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ARTICLE INFO ABSTRACT

The global population is expected to reach 9.8 billion by 2050. There is an exponential growth of food pro-
duction to meet the needs of the growing population. However, the limited land and water resources, climate
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Keywords: change, and an increase in extreme events likely to pose a significant threat for achieving the sustainable
Agriculture agriculture goal. Given these challenges, food security is included in the United Nations’ Sustainable
Remote sensing Development Goals (SDGs). Since the advent of Sputnik, followed by the Explorer missions, satellite remote
Crop yield sensing is assisting us in collecting the data at global scales. In this work, we review how satellite remote sensing
?:r‘it;a‘:is;;mﬂaﬁo“ information is utilized to assess and manage agriculture, an important component of ecohydrology. Overall,

three critical aspects of agriculture are considered: (a) crop growth and yield through empirical models, physics-
based models, and data assimilation in crop models, (b) applications pertaining to irrigation, which include
mapping irrigation areas and quantification of irrigation, and (c) crop losses due to pests, diseases, crop lodging,
and weeds. The emphasis is on satellite sensors in optical, thermal, microwave, and fluorescence frequencies. We
conclude the review with an outlook of challenges and recommendations. This paper is the first of a two-part
review series. The second part reviews the role of satellite remote sensing in water security, wherein we discuss

Crop losses

the aspects of water quality and quantity along with extremes (floods and droughts).

1. Introduction

The global food security is recognized as a part of the Sustainable
Development Goals (SDGs; SDG2 in particular) by the United Nations
(United Nations, 2015) through an increase in sustainable agriculture
production, a decrease in food losses and waste, improved nutrition,
and ensuring zero hunger. Over the past few decades, the global po-
pulation has exceeded 7.5 billion, with the majority of the population
residing in the urban areas (Klein Goldewijk et al. 2010). However,
according to USDA (https://www.usda.gov/topics/food-and-nutrition/
food-security), 700 million people across 76 countries are still food
insecure. The increasing population has put immense pressure on food
and water resources. Global food production must increase by 50% to
meet the demands of the projected world population by 2050
(Chakraborty and Newton 2011; Godfray et al. 2010; Tilman et al.
2011). To ensure food security for the growing population, there has
been a dramatic expansion in the cropland areas and the irrigation
water requirement (Tilman et al. 2011). From 1961 to 2004, the total
area under cultivation increased by 2.3 times globally (http://faostat.
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fao.org/). The irrigated cropland areas increased from 63 million Ha
(MHa) in 1900 to 306 MHa in 2005 globally (Siebert et al. 2015). The
irrigated agricultural areas are estimated to use around two-third of the
total water reserves globally, which accounts for about 80-90% of the
total water consumption (Doell et al. 2014; Oki and Kanae 2006;
Shiklomanov and Rodda 2004).

Despite the expansion in agricultural areas, food security may
continue to be a problem in the developing nations due to improper
management of resources and policies related to the pricing of food and
irrigation water use (Calzadilla et al. 2013; Easterling and Apps 2005;
Scholes and Biggs 2004). The effects of anthropogenic climate change
may further influence the crop yield, thereby hampering the manage-
ment of the food and water systems in the near future (Easterling and
Apps 2005). The extreme events such as floods and droughts strongly
influence the four factors, namely, availability of food, access to safe
food, food prices, and the sustainable food utilization, which regulate
the global food security (Brown et al. 2015). The changing climate
conditions can induce prolonged droughts in the future, which can in-
crease the crop dependency on groundwater resources for irrigation,
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thereby affecting their sustainability (Scanlon et al. 2012). The re-
miniscence of these effects is already evident through an increase in the
groundwater depletion globally from 1960 to 2000 (Wada et al. 2010).
Climate change can also lead to a reversal of croplands from irrigated to
rainfed agricultural systems, which can significantly impact food pro-
duction (Elliott et al. 2014). The deficit in irrigation may result in
wilting of plants, which ultimately reduces the crop yield.

On the other hand, excess irrigation can also impede the crop
growth in the forms of lack of sufficient air for respiration (thereby
affecting the germination of seeds), increase in salinity due to eva-
poration of standing water and crop lodging (Chen et al., 2011;
Wichelns and Qadir, 2015). Apart from these factors, pests and diseases
may significantly reduce crop productivity (Oerke 2006), further
adding to the global food insecurity. Besides, the recent changes in the
dietary requirements and production of biofuels on the croplands have
added to the existing pressure on the food resources (Godfray et al.
2010). Therefore, given the growing food demands and changing cli-
mate, wise management of depleting water resources through improved
irrigation and storage provisions along with flood/drought resistance
crop varieties may contribute towards sustainable agriculture practices
and maintain food security (Carruthers et al. 1997; Ozdogan 2011).

1.1. Necessity of satellite remote sensing

Food security is a broad subject and requires monitoring of several
indicators, such as crop growth and crop yield, irrigation, and the
spread of diseases. To achieve this, direct or indirect measurement of
several variables in space-time is required. Satellite remote sensing, in
addition to the in-situ observation network, is being increasingly used
to provide information on these variables at multiple spatial and tem-
poral scales, independent of geopolitical boundaries. Although the in-
situ data is most accurate, their spatial coverage is inadequate and it is
often expensive to deploy radars and sensors to improve their spatio-
temporal resolutions, especially in developing countries. The remotely
sensed data is often used to retrieve variations in the vegetation state by
providing realistic information on photosynthesis, phenology, dis-
turbances, recovery, and human interventions. This information is cri-
tical for determining crop health and productivity and serves as an
essential measure for agriculture planning and management.

As discussed earlier, food security is intrinsically affected by the
water cycle. Water cycle, in turn, receives feedback from vegetation as
transpiration. The objective of this study is to review the satellite re-
mote sensing for sustainable agriculture management as well as some
recent developments that have taken place to monitor and improve
crop management. This review can be characterized under the broad
spectrum of ecohydrology, which studies about soil water-plant inter-
actions along with plant water stress and productivity (Hsiao, 1973;
Nilsen & Orcutt, 1996; Vico & Porporato, 2015). Food production is the
biggest anthropogenic consumer of water (D'Odorico et al., 2010). So,
besides understanding the process of irrigation (which is directly re-
lated to the field of water resources), it is also important to study the
crop productivity and the associated stresses. Three important aspects
are addressed in this review, 1) monitoring crop growth and yield as-
sessment, 2) qualitative and quantitative assessment of irrigation, and
3) detecting crop losses due to pests, diseases, crop lodging, and weeds.
Fig. 1 presents a detailed schematic diagram of these selected areas and
the sub-topics reviewed in this work. This review is the first of the two-
part review series, wherein the second part reviews the applications of
satellite remote sensing for water security, which includes the aspects of
water quality, quantity, and extreme events (Chawla et al., 2020).
Section 2 presents an overview of satellite remote sensing along with a
list of satellites, which find applications in this review. Section 3 pre-
sents a review of the three selected areas. Section 4 presents the outlook
of this review.
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2. Overview of satellite remote sensing

Satellite remote sensing emerged as a successor of aerial remote
sensing during the 1960 s with the Explorer, TIROS (Television Infrared
Observation Satellite) series, Corona, and later with Landsat missions,
among others (Lettenmaier et al., 2015). The process of remote sensing
is initiated with electromagnetic radiations from the Sun (passive re-
mote sensing) or from the satellite itself (active remote sensing). The
incident radiations are reflected, absorbed and transmitted while in-
teracting with the Earth’s surface. The satellite sensor measures these
reflected radiations, which contain information about the terrestrial
processes taking place during the overpass of the satellite at a location.
The terrestrial processes include the components of the hydrological
cycle, vegetation processes, interactions with water bodies, geomor-
phology, and topography. Each of the terrestrial processes could be
sensitive to measurements in only specific wavelengths/frequencies. So,
it is essential to identify the satellite sensors that are appropriate for the
purpose. Furthermore, the satellite measurements are also influenced
by spatial, temporal, spectral and radiometric resolutions, which are
associated with sensor configuration.

Satellites sensors record the reflected radiations across various wa-
velengths of the electromagnetic spectrum. These wavelengths typically
range from visible/optical spectrum (0.4-0.7 um wavelength); infrared
spectrum — consisting of three bands, near infrared (NIR) (0.7-1.3 ym
wavelength), mid infrared (MIR) (1.3-3.0 um wavelength), and thermal
infrared (TIR) (3.0-14 pm wavelength); and microwave spectrum
(1 mm-1 m wavelength). In this section, we present a list of satellite
sensors that belong to the optical/thermal spectrum (Table 1), micro-
wave spectrum — which are categorized under active microwave sensors
(Table 2) and passive microwave sensors (Table 3), and gravity field
sensors (Table 4). These tables also contain information on duration,
spatial and temporal resolutions of satellite sensors.

3. Remote sensing for food security

Agriculture is one of the essential sectors to support the livelihood
of humans and livestock. Its growth is imperative for the growth of the
economy and the alleviation of poverty. With the advent of technology
and improvements in pesticides and fertilizers, modern agricultural
practices have significantly increased crop yields compared to that of
traditional agricultural practices (Hazell and Wood 2007). Satellite
remote sensing provides efficient means to monitor agriculture at large
spatial scales. The following sections present remote sensing applica-
tions in three aspects of food security, crop growth assessment, irriga-
tion, and crop losses.

3.1. Crop growth assessment

Crop yield is generally used to represent the outcome of agriculture.
It is defined as the weight of crop output (e.g., grain, fruit) at certain
soil moisture content per unit harvested area of the crop (Fischer 2015).
Crop yield is dependent on meteorological conditions, water and nu-
trient availability, and the amount of absorbed photosynthetically ac-
tive radiation (aPAR). Crops should be supplied with the above inputs
and protected from pests and diseases in order to produce expected
yield. In this process, there is a need for continuous monitoring of crop
growth. Here we present the critical variables necessary to monitor crop
growth.

The aPAR of the crop depends on the incoming solar radiation and
the crop’s photosynthetically active radiation interception capability,
which is mainly influenced by the leaf area (Rembold et al. 2013).
Besides, the fraction of absorbed photosynthetically active radiation
(fPAR), a widely used variable, normalizes aPAR with the amount of
incident solar radiation. The fPAR further influences a) Gross Primary
Productivity (GPP) - the rate at which plant absorbs the incident ra-
diation during the photosynthesis, and b) Net Primary Productivity
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Fig. 1. Schematic diagram of the review of the role of remote sensing applications for agriculture management.

(NPP) - the rate at which the absorbed energy is stored as plant bio-
mass. GPP and NPP are expressed in the units of weight of carbon per
unit area per unit time (generally gC/m?/yr). The GPP, in a way,
measures the accumulated photosynthesis during the crop growth. Both
crop yield and crop biomass are measured as weight per area (generally
kg/hectare or tons/hectare). The Light Use Efficiency (LUE) is the ef-
ficiency with which the plant converts aPAR to NPP
(NPP = aPAR x LUE) (Monteith 1977).

The Leaf Area Index (LAI), defined as the ratio between the one-
sided green leaf area and ground surface area, is used to assess the leaf
characteristics and crop biomass (Mulla 2013). It influences the canopy
reflectance. Typically, LAI ranges between 0 (bare ground) to more
than 10 (evergreen coniferous forests) (lio et al. 2014). Recently, Solar
Induced Chlorophyll Fluorescence (SIF), an indicator of plant photo-
synthetic activity, is used to study plant productivity (Guanter et al.
2014). The indicators discussed here are widely used to study plant
growth with remote sensing (Bartlett et al. 1988; Fassnacht et al. 1997;
Shibayama et al. 1993; Thenkabail et al. 1994; Wiegand and
Richardson 1990). The methods to estimate these indicators using re-
mote sensing information can be classified broadly into three cate-
gories: 1) regression-based methods, 2) physics-based methods.

3.1.1. Regression-based methods

Remote sensing of crop yield relies on crop spectral properties,
which vary according to the growth stage of the crop, type of crop, and
its health. During the 1970 s, field and airborne remote sensing cam-
paigns are conducted to monitor the vegetation and crop yield (Collins
1978; Tucker, 1979; Tucker and Maxwell 1976). These efforts have
resulted in the development of vegetation indices, which are functions
of spectral reflectance from specific wavelengths (recorded by the re-
mote sensor). Specifically, the vegetation is found to be very reflective
and absorptive in the near infra-red (NIR) and red bands. Therefore,
some combination of these reflectivities from these two bands will be
sensitive to the vegetation dynamics (Sellers 1987; Tucker, 1979).
Among these indices, Normalized Difference Vegetation Index (NDVI)
(Rouse et al., 1974) is perhaps the most widely used index to monitor
vegetation health and dynamics. Given its strong relationship with LAI
and fraction of absorbed PAR (fPAR; the ratio between absorbed PAR

and incident PAR), NDVI can be related to crop yield (Baret and Guyot
1991; Groten 1993; Prince 1991). In addition to NDVI, some more
vegetation indices are proposed in the past in order to address the issues
about atmospheric effects and canopy background, among others
(Gitelson 2004). Some of them include Enhanced Vegetation Index
(EVID) (Liu and Huete 1995), Normalized Difference Water Index
(NDWI) (Gao 1996), two-band EVI (EVI2) (Jiang et al. 2008), and
Green-Red Vegetation Index (GRVI) (Motohka et al. 2010). Additional
vegetation indices can be found in the agricultural drought section of
part two of this review series (Chawla et al., 2020). In the past, the
timeseries of vegetation indices have been used to monitor crop growth.
Lunetta et al. (2010) used MODIS NDVI data to assess the cropping
patterns in the Laurentian Great Lakes Basin. Skakun et al. (2017) used
MODIS NDVI data along with air temperature information from
MERRAZ2 reanalysis product to carry out winter crop mapping in Kansas
(USA) and Ukraine. Tao et al. (2017) assessed spatio-temporal varia-
tions in the crop frequency using MODIS NDVI and EVI data along with
ancillary information in Hubei province (China).

3.1.1.1. Crop Yyield estimation using vegetation indices. In the case of crop
yield estimation, the plethora of literature indicated the existence of the
strong relationship between crop yield and vegetation indices
(Anderson et al. 1993a; Shanahan et al. 2001; Tucker et al. 1980;
Wiegand and Richardson 1990; Wylie et al. 1991). Several of these
works established a regression relationship between vegetation index
and observed crop yield and later used the relationship to predict crop
yield with new vegetation index information. For instance, Bolton and
Friedl (2013) setup linear regression between county-level yield and
MODIS NDVI, EVI2, and NDWI in the Central United States. The crop
yield information is obtained from data compiled by the United States
Department of Agriculture (USDA) National Agricultural Statistics
Service (NASS). Recently, Tuvdendorj et al. (2019) found that a
combination of NDWI, NDVI, and visible and shortwave infrared
drought index (VSDI) (Zhang et al. 2013) among nine considered
vegetation indices performs best when linearly regressed with spring
wheat yield.

Our review of the literature indicated that most of the works have
aggregated the vegetation index over a period of time and then related



Journal of Hydrology 586 (2020) 124905

(T-1vD
-OSNV.1) IoSeul] [0S019y pue pnoj) - U0NBAISSqQ UOGIED 10J IOSUS

Pparequ] JeaN puy [euLay ], {(SIJ-OSNV.L) J91owondads uLiojsuery,

skep ¢ w Q0ST ‘00S () unl gg'g — wu 0GZ Juasard — 10g  JI9LINOY - UOIIBAIISQ UOQIED J0J JIOSUSS PaJeIju] JeaN puy [eULISy], (LVSOD) N[[PLVS 3uIAIdsqQ sased asnoyuanin
Juasaxd
skep g w QT pue W Qg W 09 (z) wr 61 —Wu Oby - L10Z PUB ST0T (IS) 1o8ew] [end>ads-nmn 4¢ pue yg [punusg
skep 9T w 0§/ W GLE (zg) um 10°gL -~ wu gIy Juasa1d-110g (SUIIA) 21Ng 1)2wWoIpey Surdew] pareyu] S[qISIA 0Z-VVON
(SHOJ) SO[93IBS [BIUSWUOIIAUY
Juasaxd 3uniqiQ 1e[od (S,YYON) SUOHeNsSIUIupy
Kep 1 unf § Uy T°1 (9) wrl g'gT —wu 085 — ZTI0T PUB 600T (Y¥HAYV) 1219wo[pey uonn[osay YSIH A1/ padueApy suRydsouny pue dIueadQ [eUoneN
(MIMS ‘8) WU S9ET-S6TT
(MIMS) w £'¢ ‘(Jendadsnnur) (rendadsnnu {g) wu 0F01-00%
Aep 1 > w g T ‘(oneworypued) w 10 (oneworypued) wu 008-0SH juasaxd - £00T sI0Suas YIMS ‘[endadsninur Oneworydued Y/€/C/T-MIIAPJIOM
(uonnjosax
skep §'T un{ O X up{ 08 [endads Wu 1§°0-92°0) WU 06/ — 0¥T ussaid - 9002 (Z-HINOD) g-IuswLdxy SULIOUOI SU0zZ( [BqO[D 4/V-dOLAN
(41 8) Wil $°€T saI[[aIes
- un] ¢ ‘uny T - 6°€ {(MIN/QIqISIA ) um 9°'T — $°0 juasaxd - 00T (TMIAHAS) 1o8ew] parenyu] pue d[qIsIA paosuequy Suruulds  Areuoneisoasd (DSIA) UOIIRIUSL PUOIIS JBSON
skep gg w O0ZT ‘W 00E (ST) wu 0y0T - 06€ Z10T — TO0T (ST uswnsy] Iojowordads Surdew] uonn[osay WNIPIN LVSIANA
skep g'¢ — 1 w G9'Q ‘W z9'zg wu 006 — 0Sp S10Z-1002 10SUSS dNBWOIYDURJ I0SUSS [endadsnmiy pagypmo
skep 91 w og (0 ¢ g)un g — wu 06¢ £102-000T uorrdAH 1-A1010A195q0 YRy
skep 91 un [ pue ‘w QS ‘W 0Sg (9¢) wnl $'41 — wu OO Juasaixd — 000T (SIAOIN) 1919worpeIondads Surdewr] uonN[osay 1LISPOIA enby ‘era],
sep ¢ w zg'o ‘wyge () wu 006 — St S10Z2-6661 10SUSS dNBWOIYDURJ I0SUSS [endadsnmiy SONOMI
skep 9g unf T (p) wrl 62T — wu g S10T — 8661 uoneIdsA
skep 9g w QT ‘W Qg (p) wrl 62T — wu 00§ €10T — 8661 (JIAYH) PaI-eyju] pue 3[qISIA UONN[osay YSIH
skep 9g w Qg () wu 006 — WU 005 60029861 (A¥H) 2IqISIA UONN[OSY YSIH (LOdS) 21131, B[ 9p UONEAISSGQ,] od a11foles
skep 9 w 578 (9) wrl g'gT - wu g€ S661 — 8461 (SDZD) IsuuedS I0[0D SUOZ [BISLOD £-SOEININ
(£ 1espueT 10J § ‘G pue ‘4 jespueq IojJ
skep 91 w QgL ‘wog L) um Gl - $0L ‘wn Gg'g - W 0Gh yuasaxd - g/61 (ALLY) 1addepy dneursy, padueyuy pue (L) odde onewayr,
(S pue p
skep 91 ‘sAep 81 w 09 I0 ‘WI 4G  ‘g°C‘T JespueT 1oj ¢) uml 1'T — wu Q0S5 Juasaxd — /61 (SSIN) wd)sAS Jouueds Tendadsnnp Jespue]
uonnjosay (spueg
[erodwag, uonnjosay [eneds Jo requny) aduey Ad>usanbaig uonjeinq I0SUdS [Ies

L. Karthikeyan, et al.

*MI1ASI ST} Jo 1red e Se Papn[dUI dIe Jey) SIosuas oY) ATuo Juasard 9p "9ATISNEYXS 10U SI 3[qe) Y} Jey] 2JON "SuUONeIN3Yuod IPY) PUL SIOSUSS [RULISY)/[edndo YIIM SIII[[aes JO ISIT
1 91qeL



Journal of Hydrology 586 (2020) 124905

L. Karthikeyan, et al.

skep ¢-1 un| 6€ X Lb (D) zHD 1T Iussaid - GT0T
(zZHD 68) UM € X § ZHD 68
{(ZHD §'9¢) W £ x TT {(zHD 8'€7) U 1T X 61 (ZHD L'8T) UM y1 X CT ZHD S'9€ ‘ZHD §'E€T ‘ZHD L'81
skep g-1  {(zZHD S9°0T) W bT X Tk (ZHD €£) Uy G€ X 29 (ZHD €6'9) UD| G€ X T9 ZHD §9°01 ZHD €'Z ZHD €69 Iudsaid — 10T
skep -G uny 0§ > (D zHD b1 Iussaxd - 0102

(zHD 68) UD] $'G(ZHD §9€) WX T ‘(zHD 8'€7)  (9) ZHD 068 ‘ZHD S'9€ “ZHD 8'€T

JI9jowoIpel pueq-T dVINS (dVINS) @AISsed 9ATIOY 2IMISIOI [10S

(2dSINY) ¢ T93worpey
BUTUURdS SABMOIDIA] PIOURAPY M-INODD
I9)9WoIpeI pueq (SYMIIN) SIsaqiuAs ainjrady
-1 (SOINS) ANuI[es UeadQ 2IMSIOI [I0S  Sulsn JojowoIpey SuiSew] IABMOIDIN
(-4SIV) (SOH)
wR)SAS SuIAIesqQ YlIed-193woIpey

skep z-1 uy g (ZHD £'8T) WM Ig {(ZHD S9°01) Wy 8¢ (ZHD ST6'9) Uy 95 ZHD L'8T “ZHD S9°01 “ZHD ST6'9 1102-200C SuruUEdg SABMOIIA PRIUBAPY enby
uonnosay (spueg
Terodway, uonnjosay [eneds Jo 1aquiny) a8uey Aduanbaig uonemq JI0SUdS aEIes

*MIIADI ST} Jo 11ed B Se Papnydul a1k Jey] SIOSUds Y} A[uo juasaid 9| "9ATISNEYXS 10U SI 3[qe) dU3 1By} 0N

.mEOwumhﬂM@EOU J19Y) pue SIOSUIS 9ABMOIdTW v>mwwmQ YIM SalI[[a3es JO ISI'T
€ dqeL

Jur1d)ooj sajedIpul,,

nuﬁoE ®>N>>v wOog X wg ROUOE yems wE\S.Nbxwv w 00T X Wwgg ur-@m@.a

m%m—u Cl pue AMUOE Jiems spm U_EUEO.EW.H@HEC w Qg X wg AQUOE mmEn—_kuwv wg X wg ZHO S0¥’'S = 910¢C pue 10T Tepey uuﬂuhwn_zw uﬁuﬂuﬁ%m pueqg-d d1 pue Y[ [unusg

(avs)
skep sz wos-1 (1) zHD SE'S £102-¢10T  Iepey aimuady dNouIuAkg pueq D 1-1LVSIM
skep 11 (AVSNVOS) W G'8T {(dVINAIYLS) W €€ ((LHOITLOdS) W T'T (1) zHD S9'6 ussaxd - 0102 X-4vS X-INHQUel,
skep 11 (MVSNVOS) W §'8T {(dVINAIYLS) W €°¢ (LHDOITLOdS) W T'T (1) zHD S9'6 Juasaxd - £00T X-9vs X-4VSeln],
skep g w 001-¢ (1) zHD SO¥'S jussaxd - £00z  (pueq-D) Tepey 2misady dNAUIUAS Z-LVS¥vVavyd
skep g-1 wy 5T (1) ZHD STT'S Juasard - £00Z  (LYDSV) 1232WOI) [YDS PIdUueApY 4/v-doeIN

(NOIOTIIDNH-UVSNVIS) W 00T (NOIDTIIAIM-YVSNVDIS)

skep 91 u Og {(DNOJONI-dVINAIYLS) W ST (ADVINIH-dVINATYLS) W § {(LHOITLOdS) W T (1) ZHD 09'6 Juasaxd - £00T 0002 ¥VS PRINAYS-ONSOD

(ot0T (dvSV) Teped
woy) skep 0g ‘skep Gg w Og (1) ZHD €' Z10Z — 200T amj1ady dHAYIUAS padueApy LVSIANA

(spueg jo

uonnjosay ferodwa], uonnjosay reneds JIaquny) a8uey A>usnbaig uoneing I0SU9S [[eIes

*M31A3I ST} Jo 1red & se papnpour a1e Jey) sIosuas o) A[uo Juasaid 9\ "IANISNEYXD JOU ST 3[qe) Y} Jey) A)ON ‘SUONeINSHUOd IPY) PUL SIOSUDS DABMOIIIUW JATIOR (M SII[AIES JO ISIT

¢ ?1qelL



L. Karthikeyan, et al.

Table 4

List of satellites that measure the gravity field and their configurations. Note that the table is not exhaustive. We present only the sensors that are included as a part of this review.

Temporal Resolution

Spatial Resolution

Frequency Range (Number of Bands)

Duration

Sensor

Satellite

30 days
30 days

400 km

24 GHz; 32 GHz

2002 - 2017

K-Band Ranging (KBR) twin-satellite system

Gravity Recovery and Climate Experiment (GRACE)

GRACE-Follow-On (FO)

400 km

24 GHz; 32 GHz

2018 - present

K-Band Ranging (KBR) twin-satellite system

Journal of Hydrology 586 (2020) 124905

to the corresponding crop yield instead of using instantaneous (satellite
overpass) observations. This is because the nature of dependency be-
tween crop yield and spectral reflectance varies with crop growth
(Labus et al. 2002; Rudorff and Batista 1990). Besides, temporal in-
tegration or aggregation of vegetation indices reduce the noise due to
other factors (such as effects due to soils and clouds) in the vegetation
responses. They also account for the total effect of photosynthesis
(Benedetti and Rossini 1993; Rudorff and Batista 1990). The aggrega-
tion can be carried out by considering the maximum value of vegetation
index, mean of peak values of vegetation index, the summation of ve-
getation index values in a crop cycle, vegetation index during the end of
the season, among others. In this context, Funk and Budde (2009) in-
dicated that NDVI accumulated during the mid-to-late season has a
better correlation with the crop yield compared to other aggregation
methods. Quarmby et al. (1993) used smoothened AVHRR (Advanced
Very-High-Resolution Radiometer) NDVI integrated over the growing
season for estimation of crop yield of wheat, cotton, rice, and maize
crops through linear regression. Liu and Kogan (2002) used AVHRR
Vegetation Condition Index (VCI) (Kogan, 1995) to monitor soybean
crop production in Brazil. In this work, the authors considered the ratio
of observed yield and trend yield (to account for technological im-
provements and an increase in food demand) as yield indicator. Lai
et al. (2018) estimated wheat yield as a function of integrated Landsat
NDVI (obtained during the growing season) with reasonable accuracy
in the northern grain-growing region (NGR) of Australia. Mirasi et al.
(2019) used the sum of Landsat 8 Operational Land Imager (OLI) NDVI
values (during the growing period) as an indicator to estimate wheat
yield in Iran. Their results indicated that the model simulates yield at
the highest accuracy 49 days before harvesting during which wheat
grains would turn milky matured.

Some studies also used a non-linear regression approach to estimate
crop yield using vegetation index (Hayes and Decker 1996; Holzapfel
et al. 2009; Ma et al. 2001; Mkhabela et al. 2011). Attempts have also
been made to consider meteorological variables along with vegetation
index as predictors in the statistical regression model to estimate the
crop yield (Balaghi et al. 2008; Cai et al. 2019; Johnson 2014; Prasad
et al. 2006; Shao et al. 2015).

3.1.1.2. LAI estimation using vegetation indices. Estimation of LAI using
remote sensing techniques generally involved optical and microwave
sensors. Early studies have used local-scale (field) measurements to
linearly relate LAI with spectral reflectance information (Asrar et al.
1985; Gallo and Daughtry 1987; Gardner and Blad 1986). These works
tested the applicability of NDVI and ratio vegetation indices (RVI; by
considering various plausible wavelength combinations) (Pearson and
Miller 1972). Johnson (2003) established linear regression between
Ikonos NDVI and in-situ LAI in a Napa Valley vineyard. Fan et al.
(2009) established linear and exponential relationships between NDVI
and LAI using in-situ measurements over grasslands in Mongolia.

3.1.1.3. Use of hyperspectral vegetation indices. Despite the popularity of
NDVI, the literature indicates that the NDVI values tend to saturate
when the LAI values are very high (greater than 8) (Baret and Guyot
1991; Gu et al. 2013; Houborg et al. 2007; Wang et al. 2018). Gitelson
(2004) attempted to reduce the effect of saturation by proposing a new
index called the Wide Dynamic Range Vegetation Index (WDVI).
Furthermore, hyperspectral vegetation indices have also exhibited an
ability to reduce the saturation effect (Fang et al. 2019). The
hyperspectral sensors also measure the reflectance from the red-edge
vegetation spectrum — which is the sharp slope between low reflectance
red spectrum and high reflectance NIR spectrum - situated between 350
and 1050 nm wavelength (Darvishzadeh et al. 2009; Thenkabail et al.
2000). Some of the vegetation indices that consider red-edge spectrum
include Red-edge normalized difference vegetation index (NDVI-RE)
(Gitelson and Merzlyak, 1994), Chlorophyll index Red-edge (CI-RE)
(Gitelson et al., 2003), and Modified simple ratio Red-edge (R-RE) (Wu
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et al. 2008). Several studies have indicated a strong relationship
between the red-edge inflection point (wavelength where the
maximum slope of spectral reflectance is attained) and LAI of crops
(Delegido et al. 2013; Dong et al. 2019; Gupta et al. 2003; Herrmann
et al. 2011; Liu et al. 2004). Kira et al. (2016) ascertained that red-edge
and NIR bands to be most informative for LAI estimation. Besides,
several narrow-band vegetation indices are proposed that can
accurately model the crop yield and LAI information (Haboudane
et al. 2004; Thenkabail et al. 2000).

Attempts are made to compare the efficiency of multispectral and
hyperspectral reflectances and associated vegetation indices towards
the estimation of LAI and crop yield (Broge and Leblanc 2001; Lee et al.
2004; Mariotto et al. 2013; Thenkabail et al. 2002; Vina et al. 2011;
Zhao et al. 2007). We find no consensus on which among the two sets of
indices is more accurate. The accuracy of a vegetation index is found to
be influenced primarily by the crop type, vegetation saturation, soil,
and atmospheric effects, among others (Fang et al. 2019). Furthermore,
sophisticated regression and machine learning techniques are also used
to model crop yield and LAI using satellite sensor-based vegetation
indices. Some of them include partial least square regression (Hansen
and Schjoerring 2003; Li et al. 2014; Nguyen and Lee 2006), artificial
neural networks (ANN) (Johnson et al. 2016; Panda et al. 2010), sup-
port vector machines (Durbha et al. 2007; Tuia et al. 2011), and
random forests (Liang et al. 2015; Wang et al. 2016). Recently, Wang
et al. (2018) estimated rice LAI using all of the above techniques and
found random forests to perform better.

3.1.2. Physics-based methods

It is important to note that the above-described regression-based
techniques are site-dependent and cannot be spatially transferrable.
Due to this issue, these methods are only applicable at the local scale.
Moreover, it is generally not possible to determine multiple variables
through these techniques (Dorigo et al. 2007). Large scale simulation of
crop biophysical variables requires the incorporation of the physics of
the process into the modeling strategy. Land surface covered with ve-
getation will have reflectance from three components, 1) individual
leaves, 2) canopy as a whole, and 3) soil type. Ideally, the physics-based
models simulate reflectance from all the three components to estimate
the top-of-canopy reflectance. The top-of-canopy reflectance values si-
mulated from these models are then corrected for atmospheric effects —
using an atmospheric radiative transfer model - to obtain top-of-at-
mosphere reflectance, which is comparable with measured satellite
reflectance (Verhoef and Bach 2003; Vermote et al. 1997).

Leaf optical models and canopy reflectance models deal with si-
mulating the scattering and absorption properties of leaves and canopy,
respectively. One of the widely used leaf optical models is the PROS-
PECT model (Jacquemoud and Baret 1990), which is a radiative
transfer model that simulates the optical properties of leaves in the
wavelength range of 400-2500 nm. The PROSPECT model considers
leaf mesophyll structure, pigment concentration, dry matter content,
and water content as inputs. PROSAIL-4 and PROSAIL-5 models are the
improved versions of the original model (Feret et al. 2008). Canopy
reflectance models are categorized into kernel-based, turbid-medium,
geometrical, and computer simulation models (Fang et al. 2019). Of
these models, turbid-medium models are used widely. These models
consider leaves as “small, randomly distributed absorbing and scat-
tering elements with no physical size” (Dorigo et al. 2007). The Scat-
tering by Arbitrarily Inclined Leaves (SAIL) model (Verhoef 1984) is a
widely used canopy reflectance model. The SAIL model is a radiative
transfer model, which considers primarily 1) canopy parameters (e.g.,
LAI and leaf angle distribution), 2) view and illumination parameters
(e.g., view angle), 3) soil reflectance, and 4) leaf transmittance and
reflectance parameters as inputs to simulate canopy bidirectional re-
flectance. The SAIL model, coupled with the PROSPECT model - in
terms of providing leaf transmittance and reflectance - results in the
PROSAIL model (Jacquemoud et al. 2009). Fig. 2 shows an illustration
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of the PROSAIL model (Berger et al. 2018).

Retrieval of crop parameters such as LAI through these physics-
based models involves model inversion wherein the set of inputs that
can minimize the error between simulated model atmosphere corrected
reflectance and remotely sensed reflectance are estimated. Dorigo et al.
(2007) noted three kinds of model inversion schemes, 1) model opti-
mization, 2) lookup table approach (LUT), and 3) Artificial Neural
Networks (ANNs). For instance, Bacour et al. (2006) used ANNSs to train
the synthetic data generated with the PROSAIL model and then re-
trieved LAI (along with other variables) using ENVISAT-MERIS re-
flectance information. Li et al. (2015) used multi-objective genetic al-
gorithms based inversion of the PROSAIL model to retrieve LAI of
winter wheat. Li et al. (2018) performed LUT inversion of the PROSAIL
model to estimate LAI of winter wheat using China Centre for Resources
Satellite Data and Application (CRESDA)’s GF-1 Wild Field Camera
(WFV) data. Despite the applicability of physics-based models over
larger areas, these models often suffer from the problem of equifinality,
i.e., possibility of the existence of multiple solutions that result in op-
timality. Besides, model and observation uncertainties also result in the
inversion to be an ill-posed problem. Several regularization schemes
including incorporating prior information about variables of interest
(for example, Combal et al. (2003)), have been proposed to circumvent
the problem of equifinality in physics-based models (Atzberger 2004;
Baret and Buis 2008; Rivera et al. 2013; Verrelst et al. 2013). Li et al.
(2015) used the prior knowledge of the empirical relationship between
LAI and leaf chlorophyll content (LCC) to improve the PROSAIL model
inversion for the retrieval of winter wheat LAL

Regression and physics-based models (radiative transfer model in-
version) are used to obtain LAI products at global scales. Some of the
operational products include MODIS MCD15A3H Version 6 (Myneni
et al. 2015; Myneni et al. 2002), EUMETSAT’s SEVIRI (Spinning En-
hanced Visible and Infra-red Imager) MSG (Meteosat Second Genera-
tion) LSA-423 (Garcia-Haro et al. 2019), Visible Infrared Imaging
Radiometer Suite (VIIRS) VNP15A2H (Myneni and Knyazikhin 2018;
Yan et al. 2018), and AVHRR LAI Version 4 (Claverie et al. 2016)
among others. Fang et al. (2019) provide a comprehensive list of global
LAI products.

3.1.3. Assimilation of remote sensing data in crop simulation models

It can be noted that the physics-based models described above only
consider the crop and soil-related parameters. Crop simulation models,
on the other hand, consider the changing meteorological conditions,
agricultural practices along with crop and soil conditions to simulate
crop yield, among other variables. Some of the widely used crop si-
mulation models include decision support system for agrotechnology
transfer (DSSAT - a package of multiple crop models) (Hoogenboom
et al. 2019; Jones et al. 2003), WOrld FOod Studies (WOFOST)
(Boogaard et al. 1998; Van Diepen et al. 1989), Agricultural Production
Systems sIMulator (APSIM) (Holzworth et al. 2014), Simulateur mul-
TIdisciplinaire pour les Cultures Standard (STICS) (Brisson et al. 2003),
model for nitrogen and carbon dynamics in agro-ecosystems (MONICA)
(Nendel et al. 2011), Daisy model (Abrahamsen and Hansen 2000),
AquaCrop model (Raes et al. 2009; Steduto et al. 2009), Environmental
Policy Integrated Climate Model (EPIC) (Williams et al. 1989), SWAP
(Soil, Water, Atmosphere and Plant) model (Kroes et al. 2009), and
Crop Environment REsource Synthesis — CERES (wheat — Godwin
(1990); maize — Ritchie et al. (1989); barley — Otter-Nacke et al. (1991);
rice — Singh et al. (1993)). Delécolle et al. (1992) noted three important
characteristics of crop simulation models, 1) they can dynamically
consider inputs at an interval and produce the outputs while updating
the state variables, 2) they contain parameters, which can be tuned
according to the growth period and the crop species, and 3) they take
into account the crop development. Applying crop models over large
areas can be challenging due to immense data requirements. Moreover,
there can be uncertainties associated with the input datasets that affect
the quality of the outcome. Remotely sensed information has the
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Fig. 2. Illustration of the PROSAIL model (reproduced from Berger et al. (2018)). Readers may refer to Berger et al. (2018) for details on the symbols used in the

figure.

potential to address these issues. There are two ways of using remotely
sensed crop growth variables in the crop simulation models, 1) replace
them with model-simulated state variables to obtain output, and 2) use
them to tweak the model state variables thereby altering the output.
The second method is generally applied in a data assimilation frame-
work.

3.1.3.1. Assimilation of vegetation variables. In the process of using
remote sensing information, studies have used either the readily
available products (discussed above) or used the state variables
retrieved from the canopy reflectance model or regression-based
model as an input to the crop simulation model. Some of the state
variables, such as fPAR, LAI, canopy height, and above-ground biomass
used in crop simulation models, can be “corrected” using remote
sensing information (Dorigo et al. 2007). Doraiswamy et al. (2004)
and Doraiswamy et al. (2005) used Landsat and MODIS reflectance
respectively as input to the SAIL model (which is driven by in-situ
measured leaf reflectance data) to retrieve LAI, which is fed as input
along with weather and soil data to a simple climate-based crop model
to obtain crop yield map. While Doraiswamy et al. (2004) used
minimization of error between observed (in-situ) and simulated LAI
to tune the SAIL model, Doraiswamy et al. (2005) also considered error
between observed (satellite) and simulated reflectance in the objective
function. A similar methodology is also implemented in other works
(Migdall et al. 2009; Verhoef and Bach 2003).

It is important to note that by replacing the model simulated data
with the satellite retrievals, the satellite-based output is assumed to be
completely free from errors. In case, this assumption is violated, the
quality of output from the crop models get affected. Data assimilation
attempts to alleviate this issue by combining the satellite and simulated
data by considering their error variance. So, the data assimilation
scheme adjusts the state variable (e.g., LAI) simulated by the model
based on satellite information. The modified state variable will alter the
subsequent model fluxes (such as crop yield). Kalman filter (Kalman
1960), Ensemble Kalman Filter (Evensen 2003), Particle Filter
(Arulampalam et al. 2002; Gordon et al. 1993), Variational Data As-
similation (Barker et al. 2004; Rawlins et al. 2007) are some of the
widely used assimilation techniques. Liu et al. (2019) assimilated
AMSR-E and SMOS soil moisture into the DSSAT model and found
improvement in the accuracy of maize yield estimates in South Car-
olina, USA.

3.1.3.2. Assimilation of soil moisture. Apart from vegetation variables,
the information on soil moisture plays an essential role in the aspects of
agricultural management, monitoring droughts, and crop yield
assessment, among others. Active and passive microwave remote

sensing can be used to retrieve surface soil moisture content. It is
important to note that the backscatter or the brightness temperature at
top-of-canopy contains the contributions from canopy and soil (e.g.,
refer to WCM in Section 3.1.5.1). Therefore, having an accurate soil
moisture information helps in separating these two contributions.
Several retrieval algorithms are available to retrieve soil moisture
from microwave observations (Karthikeyan et al. 2017; Wigneron
et al. 2017). For instance, Ines et al. (2013) assimilated AMSR-E soil
moisture and MODIS LAI in a modified DSSAT crop simulation model
using EnKF to improve the yield estimation of maize crop. A similar
attempt is made by Chakrabarti et al. (2014) in the context of SMOS to
improve the estimates of soybean yield. Wit and Van Diepen (2007)
assimilated ERS 1/2 scatterometer based soil moisture product into the
WOFOST crop simulation model using EnKF to improve estimates of
winter wheat crop yield. Soil moisture from passive microwave sensors
is found to improve crop yield estimation (Mladenova et al. 2017).
Recently, Huang et al. (2019) and Jin et al. (2018) provided a
comprehensive review of data assimilation techniques used in the
crop simulation models.

3.1.4. Crop Yyield assessment using remote sensing of plant photosynthetic
activity

Photosynthetic activity influences biomass production (Hofius and
Bornke, 2007). Therefore, Solar Induced Fluorescence (SIF) can be a
direct indicator of crop yield, compared to the optical vegetation in-
dices such as NDVI (which are responsive to only leaf area changes)
(Guan et al. 2016; Guanter et al. 2014). SIF can be retrieved using
physics-based radiative transfer models. For instance, the SAIL model is
modified to include a fluorescence component (Miller et al. 2003;
Rosema et al. 1991). The model proposed by Miller et al. (2003) is
extended further to result in state-of-the-art Soil Canopy Observation,
Photochemistry, and Energy fluxes (SCOPE) model (Tol et al. 2009).
Pacheco-Labrador et al. (2019) used ground measurements as input to
retrieve SIF, GPP, among other variables by inverting the SCOPE model.
Recently, radiative transfer models with the ray-tracing technique are
proposed to simulate fluorescence from a three-dimensional vegetation
structure (suitable for crops) (Gastellu-Etchegorry et al. 2017; Zhao
et al. 2016). The detailed developments on the remote sensing of SIF are
presented by Meroni et al. (2009) and Mohammed et al. (2019).

Attempts are made to relate the remotely sensed SIF observations
with GPP (Guanter et al. 2014; Hu et al. 2018; Liu et al. 2017). In one of
the earlier studies, Guan et al. (2016) estimated GPP empirically over
the USA using Global Ozone Monitoring Experiment-2 (GOME-2) based
SIF data. Paul-Limoges et al. (2018) find that the type of diurnal re-
lationship (linear or hyperbolic) between SIF and GPP is affected by the
local environmental conditions. Somkuti et al. (2020) found a strong
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relationship between the Japanese Greenhouse gases Observing SA-
Tellite (GOSAT) based SIF retrievals and crop yields of corn and soy-
bean in the USA. The satellite SIF data is used to estimate the crop yield
using statistical regression (Cai et al. 2019; Guan et al. 2017). Attempts
are now being made to couple the radiative transfer models that si-
mulate SIF with biosphere models in an assimilation framework to
improve the accuracy of GPP simulations (Norton et al. 2018).

3.1.5. Crop yield assessment using microwave data

Satellite microwave sensors measure the electromagnetic radiations
emitted from the Earth's surface in the microwave spectrum. They can
be classified into the active microwave (radar) and the passive micro-
wave (radiometer) sensors. In the former case, the radar sends its beam
of radiation towards the Earth's surface and measures the reflected
signal in the form of backscatter coefficient (¢°). In the latter case, the
radiometer measures the naturally emitted electromagnetic radiations
from the Earth's surface in the form of brightness temperature (73).
During this process, the microwave radiations get influenced by the
dielectric properties of the target medium (e.g., vegetation, soil).
Besides, these interactions are also influenced by the sensor config-
uration, such as polarization, incidence angle, and frequency. In con-
trast with the optical sensors, microwave radiations can penetrate
through the clouds (essentially a transparent atmosphere, except during
heavy rainfall) and are also independent of solar illumination. The
following section presents the review of active and passive microwave
remote sensing in crop monitoring applications.

3.1.5.1. Use of active microwave remote sensing. Active microwave
(radar) remote sensing is used to retrieve crop variables, which
include LAI, crop height, biomass, crop yield, and leaf structure. The
radar backscatter measurements in higher frequencies (C and X bands)
necessarily look at the upper layers of the canopy, which suits the
retrieval of crop variables (Ulaby et al. 1984). L-band sensors, on the
other hand, would have relatively greater penetration capability. So,
the backscatter signal recorded by the sensors will have a significant
effect due to soil, the effect of which needs to be separated to obtain
accurate retrieval. Synthetic Aperture Radar (SAR) is used generally for
crop monitoring applications (Steele-Dunne et al. 2017). Experiments
have been carried out to assess the strength of relationship between
backscatter coefficient and crop variables (Baghdadi et al. 2009;
Bouman and van Kasteren 1990a,b; Brakke et al. 1981; Canisius et al.
2018; Chakraborty et al. 2005; Chen et al. 2009; De Loor et al. 1982;
Fontanelli et al. 2013; Harfenmeister et al. 2019; Jiao et al. 2011;
Lopez-Sanchez et al. 2010; Paloscia 1998). Kim and van Zyl (2009)
proposed the Radar Vegetation Index (RVI), a function of backscatter
coefficients in four polarizations (HH, VV, HV, VH) to estimate
Vegetation Water Content (VWC) of rice and soybean. RVI is further
used to monitor crop growth (Kim et al. 2011) and biomass (Wiseman
et al. 2014). Furthermore, attempts are made to analyze the backscatter
ratio (e.g. opy/0yy) to assess their relationship with biomass (Satalino
et al. 2009; Veloso et al. 2017), LAI (Chen et al. 2009), and crop growth
(He et al. 2018).

Macelloni et al. (2001) attempted to relate multi-frequency SAR
data (from airborne and satellite sensors) and biomass with a focus on
broad and narrow leaf crops. They concluded that the backscattering
increases with an increase in biomass in the case of broadleaf crops, and
remains flat or decreases in the case of narrow-leaf crops. Some studies
also reported saturation of backscatter at higher LAI or biomass (Asilo
et al. 2019; Inoue et al. 2002; Jiao et al. 2011; Wiseman et al. 2014).
Inoue et al. (2002) took multi-frequency (L, C, X, Ku, Ka bands), mul-
tiple incidence angles (20°-60°), and four polarizations (HH, VV, HV,
VH) backscatter measurements over the complete growth of rice crop to
compare with in-situ measured LAIL, biomass, crop height, and stem
density. Efforts also focused on understanding the influence of soil
moisture and surface roughness on backscatter measurements while
modeling crop variables (Major et al. 1994; Wang et al. 1987). Steele-
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Dunne et al. (2017) provided a comprehensive review of the develop-
ments that modeled crop variables using airborne and ground-based
radars.

Retrieval of crop variables from radar backscatter measurements
generally involve three kinds of models, 1) Water Cloud Model (WCM)
(Attema and Ulaby 1978) — a semi-empirical model that assumes ca-
nopy as a cloud with uniform water droplets randomly distributed
within the canopy, 2) energy and wave approaches — that involve
physics of radiation interactions with vegetation, and 3) polarimetric
decompositions — that extract elementary scattering contributions from
the total backscatter. We find that WCM is widely used in the literature
for modeling the crop variables. So, to keep the review concise, we limit
the applications pertaining to only WCM. A detailed review of radar
backscatter applications in agriculture can be obtained from Steele-
Dunne et al. (2017). In WCM, the co-polarized backscatter coefficient
(cr;P) from vegetation is computed as a summation of backscatter con-
tribution from vegetation (a:eg), soil (o5, and their interactions (1)
(Eq. (1)).

Opp = Oreg + 05 @
where,

g = A-Vi-cos6-(1 — 22) &)

A2 = exp(—2-B-V;-sec0) 3)

Oy = C + D-m, 4

where, 0 is the angle of incidence; A, B, C, and D are the empirical
parameters, which need to be tuned according to the local conditions; ;
and V; are the functions of vegetation indicators (here crop variables).
So, WCM simulates U;P as a function of the crop variable of interest and
soil moisture along with four calibration parameters. Inoue et al. (2014)
used C-band backscatter to establish a relationship with LAI and leaf
biomass, and also retrieved LAI using WCM over rice fields in Japan.
Hosseini et al. (2015) estimated LAI using WCM in corn and soybean
with RADARSAT-2 (C-band) and Uninhabited Aerial Vehicle Synthetic
Aperture Radar (UAVSAR) (L-band) data. Chauhan et al. (2019b) at-
tempted to retrieve what crop height using RISAT-1 SAR data by cou-
pling WCM with ANN. They considered a variable that includes plant
height and other plant variables as vegetation indicators in WCM. Their
study indicates that C-band backscatter is sensitive over corn and soy-
bean, whereas L-band backscatter is sensitive over corn. We observed
that WCM being used to retrieve crop variables and soil moisture
(Hosseini et al. 2015) simultaneously as well as retrieve only crop
variables with soil moisture obtained from ancillary sources (Bériaux
et al. 2011).

It is important to note that inversion of WCM to determine crop
variables is an ill-posed problem, which leads to equifinality, i.e., pos-
sibility of the existence of multiple combinations of vegetation variable
and soil moisture that may result in an optimum value cr;p. Therefore,
inverting WCM is a challenging task while retrieving the crop variables.
Attempts are made to investigate several inversion techniques (e.g.,
optimization, LUT, SVR, and random forests) that address the ill-posed
problem of WCM to retrieve crop variables using SAR data (Mandal
et al. 2019a; Mandal et al. 2019b). Furthermore, Steele-Dunne et al.
(2017) illustrated that the vegetation water content is not uniform
along with the height of the canopy, and it also varies with the crop
growth.

The models explained above are used primarily for the estimation of
LAI and biomass, which are primary indicators of crop yield. In the case
of retrieval of crop height — a strong indicator of crop phenology —
radiative transfer models that describe the scattering nature of vege-
tation are available (Blaes et al. 2006; Bracaglia et al. 1995; Chuah et al.
1996; Karam et al. 1995; Karam et al. 1992; Le Vine et al. 1985; Ulaby
et al. 1990; Wang et al. 2009; Yueh et al. 1992). They belong to the
category of energy and wave approaches. These models consider
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canopy variables such as vegetation height, stem width, number of
leaves, leaf angle, leaf size, dielectric constant, and backscatter from the
soil as inputs to simulate the top-of-canopy backscatter. Although some
attempts are made to retrieve crop height using these models (Le Toan
et al. 1997; Zhang et al. 2014a,b), there may be a need to generate
many datasets (e.g., using Monte Carlo simulations (Tsang et al. 1995))
to run the models (Erten et al. 2016).

SAR interferometry (InSAR) is another popular technique to retrieve
vegetation height. The method is based on the phase difference between
two spatially/temporally SAR acquisitions. However, this method has
limited applications to retrieve crop height due to low spatial and
temporal resolutions of satellite SAR sensors (Erten et al. 2016).
Tandem interferometry — wherein two satellites are flown in close
formation — circumvent these issues, and are useful in retrieving the
crop height. The interferometric coherence (which measures the phase
variance between two SAR images) and differential interferometric
phase are key variables for crop height estimation in this method (Blaes
and Defourny 2003; Rossi and Erten 2014). Studies have found a ne-
gative correlation between coherence and crop height (increase in crop
height results in a decrease in coherence) (Engdahl et al. 2001;
Srivastava et al. 2006). The TanDEM-X mission (Krieger et al. 2007),
which contains twin X-band frequency satellites, became widely pop-
ular to retrieve crop height (Lee et al. 2018; Rossi and Erten 2014; Yoon
et al. 2017).

Polarimetric Interferometric SAR (PolInSAR) is the advanced tech-
nology available to retrieve crop height information. This method uses
polarimetry and interferometry to determine the three-dimensional
structural parameters of vegetation (Cloude and Papathanassiou 1998).
PolInSAR is used widely for estimating the forest height (Cloude et al.
2013; Garestier et al. 2007; Khati et al. 2017; Khati et al. 2018;
Papathanassiou and Cloude 2001). The accuracy of height estimation is
influenced by two important factors among others, 1) temporal dec-
orrelation — degradation of phase quality that occurs due to structural
and dielectric changes in the plant between two acquisitions, and 2)
spatial baseline decorrelation — noise due to difference in positions of
radar sensors between two SAR images that affect the scattering along
the vertical coordinate (Zebker and Villasenor 1992). PolInSAR data is
inverted to retrieve crop height typically using Volume-over-Ground
(VoG) models. These models describe a volume of discrete scatterers
(here crop canopy) on top of an impenetrable topography (here soil)
(Pichierri and Hajnsek 2017).

There are two types of VoG models, 1) random-volume-over-ground
(RVoG) model (Papathanassiou and Cloude 2001; Treuhaft and Siqueira
2000), and 2) oriented-volume-over-ground (OVoG) model (Treuhaft
and Cloude 1999; Treuhaft and Siqueira 2000). After initial tests using
airborne sensor and laboratory data (Lopez-Sanchez et al. 2007; Lopez-
Sanchez et al. 2011), Lopez-Sanchez et al. (2017) proposed a metho-
dology using VoG algorithms to retrieve rice crop height using
TanDEM-X data. Erten et al. (2016) compared the backscatter radiative
transfer model, PolInSAR, and InSAR based inversion algorithms for
rice crop height estimation using TanDEM-X data. They recommended
that an algorithm that combines the former two techniques can make
more reliable crop height retrievals. Apart from InSAR and PolInSAR,
crop height estimation is also possible with the polarimetric synthetic
aperture radar (PolSAR) measurements. However, we find only limited
applications involving PolSAR for the retrieval of crop height
(Yuzugullu et al. 2016).

3.1.5.2. Use of passive microwave remote sensing. Passive microwave
remote sensors (called radiometers) measures the naturally emitted
electromagnetic radiations from the Earth’s surface in the form of
brightness temperature (Tp). Typically, the retrieval algorithm for
vegetation involves a radiative transfer model (RTM). The RTM,
when applied over low frequency (in L-, C-, and X- bands)
measurements, can simulate the measured satellite Tz as a function of
the Vegetation Optical Depth (VOD), a vegetation indicator that
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quantifies the total water content in the leaf and woody components
of above-ground biomass (Liu et al. 2011). The VOD is found to have a
relationship with optical vegetation indices (Grant et al. 2016;
Lawrence et al. 2014; O’Neill et al. 2018), and radar backscatter
measurements (Rotzer et al. 2017). In addition to the VOD,
microwave vegetation indices (which are functions of dual-polarized
Tp are also found to be useful to monitor vegetation (Becker and
Choudhury 1988; Choudhury and Tucker 1987; Choudhury et al. 1987;
Paloscia and Pampaloni 1992; Shi et al. 2008). Current retrieval
algorithms can retrieve VOD using the satellite Tz measurements
potentially without the need for ancillary vegetation information (Du
et al. 2016; Fernandez-Moran et al. 2017; Jones et al. 2011;
Karthikeyan et al. 2019; Konings et al. 2017; Konings et al. 2016;
Owe et al. 2001).

VOD is reported as a potential indicator for crop yield estimation
(Chaparro et al. 2018; Mladenova et al. 2017; Piles et al. 2017). VOD
provides complementary information compared to optical indices such
as EVI while estimating crop yield, given its ability to provide three-
dimensional vegetation water content (Guan et al. 2016; Piles et al.
2017). VOD (from SMOS) is found to explain the crop growth and yield
variability of corn (Hornbuckle et al. 2016; Patton and Hornbuckle
2012). Recently, Chaparro et al. (2018) proposed SMAP VOD seasonal
metrics to assess crop yield variability over the north-central United
States. On the other hand, Mladenova et al. (2017) observed low sen-
sitivity of AMSR-E (Aqua satellite) VOD compared to MODIS NDVI and
EVI while estimating crop yield over the central and eastern US. At-
tempts are being made to utilize the respective advantages of optical
and passive microwave data synergistically to monitor crop yields
(Mateo-Sanchis et al. 2019). Recognizing the importance of VOD, long
term VOD products are being developed (Liu et al. 2011; Moesinger
et al. 2019).

It is important to note that the satellite Ty measurements have a
coarse spatial resolution (which is directly related to the frequency of
the sensor) in the order of tens of kilometers. So, the agricultural studies
using these measurements can be carried out with reasonable accuracy
only when there is homogeneous agriculture taking place in the whole
of the pixel. Besides, standing water, in the case of rice crops, can also
impact the VOD retrievals (Piles et al. 2017).

3.2. Irrigation

Irrigation is defined as the full or partial application of water by
artificial means (either surface or groundwater resources) to counter
the precipitation deficit during the crop growth periods (Ozdogan et al.
2010). Irrigation is the largest consumer of freshwater resources, with
the usage of approximately 70% of the groundwater withdrawals
(Bastiaanssen et al. 2000). The irrigate water is sourced either from the
surface (diverted from control structures such as dams) or groundwater
resources.

Satellite remote sensing offers means to monitor irrigation at large
scales. While we monitor irrigation, we primarily study three aspects a)
identify the locations where irrigations would have taken place, and b)
quantify either the amount of irrigation water supplied or the amount
of water needed to reduce the crop water stress. This section deals with
the developments concerning these perspectives of irrigation.

3.2.1. Mapping of irrigated areas

Accurate mapping of irrigated areas is necessary for a) achieving
precise water allocations to agriculture, b) improving our under-
standing of water budget, and c) for the betterment of simulations from
crop and hydrological models. If we consider optical satellite sensors,
the information from MODIS, AVHRR, and Landsat is used widely for
detecting the irrigation. We find irrigation mapping is carried out in
two ways, 1) analyzing the spectral patterns of a single image to classify
irrigated and non-irrigated areas, and 2) using images over a time
period (e.g., crop growth period) to assess the spatio-temporal
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variations of irrigation patterns. The core concept of these two methods
depends on the variations offered by irrigated areas in terms of spectral
reflectance compared to other land cover categories.

3.2.1.1. Use of optical and infrared sensors. Traditionally visual
interpretation is carried out to identify the irrigated regions using
static maps (Heller and Johnson 1979; Rundquist et al. 1989;
Thiruvengadachari 1981). The information from red and NIR bands is
used widely for visual interpretation. These works also considered
multiple images within a growing season to account for differences in
the irrigation timing and growth stages. Despite its accuracy, visual
interpretation is a cost and time-intensive process (Ozdogan et al.
2010). Also, the visual interpretation can be carried out only on a local
scale. Image classification techniques tend to alleviate this problem.
Some of the commonly used classification algorithms for this purpose
include maximum likelihood technique, image segmentation technique,
spectral matching technique, decision tree classification, density slicing
with thresholds, and multi-stage classification (Abou EL-Magd &
Tanton, 2003; Eckhardt et al. 1990; Manavalan et al. 1995;
Simonneaux et al. 2008; Velpuri et al. 2009). Apart from spectral
signatures, vegetation indices are also useful for irrigation mapping.
NDVI is used widely for this purpose, given its ability to exhibit a
considerable difference between irrigated and non-irrigated pixels
(Ozdogan et al. 2006; Toomanian et al. 2004).

Several studies used multi-temporal images during crop growing
season over several years for irrigation mapping. The multi-temporal
analysis can consider the varying cropping patterns, planting dates, and
crop growth, along with the extent of irrigation. In this context,
Thenkabail et al. (2005) developed a comprehensive algorithm based
on timeseries of MODIS spectral bands (2, 3, 5, 6, and 7) data to detect
irrigation and rainfed classes along with crop onset, peak, and senes-
cence (aging of the plant). The time series of spectral signatures are
generally transformed into vegetation indices and are subjected to un-
supervised classification or thresholding (value that differentiates irri-
gated and non-irrigated areas) to map the irrigation locations (Gumma
et al. 2011; Jeong et al. 2012; Nhamo et al. 2019; Xiang et al. 2019;
Xiao et al. 2005). For instance, Gumma et al. (2011) used eight-day
composites of MODIS NDVI (circa 2001) to map irrigated areas with an
unsupervised classification based framework in the Krishna basin,
India. Xiao et al. (2005) combined eight-day composites of MODIS
NDVI, EVI, and LSWI (Land Surface Water Index) using thresholding to
detect flooded paddy fields of southern China. Xiang et al. (2019) at-
tempted to differentiate the irrigated areas from forest pixels using a
similar thresholding process involving MODIS NDVI and LSWI in
northeastern China.

Efforts are made to use multi-temporal spectral information in a
supervised classification framework (e.g., spectral matching techni-
ques). Based on these techniques, the satellite information is correlated
with the spectral bank (obtained from the ground), and the class that
achieves maximum correlation (with satellite data at a location) will be
assigned (Dheeravath et al. 2010; Thenkabail et al. 2007). Sharma et al.
(2018) used Landsat NDVI, NDMI (Normalized Difference Moisture
Index), and EVI timeseries from 1990 to 2015 in a supervised SVM
(Support Vector Machine) classification framework to identify the ir-
rigated areas in an Indian watershed with spatially heterogenous
cropping system. It is important to note that the supervised analysis
requires an adequate amount of ground-truth information in order to
train the model. Uncertainties in the training data can affect the ac-
curacy of classification. Furthermore, it is difficult to conduct su-
pervised classification at continental scales. Some studies attempted to
circumvent the requirement of ground data by using the Landsat re-
flectance information as a reference (Pena-Arancibia et al. 2014).

Irrigation can result in different crop growth patterns compared to
that of exclusively rainfed agriculture (Thenkabail et al. 2005). Irri-
gated agriculture can result in 2.7 times more crop yield compared to
rain-fed agriculture. Given these reasons, NDVI is predominantly higher
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in irrigated locations (increased greenness due to higher soil moisture).
Hence, several studies utilized maximum NDVI composites for mapping
irrigated regions (Biggs et al. 2006; Chance et al. 2018; Jin et al. 2016).
For instance, Biggs et al. (2006) applied unsupervised classification
over MODIS monthly maximum NDVI composite images for the year
2002 to detect irrigation areas in the Krishna basin, India. Jin et al.
(2016) applied the Support Vector Machine (SVM) classification algo-
rithm on HuanJing (HJ)-1A/B maximum NDVI timeseries to differ-
entiate irrigated and rainfed wheat agriculture in China for circa 2011.
Attempts are made to use peak NDVI information in thresholding based
decision-tree algorithm framework to derive irrigated areas (Ambika
et al. 2016; Pervez et al. 2014). Studies have reported similarity in the
greenness of irrigated and rain-fed crops in humid regions (Ozdogan
et al. 2010; Xiao et al. 2005). So, the inclusion of climate information in
the classification algorithms can address the uncertainties
(Kamthonkiat et al. 2005). Ozdogan and Gutman (2008) implemented
decision trees classification algorithm to identify irrigated areas using
MODIS NDVI and GI (Greenness Index) (Gitelson et al., 2005) along
with climate and agricultural extent information over the CONUS re-
gion for circa 2001.

Chen et al. (2018) determined the irrigation attributes (extent,
timing, and frequency) using MODIS and Landsat timeseries along with
precipitation data, among others, in a heterogeneous landscape in
northwestern China. Recently, Deines et al. (2019) developed high re-
solution (30 m) annual irrigation maps spanning from 1984 to 2017
over the central US. They used Landsat imagery and Google Earth En-
gine along with temperature, rainfall, soil, and terrain information as
covariates in a random forest classifier along with other steps to pro-
duce the dataset.

3.2.1.2. Use of microwave sensors. In addition to optical sensors,
satellite soil moisture products from microwave sensors are also used
to identify the irrigated areas. Microwave sensors offer an advantage
over optical sensors to provide measurements independent of solar
illumination and cloud cover conditions. The operational soil moisture
missions SMOS and SMAP achieved substantial improvements in terms
of the accuracy of satellite soil moisture products. Lawston et al. (2017)
found SMAP 9 km soil moisture products to have an ability to identify
the spatio-temporal patterns of irrigation in the US. There have been
attempts to compare the satellite soil moisture products with rainfall as
well as vegetation patterns to assess the irrigated areas (Qiu et al. 2016;
Singh et al. 2016). Notwithstanding the recent efforts, several
hydrological models do not consider the effects of irrigation because
of the challenges involved in coupling irrigation modules into the land
surface model schemes. In this regard, attempts are made to compare
soil moisture simulations from these models (that do not consider
irrigation effects) with satellite soil moisture products (which consider
both rainfall and irrigation effects on soil moisture) in order to identify
the irrigated areas (Escorihuela and Quintana-Segui 2016; Kumar et al.
2015; Malbeteau et al. 2018; Zhang et al. 2018).

Research is also conducted to assess the potency of radar backscatter
measurements to detect irrigated areas. Fieuzal et al. (2011) found that
oy Envisat/ASAR sensor is sensitive to irrigated areas in the wheat-
growing seasons in Yaqui irrigated area, Mexico. Similarly, Hajj et al.
(2014) found that the timeseries of TerraSAR-X and COSMO-SkyMed X-
Band SAR backscatter is sensitive to the irrigation events over grass-
lands. Recently, attempts are made to use backscatter measurements in
a classification framework to derive irrigation map (Bazzi et al. 2019;
Bousbih et al. 2018; Gao et al. 2018; Sharma et al. 2019). For instance,
Bazzi et al. (2019) used Sentinel 1 SAR timeseries in three classification
algorithms - wavelet-random forest, principle component analysis-
random forest, and convolution neural network (CNN) classifiers — to
map irrigated and non-irrigated areas in Catalonia, Spain.

3.2.1.3. Global products of irrigated area. Few attempts are made to map
the irrigated areas (or areas indicative of irrigation) at the global scale.
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The Global Map of Irrigated Areas version 5 (GMIA 5.0) product
spanning from 2000 to 2008 (Siebert et al. 2015), and MIRCA2000
product for circa 2000 (Portmann et al. 2010) are the two datasets
prepared used the census information. These two products are available
at 5 arc-minute resolution. Global irrigated area map (GIAM) is a global
product developed using meteorological data, land use, and multiple
satellite sensors information (Thenkabail et al. 2009b). The product
primarily uses unsupervised classification and is available at 1 km
resolution for circa 2000. The Global Rain-fed, Irrigated, and Paddy
Croplands (GRIPC) map is another global product that is based on
statistics, climate, and satellite sensor data (Salmon et al. 2015). This
product is developed using a decision-tree algorithm at a 500 m
resolution for the year 2005. The ESA under Climate Change
Initiative (CCI) produced a global land cover map, containing
irrigated and non-irrigated areas, at 300 m resolution for the years
2000, 2005, and 2011 using Medium Resolution Imaging Spectrometer
(MERIS) data with unsupervised clustering and expert knowledge
(Bontemps et al. 2013). Meier et al. (2018) developed a 1 km
resolution global irrigated area product spanning from 1999 to 2012.
The product is based on GMIA and satellite/reanalysis/observations
based vegetation, agriculture, land cover, and precipitation
information. Recently, Zohaib et al. (2019) developed global irrigated
areas product for the year 2015 using satellite-based soil moisture, LST,
and surface albedo along with reanalysis products. It is important to
note that these datasets are difficult to validate at the global scale due
to the lack of observed data. Studies also noticed discrepancies when
these products are evaluated at local scales (Meier et al. 2018;
Thenkabail et al. 2009a; Thenkabail et al. 2009b).

3.2.2. Quantification of irrigation water

Unlike identifying the irrigated areas, it is challenging to quantify
the irrigation water at large scales. This is because, 1) the observed
information of the volume of irrigated is limited to limited spatio-
temporal scales, 2) technical and legal constraints of setting up in-situ
stations (Brocca et al. 2018). Besides, the heterogeneous agricultural
system with varying irrigation practices can lead to significant un-
certainties in the irrigation estimates. In literature, we find two ways in
which the irrigation water is quantified, 1) estimate Irrigation Water
Requirement (IWR), and 2) estimate Irrigation Water Consumption
(IWU). According to the definitions provided by Allen et al. (1998), the
IWR is the difference between the Crop Water Requirement (CWR) and
effective precipitation. It is the amount of water that should be supplied
to maintain the potential transpiration of the crop (Calera et al. 2017).
The IWR also considers water needed for leaching of salts and com-
pensates for the non-uniform water application. Apart from ET,,,,, INR
is a function of precipitation, soil moisture, and soil properties. The
CWR is the amount of water required to manage the losses due to crop
evapotranspiration (ET,.,). Several works used these schemes as basis
to model the IWR (Doll and Siebert 2002; Hanasaki et al. 2010;
Hanasaki et al. 2006; Pokhrel et al. 2012; Rost et al. 2008; Siebert et al.
2010; Sulser et al. 2010; Van Dijk et al. 2018; Wada et al. 2011; Wisser
et al. 2008).

3.2.2.1. Estimation of irrigation water requirement (IWR). ET.,,, is one of
the important variables to estimate IWR. ET,,, is influenced by climate
(air temperature, humidity, radiation, and wind speed) and crop
(growth stage, crop height, and rooting characteristics, etc.)
conditions (Allen et al. 1998). Traditionally Penman-Monteith (PM)
equation is used to estimate ET,, for determining the CWR. This
equation is derived from surface energy balance and aerodynamic
resistance equations. The PM equation, under standard conditions of
vegetation, as defined by the Food and Agriculture Organization (FAO),
can be used to determine reference crop evapotranspiration (ET) (Allen
et al. 1998). ET, multiplied with crop coefficient (k.) yields ET;p. k. is
dependent on crop characteristics and soil evaporation conditions. k.
can be determined using remote sensing products through its
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relationship with vegetation indices such as NDVI and SAVI (Calera
et al. 2017). Remote sensing information can be used to estimate
directly ET.,, using surface energy balance methods. ET is estimated
through latent heat flux (product of latent heat of vaporization and ET)
in the energy balance equation. The two-source energy balance (TSEB)
(Norman et al. 1995), the surface energy balance algorithm (SEBAL)
(Bastiaanssen et al. 1998), the simplified surface energy balance index
(S-SEBI) (Roerink et al. 2000), and the surface energy balance system
(SEBS) (Su 2002) are some of the widely used energy balance models to
estimate ET. Attempts are made to compare these models for their
accuracy (Eswar et al. 2017; Wagle et al. 2017). Apart from IWR,
irrigation scheduling is also necessary to prevent crops from water
stress. The remotely sensed Crop Water Stress Index (CWSI) (Jackson
et al. 1981), computed as a function of the differences between canopy
and air temperatures, is widely used for this purpose (Gontia and Tiwari
2008; O'Shaughnessy et al. 2012; Veysi et al. 2017). Attempts are also
made to assess the efficiency of irrigation by considering vegetation
indicators and water policies along with ET,,, (Al Zayed and Elagib
2017). Further information on crop and irrigation water requirements
can be obtained from Calera et al. (2017).

3.2.2.2. Estimation of irrigation water use (IWU). In the case of IWR, the
irrigation withdrawals from the source are estimated, which may or
may not be translated to actual irrigation usage due to either under or
over-irrigation. Besides, the uncertainty in ET can also impact the
accuracy of IWR estimates. Analyzing the soil moisture variations
concerning precipitation can indicate the amount of water consumed
through irrigation (IWU). Recent efforts have focused on using this
concept to determine the IWU. (Brocca et al. 2014; Brocca et al. 2013)
have developed precipitation datasets using soil moisture as the driving
variable. The underlying algorithm called ‘SM2RAIN’ is applied to
several soil moisture products (Brocca et al. 2016; Ciabatta et al. 2017).
The IWU is attributed to the systematic differences between the
resultant precipitation from SM2RAIN and the actual precipitation
data (Brocca et al. 2018; Jalilvand et al. 2019). In a similar attempt,
Zaussinger et al. (2019) quantified IWU by determining the systematic
difference between the satellite soil moisture products (SMAP, AMSR2,
and ASCAT) and reanalysis soil moisture product (MERRA-2, which
does not account for irrigation) over the Contiguous United States
(CONUS) region. Besides, attempts are being made to arrive at IWU by
estimating the difference between the soil moisture simulations from
land surface model simulations (that do not consider irrigation effects)
and the soil moisture simulations obtained by assimilating satellite soil
moisture into the land surface model (to account for the irrigation
effects) (Abolafia-Rosenzweig et al., 2019; Nair and Indu 2019). It may
be noted that the satellite products provide soil moisture of only surface
(~5 cm) (Karthikeyan et el., 2017). However, the uptake of water from
soil depends on the root depth of the crop species. Therefore, it is
important to quantify the rootzone soil moisture to infer accurately
about the IWU. In this regard, attempts are being made to simulate
rootzone soil moisture by assimilating satellite soil moisture products in
a land surface models using data assimilation algorithms (Das and
Mohanty, 2006; De Lannoy and Reichle, 2016; Li et al., 2010; Liu and
Mishra, 2017; Martens et al., 2017; Reichle et al., 2017; Reichle et al.,
2019). Similar attempts are being made to assimilate Gravity Recovery
and Climate Experiment (GRACE) Terrestrial Water Storage (TWS) in
land surface models (Girotto et al., 2019; Tian et al., 2019).

3.3. Crop losses

Crop losses significantly affect agricultural productivity. They occur
due to abiotic factors and biotic factors (Oerke 2006). The former in-
clude irradiation, water, temperature, and nutrients. The latter include
pests, diseases, and weeds. Crop lodging (roots may lose the anchorage
to sustain the crop) as a result of some of the abiotic factors. Satellite
remote sensing is increasingly being used to detect crop losses. The
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detection is possible when there is a difference in the spectral signature
from the crop, which is affected by any of the above-described factors.
Some of the losses may not be detectable in case they do not exhibit
differentiable spectral patterns.

3.3.1. Pests and diseases

Pests and diseases damage the crops primarily in four ways, 1) re-
duction of biomass due to destruction of leaf, stalk and stem, 2) de-
velopment of crop lesions or pustules due to infections, 3) destruction of
leaf pigments, and 4) wilting of plants (Zhang et al. 2019). Wheat rusts,
locusts, armyworms, fruit flies, rice blast, sheath blight of rice, mildew,
leafthopper, aphid bugs, beetles, and rhizomania are some of the crop
pests and diseases, which can be detected through remote sensing. Ef-
forts are being made to detect losses due to pests and diseases at the
leaf, canopy, and regional scales. Satellite remote sensing in optical and
NIR frequencies is used prominently at a regional scale for this purpose.
Apart from optical and NIR satellite sensors, attempts are made to use
fluorescence and microwave measurements for detecting pests and
diseases. However, most of the studies are limited to the leaf/canopy
scales. Information from both multispectral and hyperspectral satellite
sensors — which include Landsat, MODIS, Hyperion, SPOT, among
others - is found to be useful for pest and disease detection (Bauriegel
et al. 2011; Eklundh et al. 2009; Oumar and Mutanga 2013; Pengra
et al. 2007; Yuan et al. 2014). Apart from widely used vegetation in-
dices such as NDVI, EVI, NDWI, and LAI indices such as Disease Water
Stress Index (DWSI) (Apan et al. 2004), Disease Index (DI) (Zheng et al.
2018) and Yellow Rust Index (YRI) (Huang et al. 2014) for detecting
wheat yellow rust, Aphid Index (AI) (Luo et al. 2013), and Leathopper
Index (LHI) (Prabhakar et al. 2011), among others are proposed for pest
and disease detection.

The growth of pests and diseases require suitable vegetation and
meteorological conditions (Coops et al. 2006). The Tasseled Crop
Transformation (TST) (Crist and Cicone 1984) — that determines para-
meters such as brightness, greenness, and wetness of vegetation — is
generally used to identify the vegetation conditions that are prone to
pests and diseases. The combined use of these datasets is found to im-
prove the accuracy of the detection of pests and diseases (Bhattacharya
and Chattopadhyay 2013; Yuan et al. 2017; Zhang et al. 2014a). It may
be noted that a crop can be subjected to various forms of pests and
diseases during its growth. Besides, there may be spatial heterogeneity
of species of pests and diseases in the field. Hence it is essential to assess
the spatio-temporal heterogeneities along the severity of pests and
diseases to strategize their treatment. It is possible to identify these
heterogeneities through the differences in the patterns of reflectance.
This task can be achieved through the classification algorithms such as
Artificial Neural Network (ANN), random forests (RF), partial least
squares discriminant analysis (PLS-DA), maximum likelihood classifier,
Bayesian classifiers, among others (da Rocha Miranda et al. 2020; Dhau
et al. 2019; Yuan et al. 2014). In the case of hyperspectral remote
sensing, spectral unmixing algorithms are used to discriminate pests
and diseases (Fitzgerald et al. 2004; Franke and Menz 2007). On the
other hand, the severity of pests and diseases can also be identified
using machine learning regression-based algorithms (Chemura et al.
2017; Liu et al., 2019a,b; Oumar and Mutanga 2013). Satellite revisits
are found to be useful to carry out multitemporal analysis to assess the
spread of pests and diseases (Dhau et al. 2019; Eklundh et al. 2009;
Franke and Menz 2007; Ji et al. 2004; Wulder et al. 2008; Zhang et al.
2016; Zhang et al. 2014b). Further details on the applications of remote
sensing to detect crop pests and diseases can be obtained from (Zhang
et al. 2019).

3.3.2. Crop lodging

Crop lodging is the displacement of stem or root anchorage from
their vertical position (Pinthus 1974). It occurs mainly in cereal crops
(rice, wheat, barley, etc.) (Chauhan et al.,2019a,b). Some of the factors
that cause crop lodging include wind forces, rains, soil strength, plant
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population density, nitrogen nutrition, plant growth regulators, stem
diseases, weak stems, and weak root anchorage (Kendall et al. 2017).
Crop lodging has resulted in losses of £47-120 million for rapeseed crop
(Kendall et al. 2017) and $80 million for winter wheat crop (Berry et al.
1998) in the UK per year. Crop lodging results in the reduction of crop
height, crop inclination, and crop yield, which is dependent on the crop
growth stage at which lodging would have occurred. Identifying these
features through remote sensing information can be crucial to detect
crop lodging. Although detection of crop lodging is widely carried out
at field scale using in-situ and airborne remote sensors, the use of sa-
tellite remote sensing is still at primitive stages (Chauhan
et al.,2019a,b). Besides, most of the studies use backscatter from active
microwave satellite sensors for this purpose.

The studies that carried out a qualitative detection used radar
backscatter coefficients or their ratios to identify lodging and non-
lodging regions. In one of the first studies, (Yang et al. 2015) used
backscatter polarization ratio, odd-scattering contribution ratio, and
the double-bounce scattering ratio in total scattering obtained from
RADARSAT-2 to detect wheat lodging regions. Similar attempts are
carried out by Zhao et al. (2017) and Li et al. (2019) to detect wheat
and canola and sugarcane lodging, respectively, using RADARSAT-2
data. Some studies used the reduction of crop height as an indicator to
arrive at a quantitative assessment of crop lodging. Han et al. (2017)
used crop height as a proxy to estimate the severity of corn lodging. Shu
et al. (2019) estimated the lodging angle (crop inclination) by de-
termining the crop height before and after lodging of maize crop using
Sentinel-1 SAR data. Recently, Chauhan et al. (2020) modeled crop
inclination (in-situ measurement) and polarization metrics derived
from Sentinel-1 and RADARSAT-2 data using Support Vector Regres-
sion (SVR) technique. Further details on the status of remote sensing of
crop lodging detection can be obtained from Chauhan et al. (2019).

3.3.3. Weeds

Weeds are competitive (or invasive) plants that grow in farms. They
reduce crop productivity since they compete for the inorganic nutrients
with crops (Oerke 2006). Weeds account for almost 34% of the global
crop losses and can potentially lead to the highest crop losses compared
to other factors (Oerke 2006). However, they can be destroyed either
through mechanical treatment or by spraying herbicides. For the ef-
fective operation of these treatments, it is essential to identify the lo-
cations of weeds, which can be carried out using remote sensing. In the
past, airborne sensors are used widely to identify the locations affected
by weeds (Thorp and Tian 2004). Currently, Unmanned Aerial Vehicles
(UAVs) are regularly being used for field-scale identification of weeds.
Since satellite remote sensing retrieves information at the coarser spa-
tial resolution, it can be challenging for weed detection given their size
and patchiness (Miillerova et al. 2017).

Weeds can be identified from the difference in the spectral patterns
of reflectivities compared to that of a crop. Initial studies used band
reflectance information from satellites such as SPOT, Landsat TM, and
AVHRR in classification algorithms to identify weed-infested regions
(Anderson et al. 1993b; Everitt et al. 1993; Peters et al. 1992; Ullah
1989). Attempts are made to identify weeds using vegetation indices.
(Backes and Jacobi 2006) used NDVI from QuickBird in a supervised
classification framework to identify weed patches. Castillejo-Gonzélez
et al. (2014) used band reflectance and NDVI of Quickbird in seven
classification algorithms to identify wild oat patches in wheat fields.
Similar attempts are made using Sentinel-2A, Landsat 8, SPOT-5, and
Worldview-2 data (Matongera et al. 2017; Odindi et al. 2014; Ottosen
et al. 2019; Tarantino et al. 2019). We find the usage of satellite sensors
for weed detection limited mostly to commercial satellites, which
provide reflectance information at very high spatial resolution
(<10 m).
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4. Summary

In this work, we review three aspects of the role of satellite remote
sensing for managing agriculture, 1) crop growth and yield assessment,
2) irrigation mapping and quantification, and 3) crop losses. In this
process, we reviewed how satellite sensors that measure signals from
the Earth’s surface across various frequencies, including optical,
thermal, and microwave spectrum, are contributing to the above areas
of research. Following is the summary of the review.

e Crop growth and yield assessment: Regression relationship with
indices such as NDVI, RVI, and VCI are used to estimate crop yield
and LAIL Both multispectral and hyperspectral imageries are found
to be useful for this purpose. Physical models, such as the PROSAIL
model (that simulates canopy reflectance as a function of LAI and
other variables/parameters), are widely used to retrieve LAIL
Besides, crop simulation models account for climate and agricultural
conditions for simulating crop variables. Data assimilation has
turned into a useful tool to synergistically combine model simula-
tions and remote sensing data for improving the crop state variables
such as fPAR and LAI. With increased efforts of obtaining soil
moisture observations at global scales (using microwave sensors),
attempts are made to ingest soil moisture (in data assimilation fra-
mework) into crop simulations models to improve the estimation of
crop yield. SIF is one of the emerging areas of research. Attempts are
made to use SIF measurements to determine GPP and crop yield
through regression analysis. The radar microwave signals, due to
their ability to penetrate through the atmosphere, are being used
widely for crop growth assessment. These studies use methods such
as semi-empirical models (e.g., WCM), energy and wave approaches,
and polarimetric decomposition to retrieve crop variables such as
LAI and biomass. Crop monitoring is also carried out by estimating
crop height. For this purpose, InSAR, tandem interferometry,
PoISAR, and PolInSAR techniques are widely used. Research is in-
itiated to study the linkage between passive microwave VOD and
crop growth in regions where agriculture is practiced in large spatial
scales.

e Irrigation: Remote sensing information contributes to irrigation
research by either identifying the irrigated areas or quantifying the
amount of water required/supplied. Optical/thermal reflectance
information collected over several years is subjected to either su-
pervised or unsupervised classification algorithms to identify the
irrigated areas. Derived products such as NDVI, NDMI, EVI, LSWI
are also used in classification schemes for this purpose. Similar
classification schemes are applied to backscatter timeseries from
radar sensors for detecting irrigation. In the case of passive micro-
wave sensors, the soil moisture obtained measures the moisture
changes due to rainfall as well as irrigation events. Therefore, at-
tempts are made to use soil moisture products to identify the spatial
and temporal patterns of irrigated areas. ET is an essential variable
for quantifying the irrigation water requirement. Energy balance
methods are popular in determining ET using optical/thermal re-
flectance from satellites. On the other hand, the identification of
irrigation water supplied to a farm is a primary function of soil
moisture. Recent efforts have focused on extracting the irrigation
information by using satellite soil moisture and precipitation data-
sets.

o Crop losses: Crop losses due to pests and diseases are detected at a
large scale using optical/thermal reflectance data. Apart from ve-
getation indices, disease detection indices such as Aphid Index,
DWSI, among others, are used. The spread of pests and diseases are
identified by applying classification algorithms on multi-temporal
data. However, such detection is possible only when the reflectance
from pest/disease affected plant exhibit significantly different
spectral pattern compared to that of a healthy leaf. Although efforts
are being made to use microwave or SIF data for pests and disease
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detection, the experiments are confined, as of now, to field scale
(using field/airborne sensors). Crop lodging is another cause of crop
losses. Currently, crop lodging is detected using backscatter mea-
surements. Since lodging is linked with crop height, the detection
algorithms derive height and its related parameters (such as in-
clination). Lastly, weeds, which lead to crop losses, are detected
using vegetation indices and classification algorithms.

Outlook
The following conclusions can be drawn from this review.

There is a need to develop robust algorithms that determine the crop
productivity (in terms of yield) in heterogeneous agricultural sys-
tems since most of the research focused on scales that match satellite
footprint. Upcoming satellite missions such as NASA-ISRO SAR
mission (NISAR) (https://nisar.jpl.nasa.gov/), which can retrieve
backscatter as high as 10 m spatial resolution, can contribute to
addressing the need. Besides, planned missions such as Copernicus
Microwave Imaging Radiometer (CMIR) (Kilic et al., 2018) based on
multi-frequency (L, C, X, Ka/Ku) bands brightness temperature
measurements can contribute towards obtaining enhanced opera-
tional products.

There are challenges associated with application of crop models in
terms of parameter calibration, large scale applicability, and quan-
tification of uncertainties. Although data assimilation is intended to
complement with some of these issues, most of the research is fo-
cused on assimilating only LAI There is a need to carry out multi-
variable assimilation to improve the quality of crop yield simula-
tions. In this process, the issues pertaining to the mismatch between
spatio-temporal scales of different sensors, as well as crop models,
need to be addressed.

Over the recent years, satellite sensor based Solar Induced
Fluorescence (SIF) is gaining much importance due to its ability to
capture the plant’s photosynthetic activity. There is a need to de-
velop crop models that can simulate plant fluorescence so that SIF
from satellites can be ingested to improve the yield estimation. ESA's
future mission Fluorescence Explorer (FLEX) (Drusch et al., 2017)
dedicated to measure SIF shall contribute towards these research
efforts.

Uncertainties persist in the irrigation assessment in terms of quan-
tifying both requirements and utilization through satellite remote
sensing. Addressing this challenge requires in-situ information of
irrigation water supplied to farms.

Detecting irrigation under heterogeneous agriculture with varying
irrigation scheduling at the plot scale remains a concern. For this
purpose, the possibility of integrating remote sensing data with
hydro-economic models (Harou et al. 2009) (that take into account
water allocation policy, water pricing, among others) can be ex-
plored.

It is challenging to detect pests and diseases in the early stages since
most of them originate from the base of the plant. The crop would
have been already destroyed by the time leaves get affected (which
could be detected with remote sensing). Multi-look angle sensors
may aid in early detection of pests and droughts.

A crop may be subjected to variety of stresses, which change over its
growth cycle. Efforts have to be made to differentiate the stresses
using satellite sensors so as to precisely strategize the crop protec-
tion.

Most of the research on crop losses is currently being carried out
using Unmanned Aerial Vehicles (UAVs), which have very high re-
solution. There is a need to develop a framework of integrating in-
formation from UAVs at a local scale with satellite sensors, which
have a global reach for large scale monitoring of crop losses in real-
time.


https://nisar.jpl.nasa.gov/
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