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ABSTRACT: Imaging mass spectrometry has become a mature molecular mapping technology that is used for molecular discovery
in many medical and biological systems. While powerful by itself, imaging mass spectrometry can be complemented by the addition
of other orthogonal, chemically informative imaging technologies to maximize the information gained from a single experiment and
enable deeper understanding of biological processes. Within this review, we describe MALDI, SIMS, and DESI imaging mass
spectrometric technologies and how these have been integrated with other analytical modalities such as microscopy, transcriptomics,
spectroscopy, and electrochemistry in a field termed multimodal imaging. We explore the future of this field and discuss forthcoming
developments that will bring new insights to help unravel the molecular complexities of biological systems, from single cells to

functional tissue structures and organs.

I. Introduction

Imaging mass spectrometry (IMS) is a technology that
enables the mapping of hundreds to thousands of molecules
within biological systems.!"® The instruments within the field
can measure a diverse array of sample types and chemical
classes, ranging from low molecular weight metabolites’”'? and
signaling molecules'®* to lipids,'*?! peptides,??** and
proteins.?>? A typical IMS experiment involves defining an
area of the sample surface to be imaged followed by the
desorption and ionization at multiple discrete locations. Each
desorbed location, or pixel, is composed of an individual mass
spectrum. A molecular image is generated for each signal
recorded by plotting the ion intensity of that signal throughout
the array of pixels generated from the sample. While there are
many types of IMS technologies that have been reported in
literature, we highlight here the three most common: matrix-
assisted laser desorption/ionization (MALDI),3*3! secondary
ion mass spectrometry (SIMS),?>3* and desorption electrospray
ionization (DESI).?>3® Additional information on other types of
IMS technologies can be found in several recent reviews.!#3?

Each IMS technology can be coupled to a variety of
analytical approaches to enhance the information gained in a
single experiment. Although IMS provides rich, chemically
informative spectra and mapping capabilities, combining this
unique mass specific technology with other analytical
approaches can provide additional information for an analyzed
sample. Combining two or more imaging modalities is termed
multimodal imaging. The accrued advantages include enhanced
discrimination between modality specific chemical and
instrumental noise from biologically relevant chemical signals,

improved sensitivity and specificity of chemical classes not
easily analyzed by a single modality alone, and enhanced data
mining capabilities. Combining IMS technologies with other
analytical approaches provides a more effective means to probe
the molecular complexity of biological systems. In this review,
we summarize major advancements in the field of multimodal
imaging mass spectrometry over the past few years and discuss
the exciting future of this field.

I1. Overview of Imaging Mass Spectrometry Technologies
a. Matrix-Assisted Laser Desorption/lonization

MALDI is a common ionization method within the
IMS field as it can visualize numerous molecular species over
a broad mass range with great molecular diversity. For tissue
analysis, sample preparation typically involves sectioning of
tissues and thaw mounting these sections onto a glass slide or
other target (e.g. conductive surface for high voltage ion
sources) and subsequent application of an organic chemical
matrix that aids in analyte desorption and ionization.*® Spatial
resolution is defined by the ablation area of the laser and the
distance between pixels (pitch). A variety of matrices are used
for specific molecular classes. Commonly used matrices
include  2,5-dihydroxybenzoic  acid*  or  cyano-4-
hydroxycinnamic acid** for positive ion mode analysis of
metabolites, lipids, and peptides. Additionally, 9-
aminoacridine® is typically used for negative ion mode analysis
of metabolites, lipids, and proteins, while 1,5-
diaminonaphthalene** is employed for analysis of lipids in both
ion polarities. Recently norharmane has been shown to be
effective for the analysis of hydrophobic molecules and low
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molecular weight metabolites.* Matrix deposition is often
performed robotically to best balance reproducibility, analyte
extraction, achieve small crystal size, and produce coating
homogeneity, although sublimation, sieving, and airbrushing is
also used in the field.*46

As high spatial resolution MALDI IMS capabilities
are developed that approach cellular and subcellular
resolutions, challenges in sensitivity arise as the number of
molecules sampled decreases with smaller pixel sizes.
Ultimately, spatial resolution is dependent upon multiple
factors such as matrix crystal size, laser focus, and stage motor
step precision. Most modern MALDI IMS platforms utilize
either a frequency tripled Nd:YAG (355 nm) or nitrogen gas
laser (337.7 nm) and can achieve spatial resolutions of 5-20 pm
using traditional front-side laser optics.’>>* Improving laser
focus beyond 5 pm can be achieved with more advanced setups
using lower laser wavelengths (e.g. 213 nm) or changing laser
geometries (e.g. transmission-mode), to minimize the effective
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Figure 1. Selected developments within the IMS community. Image of a Vero B cell culture at 1 pm spatial resolution acquired with transition mode MALDI-2 IMS
developed by the Dreiswerd lab (A). Panel A is adapted with permission from ref*’, Niehaus, M. et al. Nat Methods 16, 925-931 (2019). Copyright 2019 Nature
Publishing. SIMS image of a coculture of different Pseudomonas aeruginosa stains visualized with different signaling small molecules (B). Panel B is adapted with
permission from ref?**, Cao, T. et al. SPIE BiOS 108630A (2019). Copyright 2019 SPIE. Digital Library. Lipid images both positive and negative mode of the
human eye using nanoDESI at 10 pm spatial resolution (C). Panel C is adapted with permission from ref*-3!, Yin, R. et al. Nature Protocols 14, 3445-3470 (2019).

Copyright 2019 Nature Publishing.

PC 36:2

PG 34:1

spot size as described in the next several examples. For
instance, Heiles et al. demonstrated a new source that integrates
a 213 nm laser allowing for a ~3 um footprint using front-side
laser optics.> Alternatively, Zavalin and coworkers developed
a transmission-mode geometry MALDI source, where the UV-
laser is redirected to ablate the sample from the backside. By
decoupling the laser and ion optics, higher numerical aperture
objectives can be utilized without impeding the ion path,
resulting in ~1 pm spot sizes.’® However, a drawback of any
high spatial resolution IMS experiment is a reduction in ion
abundances; the Caprioli*” and Dreisewerd*’ labs incorporated
a secondary laser perpendicular to the primary ablation plume
as a means to enhance ionization of transmission geometry
setups. An example of these datasets is featured here (Figure
1A).

b. Secondary lon Mass Spectrometry
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SIMS utilizes electrostatically focused primary ions
(e.g. Bi*, Cs*, and O") or clusters (e.g. Au;*, Cq, and Ar) to
impact the sample surface, causing a collisional cascade in the
top few monolayers of the sample leading to the ejection of
secondary ions.>34 Because of the high energy of the ion beam,
analyte ions often undergo significant fragmentation and
analysis is typically limited to molecular weight ions <2 kDa.®
The energy of the ion beam plays a critical role in sampling and
can be divided into two regimes: static and dynamic SIMS.
Static SIMS is defined by low primary ion doses (<103 cm2)
and beam currents (pA-nA) suitable for surface analysis of
elements and molecules. Alternatively, dynamic SIMS has
much higher primary ion doses (>10'3 cm2) and beam currents
(mA), making it suitable for depth profiling and three
dimensional imaging.” In general, sample preparation for
SIMS analysis is minimal and consists of mounting tissues
flatly onto conductive targets and drying prior to introduction
into the source vacuum chamber.®%¢! Although not required,
washing samples to remove salts from tissue prior to analysis
can improve ion yield.%2-63

The primary advantage of SIMS is its high spatial
resolution capabilities, because ion beams can be tightly
focused using electric fields (1 pm to 30 nm).*? Similar to
MALDI, SIMS spatial resolution is defined by the diameter of
the ion beam at the surface and the pitch. SIMS has been used
for cellular and subcellular analyses.®*¢” and for the
determination of molecular profiles of various disorders
including different cancer types® and cardiovascular disease.®
It has also been used to monitor signaling between bacterial
cocultures and distinct alkyl quinolone messengers between
different stains of Pseudomonas aeruginosa (Figure 1B).*8
Additionally, SIMS was employed to visualize salt
redistribution in brain tissue between healthy and stroke mice.”
While effective for low molecular weight metabolite and lipid
analyses, it has not been commonly applied to peptide and
protein imaging studies.

c¢. Desorption Electrospray lonization

Desorption  electrospray ionization (DESI) is
performed by spraying charged solvent droplets on the surface
of the sample where the analytes are desorbed and ionized for
subsequent detection by MS.”! The imaging experiment is
performed in a continuous raster sampling mode where the
target is moved continuously under the DESI spray in a
‘typwriter-like’ motion. Spatial resolution is estimated by the
target stage velocity, sampling rate of the mass spectrometer,
number of spectra averaged for a single pixel, and distance
between adjacent line scans. Although DESI has limited spatial
resolution capabilities (~150 pum), it requires minimal to no
sample preparation. Tissues sections are mounted onto glass
slides and sampling is performed at ambient pressure. Recently,
the Laskin lab developed a modified form of this sampling
approach, termed nanoDESI, using a liquid microjunction to
increase spatial resolution to ~10 pum (Figure 1C).* While
nanoDESI is not discussed in a multimodal imaging context
here, we eagerly anticipate the higher spatial resolution of
nanoDESI being coupled to other modalities. Moreover, DESI
and nanoDESI been used to map metabolite,”>7* lipid,”>’® and
drug distributions in a variety of biological systems ranging
from plants to diseased mammalian tissue.”-%! Further,
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additives in DESI solvent can target specific molecules in the
case of reactive DESI®? or enhance extraction.”

DESI and nanoDESI IMS are minimally destructive
techniques and have been used experimentally in surgical
settings to enable intraoperative molecular assessment and aid
in real-time intraoperative decisions.’®33% Sans et al.
molecularly characterized high-grade serous carcinoma, serous
borderline ovarian tumors and normal ovarian tissue samples
using DESI IMS.% They identified predictive markers of cancer
aggressiveness and built classification models to enable
diagnosis and prediction of high-grade serous carcinoma in
comparison to normal tissue with a high certainty of ~96 %.
Similar work from the Eberlin lab has led to the development
of a handheld mass spectrometry device, the MasSpec Pen,
which enables in vivo diagnostics during surgery.®¢3788 This
device has been used for classifying ovarian®® and breast
cancer” since it was originally developed. Because it can be
operated at atmospheric pressure and requires minimal sample
preparation, DESI holds promise for use in clinical and surgical
settings.

III. Combining Multiple Imaging Mass Spectrometry
Technologies

Since each IMS technology has unique performance
characteristics for different molecular classes, there is utility in
coupling them together. Technologies such as tandem MS,
microextractions, and ion mobility each add additional
dimensions to the MS dataset, expanding upon the chemical
information that can be obtain, either by enabling de novo
identification or reducing spectral complexity.

a. Spatially Targeted Tandem MS

Tandem mass spectrometry enables de novo
identification of molecules within complex samples.”!-?
Tandem MS is generally accomplished by performing isolation
within one mass analyzer for subsequent fragmentation and
transmittance into another mass analyzer for detection.*
Serially performing these analyses allows for identification of
discrete molecules within a biological sample.?>% In the context
of imaging, pixels can be subdivided allowing for a precursor
ion scan and subsequent MS/MS scans. This spatially targeted
structural information comes at the cost of spatial resolution to
accommodate multiple samplings. Additionally, it is often
difficult to perform tandem MS analysis within an imaging
experiment if the ion of interest is only present within a small
number of disperse features or pixels.!” Alternative means of
targeting sample regions or locations for identifying key ions
include multimodal image-guided surface sampling,”-
microprobe extraction for offline tandem MS,**-1%! and tandem
MS on an orthogonal sample.'®3 By using these various
strategies, ions that are found in a small number of pixels or
structural features can be targeted for analysis.

Tandem MS can be used within an imaging context to
identify the differential localization of isomers or isobars within
a tissue. Although tandem MS has been reported for several
types of IMS technologies,!9>1%4 it is primarily used for SIMS
imaging because most ion beams fragment analyte ions during
the ionization process.'®'% Any imaging mass spectrometer
with MS/MS capabilities can generate fragment ion
images'!%!!! enabling direct visualization and differentiation of
isomers and isobars within tissue without prior separation or
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derivatization. Generally, these experiments are usually limited
to surveying a small number of ions within a sample, since the
tissue is partially consumed during analysis.

b. Multi-Imaging Mass Spectrometry Experiments

Each of the three types of IMS technologies discussed
here provide different molecular coverage and spatial
resolution. As a result, investigators have combined some of
these to gain further functionality. SIMS and MALDI IMS have
been combined to detect multiple chemical classes, such as low
molecular weight metabolites and lipids within individual
cells?” and tissue.'’* Additionally, the combination of MALDI
and SIMS has been used to analyze hair to enhance sensitivity
and spatial resolution.!'*!!> Both MALDI and SIMS sources are
operated under vacuum using similar tissue preparation
protocols. In some cases, SIMS analyses have been shown to
be enhanced by the application of a MALDI matrix.!'®!17 While
less common, combining MALDI and DESI together enables
analysis of different lipid species,!'® and co-mapping of lipids
and proteins.'"” To our knowledge, there has not yet been a
DESI and SIMS multimodal IMS experiment, likely because of
the differences in sample preparation. Reaction additives can be
employed for DESI analyses for quantitation and derivatization
chemistries, bringing additional capabilities to any combination
of technologies. Finally, DESI produces multiply charged ions
that are often more amenable to tandem MS applications.

c. Microextraction

Microextraction protocols aim to remove key analytes
from bulk material to reduce chemical complexity,'?’ and target
specific analytes. Both solid and liquid phase extraction
techniques have been coupled to IMS for increased peak
capacity and sensitivity. Solid phase microextraction (SPME)
comprises a diverse set of solventless techniques that allow for
in vivo analysis. An advantage of SPME devices is that most
analytes are introduced into the MS system at once. Introducing
ions concurrently increases sensitivity and signal-to-noise (S/N)
compared to technologies that generate a transient signal.!?!122
Furthermore, SPME is used to separate an analyte of interest
from bulk material, such as in trace analyte analysis.!?3

Liquid extractions, such as liquid microjunction
(LMJ)*124and liquid extraction surface analysis (LESA),*:12°
also enhance peak capacity and reduce ion suppression. Briefly,
extraction solvents are dispensed onto a tissue surface and
collected for subsequent liquid chromatography or capillary
electrophoresis MS analysis.”? Spatially targeted liquid
extractions are advantageous because they can be coupled to
different separation techniques, increasing both sensitivity and
depth of coverage. For instance, Cahill et al. used an LMJ to
image portions of a microfluidic device while it was functioning
with future use aimed at biology-based microfluidic devices.!?
Typically, this technology utilizes relatively large areas for
droplet placement. However, recently microLESA was
combined with piezoelectric spotting of trypsin to achieve
higher spatial resolution sampling than previously reported. 2
In addition, microLESA was integrated with autofluorescence
microscopy to correlate protein signatures of murine kidney and
Staphylococcus aureus abscesses without tissue staining.”® As

these techniques continue to improve in spatial resolution and
automated platforms become available, combining IMS with
spatially targeted microextractions will be adapted to
supplement spatial information with deeper molecular coverage
and added identification capabilities.
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Figure 2. LESA and cIM analysis of a complex murine kidney protein
extract. More proteins are detected after each additional cycle of cIM (A).
IM heat map generated from a single cycle of cIM (B), where extracted
mass spectra from different trend lines contain different protein signatures
(C-E). This figure is adapted with permission from ref''?, Sisley, E.K. et
al. Analytical Chemistry (2020). Copyright 2020 American Chemical
Society.

d. Ion Mobility

Ion mobility separations add an orthogonal analytical
dimension to IMS that reduce ion interference for improving
peak capacity and specificity and aiding in identification of
species. Additionally, drift time or collision cross sections
(CCS) calculated with the use of standards can be used to help
identify isomers and isobars. Ion mobility techniques that have
been coupled to IMS include drift tube mass spectrometry
(DTIMS),!?812° traveling wave ion mobility spectrometry
(TWIMS),130.131 field asymmetric ion mobility spectrometry
(FAIMS),3>134 and—more recently—trapped ion mobility
spectrometry (TIMS).135-137

A major focus of the ion mobility field is developing
higher resolving power platforms, so they can separate isomers
and isobars. Park, Fernandez-Lima, and co-workers utilized a
buffer gas and ion trapping by electric field gradient for the
development of TIMS devices. They report resolving powers of
~200 but up to ~400.1%140 One approach for increasing
resolution is by increasing path length and/or number of passes

4
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Figure 3. Images of a TEM grid (A-C) and NaCl salt (D-F) crystal
generated from the SIMS helium microscope. The SIMS (B,C,E,&F)
images are close to the resolution of the microscopy (A&D),
demonstrating the power of this technique. This figure is adapted with
permission from ref'®, Klingner, N. ef al. Ultramicroscopy 198, 10-17
(2019). Copyright 2019 Science Direct.

around the mobility device. Notable ion mobility advancements
include the development of structures for lossless ion
manipulation (SLIM) devices,'#14> as well as the cyclic ion
mobility (cIM).!43 SLIM devices utilize a separation path length
of ~540 m'* for achieving resolving powers over 1800. Using
cIM, resolving power of 750 (with 100 passes) has been
reported using a reverse sequence peptide pair. Although,
sensitivity can be challenging in these devices as ions are lost
radially over time. Recently cIM has been integrated with
LESA for the improvement of S/N and the number of detected
proteins from tissue samples (Figure 2).!2

Beyond increasing peak capacity and specificity,
trendlines within ion mobility heat maps can be used to identify
different molecular species, classes, and subclasses.'* For
example, MALDI DTIMS IMS was used successfully to
separately image a lipid species
([Phosphatidylcholine(34:2)+H]") from a closely isobaric
peptide ion (RPPGFSP).146 Skragkov4 et al. visualized multiply
charged polysialylated gangliosides using DESI TWIMS.!!8
Recently TIMS has been integrated with MALDI IMS to the
separate and map isobaric lipid species directly from tissue.!4
Cooper and coworkers introduced a new cylindrical FAIMS
device coupled to LESA IMS. This workflow improved the
number of detected proteins from what was previously reported
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as much as 10 times in murine brain, testes, and kidney.'#
Clearly, ion mobility has great potential for IMS applications as
it provides the ability to overcome the analytical challenges
associated with direct sampling of complex biological tissues.
Software is continually being developed to more efficiently
process highly dimensional ion mobility IMS data.

IV. Integration with other technologies

Non-MS analytical technologies can be integrated
with MS technologies to increase chemical coverage. Since
each technology has distinctive advantages for different
molecular classes, experiments that synergistically incorporate
multiple technologies gain unique chemical information neither
one can obtain alone. For example, many cell types and
functional cell states are uniquely suited for analysis by specific
methods, such as transcriptomics or immunostaining, and
integrating these can add great utility to the molecular
specificity of MS.

a. Microscopy

Microscopy is one of the oldest analytical approaches
dating back to the early 17" century and is commonly applied
to biological and clinical problems.'>%153 Qverall, microscopy
images are generated by capturing electromagnetic radiation or
particle beams as they interact with the sample through
reflection, refraction, or diffraction. A series of lenses and
objectives focus the light/particles enabling imaging with high
magnification.

Brightfield and histological stains, such as
hematoxylin and eosin (H&E) and periodic acid-Schiff (PAS),
are used extensively in pathology to assess tissue integrity,
health, and disease.!>*!15¢ Stained tissues have been employed
with IMS to connect molecular profiles to histological features
of both healthy and diseased tissue, such as cancer'>’'®! and
functional disorders.!>16> Recently, Basu et al. enabled IMS
and histology to be rapidly correlated by incorporating matrix
pre-coated slides, templates, and a 10 kHz laser.!%* Histological
stains are ubiquitous within the scientific and medical field, so
multimodal studies that combine IMS and stained microscopy
improve interpretation and facilitate collaboration between the
technologists and the biologists or physicians. Similarly, simple
brightfield images can be used for correlation of IMS signals to
specific tissue structures, particularly in cases that have features
that are easily distinguished with brightfield microscopy.'6-16¢

Fluorescence microscopy of both endogenous
fluorophores!®’-1%% and tagged antibodies!®-'"! or nucleic
acids!”>!173 have also been fundamental to our understanding of
biological systems. For example, Vardi et al. used
autofluorescence from chlorophyll and MALDI IMS to study
lipid metabolism within algal plaques.'”* By targeting key
proteins or genes, investigators can parse metabolic pathways
and monitor how these change as a function of disease state or
demographic. While exceptionally powerful and informative,
these technologies are generally limited to studying peptides or
proteins since there are few probes available for low molecular
weight metabolites and lipids.!”>!7® IMS has been readily
coupled to fluorescence microscopy approaches to tie together
cell-type specific immune!®!7.177:178 and transcript profiles!”®-18!
to metabolites detected by IMS.!$? Immunohistochemistry can
be used to histologically classify and contextualize the chemical
information obtained by IMS. Moreover, the combination of
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both IMS and immunohistochemistry produce more rigorous
classification schemes than either modality independently.
Recently, several labs have combined immunohistochemistry
and IMS to correlate protein or metabolite signals to specific
tissue substructures.'33-13¢ This type of experiment is further
extended by recent work where investigators coupled
multiplexed immunohistochemistry with MALDI FT-ICR IMS
to determine metabolic profiles of cancer cell, incorporating
molecular classes.'®” The increase in the plexity of the
immunofluorescence labels additionally enhances the
specificity of chemical profiles created by MS analysis, as these
immunofluorescence labels can be correlated to more specific
tissue regions or cell types.

Immunofluorescence imaging has been correlated
with MALDI IMS!”® and fluorescence in situ hybridization
(FISH) with SIMS.'” We could not find an example of either
being used as part of DESI multimodal studies. This is
interesting because there are no experimental considerations
preventing IHC or FISH from being combined with all the IMS
modalities discussed here. However, technical challenges in co-
registering modalities with dramatic differences in spatial
resolution may be driving this perceived disparity. Patterson et
al. have developed combination experimental and
computational pipelines using autofluorescence microscopy to
overcome this challenge for multimodal MALDI IMS
studies.'7-198 It is anticipated that fluorescence microscopy will
become an important correlative technology in IMS studies.

Particle-based microscopy, such as scanning electron
microscopy (SEM) and transmission electron microscopy
(TEM), offer very high spatial resolution because it is not
diffraction limited. A series of ion optics are used to focus ions
towards a sample. The ions then interact with the sample and
the emerging electrons and various energy conversion products
(e.g. secondary electrons, X-rays, light) are captured as an
image. Because nanoSIMS and electron microscopies have
similar sample and operational requirements, they have often
been used on the same sample.’®® TOF-SIMS has been
integrated into a helium ion microscope for § nm imaging with
the potential for extremely high resolution molecular imaging
of biological samples (Figure 3).'% For example, nanoSIMS
and TEM have been combined to map dopamine distributions
in dense core vesicles, providing key insight into vesicle
loading and nanocompartmentalization.!”® Another study
involves integration of fluorescence microscopy, SIMS, high-
energy resolution x-ray photoelectron spectroscopy, and SEM
on the same plant root to study bacterial growth and infection
on this root."”! The authors combined these four modalities
because of the simple and compatible sample preparation
involved for each. Beyond registration for enhanced
localization, particle-based microscopy is also readily used to
assess MALDI matrix application for ensuring matrix coverage
and crystal size.!9%1%3

b. Spectroscopy

Spectroscopic imaging includes a suite of optical
approaches, such as infrared (IR)'** and Raman, that provide
unique spectra of complex chemical mixtures, creating
reproducible chemical profiles of different physiological
regions and disease states.!®> Spectroscopy is used in a wide
array of biological studies,!?6-20! because the approaches are
generally non-destructive, label free, and capable of high spatial

resolutions (diffraction limited, 250 nm). While each
spectroscopic approach activates different, well characterized
molecular modes, it is often difficult to correlate spectroscopic
signatures of complex mixtures to discrete chemicals. Rather,
they provide general information on bond types and functional
groups for the entire chemical mixture.2°>205 As such,
spectroscopy has been coupled to a variety of MS technologies,
including IMS, to provide more detailed molecular descriptions
of samples.?%28 Because spectroscopic analysis is label free
and nondestructive, both modalities can be performed on the
same tissue section.?®”

Raman and IMS have been correlated to study
bacteria,?!®21? plants,?!3 single cells,” and mammalian
organs.?!3216 Fourier transform infrared microscopy (FT-IR)
has similarly been coupled to IMS for many biological
studies.??217.218 Recently, Rabe et al. developed a method for
FT-IR guided MALDI IMS (Figure 4). By coupling these two
technologies together, the authors reduced data load and
acquisition time by >90%.!8¥ Magnetic resonance imaging has
also been used to compliment molecular specificity of IMS with
dynamic, whole organ imaging.?'*-?> While MALDI IMS has
primarily been coupled to spectroscopic measurements, we
foresee DESI increasingly becoming incorporated with Raman
and magnetic resonance imaging. DESI does not have many
tissue preparation requirements and can theoretically be directly
integrated within either approach. Moreover, Raman and
magnetic resonance spectra are not saturated when water is
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Figure 4. MALDI IMS lipid profiles obtained after FT-IR generated
segmentation. Murine brain is differentially segmented based on absorbance
of 2922 cm™ based on disease (A) and control mice (B). Using this
segmentation, lipid profiles can be generated for different masks for chemical
differentiation (C-D). This figure is adapted with permission from ref'®%, Rabe,
J. A.et al. Scientific Reports 8,313 (2018). Copyright 2018 Nature
Publishing.
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present, unlike IR which readily is absorbed by water, making
them ideal candidates for multimodal DESI experiments.
c. Transcriptomics

Transcriptomics  technologies  measure  gene
expression through the extraction and amplification of nucleic
acids, most generally ribonucleic acids.??>-?27 Because of the
exponential amplification that can occur, this group of
technologies are highly sensitive and has been the driving force
behind cell typing and classification. There is great interest in
coupling IMS with transcriptomics analysis as it would enable
simultaneous correlation of gene expression to gene products
and biproducts. A majority of the literature combining mass
spectrometry and transcriptomics measurements has involved
liquid chromatography for bulk proteomics and/or
metabolomics.??$??° Towards an imaging context, investigators
probed an insect, Carausius morosus, for neuropeptide content
with MALDI MS and correlated this to bulk sequencing to
uncover peptides with no known homology.?*® Although this
was not an imaging application, the sample preparation was
performed in such a way that this workflow could be adapted to
an imaging workflow. As an additional step towards combining
IMS with transcriptomics, the Knepper et al. microdissected
kidney tubules and performed RNA-seq and proteomics.?*' This
methodology incorporates spatial information of the
microdissected structures, which is an important step towards
coupling IMS and transcriptomics directly. Moreover, there has
been some exciting work where transcriptomics and proteomics
IMS information has been correlated on different bulk
samples.?*> Work combining two approaches on the same
sample provided insight into the link between fatty acids and
immunity within breast cancer?*? and role of liver X receptors
in male reproduction.?’* While only a few examples exist, the
combination of transcriptomics and IMS will continue to
increase in the coming years and has the potential to uncover
new connections that span the central dogma of molecular
biology.

d. Electrochemistry

Electrochemistry has been vital in the study of
electroactive signaling molecules, such as dopamine,
epinephrine, serotonin, and histamine within biological
systems.?3>-237 This is partly because it is capable of absolute
quantitation of femto- to zeptomole amounts of analyte at ps
temporal resolutions . It is highly selective and naturally
applicable to the analysis of many low molecular weight
metabolites, such as neurotransmitters.238
nanoSIMS/nanoSIMS and electrochemistry are compatible and
have been used together often to study nonbiological?*® and
biological samples alike.?38240.241 Ewing et al. have quantitated
L-DOPA concentrations in vesicles and other organelles using
nanoSIMS and validated these concentrations with
electrochemistry.?*> This is particularly important because it
enables quantitation of low molecular weight metabolites at
high spatial resolutions. Further, Larsson and coworkers
quantitated octopamine release during different stimulations
using nanoSIMS and an embedded electrode.?® Investigators in
the IMS field have also adapted many technologies and
developments from electrochemical studies,?** ranging from
nanopipettes to electrochemical principals of ion generation.
Adopting materials, analyses, or processes from other fields is
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an effective, time saving process that expedites scientific
advancements.

V. Future of the Field

Mass spectrometry technologies have rapidly
advanced with improved sampling, ion transmission, and
detector sensitivity enabling highly sensitive and specific
analysis of biological tissues. Under favorable conditions, MS
can detect concentrations as low as 10 zeptomoles or
approximately 6000 molecules.® This sensitivity is sufficient for
probing most molecules within biological systems and yet there
is still much we do not wunderstand. Nevertheless,
improvements in the molecular, spatial, temporal, and
biological specificity are required to answer remaining
questions. IMS is one available tool that provides untargeted,
highly multiplexed molecular analysis but only through the
combination with other technologies can we achieve specificity
in all these areas mentioned above. Multimodal imaging
experiments can significantly improve performance
characteristics including structural identification, throughput,
cell type specificity, and dynamic range of MS-based chemical
profiles. The present article has summarized the current
literature surrounding multimodal IMS and the development of
the field to further explore remaining biological questions.

A major task facing multimodal approaches involves
efforts to fully integrate the several datasets to enable deeper
data mining. This is particularly difficult within an imaging
regime because the various technologies can have dramatically
different spatial resolutions, data structures, and chemical
information. Different computation methods for addressing
differences within spatial resolution include various methods of
up sampling the data, performing more refined data fusion, as
well as other experimental approaches.!67:168.245-248 While these
are capable of connecting modalities that are similar in
resolution, significant experimental and technological
capabilities are required to avoid the introduction of artifacts.?%
While many imaging modalities are within an order of
magnitude of one another, this will influence the capacity to
combine lower spatial resolution IMS technologies like DESI
with higher resolution molecular imaging approaches, like
SEM.

Moreover, technologies provide both overlapping and
orthogonal information that is often difficult to correlate. For
instance, transcriptomics measures gene expression of different
biochemical pathways that result with peptide and metabolomic
products. Ideally, a highly expressed gene would indicate the
presence of a specific metabolite and IMS would detect this
same metabolite in high abundance within the same regions, but
this is not always the case. There many transport, degradation,
and modification pathways that impede this correlation and
create complex datasets that are difficult to interpret. Additional
compounding technical factors, such as matrix effects,
differences in ionization efficiencies, and limited dynamic
range add to this complexity. While transcriptomics is used as
an example here, a similar scenario applies to other multimodal
approaches, such as protein abundances between IMS and
immunofluorescence experiments or lipid analysis by Raman
spectroscopy and IMS. While challenging, future multimodal
experiments will slowly begin to unravel the complex
relationships between the data produced by orthogonal
technologies. In connection with this, new machine learning
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algorithms and approaches will be essential for untangling the
abundance of chemical information obtained with multimodal
IMS. This will inevitably lead to a more complete picture of
biological systems and pathways.

Finally, improving sample preparation and
workflows will undoubtedly improve the quality and
reproducibility of collected data, particularly as these
technologies enter the rigorous domain of medicine and clinical
trials. Many technologies cannot be combined “out of the box”
and so there are often tradeoffs made to enable multimodal
analysis. Although, the gained information from the suboptimal
combination of the approaches is often greater than the data of
either technique alone. Developing methods that enable
multiple imaging modalities to be performed optimally and with
minimal spatial compromise will dramatically improve the
ability to integrate and discover connections between
multimodal datasets. Optimizing the ways and methods behind
combining the different approaches is a clear path forward in
the field.

In summary, multimodal IMS is a remarkably diverse
endeavor that incorporates the best attributes from a variety of
scientific disciplines. In the future, multimodal IMS
technologies will progressively become more common as the
scientific community begins to study more complex biological
and medicinal questions. Such studies have the potential to
bring together genomic, proteomic, and metabolomic imaging
technologies to provide unprecedented insights into biology and
medicine.
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Figure 1. Selected developments within the IMS community. Image of a Vero B cell culture at 1 pm spatial
resolution acquired with transition mode MALDI-2 IMS developed by the Dreiswerd lab (A). Panel A is
adapted with permission from ref47, Niehaus, M. et al. Nat Methods 16, 925-931 (2019). Copyright 2019
Nature Publishing. SIMS image of a coculture of different Pseudomonas aeruginosa stains visualized with
different signaling small molecules (B). Panel B is adapted with permission from ref24,48, Cao, T. et al.
SPIE BiOS 108630A (2019). Copyright 2019 SPIE. Digital Library. Lipid images both positive and negative
mode of the human eye using nanoDESI at 10 pym spatial resolution (C). Panel C is adapted with permission
from ref49-51, Yin, R. et al. Nature Protocols 14, 3445-3470 (2019). Copyright 2019 Nature Publishing.
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Figure 2. LESA and cIM analysis of a complex murine kidney protein extract. More proteins are detected
after each additional cycle of cIM (A). IM heat map generated from a single cycle of cIM (B), where
extracted mass spectra from different trend lines contain different pro-tein signatures (C-E). This figure is
adapted with permission from ref109, Sisley, E.K. et al. Analytical Chemistry (2020). Copyright 2020 Ameri-
can Chemical Society.
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45 Figure 3. Images of a TEM grid (A-C) and NaCl salt (D-F) crystal generated from the SIMS helium

46 microscope. The SIMS (B,C,E,&F) images are close to the resolution of the microscopy (A&D), demon-
47 strating the power of this technique. This figure is adapted with per-mission from ref145, Klingner, N. et al.
Ultramicroscopy 198, 10-17 (2019). Copyright 2019 Science Direct.
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Figure 4. MALDI IMS lipid profiles obtained after FT-IR generated seg-mentation. Murine brain is
differentially segmented based on absorbance of 2922 cm-1 based on disease (A) and control mice (B).
Using this segmenta-tion, lipid profiles can be generated for different masks for chemical dif-ferentiation (C-
D). This figure is adapted with permission from ref182, Rabe, J. A. et al. Scientific Reports 8, 313 (2018).
Copyright 2018 Nature Publishing.
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