and Mishra, 2016, 2018).
The major land use and land cover of the basin includes forest (60%),
agriculture (14%), settlement (10%) and open water (4%). The annual
precipitation over the basin varies from 1000 mm to 2050 mm
(SCDHEC, 2010). The rainfall is evenly distributed throughout the year,
but a dry weather occurs from midsummer to fall. The mean annual
temperature of the basin is 18 °C (SCDHEC, 2010). The climate of SRB is
characterized by mild winters and hot summers in the lower portions
and cold winters and mild summers in the upper section of the SRB
(Wachob, 2010). The SRB and its major land use classes are shown in
Fig. 1(a) and the elevation of each catchment of the SRB is illustrated in
Fig. 1(b).

2.1. Data

The datasets were collected from multiple sources to develop a
SWAT model for the study area. These data sets includes: (a) the digital
elevation model (DEM) was obtained from National Elevation data set
(NED, USGS) at a resolution of 30 m. The DEM was used for delineating
the study area and to estimate the topographic features, (b) the land use
data was obtained from National Land Cover Dataset (NLCD) for the
period 2011, (c) the soil data was downloaded from SSURGO database
of United State Department of Agriculture (USDA), (d) the meteor-
ological (precipitation and temperature) data for the year 1990 to 2013
were collected from National Climatic Data Centre (NCDC). The
weather input file must contain data for entire period of simulation in a
daily time scale. We performed quality control on available weather
data, and the missing values are filled up based on the interpolation
from neighboring stations as well as based on SWAT weather generator
(Arnold et al., 2012). (e) The stream flow data for the year 1990 to
2013 were obtained from and United States Geological Survey (USGS).
The reservoir outflow data for the year 1990–2013 were collected from
the Savannah District Water Management (US Army Corps of En-
gineers) and incorporated in the SWAT model development. Overall
seven climate variables are used in this analysis, which includes mean
annual precipitation, evapotranspiration, number of wet and dry spells,
and mean precipitation during spring, summer and fall seasons. Se-
venteen variables are selected to represent catchment characteristics,
and few examples are catchment area, land use classes, base flow index
(BFI), and soil types. The morphological characteristics are represented
by eight variables, which include stream order, drainage density, relief,
relief ratio, form factor, circularity ratio, elongation ratio and length of
overland flow.

3. Methodology

The modeling framework developed for quantifying the potential
influence of climate, catchment, and morphological variables and as-
sociated thresholds on the hydrological drought duration (severity) for
the watersheds of SRB is shown in Fig. 2. The following sections elu-
cidate the specific components incorporated in the modeling frame-
work.

3.1. Hydrologic model

The Soil and Water Assessment Tool (SWAT) developed by United
States Department of Agriculture (USDA) (Arnold et al., 1995; Neitsch
et al., 2004) was employed for simulating the hydrological fluxes of
SRB. The SWAT is a process based, semi-distributed basin scale model
(Arnold et al., 1998; Santhi et al., 2001) and it operates based on the
daily time series of meteorological input. The SWAT model can be used
for simulating evapotranspiration, plant growth, infiltration, percola-
tion, runoff, nutrient loads, and erosion (Neitsch et al., 2004; Faramarzi
et al., 2009) from a small catchment scale to a continental scale (Chu
et al., 2004; Giri et al., 2014). The SWAT model has been tested in
different sectors (e.g., agricultural water management, water scarcity,

and water quality management) and discussed extensively in the lit-
eratures (Gassman et al., 2007). More recently SWAT model has been
applied for improving drought management (Wu and Johnston, 2007;
Zhang et al., 2007; Wang et al., 2011; Kamali et al., 2015; Bucak et al.,
2017).

Digital Elevation Models (DEMs) are the basic input data for de-
veloping the SWAT model. The delineation of the watershed is per-
formed based on the topographic data stored in the DEM pixel cells
(Fig. 1b). Here, we used DEM prepared by National Elevation Dataset
(NED), which has a resolution of 30 m. In the SWAT model, the deli-
neated river basin is divided into sub-basins and each sub-basin is
further divided into Hydrologic Response Units (HRUs). The hydro-
logical response units are created based on unique land use, soil and
slope data provided to the model. Overall, 1408 HRUs are created over
104 sub-basins located in SRB. Surface runoff is estimated by Soil
Conservation Service-Curve Number (SCS-CN) equation based on daily
precipitation data and soil hydrologic group, land use and land cover
characteristics and antecedent soil moisture. A detailed description of
the SWAT model is provided by Neitsch et al. (2004). In the present
study, we used ArcSWAT 2012 with ArcGIS interface (ESRI-version
10.2.2).

The SUFI2 optimization algorithm in the Soil and Water Assessment
Tool Calibration and Uncertainty Analysis Program (SWAT-CUP) de-
veloped by Abbaspour (2005) was utilized for calibrating the SWAT
model parameters. The parameter sensitivity analysis is performed
based on the p-value and t-test, which is an inbuilt option in the SWAT
CUP (Abbaspour et al., 2007). SUFI2 algorithm can narrow down the
range of uncertainty by identifying a range of parameters that reduce
overall uncertainty in the developed model and model output (i.e.
streamflow) is quantified by 95% prediction uncertainty (95PPU) cal-
culated at 2.5% and 97.5%. The goodness of fit criteria utilized to
analyze the SWAT model performance are coefficient of determination
(R2), Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliff, 1970), R- and
P-factor. The overall time period used for evaluating the SWAT model
performance is 1990–2013. The first three years (i.e. 1990–1992) were
used as warm-up period to initialize important model process and re-
lated variables, and subsequently this time period is excluded from the
analysis. Finally, the model was simulated and evaluated against the
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Fig. 2. The modeling framework developed for quantifying the potential in-
fluence of climate, catchment, and morphological variables and associated
thresholds on the hydrological drought.
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observed USGS stream flow data available from 1993 to 2013. We di-
vided the stream flow dataset in to two periods for calibration
(1993–2005) and for validation (2006–2013). The model performance
and calibrated parameters are explained in Section 4.1.

3.2. Standardized runoff index (SRI)

The SRI (Shukla and Wood, 2008) is based on the concept of stan-
dardized precipitation index (SPI; McKee et al., 1993). In this study, SRI
was used to quantifying the hydrological drought characteristics (e.g.
duration and severity) for 104 watersheds located in Savannah River
Basin. The following steps were used for deriving the SRI: (a) The
monthly time series of stream flow data was extracted for 104 water-
sheds located in SRB using the well calibrated SWAT model; (b) These
long term streamflow record is fitted to a suitable probability dis-
tribution. In our study, we identified Gamma distribution as the best
model based on the Chi-Square Goodness of Fit Test. The Gamma dis-
tribution can be a reasonable descriptor of the monthly flow series
compared to other distributions (Sharma and Panu, 2014); (c) Once the
probability density function is determined, the cumulative probability
of the streamflow time series at different time scale is computed; and
(d) the inverse normal Gaussian function, with mean zero and variance
one, is then applied to the cumulative probability distribution function,
which results in the SRI (Table 1). In this study, we selected a threshold
of SRI < −1 to identify moderate to higher drought events for our
analysis. Based on this concept, we calculated the drought duration and
severity of hydrological drought for each 104 watersheds using theory
of runs (Mishra and Singh, 2010). Subsequently, the SRI analysis is
performed for three time scales to represent short term drought (ac-
cumulation period of 1 month, SRI 1); medium term drought (accu-
mulation period of 6 months, SRI 6); and long term drought (accumu-
lation period of 12 months, SRI 12). The average drought duration and
severity are calculated with respect to the total number of drought
events occurred for each watersheds of SRB using a time period 1993 to
2013.

3.3. Analysis of climate, catchment and morphological variables

We investigated the potential influence of climate, catchment and
morphological variables (Table 2) on hydrological drought duration
and severity by using linear and non-linear statistical analysis. In the
first part of our investigation, we applied bivariate correlation analysis
for exploring the strength of linear relationship between the drought
characteristics and individual climate, catchment, and morphological
variables. Subsequently, we applied multi-linear regression analysis and
backward stepwise selection method to a group of variables and the
non-linear CART (Classification and Regression Tree) approach for
quantifying the threshold of each of the selected variables for predicting
the hydrological drought duration and severity. An overview of these
methodologies are discussed in the following section:

3.3.1. Variables selection
In the first phase of our investigation, the bivariate correlation

analysis was applied to explore the strength of relationship between the
drought characteristics and individual climate, catchment, and mor-
phological variables. It is possible that, the collinearity may exist

between different variables used in the study. Therefore, we generated
the correlation matrix of pairwise combinations of all variables based
on the Pearson correlation coefficient. The correlation matrix allowed
us to identify the interdependence among the climate, catchment, and
morphological variables. Initially, the linear regression analysis was
performed based on individual climate, catchment and morphological
variables for investigating their role in drought severity and duration.
Then we applied the backward stepwise selection method to select a
subset of variables from climate, catchment and morphological variable
space. These selected variables can be considered as key variables for
influencing the hydrological drought in the SRB. Subsequently, the best
model from backward stepwise selection method is selected by using
Akaike Information Criterion (AIC) (Akaike, 1974).

3.3.2. Classification and regression trees (CART)
The CART models were developed to identify the threshold asso-

ciated between climate, catchment and morphological variables and
hydrological drought. We developed classification and regression tree
using a recursive partitioning algorithm, which classifies the space
defined by the input variables (e.g. climate, catchment, and morpho-
logical variables) based on the output variables (e.g. drought char-
acteristics). The CART is an effective representation of stepwise deci-
sion making process of a complex system (Solomatine, 2002) by
stratifying the predictor space to a number of simple regions, based on

Table 1
Classification of drought category for the SRI.

SRI Values Drought Category

0 to −0.99 Mild drought
−1.00 to −1.49 Moderate drought
−1.50 to −1.99 Severe drought
<−2.00 Extreme drought

Table 2
List of Climate, Catchment, and Morphological variables used in this study.

Name Climate variable definition Unit

A.PCP Annual average precipitation mm
A.ET Annual average evapotranspiration mm
Wet Spell Number of months with precipitation more than average

monthly precipitation
–

Dry Spell Number of months with precipitation less than average
monthly precipitation

–

PCP.SPN Average precipitation during spring season mm
PCP.SUM Average precipitation during summer season mm
PCP.FAL Average precipitation during fall season mm

Name Catchment variable definition Unit

Area Area of the catchment km2

Slop Slope of catchment %
Length Longest flow path of stream in a catchment m
Width Width of stream in a catchment m
Depth Depth of stream in a catchment m
Elev Elevation of the catchment m
ElevMin Min elevation in the catchment m
ElevMax Max elevation in the catchment m
O. Water Open water area in a catchment –
D. Area Developed area in a catchment –
B. Land Barren land in a catchment –
F. Land Forestland in a catchment –
S. Land Shrub land in a catchment –
P. Land Percentage of pastureland in a catchment –
loamy Percentage of loamy soil in a catchment %
clayey Percentage of clayey soil in a catchment %
Sandy Percentage of sandy soil in a catchment %

Name Morphological variable definition Unit

Drainage Density (DD) Ratio of stream length to Area of the basin –
Stream order (S.Order) Hierarchical ranking of streams –
Relief (R) Difference between maximum and minimum

elevation
m

Relief ratio (RR) Ratio of relief of a catchment to basin length –
Form factor (FF) It is the ratio of area of a catchment to squire

of the basin length.
–

Circularity ratio (CR) Calculated as 4*Pi * A/P2. Where Pi = 3.14
and P is the square of the perimeter.

–

Elongation ratio (ER) ER = 2/Basin length –
Length of overland land

flow (LF)
LF = 1/D * 2 –
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the output variable (Breiman et al., 1984; James et al., 2013; Deshmukh
and Singh, 2016). In addition, the method is simple to use and easy to
interpret and it can be considered as one of the most appropriate ap-
proach among supervised learning techniques (James et al., 2013).
Overall, the set of splitting rules divide the predictor space into various
classes is represented as a tree. Therefore, these types of approaches are
known as decision (or classification) tree methods. In this tree like
structure, the nodes contain the conditions or threshold of the variables
that control the hydrological drought across the watersheds. Whereas,
the leaves represent the magnitude of hydrological drought duration
and severity.

The following steps are used to develop the decision tree model for
quantifying the thresholds associated with climate, catchment and
morphological variables: (i) the response and predictor variables are
first selected for individual watersheds located in SRB, where the re-
sponse variables are drought characteristics (i.e. drought duration and
severity) and predictor variables are climate, catchment, and morpho-
logical variables of particular watersheds; (ii) Divide the predictor
space that is the set of predictor variables X1, X2, … , Xp into J discrete
and non-intersecting regions, such as R1, R2, … , RJ; and (iii) for every
variables that fall into the region Rj, the tree makes the same prediction,
which is the mean of the drought characteristic values in the region Rj.

The purpose of dividing predictor space into different regions (R1, R2,
… , RJ) is to minimize the residual sum of squares (RSS), given by

̂∑ ∑= −
= ∈

RSS y y( )Min
j

J

i R
i R

1

2

j
j

(1)

where, ̂yRj is the mean response of the response variable (drought
characteristics) within the jth region. Generally, by considering every
possible partition of predictor feature space into distinct regions is
computationally challenging. Therefore, decision tree algorithm utilize
recursive binary splitting, which is based on a top-down approach by
successively splitting the predictor space represented by two new
branches further down on the tree. In order to perform the recursive
binary splitting, we first selected the predictor Xj and the threshold s
(Eqs. (2) and (3)), so that by splitting the predictor space can lead to
maximum reduction in RSS, which is given by Eq. (4).

= <R j s X X s( , ) { }j1 (2)

= ≥R j s X X s( , ) { }j2 (3)

̂ ̂∑ ∑− + −
∈ ∈

y y y y( ) ( )
i x R j s

i R
i x R j s

i R
: ( , )

1
: ( , )

2
i i1 2 (4)

The final selection of predictor variable and associated threshold is
based on the lowest RSS for the resulting tree. The output of the tree
divides data into a number of classes (or series of nodes) and each node
represents the ranges of hydrological drought duration/severity in the
form of a boxplot. The final tree provides the threshold and significance
(p-value) value of each variable that has a potential influence on the
hydrological drought in the SRB.

4. Results

4.1. SWAT model performance evaluation

The SUFI2 algorithm was applied for performing the para-
meterization and sensitivity analysis of SWAT model. The SWAT model
is calibrated and validated at the 6 gauging stations located in the
upper, central, and lower portion of the SRB. Overall, 17 parameters
were calibrated for simulating the stream flow and most sensitive
parameters are identified based on p-value and t-test provided in the
global sensitivity analysis (i.e. inbuilt option in the SWAT CUP). A list
of 10 most sensitive parameters are provided in Table 3. The goodness
of fit statistics (R2, NSE, P-factor and R-factor) between SWAT based
flow and observed flow (for four hydrologic stations located in the SRB)

is provided in the Table 4. The time series plot between SWAT simu-
lated flow and observed flow at USGS stream gaging stations
(02192000 and 021985000) are shown in Fig. 3. A detailed explanation
on model parameterization and sensitivity analysis is provided in
Veettil and Mishra (2016).

4.2. Overview of multiscale hydrological droughts in the Savannah River
Basin

In the present study, the SWAT model was used to generate
streamflow and further SRI time series for 104 watersheds located in
the SRB. Subsequently, the multiscale hydrological drought time series
were derived based on SRI 1, SRI 6, and SRI 12 based on the streamflow
accumulation periods of 1-month, 6-months, and 12-months respec-
tively. The boxplot and spatial distribution of average drought duration
and severity of short, medium and long term droughts based on SRI 1,
SRI 6, and SRI 12 for the watersheds located in the SRB are shown in
Fig. 4. The average duration of short term drought based on the SRI 1
varies between 3 and 23 months, for medium term drought based on
the SRI 6 it varies between 14 and 54 months, and for the long term
drought the average duration varies between 28 and 89 months derived
based on SRI 12. It can be clearly observed that the average duration of
drought event increases as the temporal scale of SRI increased. This
analysis suggests that the SRI 1, SRI 6, and SRI 12 can be used to classify
drought duration in to short, medium and long term events.

It was observed that the distribution of average drought duration
and severity varies among watersheds for short, medium, and long term
drought. In the case of average drought severity, short term drought
showed a median of 10 (Fig. 4a). The average drought severity for short
term drought is relatively less in the upper watersheds of SRB. Whereas,
the maximum severity was observed in the central watershed located
farther from the mainstream network. The boxplot of average drought
duration for SRI 1 showed a median of 10 months in the SRB. Similar to
the drought severity, the average duration of short term drought is
comparatively less in the upper part of the SRB, where the duration of
drought events varies from 2 to 9 months (Fig. 4a). However, for the
watersheds located in the lower part of the basin exhibited drought
duration up to 23 months for SRI 1 drought. It was also observed that
the short term drought duration and its severity is comparatively less in
the most of the watersheds located near to the main stream network. On
the other hand, the watersheds located farther from the mainstream
network exhibited higher values of short term drought duration and
severity.

The boxplot of average drought severity for SRI 6 is shown in
Fig. 4a, which indicates a median value of 32 for SRB (Fig. 4a). The
spatial distribution of average drought duration for SRI 6 drought also
showed a similar pattern of average drought severity. Similar to the
short term drought, the watersheds located in the upper part of the SRB
exhibits lower values of medium term drought duration and severity.
Whereas, drought duration and severity increases towards lower parts

Table 3
Most sensitive parameters used for the SWAT model calibration and validation.

Sensitive Parameters Explanation Calibrated range

r_CN2.mgt Curve number −0.2 to 0.3
r_SOL_AWC. Sol Available water capacity of the soil

layer
−0.2 to 2

v_ALPHA_BF.gw Baseflow recession constant 0.4 to 0.9
v_GW_DELAY.gw Groundwater delay time (days) 30 to 450
r_GW_REVAP.gw Groundwater revap. coefficient 0.02 to 0.2
r_HRU_SLP.hru Average slope steepness (m/m) −0.5 to 1
r_SLSUBBSN.hru Average slope length (m) −0.5 to 1
r_EPCO.bsn Plant uptake compensation factor 0 to 0.7
r_ESCO.bsn Soil evaporation compensation factor 0 to 0.4
v_CH_N2.rte Manning's n value for the main

channel
0.01 to 0.4
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of SRB. Most of the watersheds located in the central part of the basin
witness higher duration of droughts that varies between 34 and
54 months, and severity values between 35 and 47. It was also observed
that the percentage of area affected by medium term drought across the
watersheds of SRB was comparatively higher than short term and long
term drought. In the case of long term droughts, the boxplot of average
drought duration and severity showed a median of 37 months and 42
respectively. The spatial distribution of average drought duration for
SRI 12 varies between 28 and 89 months over the SRB, whereas the
severity ranges from 24 to 97. It was observed that the number of
watersheds with higher drought duration is less in the SRB. Unlike the
medium term drought, higher values of long term drought were

distributed over the watersheds located in Georgia State. Overall, the
spatial pattern of short, medium, and long term drought duration and
severity obtained from different SRI time series varies within the SRB.

Fig. 5 illustrates the correlation between average hydrological
drought duration and severity derived from these three SRI time series
for watersheds located in SRB. It was observed that both drought
characteristics are correlated to each other, however the correlation
strength changes as the timescale of SRI time series increases. For ex-
ample, stronger linear correlation was observed for SRI 1 (correlation
coefficient = 0.91), and it is reduced for SRI 6 (correlation coeffi-
cient = 0.82), which further dramatically reduced for SRI 12. The
scattered plot for SRI 12 appeared in two distinct clusters located in

Table 4
Goodness of fit statistics between SWAT simulated and USGS observed streamflow for selected stations.

USGS flow station Latitude/Longitude Station ID Calibration period Validation period

R2 NSE R- factor P- factor R2 NSE R- factor P- factor

Broad River near Bell 33°58′27″/82°46′12″ 02192000 0.88 0.87 0.89 0.81 0.81 0.77 0.57 0.71
Savannah River near Clyo 32°31′41″/81°16′08″ 02198500 0.85 0.76 0.89 0.82 0.64 0.58 0.58 0.51
Savannah River at Augusta 33°22′25″/81°56′35″ 02197000 0.54 0.45 0.86 0.66 0.55 0.42 0.89 0.53
Savannah River at Burtons Ferry Br Nr Millhaven 32°56′20″/81°30′10″ 02197500 0.62 0.62 0.84 0.76 0.55 0.38 0.76 0.63

Fig. 3. Time series plot between modeled (SWAT) and observed (USGS) stream flow at gauging stations (a) 02192000 and (b) 021985000 at monthly time scale
(Veettil and Mishra, 2016).
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Fig. 4. Boxplot of (a) average severity and (b) average duration of short term droughts based on SRI 1, medium term drought based on SRI 6, and long term drought
based on SRI 12. Spatial distribution of average severity for (c) SRI 1, (d) SRI 6, and (e) SRI 12, and spatial distribution of average duration for (f) SRI 1, (g) SRI 6, and
(h) SRI 12 for the watersheds located in Savannah River Basin.
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lower and higher ends. It was observed that the correlation strength
between drought severity and duration share a linear relationship for
low SRI time scales (e.g., SRI 1 and SRI 6). However, at higher time
scales (e.g., SRI 12), the correlation strength likely to change from
linear to non-linear relationship. This non-linear relationship may be
attributed to the complex non-linear interaction between climate and
catchment characteristics including potential role of base flow de-
pending upon the surface water and groundwater interactions. This
highlights the potential influence of climate, catchment, and morpho-
logical variables can be different for multiscale hydrological drought
duration and severity.

4.3. Spatial pattern of key climate, catchment and morphological variables

The difference in spatial patterns of short, medium, and long term
hydrological droughts are likely to be associated with the difference in
spatial distribution of climate, catchment, and morphological variables
of a river basin. Therefore, it is important to investigate the spatial
distribution of key variables, which are strongly correlated with short,
medium, and long term drought across the watersheds of SRB. The
boxplot of important climate, catchment, and morphological variables
across the SRB is illustrated in Fig. 6. In the case of climate variable, the
magnitude of mean annual precipitation varies between 1045 mm and
2293 mm with a median of 1200 mm. The spatial pattern of mean
annual precipitation during the period of 1993–2013 over the SRB is
provided in Fig. 7a. It was observed that the higher magnitude of an-
nual precipitation is distributed over the upper watersheds of the SRB.
The spatial distribution of rainfall plays an important role on hydro-
logical drought (Tran et al., 2015; Beyene et al., 2014; Van Lanen et al.,
2013), as the deficit in rainfall triggers meteorological drought and
further it leads to hydrological drought (Mishra and Singh, 2010). The
higher magnitude of rainfall can be a possible reason for the lower
duration of hydrological drought for the watersheds located in the
upper part of SRB. The boxplot of average seasonal precipitation during
the spring, summer, and fall season shows a median of 400 mm,
319 mm, and 481 mm respectively. The spatial pattern of mean pre-
cipitation during spring (PCP.SPN), summer (PCP.SUM), and fall
(PCP.FAL) season for the SRB is shown in Fig. 7. The PCP.SPN varies

between 308 mm and 750 mm across the watersheds whereas; the
PCP.FAL varies between from 300 mm to 975 mm, and the PCP.SUM
varies between 280 mm and 595 mm. It was observed that, during
summer season the precipitation is comparatively higher across the
watersheds located in lower SRB.

The boxplot of important catchment variables such as base flow
index (BFI), pastureland, wetland, forestland, catchment area, and
elevation is illustrated in Fig. 6b and c. The spatial distribution of the
catchment variable BFI varies between 0.15 and 0.41 for the water-
sheds located in the SRB (Fig. 7e). The BFI is a measure of slow and
continuous contribution of ground water to the streamflow (Smakhtin,
2001) and in most of the dry season, the entire stream flow is con-
tributed by the base flow. The BFI has a strong role in controlling the
storage capacity and response time of a catchment and it is also a good
indicator of the geological characteristics of a catchment (Bloomfield
et al., 2009; Hidsal et al., 2004; Smakhtin, 2001). Here, the BFI is de-
rived based on ‘automated base flow separation and recession analysis
techniques” developed by Arnold et al. (1995), which utilize a digital
filter based automated base flow separation technique, which is capable
to produce the results similar to the graphical separation technique. The
boxplot of catchment variables related to the land use classes such as
pastureland, wetland, and forestland are shown in Fig. 6b. The range of
these catchment variables are expressed as the ratio between the areas
of land use class in a catchment to the total area of the catchment. The
pastureland, wetland, forestland ranges from 0 to 0.35, 0 to 0.62, and
0.02 to 0.92 respectively across the watersheds of SRB. The land use
plays an important role in controlling the hydrological drought in a
watershed. For instance, the pastureland increases the amount of eva-
potranspiration and reduce the water yield capacity (Zhang et al.,
2016), therefore a larger area of pastureland may lead the catchment to
hydrological drought. Fig. 6d illustrates the boxplot of morphological
variables such as form factor (FF), circulatory ratio (CR) and elongation
ratio. The morphological variable, stream order (S.Order) varies be-
tween one and four for the watersheds located in the SRB (Fig. 7f) and it
was also observed that the watersheds located close to the main river
network exhibit higher values of S.Order (Hakala and Hartman, 2004).

Fig. 5. The scattered plot between hydrological drought average duration (Avg. Duration) and severity (Avg. Severity) for (a) SRI 1, (b) SRI 6 and (c) SRI 12.
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4.4. Potential influence of climate, catchment and morphological variables

In this section, we investigated the potential influence of selected
climate, catchment, and morphological variables on hydrological
drought by using linear regression and backward stepwise selection
method. Since multicollinearity exists between different climate,
catchment, and morphological variables used in the study, we gener-
ated the correlation matrix of pairwise combinations of important
variables based on the Pearson correlation coefficient (Fig. 8). The
variables related to altitude such as, maximum elevation (MaxElev),
minimum elevation (MinElev), and average elevation (Elev) are
strongly correlated across the watersheds of SRB. Therefore, we se-
lected Elev for further analysis. The candidate variables were selected
based on their least collinearity nature with other variables as well as
the higher Pearson correlation with hydrological drought durations for
the watersheds of SRB. The above steps are illustrated with following
example. The Pearson correlation coefficient between the elevation and
forestland based on 104 watersheds located in the SRB is 0.7. However,
the correlation strength between elevation and short term hydrological
drought duration is higher in comparison to forestland. Therefore,
watershed elevations were selected for the analysis. The linear and non-
linear relationship between the candidate variables and the hydro-
logical drought duration for short and medium term drought are shown
in Figs. 9 and 10 respectively. The climate variables including A.PCP,
PCP.FAL, and PCP.SPN and morphological variable S.Order showed a

negative correlation with average drought duration. Whereas, catch-
ment variables, such as BFI, pastureland, and wetland showed a posi-
tive correlation with average drought duration for SRI 1 and SRI 6
drought duration.

Subsequently, we investigated the potential influence of selected
climate, catchment, and morphological variables separately on average
drought duration for SRI 1, SRI 6, and SRI 12 drought by applying
linear regression. These individual models are named as the climate,
catchment and morphological models (Tables 5–7). Finally, we ana-
lyzed the relative impact of climate, catchment, and morphological
variables on hydrological drought duration by applying backward
stepwise selection method. This integrated model is named as combined
model (Table 8).

4.4.1. Potential influence on short term drought
Several studies have been carried out to investigate the significant

role of climate variables in hydrological drought propagation over a
river basin (Wang et al., 2015; Sheffield et al., 2012). The present study
also indicated that, the precipitation and evapotranspiration plays an
important role in controlling the short term drought duration in the SRB
(Table 5). In case of climate model, mean annual precipitation (A.PCP)
showed comparatively higher significance (p-value) in controlling the
hydrological drought duration. Therefore, below normal (average)
precipitation in the SRB may lead the watersheds to a short term
drought. The mean annual evapotranspiration (A.ET) also exhibited a

Fig. 6. Boxplot of important (a) climate variables: average annual precipitation (A.PCP), average spring precipitation (PCP.SPN), average summer precipitation
(PCP.SUM), and average fall precipitation; (b and c) catchment variables: Base flow index, pastureland, wetland, forestland, catchment area, and elevation; (d)
morphological variables: Form factor, circularity ratio, and elongation ratio over the Savannah River Basin. The spatial distribution of (a) Mean annual precipitation,
(b) Base flow index, and (c) Stream order of watersheds across the Savannah River Basin.
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considerable significance in the climate model (Table 5). This situation
will further direct to an additional loss of water stored in the soil layer,
water bodies and lead the region to hydrological drought. Therefore, a
combination of lower precipitation with higher evapotranspiration may
increase the possibility of short term drought over the watersheds of
SRB. Here, the climate model for predicting the duration of short–term
drought produced a coefficient of determination (R2) value of 0.12.
Which indicates that, the short term drought cannot be predicted ap-
propriately based on only climate variables. Whereas, the catchment
model exhibited a R2 value of 0.49 for predicting the short term drought
duration over the watersheds (Table 6). The baseflow index (BFI) is
identified as the most significant catchment variable (p-
value = 5.03e−07) for predicting the average duration of short term
drought.

In this study, the BFI showed a positive correlation with the short
term drought duration which is similar to Van Loon and Laaha (2015),
Tallaksen and Van Lanen (2004), Barker et al. (2015). The BFI has a
strong role in controlling the base flow, which plays an important role
for hydrological drought. Moreover, the contribution of base flow for a
long term denotes higher duration of drought in the watersheds. This
may be a possible reason for the positive correlation of BFI with the
short term drought for the SRB. Therefore, knowledge of base flow is
crucial for developing catchment management strategies such as water

quality management, reservoir management particularly during the
drought period (Smakhtin, 2001).

The stream width has a significant influence on the short term
drought (p-value = 1.63e−07) with a negative correlation, which in-
dicates that decrease in width of stream network may lead to longer
duration of short term drought. The land use types such as, wetland and
pastureland also has a major role on short term drought. Where, the
wetland exhibited a positive correlation with hydrological drought
duration, which indicates that the catchments with a larger area of
wetland is more susceptible to hydrological drought. Similarly, pas-
tureland also witnessed a positive correlation with short term drought
duration for the watersheds of SRB. This may be due to increase in the
evapotranspiration and decreases in the water yield (Zhang et al., 2016;
Sriwongsitanon and Taesombat, 2011) due to pasturelands. The loss of
water through evapotranspiration may reduce the streamflow con-
tribution from agricultural/pastureland and finally lead to hydrological
drought over the basin (Bagley et al., 2014).

Similar to the climate model, the morphological model also showed
a lower value of coefficient of determination (0.18) for predicting the
average duration for SRI 1 drought (Table 7). The significant morpho-
logical variables influencing the short term drought duration are stream
order and relief ratio. Both the variables exhibited a negative correla-
tion with the short term drought. It was observed that most of the

Fig. 7. The spatial distribution of (a) Mean annual precipitation (A.PCP), (b) average precipitation during spring (PCP.SPN), (c) average precipitation during summer
(PCP.SUM), (d) average precipitation during fall (PCP.FAL) seasons. (e) Base flow index (BFI), and (f) Stream order of watersheds over the Savannah River Basin.
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watersheds with first or second-order streams are considerably influ-
enced by the hydrological drought, and similar findings are highlighted
in previous studies (Cowx et al., 1984; Hakala and Hartman, 2004). The
maximum S.Order in the SRB is four (Fig. 5C), and the higher order
streams are observed near to the mainstream network. This can be a
possible reason for distribution of longer duration drought events to-
wards the watersheds located away from the mainstream network. Al-
though, the climate model and morphological models were less accu-
rate in predicting the hydrological drought over the SRB, the catchment
model was able to predict the hydrological drought duration with
reasonable accuracy. In the following section we investigated the
combined influence of climate, catchment, and morphological variables
on hydrological drought.

The backward stepwise selection is performed to investigate the
combined influence of climate, catchment, and morphological variables
on hydrological drought duration. The proposed backward stepwise
selection model was evaluated based on the Akaike Information
Criterion (AIC). Overall, a combination of 8 climate, catchment, and
morphological variables are selected (Table 8). It was observed that the
combination of catchment and morphological variables with the cli-
mate variables significantly improved the prediction of hydrological
drought duration (R2 = 0.58) across the watersheds of SRB. Among all
the variables, A.PCP, BFI, and S.Order seems to be the most significant
climate, catchment, and morphological variables, which influence the
drought duration for SRI 1 in the SRB.

4.4.2. Potential influence on medium and long term drought
In this section, potential influence of control of climate, catchment,

and morphological variables on medium and long term drought dura-
tion are discussed. It was observed that summer precipitation
(PCP.SUM) plays an important role in controlling the drought duration
for SRI 6 in the SRB. The catchment variables such as elevation,
catchment area, pastureland, and wetland are highly significant in

controlling the medium term drought (Table 6). Where, the pastureland
(p-value = 9.74e−06) and elevation (p-value = 1.57e−06) are
identified as the most significant catchment variables. Similar to the
short term drought, the catchment model for medium term drought also
exhibited a higher R2 (0.49) value. However, in the case of morpho-
logical model unlike the short term drought, circularity ratio (CR) and
relief ratio (RR) are identified as the most significant morphological
variables influencing the medium term drought duration and the
morphological model was able to predict 14% (R2 = 0.14) variability in
hydrological drought duration.

The combined model selected six variables from the combination of
climate, catchment, and morphological variables (Table 8) which in-
fluence the average drought duration for SRI 6 in the SRB. The com-
bined model showed a coefficient of determination of 0.51, indicating
that the model performance significantly improved through the addi-
tion of catchment and morphological variables with the climate vari-
ables. The result from the combined model showed that the PCP.SPN is
the most important climate variable responsible for medium term
drought over SRB. The percentage of pastureland is identified as the
most significant variable pertaining to medium term drought and
S.Order seems to be the only morphological variable that has potential
influence on the hydrological drought duration for SRI 6.

The proposed climate model for long term drought suggests that the
mean summer precipitation (PCP.SUM) is the only variable that has a
potential influence on the long term drought (Table 5) in the SRB. The
catchment and morphological models selected stream width and stream
order as significant variables (Tables 6 and 7). The combined model
also selected the same variables (stream width and stream order) based
on the backward stepwise selection method (Table 8). However, the
combined model was merely able to predict 12% variation in hydro-
logical drought duration for SRI 12. Overall, it was observed that the
linear models formed through the combination of climate, catchment,
and morphological variables are capable for predicting the duration for

Fig. 8. The correlation matrix showing the Pearson correlation between the climate, catchment, and morphological variables.
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short and medium term drought. Nevertheless, long term drought
duration showed comparatively less correlation with the variables
considered in the study. In the following section, we performed CART
for identifying the threshold of each variable for controlling the hy-
drological drought duration over the SRB.

4.5. Identification of critical threshold

The most influential climate, catchment, and morphological vari-
ables are selected using backward stepwise selection process. Then we
applied the concept of classification and regression tree (CART) to
identify the critical threshold associated with the selected variables.
Using the CART approach, we generated three separate decision trees
for short, medium, and long term drought to identify the threshold
associated with the variables.

The model output of CART analysis by relating selected climate,
catchment, and morphological variables and short term drought dura-
tion is shown in Fig. 11. The figure summaries the process of estimating
the threshold of variables and the range of response (drought duration)
with respect to each threshold. Here, the range of output drought
duration for SRI 1 is represented in the form of a box plot. The decision
tree approach identified BFI, S.Order, and A.PCP are the significant
variables, which control the drought duration for SRI 1 over the wa-
tersheds of SRB. Among them, BFI was the most significant variable.
Therefore, the first split in the decision tree was based on BFI (node 1)
and the corresponding threshold is 0.344. For instance, when the BFI of
the watersheds is less than or equal to 0.344 (≤0.344), the growth of
tree is towards the left (Fig. 11). Whereas, if the value of BFI is greater
than 0.344 the tree is advancing to the right side. Here p < 0.001,
represents the significance of the correlation between the split based on

BFI and the average drought duration for SRI 1. The second split (node
2) of the decision tree is based on the morphological variable stream
order, which indicates that, stream order is the second most significant
variable controlling the short term drought across SRB. The threshold
value of stream order was one. For instance, if a watershed has a stream
order greater than one and the BFI is less than 0.344 the short term
drought duration in that particular catchment will vary from 4 months
to 8 months (Fig. 11). Whereas, if the stream order is less than or equal
to one, the growth of the tree is towards left side. The third split in the
decision tree (node 3) was based on the mean annual precipitation
(A.PCP). Overall, the critical threshold of BFI, S.Order, and A.PCP are
identified and it can be explained as follows in determining the dura-
tion of short–term drought.

If the BFI is ≤ 0.344, S.Order is ≤1 and A.PCP is ≤1308.44 mm
then the duration of short term hydrological drought likes to be
12 months based on median (50th percentile, solid line within the
boxplot) and it can vary from 6 months to 22 months. When the A.PCP
is more than 1308.44 mm, the average duration of SRI drought will
range from 2 to 4.5 months. The right branch of the node 2 elucidates
that when the S.Order is greater than one and BFI is less than or equal to
0.344, the watersheds in SRB will experience a short term drought
duration of 6 months (median).

The average annual precipitation in the SRB is 1240 mm per year
and the threshold associated with annual precipitation is 1308 mm.
Based on the right side branch of the first partition, the BFI greater than
0.344 resulted to a drought duration of 15 months for SRI 1. However,
BFI has a positive correlation with the short term drought. Therefore, a
minimum value of BFI likely to reduce the short term drought duration
in the watersheds. The average BFI of SRB watersheds is observed as
0.317, which is less than the critical threshold of BFI. The results from

Fig. 9. Linear and nonlinear relation between average drought duration (Avg. Drought) for SRI 1 drought and (a) annual mean precipitation (A.PCP), (b) average
precipitation during fall (PCP.FAL), (c) spring (PCP.SPN), and (d) summer (PCP.SUM) season, (e) base flow index (BFI), and (f) catchment elevation (Elev).
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linear regression analysis identified that S.Order is negatively corre-
lated with drought duration. The decision tree output illustrates that if
the S.Order is greater than one, the duration of SRI 1 drought reduces to
6 months and about 50% of the watersheds located in SRB has S.Order
greater than one.

Fig. 12 illustrates the decision tree of average drought duration for
SRI 6 and. It was identified that the variables such as Pastureland,

PCP.SPN, catchment area, Wetland, and S.Order are significant for
predicting the medium term drought duration across the watersheds of
SRB. Therefore, the final tree consists of multiple nodes as well as
thresholds associated with these variables. Pastureland showed max-
imum significance, and the first split of the tree is based on this variable
with a threshold of 0.12 (12%). The linear analysis indicated that
pastureland has a positive correlation with the medium term drought
duration. In the Savannah River Basin, 73% of the catchments have
pastureland of less than 12% and a minimum duration for medium term
drought was observed in the catchments where the pastureland is less
than 12%, and PCP.SPN is higher than 455 mm. This indicates that in
those catchments, the storage plays an important role in reducing the
drought duration because of less evapotranspiration from pastureland
and higher precipitation during the spring season. On the other hand,
that the longer drought duration is more prevalent in watersheds with
pastureland more than 12% and S.Order one. Catchment area and
wetland also influence medium term drought with a threshold of
209 km2 and 3% respectively. Overall, the catchment variables seems to
have a significant control on the drought duration for SRI 6 over the
SRB.

Fig. 10. Linear and nonlinear relation between average drought duration (Avg. Duration) for SRI 6 drought and (a) average precipitation during fall (PCP.FAL), (b)
spring (PCP.SPN), and (c) summer (PCP.SUM) season, (d) pastureland, (e) catchment elevation (Elev), and (f) catchment area (Area).

Table 5
Model performance based on the climate variables (Climate model).

Drought class Variable p-value R2

SRI 1 A.PCP 0.00283 (**) 0.12
A.ET 0.01049 (*)

SRI 6 PCP.SUM 8.4e−06 (***) 0.18
SRI 12 PCP.SUM 0.0474 (*) 0.04

Table 6
Model performance based on the catchment variables (catchment model).

Drought class Variable p-value R2

SRI 1 Area 0.00336 (**) 0.49
Elevation 0.028494 (*)
Width 1.63e−07 (***)
Pastureland 0.007718 (**)
Wetland 0.000249 (***)
BFI 5.03e−07 (***)

SRI 6 Area 0.001687 (**) 0.47
Elevation 1.57e−06 (***)
Pasture 9.74e−06 (***)
Wetland 0.000359 (***)

SRI 12 Width 0.0416 (*) 0.04

Table 7
Model performance based on the morphological variables (Morphological
model).

Drought class Variable p-value R2

SRI 1 S.Order 0.002463 (**) 0.18
RR 0.000306 (***)

SRI 6 RR 0.000497 (***) 0.14
CR 0.002526 (**)

SRI 12 S.Order 0.00594 (**) 0.07
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Finally, the decision tree algorithm was applied to the drought
duration for SRI 12 (Fig. 13). Unlike the linear regression approach, the
decision tree approach could not identify a significant climate variable
that influence long term drought. It was observed that S.Order (mor-
phological variable) and Width of channels (catchment variable) are the
important variables, which has potential control on the duration of long
term drought.

5. Discussion and concluding remarks

In this study, a combination of hydrological and statistical models
are utilized to quantify the potential influence of climate, catchment,
and morphological variables and its associated threshold on short,
medium, and long term hydrological drought. In the proposed model
framework, the streamflow pattern over the Savannah River Basin is
simulated based on a well calibrated SWAT model (Sohoulande Djebou,
2019) and the hydrological drought is quantified by applying the
concept of Standardized Runoff Index. The SWAT model was selected as
it can integrate different climate and catchment characteristics (e.g.,
topography, soil type, land use) to generate runoff at a higher spatial
resolution (Lin et al., 2015; Zhou et al., 2013). For instance, the surface
runoff over each HRU is estimated based on the modified curve number
(CN) method with daily precipitation data based on soil hydrologic
group, vegetation type, and land management practices. This method
will produce an accurate representation of hydrology processes in each
spatial unit. In addition, SWAT model was previously applied to
quantify the potential influence of land use change and climate varia-
bility on the hydrological fluxes of Savannah River Basin (Veettil and
Mishra, 2018). The SWAT model is calibrated using the monthly dis-
charge data from 1993−2005 and validated for 2006–2013 and the
goodness of fit statistics showed an acceptable agreement between
observed (i.e. USGS flow) and SWAT simulated flow. Following the
model simulation short, medium, and long term drought for each
catchment was quantified based on the standardized runoff index
(Shukla and Wood, 2008).

The statistical modeling framework incorporates a set of climate,
catchment, and morphological variables to predict the hydrological
drought for the watersheds located in Savannah River Basin. The results
indicate that the catchment variables has higher influence to trigger the
hydrological drought over the Savannah River Basin compared to

Table 8
Model performance based on the combination of the variables (Combined
model).

Drought class Variable p-value R2

SRI 1 Area 0.00168 (**) 0.58
Width 0.00433 (**)
Pastureland 0.00302 (**)
Wetland 0.00033 (***)
BFI 3.01e−09 (***)
A.PCP 0.00965 (**)
S.Order 1.39e−10 (***)
C.Ratio 0.08345 (.)

SRI 6 Area 1.74e−05 (***) 0.51
Width 0.03088 (*)
Pasture 9.59e−09 (***)
Wetland 0.00039 (***)
PCP.SPN 9.05e−08 (***)
S.Order 0.05303 (.)

SRI 12 PCP.SUM 0.05074 (.) 0.13
Width 0.12326
S.Order 0.00946 (**)

Fig. 11. Decision tree showing the threshold of climate, catchment, and morphological variables. The boxplot shows the duration of short term drought which are
predicted based on the threshold.
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climate and morphological variables. In addition, the combination of
these variables can improve the prediction accuracy of short and
medium term drought in the Savannah River Basin. Moreover, the study

can be also be extended for an ungauged basin, where the availability of
hydrological data is insufficient. However, the dominant factors in
determining hydrological drought characteristics is highly dependent
on scale. For example, on a global scale, drought duration might be
more related to climate compared to catchment variables, whereas at a
regional/river basin scale catchment or morphological variables may
have more influence on the hydrological drought. Overall, the proposed
modeling framework is useful for identifying the key role of climate,
catchment, and morphological variables on the hydrological drought
across the watersheds of Savannah River Basin. The following conclu-
sions can be drawn from this study.

a) The linear models developed based only on climate variables may
not be reliable for predicting the hydrological drought duration in
the Savannah River Basin. Whereas, the performance of linear
models can be improved by the addition of catchment and mor-
phological variables. For example, in the case of short term drought,
the performance of the model based on R2 increased from 0.12 to
0.58 by including the catchment and morphological variables along
with the climate variables.

b) The climate, catchment, and morphological variables, which has
significant influence on the short term drought includes precipita-
tion, base flow index, and stream order respectively. In the com-
bined model, the stream order and baseflow index exhibited higher
influence on the short term drought.

c) The catchment variables, such as pastureland, wetland, catchment
area, and elevation showed significant influence on the average
duration of medium term drought, which is derived based on SRI 6.
The catchment model was able to predict 47% variability in the
average hydrological drought duration for SRI 6, whereas the
combined model improved the model performance to 51%. The
catchment variable pastureland has a potential influence in con-
trolling the medium term drought. It was also observed that the
average precipitation during the spring season can be considered as
a key variable that has potential influence on the average drought
duration for SRI 6.

Fig. 12. Decision tree showing the threshold of climate, catchment, and morphological variables for medium term drought.

Fig. 13. Decision tree showing the threshold of catchment and morphological
variables for long term drought.
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d) The average precipitation during the summer showed a significant
control on the long term drought duration, which is derived based
on SRI 12. In the combined model, the stream order and width of
stream networks can have major influence on the long term drought
duration.

e) The morphological variable stream order is identified as the only
variable which has significant influence over short, medium and
long term drought duration over the watersheds of Savannah River
Basin. Which indicates the importance of including the morpholo-
gical variables in predicting the hydrological drought in a river
basin scale.

f) The classification and regression tree algorithm was used for iden-
tifying thresholds associated with climate, catchment, and mor-
phological variables. The results indicate that the variables and as-
sociated thresholds influencing the hydrological drought varies for
short, medium, and long term drought.
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