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ABSTRACT: Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery 
in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition 
of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and 
enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass 
spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics, 
spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming 
developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to 
functional tissue structures and organs.  

I. Introduction
Imaging mass spectrometry (IMS) is a technology that 

enables the mapping of hundreds to thousands of molecules 
within biological systems.1-6 The instruments within the field 
can measure a diverse array of sample types and chemical 
classes, ranging from low molecular weight metabolites7-10 and 
signaling molecules11-13 to lipids,14-21 peptides,22-24 and 
proteins.25-29 A typical IMS experiment involves defining an 
area of the sample surface to be imaged followed by the 
desorption and ionization at multiple discrete locations. Each 
desorbed location, or pixel, is composed of an individual mass 
spectrum. A molecular image is generated for each signal 
recorded by plotting the ion intensity of that signal throughout 
the array of pixels generated from the sample. While there are 
many types of IMS technologies that have been reported in 
literature, we highlight here the three most common: matrix-
assisted laser desorption/ionization (MALDI),30,31 secondary 
ion mass spectrometry (SIMS),32-34 and desorption electrospray 
ionization (DESI).35-38 Additional information on other types of 
IMS technologies can be found in several recent reviews.1,4,39 

Each IMS technology can be coupled to a variety of 
analytical approaches to enhance the information gained in a 
single experiment. Although IMS provides rich, chemically 
informative spectra and mapping capabilities, combining this 
unique mass specific technology with other analytical 
approaches can provide additional information for an analyzed 
sample. Combining two or more imaging modalities is termed 
multimodal imaging. The accrued advantages include enhanced 
discrimination between modality specific chemical and 
instrumental noise from biologically relevant chemical signals, 

improved sensitivity and specificity of chemical classes not 
easily analyzed by a single modality alone, and enhanced data 
mining capabilities. Combining IMS technologies with other 
analytical approaches provides a more effective means to probe 
the molecular complexity of biological systems. In this review, 
we summarize major advancements in the field of multimodal 
imaging mass spectrometry over the past few years and discuss 
the exciting future of this field.

II. Overview of Imaging Mass Spectrometry Technologies
a. Matrix-Assisted Laser Desorption/Ionization

MALDI is a common ionization method within the 
IMS field as it can visualize numerous molecular species over 
a broad mass range with great molecular diversity. For tissue 
analysis, sample preparation typically involves sectioning of 
tissues and thaw mounting these sections onto a glass slide or 
other target (e.g. conductive surface for high voltage ion 
sources) and subsequent application of an organic chemical 
matrix that aids in analyte desorption and ionization.40 Spatial 
resolution is defined by the ablation area of the laser and the 
distance between pixels (pitch). A variety of matrices are used 
for specific molecular classes. Commonly used matrices 
include 2,5-dihydroxybenzoic acid41 or cyano-4-
hydroxycinnamic acid42 for positive ion mode analysis of 
metabolites, lipids, and peptides. Additionally, 9-
aminoacridine43 is typically used for negative ion mode analysis 
of metabolites, lipids, and proteins, while 1,5-
diaminonaphthalene44 is employed for analysis of lipids in both 
ion polarities. Recently norharmane has been shown to be 
effective for the analysis of hydrophobic molecules and low 
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molecular weight metabolites.45 Matrix deposition is often 
performed robotically to best balance reproducibility, analyte 
extraction, achieve small crystal size, and produce coating 
homogeneity, although sublimation, sieving, and airbrushing is 
also used in the field.4,46

As high spatial resolution MALDI IMS capabilities 
are developed that approach cellular and subcellular 
resolutions, challenges in sensitivity arise as the number of 
molecules sampled decreases with smaller pixel sizes. 
Ultimately, spatial resolution is dependent upon multiple 
factors such as matrix crystal size, laser focus, and stage motor 
step precision. Most modern MALDI IMS platforms utilize 
either a frequency tripled Nd:YAG (355 nm) or nitrogen gas 
laser (337.7 nm) and can achieve spatial resolutions of 5-20 µm 
using traditional front-side laser optics.52-54  Improving laser 
focus beyond 5 µm can be achieved with more advanced setups 
using lower laser wavelengths (e.g. 213 nm) or changing laser 
geometries (e.g. transmission-mode), to minimize the effective 

spot size as described in the next several examples. For 
instance, Heiles et al. demonstrated a new source that integrates 
a 213 nm laser allowing for a ~3 µm footprint using front-side 
laser optics.55 Alternatively, Zavalin and coworkers developed 
a transmission-mode geometry MALDI source, where the UV-
laser is redirected to ablate the sample from the backside. By 
decoupling the laser and ion optics, higher numerical aperture 
objectives can be utilized without impeding the ion path, 
resulting in ~1 µm spot sizes.56 However, a drawback of any 
high spatial resolution IMS experiment is a reduction in ion 
abundances; the Caprioli57 and Dreisewerd47 labs incorporated 
a secondary laser perpendicular to the primary ablation plume 
as a means to enhance ionization of transmission geometry 
setups. An example of these datasets is featured here (Figure 
1A). 

b. Secondary Ion Mass Spectrometry

Figure 1. Selected developments within the IMS community. Image of a Vero B cell culture at 1 µm spatial resolution acquired with transition mode MALDI-2 IMS 
developed by the Dreiswerd lab (A). Panel A is adapted with permission from ref47,  Niehaus, M. et al. Nat Methods 16, 925–931 (2019). Copyright 2019 Nature 
Publishing. SIMS image of a coculture of different Pseudomonas aeruginosa stains visualized with different signaling small molecules (B). Panel B is adapted with 
permission from ref24,48,  Cao, T. et al. SPIE BiOS 108630A (2019). Copyright 2019 SPIE. Digital Library. Lipid images both positive and negative mode of the 
human eye using nanoDESI at 10 µm spatial resolution (C). Panel C is adapted with permission from ref49-51,  Yin, R. et al. Nature Protocols 14, 3445-3470 (2019). 
Copyright 2019 Nature Publishing.
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SIMS utilizes electrostatically focused primary ions 
(e.g. Bi+, Cs+, and O-) or clusters (e.g. Au3

+, C60, and Ar) to  
impact the sample surface, causing a collisional cascade in the 
top few monolayers of the sample leading to the ejection of 
secondary ions.2,34 Because of the high energy of the ion beam, 
analyte ions often undergo significant fragmentation and 
analysis is typically limited to molecular weight ions <2 kDa.58 
The energy of the ion beam plays a critical role in sampling and 
can be divided into two regimes: static and dynamic SIMS. 
Static SIMS is defined by low primary ion doses (<1013 cm−2) 

and beam currents (pA-nA) suitable for surface analysis of 
elements and molecules. Alternatively, dynamic SIMS has 
much higher primary ion doses (>1013 cm−2) and beam currents 
(mA), making it suitable for depth profiling and three 
dimensional imaging.59 In general, sample preparation for 
SIMS analysis is minimal and consists of mounting tissues 
flatly onto conductive targets and drying prior to introduction 
into the source vacuum  chamber.60,61 Although not required, 
washing samples to remove salts from tissue prior to analysis 
can improve ion yield.62,63

The primary advantage of SIMS is its high spatial 
resolution capabilities, because ion beams can be tightly 
focused using electric fields (1 µm to 30 nm).32 Similar to 
MALDI, SIMS spatial resolution is defined by the diameter of 
the ion beam at the surface and the pitch.  SIMS has been used 
for cellular and subcellular analyses.64-67 and for the 
determination of molecular profiles of various disorders 
including different cancer types68 and cardiovascular disease.69  
It has also been used to monitor signaling between bacterial 
cocultures and distinct alkyl quinolone messengers between 
different stains of Pseudomonas aeruginosa (Figure 1B).48 
Additionally, SIMS was employed to visualize salt 
redistribution in brain tissue between healthy and stroke mice.70 
While effective for low molecular weight metabolite and lipid 
analyses, it has not been commonly applied to peptide and 
protein imaging studies. 

c. Desorption Electrospray Ionization
Desorption electrospray ionization (DESI) is 

performed by spraying charged solvent droplets on the surface 
of the sample where the analytes are desorbed and ionized for 
subsequent detection by MS.71 The imaging experiment is 
performed in a continuous raster sampling mode where the 
target is moved continuously under the DESI spray in a 
‘typwriter-like’ motion. Spatial resolution is estimated by the 
target stage velocity, sampling rate of the mass spectrometer, 
number of spectra averaged for a single pixel, and distance 
between adjacent line scans. Although DESI has limited spatial 
resolution capabilities (~150 µm), it requires minimal to no 
sample preparation. Tissues sections are mounted onto glass 
slides and sampling is performed at ambient pressure. Recently, 
the Laskin lab developed a modified form of this sampling 
approach, termed nanoDESI, using a liquid microjunction to 
increase spatial resolution to ~10 µm (Figure 1C).49 While 
nanoDESI is not discussed in a multimodal imaging context 
here, we eagerly anticipate the higher spatial resolution of 
nanoDESI being coupled to other modalities. Moreover, DESI 
and nanoDESI been used to map metabolite,72-74 lipid,75-78 and 
drug distributions in a variety of biological systems ranging 
from plants to diseased mammalian tissue.79-81 Further, 

additives in DESI solvent can target specific molecules in the 
case of reactive DESI82 or enhance extraction.72

DESI and nanoDESI IMS are minimally destructive 
techniques and have been used experimentally in surgical 
settings to enable intraoperative molecular assessment and aid 
in real-time intraoperative decisions.36,83,84 Sans et al. 
molecularly characterized high-grade serous carcinoma, serous 
borderline ovarian tumors and normal ovarian tissue samples 
using DESI IMS.85 They identified predictive markers of cancer 
aggressiveness and built classification models to enable 
diagnosis and prediction of high-grade serous carcinoma in 
comparison to normal tissue with a high certainty of ~96 %. 
Similar work from the Eberlin lab has led to the development 
of a handheld mass spectrometry device, the MasSpec Pen, 
which enables in vivo diagnostics during surgery.86,87,88 This 
device has been used for classifying ovarian89 and breast 
cancer90 since it was originally developed. Because it can be 
operated at atmospheric pressure and requires minimal sample 
preparation, DESI holds promise for use in clinical and surgical 
settings.

III. Combining Multiple Imaging Mass Spectrometry 
Technologies

Since each IMS technology has unique performance 
characteristics for different molecular classes, there is utility in 
coupling them together. Technologies such as tandem MS, 
microextractions, and ion mobility each add additional 
dimensions to the MS dataset, expanding upon the chemical 
information that can be obtain, either by enabling de novo 
identification or reducing spectral complexity.

a. Spatially Targeted Tandem MS
Tandem mass spectrometry enables de novo 

identification of molecules within complex samples.91-93  
Tandem MS is generally accomplished by performing isolation 
within one mass analyzer for subsequent fragmentation and 
transmittance into another mass analyzer for detection.94 
Serially performing these analyses allows for identification of 
discrete molecules within a biological sample.95,96 In the context 
of imaging, pixels can be subdivided allowing for a precursor 
ion scan and subsequent MS/MS scans. This spatially targeted 
structural information comes at the cost of spatial resolution to 
accommodate multiple samplings. Additionally, it is often 
difficult to perform tandem MS analysis within an imaging 
experiment if the ion of interest is only present within a small 
number of disperse features or pixels.17 Alternative means of 
targeting sample regions or locations for identifying key ions 
include multimodal image-guided surface sampling,97,98  
microprobe extraction for offline tandem MS,99-101 and tandem 
MS on an orthogonal sample.16,30 By using these various 
strategies, ions that are found in a small number of pixels or 
structural features can be targeted for analysis.

Tandem MS can be used within an imaging context to 
identify the differential localization of isomers or isobars within 
a tissue. Although tandem MS has been reported for several 
types of IMS technologies,102-104 it is primarily used for SIMS 
imaging because most ion beams fragment analyte ions during 
the ionization process.105-109 Any imaging mass spectrometer 
with MS/MS capabilities can generate fragment ion 
images110,111 enabling direct visualization and differentiation of 
isomers and isobars within tissue without prior separation or 
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derivatization. Generally, these experiments are usually limited 
to surveying a small number of ions within a sample, since the 
tissue is partially consumed during analysis. 

b. Multi-Imaging Mass Spectrometry Experiments

Each of the three types of IMS technologies discussed 
here provide different molecular coverage and spatial 
resolution. As a result, investigators have combined some of 
these to gain further functionality. SIMS and MALDI IMS have 
been combined to detect multiple chemical classes, such as low 
molecular weight  metabolites and lipids within individual 
cells97 and tissue.113 Additionally, the combination of MALDI 
and SIMS has been used to analyze hair to enhance sensitivity 
and spatial resolution.114,115 Both MALDI and SIMS sources are 
operated under vacuum using similar tissue preparation 
protocols.  In some cases, SIMS analyses have been shown to 
be enhanced by the application of a MALDI matrix.116,117 While 
less common, combining MALDI and DESI together enables 
analysis of different lipid species,118 and co-mapping of lipids 
and proteins.119 To our knowledge, there has not yet been a 
DESI and SIMS multimodal IMS experiment, likely because of 
the differences in sample preparation. Reaction additives can be 
employed for DESI analyses for quantitation and derivatization 
chemistries, bringing additional capabilities to any combination 
of technologies.  Finally, DESI produces multiply charged ions 
that are often more amenable to tandem MS applications.

c. Microextraction
Microextraction protocols aim to remove key analytes 

from bulk material to reduce chemical complexity,120 and target 
specific analytes. Both solid and liquid phase extraction 
techniques have been coupled to IMS for increased peak 
capacity and sensitivity. Solid phase microextraction (SPME) 
comprises a diverse set of solventless techniques that allow for 
in vivo analysis. An advantage of SPME devices is that most 
analytes are introduced into the MS system at once. Introducing 
ions concurrently increases sensitivity and signal-to-noise (S/N) 
compared to technologies that generate a transient signal.121,122 
Furthermore, SPME is used to separate an analyte of interest 
from bulk material, such as in trace analyte analysis.123

Liquid extractions, such as liquid microjunction 
(LMJ)98,124and liquid extraction surface analysis (LESA),99,125 
also enhance peak capacity and reduce ion suppression. Briefly, 
extraction solvents are dispensed onto a tissue surface and 
collected for subsequent liquid chromatography or capillary 
electrophoresis MS analysis.52 Spatially targeted liquid 
extractions are advantageous because they can be coupled to 
different separation techniques, increasing both sensitivity and 
depth of coverage. For instance, Cahill et al. used an LMJ to 
image portions of a microfluidic device while it was functioning 
with future use aimed at biology-based microfluidic devices.126 
Typically, this technology utilizes relatively large areas for 
droplet placement. However, recently microLESA was 
combined with piezoelectric spotting of trypsin to achieve 
higher spatial resolution sampling than previously reported.99,127 
In addition, microLESA was integrated with autofluorescence 
microscopy to correlate protein signatures of murine kidney and 
Staphylococcus aureus abscesses without tissue staining.99 As 

these techniques continue to improve in spatial resolution and 
automated platforms become available, combining IMS with 
spatially targeted microextractions will be adapted to 
supplement spatial information with deeper molecular coverage 
and added identification capabilities.

d. Ion Mobility

Ion mobility separations add an orthogonal analytical 
dimension to IMS that reduce ion interference for improving 
peak capacity and specificity and aiding in identification of 
species. Additionally, drift time or collision cross sections 
(CCS) calculated with the use of standards can be used to help 
identify isomers and isobars. Ion mobility techniques that have 
been coupled to IMS include drift tube mass spectrometry 
(DTIMS),128,129 traveling wave ion mobility spectrometry 
(TWIMS),130,131 field asymmetric ion mobility spectrometry 
(FAIMS),132-134 and—more recently—trapped ion mobility 
spectrometry (TIMS).135-137 

A major focus of the ion mobility field is developing 
higher resolving power platforms, so they can separate isomers 
and isobars. Park, Fernandez-Lima, and co-workers utilized a 
buffer gas and ion trapping by electric field gradient for the 
development of TIMS devices. They report resolving powers of 
~200 but up to ~400.138-140 One approach for increasing 
resolution is by increasing path length and/or number of passes 

Figure 2. LESA and cIM analysis of a complex murine kidney protein 
extract. More proteins are detected after each additional cycle of cIM (A). 
IM heat map generated from a single cycle of cIM (B), where extracted 
mass spectra from different trend lines contain different protein signatures 
(C-E). This figure is adapted with permission from ref112, Sisley, E.K. et 
al. Analytical Chemistry (2020). Copyright 2020 American Chemical 
Society.

Page 4 of 21

ACS Paragon Plus Environment

Journal of the American Society for Mass Spectrometry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



5

around the mobility device. Notable ion mobility advancements 
include the development of structures for lossless ion 
manipulation (SLIM) devices,141,142 as well as the cyclic ion 
mobility (cIM).143 SLIM devices utilize a separation path length 
of ~540 m144 for achieving resolving powers over 1800. Using 
cIM, resolving power of 750 (with 100 passes) has been 
reported using a reverse sequence peptide pair. Although, 
sensitivity can be challenging in these devices as ions are lost 
radially over time. Recently cIM has been integrated with 
LESA for the improvement of S/N and the number of detected 
proteins from tissue samples (Figure 2).112

Beyond increasing peak capacity and specificity,  
trendlines within ion mobility heat maps can be used to identify 
different molecular species, classes, and subclasses.145 For 
example, MALDI DTIMS IMS was used successfully to 
separately image a lipid species 
([Phosphatidylcholine(34:2)+H]+) from a closely isobaric 
peptide ion (RPPGFSP).146 Škrášková et al. visualized multiply 
charged polysialylated gangliosides using DESI TWIMS.118 
Recently TIMS has been integrated with MALDI IMS to the 
separate and map isobaric lipid species directly from tissue.147 
Cooper and coworkers introduced a new cylindrical FAIMS 
device coupled to LESA IMS. This workflow improved the 
number of detected proteins from what was previously reported 

as much as 10 times in murine brain, testes, and kidney.148 
Clearly, ion mobility has great potential for IMS applications as 
it provides the ability to overcome the analytical challenges 
associated with direct sampling of complex biological tissues. 
Software is continually being developed to more efficiently 
process highly dimensional ion mobility IMS data.

IV. Integration with other technologies
Non-MS analytical technologies can be integrated 

with MS technologies to increase chemical coverage. Since 
each technology has distinctive advantages for different 
molecular classes, experiments that synergistically incorporate 
multiple technologies gain unique chemical information neither 
one can obtain alone. For example, many cell types and 
functional cell states are uniquely suited for analysis by specific 
methods, such as transcriptomics or immunostaining, and 
integrating these can add great utility to the molecular 
specificity of MS.

a. Microscopy
Microscopy is one of the oldest analytical approaches 

dating back to the early 17th century and is commonly applied 
to biological and clinical problems.150-153 Overall, microscopy 
images are generated by capturing electromagnetic radiation or 
particle beams as they interact with the sample through 
reflection, refraction, or diffraction.  A series of lenses and 
objectives focus the light/particles enabling imaging with high 
magnification.

Brightfield and histological stains, such as 
hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS), 
are used extensively in pathology to assess tissue integrity, 
health, and disease.154-156 Stained tissues have been employed 
with IMS to connect molecular profiles to histological features 
of both healthy and diseased tissue, such as cancer157-161 and 
functional disorders.162,163 Recently, Basu et al. enabled IMS 
and histology to be rapidly correlated by incorporating matrix 
pre-coated slides, templates, and a 10 kHz laser.164 Histological 
stains are ubiquitous within the scientific and medical field, so 
multimodal studies that combine IMS and stained microscopy 
improve interpretation and facilitate collaboration between the 
technologists and the biologists or physicians. Similarly, simple 
brightfield images can be used for correlation of IMS signals to 
specific tissue structures, particularly in cases that have features 
that are easily distinguished with brightfield microscopy.165,166 

Fluorescence microscopy of both endogenous 
fluorophores167,168 and tagged antibodies169-171 or nucleic 
acids172,173 have also been fundamental to our understanding of 
biological systems. For example, Vardi et al. used 
autofluorescence from chlorophyll and MALDI IMS to study 
lipid metabolism within algal plaques.174 By targeting key 
proteins or genes, investigators can parse metabolic pathways 
and monitor how these change as a function of disease state or 
demographic. While exceptionally powerful and informative, 
these technologies are generally limited to studying peptides or 
proteins since there are few probes available for low molecular 
weight metabolites and lipids.175,176 IMS has been readily 
coupled to fluorescence microscopy approaches to tie together 
cell-type specific immune16,17,177,178 and transcript profiles179-181 
to metabolites detected by IMS.182 Immunohistochemistry can 
be used to histologically classify and contextualize the chemical 
information obtained by IMS. Moreover, the combination of 

Figure 3. Images of a TEM grid (A-C) and NaCl salt (D-F) crystal 
generated from the SIMS helium microscope. The SIMS (B,C,E,&F) 
images are close to the resolution of the microscopy (A&D), 
demonstrating the power of this technique. This figure is adapted with 
permission from ref149, Klingner, N. et al. Ultramicroscopy 198, 10-17 
(2019). Copyright 2019 Science Direct.
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both IMS and immunohistochemistry produce more rigorous 
classification schemes than either modality independently. 
Recently, several labs have combined immunohistochemistry 
and IMS to correlate protein or metabolite signals to specific 
tissue substructures.183-186 This type of experiment is further 
extended by recent work where investigators coupled 
multiplexed immunohistochemistry with MALDI FT-ICR IMS 
to determine metabolic profiles of cancer cell, incorporating 
molecular classes.187 The increase in the plexity of the 
immunofluorescence labels additionally enhances the 
specificity of chemical profiles created by MS analysis, as these 
immunofluorescence labels can be correlated to more specific 
tissue regions or cell types.  

Immunofluorescence imaging has been correlated 
with MALDI IMS178 and fluorescence in situ hybridization 
(FISH) with SIMS.179  We could not find an example of either 
being used as part of DESI multimodal studies. This is 
interesting because there are no experimental considerations 
preventing IHC or FISH from being combined with all the IMS 
modalities discussed here. However, technical challenges in co-
registering modalities with dramatic differences in spatial 
resolution may be driving this perceived disparity. Patterson et 
al. have developed combination experimental and 
computational pipelines using autofluorescence microscopy to 
overcome this challenge for multimodal MALDI IMS 
studies.167,168 It is anticipated that fluorescence microscopy will 
become an important correlative technology in IMS studies. 

Particle-based microscopy, such as scanning electron 
microscopy (SEM) and transmission electron microscopy 
(TEM), offer very high spatial resolution because it is not 
diffraction limited. A series of ion optics are used to focus ions 
towards a sample. The ions then interact with the sample and 
the emerging electrons and various energy conversion products 
(e.g. secondary electrons, X-rays, light) are captured as an 
image. Because nanoSIMS and electron microscopies have 
similar sample and operational requirements, they have often 
been used on the same sample.189 TOF-SIMS has been 
integrated into a helium ion microscope for 8 nm imaging with 
the potential for extremely high resolution molecular imaging 
of biological samples (Figure 3).149 For example, nanoSIMS 
and TEM have been combined to map dopamine distributions 
in dense core vesicles, providing key insight into vesicle 
loading and nanocompartmentalization.190 Another study 
involves integration of fluorescence microscopy, SIMS, high-
energy resolution x-ray photoelectron spectroscopy, and SEM 
on the same plant root to study bacterial growth and infection 
on this root.191 The authors combined these four modalities 
because of the simple and compatible sample preparation 
involved for each. Beyond registration for enhanced 
localization, particle-based microscopy is also readily used to 
assess MALDI matrix application for ensuring matrix coverage 
and crystal size.192,193

b. Spectroscopy
Spectroscopic imaging includes a suite of optical 

approaches, such as infrared (IR)194 and Raman, that provide 
unique spectra of complex chemical mixtures, creating 
reproducible chemical profiles of different physiological 
regions and disease states.195 Spectroscopy is used in a wide 
array of biological studies,196-201 because the approaches are 
generally non-destructive, label free, and capable of high spatial 

resolutions (diffraction limited, 250 nm). While each 
spectroscopic approach activates different, well characterized 
molecular modes, it is often difficult to correlate spectroscopic 
signatures of complex mixtures to discrete chemicals. Rather, 
they provide general information on bond types and functional 
groups for the entire chemical mixture.202-205 As such, 
spectroscopy has been coupled to a variety of MS technologies, 
including IMS, to provide more detailed molecular descriptions 
of samples.206-208 Because spectroscopic analysis is label free 
and nondestructive, both modalities can be performed on the 
same tissue section.209

Raman and IMS have been correlated to study 
bacteria,210-212 plants,213 single cells,214 and  mammalian 
organs.215,216 Fourier transform infrared microscopy (FT-IR) 
has similarly been coupled to IMS for many biological 
studies.209,217,218 Recently, Rabe et al. developed a method for 
FT-IR guided MALDI IMS (Figure 4). By coupling these two 
technologies together, the authors reduced data load and 
acquisition time by >90%.188 Magnetic resonance imaging has 
also been used to compliment molecular specificity of IMS with 
dynamic, whole organ imaging.219-224 While MALDI IMS has 
primarily been coupled to spectroscopic measurements, we 
foresee DESI increasingly becoming incorporated with Raman 
and magnetic resonance imaging. DESI does not have many 
tissue preparation requirements and can theoretically be directly 
integrated within either approach. Moreover, Raman and 
magnetic resonance spectra are not saturated when water is 

Figure 4. MALDI IMS lipid profiles obtained after FT-IR generated 
segmentation. Murine brain is differentially segmented based on absorbance 
of 2922 cm-1 based on disease (A) and control mice (B). Using this 
segmentation, lipid profiles can be generated for different masks for chemical 
differentiation (C-D). This figure is adapted with permission from ref188, Rabe, 
J. A. et al. Scientific Reports 8, 313 (2018). Copyright 2018 Nature 
Publishing.
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present, unlike IR which readily is absorbed by water, making 
them ideal candidates for multimodal DESI experiments. 
c. Transcriptomics

Transcriptomics technologies measure gene 
expression through the extraction and amplification of nucleic 
acids, most generally ribonucleic acids.225-227 Because of the 
exponential amplification that can occur, this group of 
technologies are highly sensitive and has been the driving force 
behind cell typing and classification. There is great interest in 
coupling IMS with transcriptomics analysis as it would enable 
simultaneous correlation of gene expression to gene products 
and biproducts. A majority of the literature combining mass 
spectrometry and transcriptomics measurements has involved 
liquid chromatography for bulk proteomics and/or 
metabolomics.228,229 Towards an imaging context, investigators 
probed an insect, Carausius morosus, for neuropeptide content 
with MALDI MS and correlated this to bulk sequencing to 
uncover peptides with no known homology.230 Although this 
was not an imaging application, the sample preparation was 
performed in such a way that this workflow could be adapted to 
an imaging workflow. As an additional step towards combining 
IMS with transcriptomics, the Knepper et al. microdissected 
kidney tubules and performed RNA-seq and proteomics.231 This 
methodology incorporates spatial information of the 
microdissected structures, which is an important step towards 
coupling IMS and transcriptomics directly. Moreover, there has 
been some exciting work where transcriptomics and proteomics 
IMS information has been correlated on different bulk 
samples.232 Work combining two approaches  on the same 
sample provided insight into the link between fatty acids and 
immunity within breast cancer233 and role of liver X receptors 
in male reproduction.234 While only a few examples exist, the 
combination of transcriptomics and IMS will continue to 
increase in the coming years and has the potential to uncover 
new connections that span the central dogma of molecular 
biology. 

d. Electrochemistry
Electrochemistry has been vital in the study of 

electroactive signaling molecules, such as dopamine, 
epinephrine, serotonin, and histamine within biological 
systems.235-237 This is partly because it is capable of absolute 
quantitation of femto- to zeptomole amounts of analyte at µs 
temporal resolutions . It is highly selective and naturally 
applicable to the analysis of many low molecular weight 
metabolites, such as neurotransmitters.238 
nanoSIMS/nanoSIMS and electrochemistry are compatible and 
have been used together often to study nonbiological239 and 
biological samples alike.238,240,241 Ewing et al. have quantitated 
L-DOPA concentrations in vesicles and other organelles using 
nanoSIMS and validated these concentrations with 
electrochemistry.242 This is particularly important because it 
enables quantitation of low molecular weight metabolites at 
high spatial resolutions. Further, Larsson and coworkers 
quantitated octopamine release during different stimulations 
using nanoSIMS and an embedded electrode.243 Investigators in 
the IMS field have also adapted many technologies and 
developments from electrochemical studies,244 ranging from 
nanopipettes to electrochemical principals of ion generation. 
Adopting materials, analyses, or processes from other fields is 

an effective, time saving process that expedites scientific 
advancements. 

V. Future of the Field
Mass spectrometry technologies have rapidly 

advanced with improved sampling, ion transmission, and 
detector sensitivity enabling highly sensitive and specific 
analysis of biological tissues. Under favorable conditions, MS 
can detect concentrations as low as 10 zeptomoles or 
approximately 6000 molecules.6 This sensitivity is sufficient for 
probing most molecules within biological systems and yet there 
is still much we  do not understand. Nevertheless, 
improvements in the molecular, spatial, temporal, and 
biological specificity are required to answer remaining 
questions.  IMS is one available tool that provides untargeted, 
highly multiplexed molecular analysis but only through the 
combination with other technologies can we achieve specificity 
in all these areas mentioned above. Multimodal imaging 
experiments can significantly improve performance 
characteristics including structural identification, throughput, 
cell type specificity, and dynamic range of MS-based chemical 
profiles. The present article has summarized the current 
literature surrounding multimodal IMS and the development of 
the field to further explore remaining biological questions. 

A major task facing multimodal approaches involves 
efforts to fully integrate the several datasets to enable deeper 
data mining. This is particularly difficult within an imaging 
regime because the various technologies can have dramatically 
different spatial resolutions, data structures, and chemical 
information. Different computation methods for addressing 
differences within spatial resolution include various methods of 
up sampling the data, performing more refined data fusion, as 
well as other  experimental approaches.167,168,245-248 While these 
are capable of connecting modalities that are similar in 
resolution, significant experimental and technological 
capabilities are required to avoid the introduction of artifacts.209 
While many imaging modalities are within an order of 
magnitude of one another, this will influence the capacity to 
combine lower spatial resolution IMS technologies like  DESI 
with higher resolution molecular imaging approaches, like 
SEM. 

Moreover, technologies provide both overlapping and 
orthogonal information that is often difficult to correlate. For 
instance, transcriptomics measures gene expression of different 
biochemical pathways that result with peptide and metabolomic 
products. Ideally, a highly expressed gene would indicate the 
presence of a specific metabolite and IMS would detect this 
same metabolite in high abundance within the same regions, but 
this is not always the case. There many transport, degradation, 
and modification pathways that impede this correlation and 
create complex datasets that are difficult to interpret. Additional 
compounding technical factors, such as matrix effects, 
differences in ionization efficiencies, and limited dynamic 
range add to this complexity. While transcriptomics is used as 
an example here, a similar scenario applies to other multimodal 
approaches, such as protein abundances between IMS and 
immunofluorescence experiments or lipid analysis by Raman 
spectroscopy and IMS. While challenging, future multimodal 
experiments will slowly begin to unravel the complex 
relationships between the data produced by orthogonal 
technologies. In connection with this, new machine learning 
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algorithms and approaches will be essential for untangling the 
abundance of chemical information obtained with multimodal 
IMS. This will inevitably lead to a more complete picture of 
biological systems and pathways.

 Finally, improving sample preparation and 
workflows will undoubtedly improve the quality and 
reproducibility of collected data, particularly as these 
technologies enter the rigorous domain of medicine and clinical 
trials. Many technologies cannot be combined “out of the box” 
and so there are often tradeoffs made to enable multimodal 
analysis. Although, the gained information from the suboptimal 
combination of the approaches is often greater than the data of 
either technique alone. Developing methods that enable 
multiple imaging modalities to be performed optimally and with 
minimal spatial compromise will dramatically improve the 
ability to integrate and discover connections between 
multimodal datasets. Optimizing the ways and methods behind 
combining the different approaches is a clear path forward in 
the field. 

In summary, multimodal IMS is a remarkably diverse 
endeavor that incorporates the best attributes from a variety of 
scientific disciplines. In the future, multimodal IMS 
technologies will progressively become more common as the 
scientific community begins to study more complex biological 
and medicinal questions.  Such studies have the potential to 
bring together genomic, proteomic, and metabolomic imaging 
technologies to provide unprecedented insights into biology and 
medicine. 
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Figure 1. Selected developments within the IMS community. Image of a Vero B cell culture at 1 µm spatial 
resolution acquired with transition mode MALDI-2 IMS developed by the Dreiswerd lab (A). Panel A is 

adapted with permission from ref47,  Niehaus, M. et al. Nat Methods 16, 925–931 (2019). Copyright 2019 
Nature Publishing. SIMS image of a coculture of different Pseudomonas aeruginosa stains visualized with 
different signaling small molecules (B). Panel B is adapted with permission from ref24,48,  Cao, T. et al. 

SPIE BiOS 108630A (2019). Copyright 2019 SPIE. Digital Library. Lipid images both positive and negative 
mode of the human eye using nanoDESI at 10 µm spatial resolution (C). Panel C is adapted with permission 

from ref49-51,  Yin, R. et al. Nature Protocols 14, 3445-3470 (2019). Copyright 2019 Nature Publishing. 
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Figure 2. LESA and cIM analysis of a complex murine kidney protein extract. More proteins are detected 
after each additional cycle of cIM (A). IM heat map generated from a single cycle of cIM (B), where 

extracted mass spectra from different trend lines contain different pro-tein signatures (C-E). This figure is 
adapted with permission from ref109, Sisley, E.K. et al. Analytical Chemistry (2020). Copyright 2020 Ameri-

can Chemical Society. 
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Figure 3. Images of a TEM grid (A-C) and NaCl salt (D-F) crystal generated from the SIMS helium 
microscope. The SIMS (B,C,E,&F) images are close to the resolution of the microscopy (A&D), demon-

strating the power of this technique. This figure is adapted with per-mission from ref145, Klingner, N. et al. 
Ultramicroscopy 198, 10-17 (2019). Copyright 2019 Science Direct. 
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Figure 4. MALDI IMS lipid profiles obtained after FT-IR generated seg-mentation. Murine brain is 
differentially segmented based on absorbance of 2922 cm-1 based on disease (A) and control mice (B). 

Using this segmenta-tion, lipid profiles can be generated for different masks for chemical dif-ferentiation (C-
D). This figure is adapted with permission from ref182, Rabe, J. A. et al. Scientific Reports 8, 313 (2018). 

Copyright 2018 Nature Publishing. 
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