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Forced Convection Heat Transfer
From a Particle at Small and
Large Peclet Numbers

We theoretically study forced convection heat transfer from a single particle in uniform
laminar flows. Asymptotic limits of small and large Peclet numbers Pe are considered.
For Pe < 1 (diffusion-dominated regime) and a constant heat flux boundary condition
on the surface of the particle, we derive a closed-form expression for the heat transfer
coefficient that is valid for arbitrary particle shapes and Reynolds numbers, as long as
the flow is incompressible. Remarkably, our formula for the average Nusselt number Nu
has an identical form to the one obtained by Brenner for a uniform temperature boundary
condition (Chem. Eng. Sci., vol. 18, 1963, pp. 109-122). We also present a framework for
calculating the average Nu of axisymmetric and two-dimensional (2D) objects with a
constant heat flux surface condition in the limits of Pe > I and small or moderate Reyn-
olds numbers. Specific results are presented for the heat transfer from spheroidal par-

ticles in Stokes flow. [DOI: 10.1115/1.4046590]

1 Introduction

The transport of heat from a particle via an externally driven
fluid flow is a phenomenon commonly observed in natural and
man-made systems. The ubiquity and importance of forced con-
vection heat transfer have led a large number of researchers to
study various aspects of this mode of heat transport. Among the
investigations conducted to date, many have focused on incom-
pressible laminar flows. Somewhat surprisingly, however, the vast
majority of theoretical studies in that area have been limited to the
case of an object with a known surface temperature distribution
(see, e.g., Refs. [1-12]), while little attention has been paid to the
equally practical problem of convection heat transfer from a parti-
cle with a prescribed surface heat flux. Of course, in such a prob-
lem, the rate of heat transfer (i.e., the surface integral of the
imposed heat flux) is already known, but what is not known, and
often sought after, is the average surface temperature in response
to the heat emanating from the surface of the particle. For exam-
ple, envisage a scenario where heat is dissipated from an elec-
tronic element by blowing air over it. Assume that the rate at
which the heat is generated by the element is known. In this sys-
tem, the goal is to set the flow speed such that the average surface
temperature stays well below a critical temperature, e.g., the melt-
ing temperature of the element.

It is not immediately obvious as to why cases with prescribed
surface heat flux condition have been overlooked by theoreticians.
However, one might surmise that the inconvenience of applying
Neumann, versus Dirichlet, boundary conditions is the factor that
has deterred them from considering this category of convection
heat transfer problems. To partly address this deficiency in the lit-
erature, here, we examine uniform laminar flows past a single hot/
cold particle whose surface is presumed to maintain a constant
heat flux. Perturbation theory is used to derive approximate
expressions for the Nusselt number Nu (based on the average sur-
face temperature) in the limits of small and large Peclet numbers
Pe. The accuracy of the formulas for the specific case of a spheroi-
dal particle in axisymmetric Stokes flow is tested via comparison
with finite volume numerical simulations.
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Below, we first pose the mathematical problem and describe
the asymptotic solutions in the limits of diffusion- and advection-
dominated heat transport, respectively. Specific results are dis-
cussed next and a short summary is given in the end.

2 Problem Statement

Consider an unbounded steady laminar flow with a divergence-
free velocity u past a stationary particle of arbitrary geometry and
characteristic length scale ¢ (see Fig. 1). Let the undisturbed flow
field be Uy, = U e, where U, = |U| is a constant and e is a
unit vector. Suppose that heat is released/absorbed from the sur-
face of the particle at a constant uniform rate ¢, and that the tem-
perature vanishes at infinity. Neglecting viscous dissipation and
assuming that the fluid properties are constant, the boundary-
value problem that governs the steady-state distribution of the
dimensionless temperature T outside the particle is

Peu VT = V’T with

n-VI=—1forre§, and 1lm7T =0 M

r—0o0

| TTTTTTTT

Fig. 1 Schematic of a stationary particle of arbitrary shape,
with surface S, and unit outward normal vector n, in a uniform
fluid flow. The dashed line indicates an enclosing boundary in
the “far field”.
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where the Peclet number is defined as Pe = pUs.c,l/k, with p, c;,,
and k being the density, specific heat, and thermal conductivity of
the fluid, respectively. Also, n is the unit vector outward normal
to the surface of the particle denoted by S, and r is the position
vector with magnitude r = |r| (see Fig. 1). Here, the temperature,
length, and fluid velocity are nondimensionalized, respectively,
by g5 £/k, ¢, and U. We reiterate that the primary novelty of our
study is the consideration of a Neumann boundary condition on S,
in the energy transport Eq. (1).

One can define an average Nusselt number for the above prob-
lem as

Nu=_—"2 )

where S, represents the dimensionless surface area of the particle
and T is the mean value of T on S,. Our primary objective is to
develop approximate formulas for the variation of the Nusselt
number (or equivalently T,) as a function of the Peclet number.
To this end, we use the ideas of the reciprocal theorem in conjunc-
tion with the method of matched asymptotic expansions and
boundary layer theory to derive expressions that are valid in the
limits of Pe < 1 and Pe >> 1. Details of the calculations are
described in Secs. 3 and 4.

3 Perturbation Solution in the Limit of Conduction-
Dominated Heat Transport

Suppose that the Peclet number is small, but finite. In this limit,
we seek to determine the O(Pe) contribution to the Nusselt num-
ber. It is well known that a regular perturbation expansion in terms
of Pe is only valid in the vicinity of the particle, i.e., regardless
of the magnitude of Pe, there exists a domain (r/¢= 0 Pe '),
where the effect of advection outweighs that of conduction. To
remedy this situation, a singular perturbation expansion is used
that involves separate expansions covering regions close to and
far from the particle, i.e., the inner and outer regions, respectively
(see, e.g., Refs. [4], [5], and [9]). The inner and outer expansions
are matched asymptotically in an intermediate region where both
expansions are valid and, together, constitute a perturbation solu-
tion that is valid in the entire domain.

Specifically, the inner expansion of the temperature field takes
the form of

T=T9 +PeTV 4 o(Pe) 3)
which after substitution into Eq. (1) leads to
V9 =0 with n-V1'% = -1 forres, 4)
On the other hand, the outer expansion is expressed as
T =peT" + o(Pe) 5)
which results in
(1)

. . =0
with  lim T
r—00

=0 (6)

The tilde overbars in Egs. (5) and (6) denote that the temperature
field and the V operator are written in terms of the stretched
(rescaled) position vector 7 = Per with 7 = |F|. The remaining
boundary conditions of Egs. (4) and (6) are furnished by enforcing

lim T =lim7T (7

r—00 7—0
at every order of Pe.

We first consider the solution for 7(¥). To satisfy the matching
requirement at the zeroth-order, 7O 0 as r— 00, which
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indicates that T is the conduction (Pe = 0) solution of the origi-
nal problem described in Eq. (1). Thus, far from the particle, the
zeroth-order inner solution can be written as (see, e.g., Ref. [5])

70 = 20 4 0() = e 221 o(pe) 8)
4nr 4nr

This means that the far-field temperature distribution, to the lead-

ing order, may be approximated as the solution of the point source

of strength qXS,,Ez applied at the center of the particle. Next, given

Eq. (8) and applying the matching condition again, we find

4 r0 ©

which, together with Eq. (6), yields (see, e.g., Ref. [5])
(10)

Note that T(l) is also the solution of the point source qu,,éz.

We now implement the ideas of the reciprocal theorem (see,
e.g., Refs. [13—15]). We multiply the Laplace Eq. (4) by T and Eq.
(1) by T(© and then subtract the resulting equations to obtain, after
rearranging

V. (rvr©) = v (7OVT) — pe 7Oy - VT (11)
Integrating this equation over the fluid domain V and using the
divergence theorem, we arrive at

J Tn-v70ds = J
Sy

TOn . VTdS + PeJ TOu.VvTdv (12)
Sp

14

where the integrands decay sufficiently fast for contributions from
surfaces at infinity to vanish. Application of the boundary condi-
tions on S, reduces Eq. (12) to

S, T, = J

70 45 — PeJ TOu.vrdv
s,

v (13)
=5, (Tio) + Pe TE”) + o(Pe)

(0)

where TXO is the zeroth-order contribution to the average surface
()

temperatures and 7, is the O(Pe) correction to it. Given Egs.
(13), (3), and (5), we deduce

0) g (1)

fS,,Tﬁ,l):[ vitldar (14

7Oy . v qy te. [
JV o

T
R?
where the second integral on the right-hand side is over the entire

three-dimensional (3D) real space R3 and T(O) = Sp/4nF. The
first integral on the right-hand side can be written as

2J TOu . v1® gy :J v [0 u]av
V Vv

- —L (79)n . uds — J

S

(10 p.uds  (15)

where both surface integrals are zero because of the no penetra-
tion condition on S, and the incompressibility of the flow (i.e.,
V - u = 0). Hence, utilizing integration by parts, we find

(1) S e-r 1, N
T, :_1622JR%fTeXp {—E(i—e-r)}dr (16)

Let e,, ey, and e. be the unit vectors of the Cartesian coordinate
system (x, y, z) located at the center of the particle, see Fig. 1.
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Then, expressing the position vector in spherical coordinates
(7,0, ¢) as

r=rsinfcospe,+rsinfsingpe, +7cosle.

and setting the arbitrary unit vector e to e. (for convenience), the
above relation simplifies to

70 _ Sp J‘”rr” cos 0 sin 0
$ 167'[2 0 o Jo f

= S (17)
i S

X exp [—L(l - cos@)} dpdodr = —=L
2 87

which, in turn, yields
= = S
Ty= T£O> 1 —Pe —L—| + o(Pe)
87'[7_“(0)
' (18)
(0)
= T£0) (1 —Pe N ) + o(Pe)

Substitution of Eq. (18) into Eq. (2) gives the final expression for
the Nusselt number

2

S[, (0) (Nu(o))
= — =N P
Nu 2T, u’ + Pe

+ o(Pe) (19)

Of course, this result is consistent with the one obtained by Leal
[9] for the special case of a spherical particle in a uniform Stokes
flow.

There are a couple of important points to make here. First,
thanks to the reciprocal theorem-inspired approach that was
adopted, the derivation of Eqgs. (18) and (19) did not require a
detailed knowledge of the velocity field. All we utilized were the
facts that the flow is divergence-free and that it does not penetrate
into the particle. Even no-slip condition was not essential and we
assumed no restriction on the flow Reynolds number defined as
Re = pU,¢/u, where i is the fluid viscosity. Second, and perhaps
equally notable, Eq. (19) for the dependence of the Nusselt num-
ber on the Peclet number is identical in form to the formula
obtained by Brenner [5] for an isothermal particle and the expres-
sion derived by Gupalo et al. [16] for the Sherwood number Sh
(analog of Nu for mass transfer problems) of a particle with a
first-order chemical reaction occurring on its surface. It is note-
worthy, however, that the values of Nu'? (or Sh(o)) corresponding
to Dirichlet, Neumann, and Robin boundary conditions are not
identical. A natural question to ask at this point is that over what
range of Pe does Eq. (19) produce accurate results? We will
answer this question for the special case of axisymmetric Stokes
flow past a spheroid in Sec. 5.

4 Perturbation Solution in the Limit of Advection-
Dominated Heat Transport

Suppose that the Peclet number is large (i.e., Pe > 1) and the
Reynolds number is small or moderate. In this limit, the tempera-
ture distribution outside the particle is mainly restricted to a thin
layer around the particle (see, e.g., Fig. 2), whose thickness is pro-
portional to Pe '3 (see, e.g., Ref. [6]). This scaling can be
deduced by equating the order of magnitude of the advective and
conductive terms in Eq. (1), while assuming a linear velocity pro-
file next to S,. The restriction on Re is to ensure that, unlike the
temperature field, the velocity field surrounding the particle is not
confined to a narrow region. Similar to Sec. 3, here also we wish
to develop a two-term asymptotic approximation for the Nusselt
number.

Following the standard boundary layer theory (see, e.g., Ref.
[6]), we assume that the already known velocity field and the to-
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be-solved-for temperature distribution are axisymmetric or two-
dimensional (2D) and that S, is smooth. We also adopt the so-
called boundary layer coordinate system (X,y, ¢), where the first
two components measure, respectively, the distance along and
perpendicular to the surface of the particle in the plane of flow
(see Fig. 2) and the third component is the azimuthal angle for
axisymmetric and the distance from the x—y plane for two-
dimensional problems. The metric coefficients associated with

(X,¥, @) are

hy=1+k(Xx)y, hy=1, hy,=0x)+ax)y (20
where « is the curvature of S,. For 2D cases ¢ = 1 and =0,

whereas for 3D axisymmetric problems, ¢ is the rotation radius of

Sy and o0 = *4/1 — (do/dx)* is the cosine of the angle between

the axis of rotation and the tangent to S,. Thus, k=
—(d?g/dx?) /o for axisymmetric cases.

In the vicinity of S,, Eq. (1) can be expressed in terms of the
boundary layer coordinates as

pe (9T uy OT
hy Ox  hy Oy
1 [ (hh,dT\ O (hsh,dT ,
= — =) += — th
hhyh, {ax( Iy 8x) +ay( nooy)| V@D
g =—1 and lim 7T =0,
9y |y—o y—00
where
1 oy 1 oy
= = = 22
T hohy Oy T T hhy Ox @2)

are the velocity components in the x and y directions, respec-
tively, with y being the stream function. Remember that 9T /¢
and u,, are zero. Since we are interested in the solution near S, it
is useful to expand &, /hy and Y abouty = 0 as

2

hy/hy =0+ (o — oK)y + (ox* — axc)y* + -+, (23a)
=0y + ()Y’ + -, (23b)
where
Ouy
2, = Qaf =07 24
Y ly=0
Us

Fig. 2 Schematic of uniform flow past an axisymmetric heated
object at high Peclet number. The boundary layer coordinates
are represented by x and y, and the surface heat flux is denoted

by q.
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with 7 being the dimensionless shear stress at the surface of the
particle. Note that both Yy and 9y /9y are zero at y = 0 due to the
no-slip condition.

Given how the thickness of the boundary layer scales with the
Peclet number, we consider

y :Pel/3y

as the stretched coordinate and proceed with rewriting Eq. (21) as

(£ 4 pe=13 20 L 0(pe2B3)|]T =0 with

25
8—? =-Pe'? and limT=0 23)
6}’ - y—00
where

_ L, dy o?

(0) _ 2 _2 Z .2
LY =2y lﬁz dx 5 8}72 (26a)
(1) _ 332 _~3%7_ 9 (;9 26b
L s 5o ax 0 (x QK)ay Y55 (26D)

Taking the form of Eq. (25) into account, it is natural to expand
the temperature field, its mean value on S, and the Nusselt num-
ber as

T = Pe13(10 4 pe~137W) L o(pe!) 27a)
T, =Pe 1/ (Tﬁ‘” +Pe !/ T’i”) +o(pe) (27h)
Nu = Pe!ANu® + NuV + o(pe~1/?) (27¢)
where

X =1 rx,
T, = (J de) J T|y o0dx (28a)

0 0
Nu® = éj’(o) (28b)

2nT

~(1)
20T

Nul = —(Nu®)” s (28¢)

with x = 0 and x,, corresponding to the forward stagnation point
of S, and the maximum value of x, respectively. We note that, for
two-dimensional problems, the quantities described by Eqgs. (27)
and (28) belong to the temperature boundary layer that forms over
one side of the stagnation point (see Fig. 2), as the energy equa-
tion in the two layers can be treated separately, but in the same
manner. Furthermore, as clearly articulated by Acrivos and God-
dard [6], the above expansions are not expected to be fully appli-
cable to all scenarios, such as where there exists a rear stagnation
point on S,,. Thus, caution needs to be exercised when employing
these expansions to ens%e the acc racy of the results.

Below, we derive T~ and T and by extension, Nu® and

Nu'V. Substituting for T in Eq. (26) and requiring the energy
equation and its boundary conditions to hold for all orders of Pe,

we arrive at the following parabolic equations for T and TW:

L0710 =0 with
or0) (29a)
. =-1, lim7T%=0 and Lm7T? =0
ay -0 y—o0 x—0
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LOTV = 07O with
arV (29)
_ =0, 1limT"Y =0, and limT" =
By §=0 y—00 x—0

We first consider Eq. (29a), which is indeed the standard
boundary-layer approximation of Eq. (26). One might be tempted
to develop a similarity solution for this equation, as done tradi-
tionally when S, is considered isothermal (see, e.g., Ref. [17]).
However, such an approach would fail here because of the Neu-
mann boundary condition at y = 0. Instead, we apply a coordinate
transformation of the form (see, e.g., Ref. [6])

(=] VIR e ds ad 2= VAR GO
0
which turns Eq. (29a) into
ar© o210 .
Zgbzg(z 7 o =0 with
(0)
Il L mT® =0, and 1mT® =0
9z |, /2, 200 t—0
(3D

According to Sutton [18], the solution of the above problem is

t 970 . .
70 — _ I 5 G(t,z;1,0) dt (32)
0 9Z |,
where
G(t,z;1,2) =

Vz2 723+ 73 2(22)3/2 .

VI exp|— | I_ - for t>t (33
-0 P | ot—0) oD
0 for t<t

is the Green’s function that satisfies

2
, 26 06 o(t,2) with
ot 0z%
5G (34)
—| =1lmG=1lmG=0
0z 4—0 27 t—t

Here, I_; 5 is the modified Bessel function of the first kind and of
order —1/3 and ¢ is the Dirac delta function. Replacing for G and
the heat flux distribution in Eq. (32), we find

1 ! 2/3 V2 i)
(0) _ _ —23/9(t—1)
TG /3)J (t—1)" (2%) e di (35

where I' is the gamma function and lAﬁz = ,(%). Hence, the lead-
ing order contribution to the average surface temperature can be
obtained via (see Eqgs. (27b) and (28a))

0) 1

3T/ |

0

[J 92/3d>zgdx (36)
odx”? 0(t—1)

where ¢ = o(X) and f = t(X). Remember that all needed to calcu-
late t(x) is the knowledge of the shear stress distribution on S,
(see Eq. (24)).

With the Green’s function known, the solution of Eq. (29b) can
be written formally as
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t (oo
T :J J f(t,2) G(t,z;t,2) dz dt (37)
0Jo
where
W70
ATy .
1 { 2T B2 +.0) 6T(0)] (38a)
,_\/MQ Az e Bz’ +C %
3y
A — (x4 38b
(x) = 29,0 () (38b)
d | s
B(x) = L 38
W szm] o
C(x) = a+ oK (384)

Substituting for 7O in (38a), multiplying the result by Eq. (33),
and carrying out the Z integration (see, e.g., Refs. [6] and [19]),
we reach, after some simplifications

2
W __ !
= |: 1/3 (2/3):|

x{(t—f)[3A+9(f 30

) - 2i-1 2
t)B:|><1F| 2;3;tz>

2\ (4 - 2 i-t 3 A oa
+(t—t)(C—2A)><1F1(1;§; z A)}@didi
(39)
where t = t(%), 4 = AR), B = BK), € =C(R), § = o(&), and
1F is the confluent hypergeometric function of the first kind [20].

The first correction to the mean surface temperature then becomes
(see Egs. (27b) and (28a))

2
—(1) 1 1 JX'" JX ~1/3
T =—_ (t—1)
s [ 0 dx {3”%(2/3)} o Jo

(40)

5 Specific Results for Spheroids in Axisymmetric
Stokes Flow

We choose Stokes (zero Reynolds number) flow to exemplify
the general results of the previous two sections because it is repre-
sentative of many small-scale flows arising in biology, engineer-
ing, and material science. And, we choose spheroids because of
their practical significance. In what follows, we first present the
results for the limits of small and large Peclet numbers and then
show the comparison with the full numerical solution of Eq. (1).
We acknowledge that the choice of Stokes flow does not affect
the low Pe analytical result. For the sake of completeness, we also
provide the results for spheroids with isothermal surface
condition following the works of Brenner [5] and Acrivos and
Goddard [6].
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5.1 Limit of Pe < 1. Consider a spheroid of equatorial
radius ¢ and aspect ratio (ratio of polar to equatorial radius) &. As
discussed in Sec. 3, when the Peclet number is small, the details
of the flow field are irrelevant for calculating the Nusselt number
to the leading order in Pe. In this limit, all needed is Nu corre-
sponding to Pe = 0. As reported by Romero [21] and Jafari et al.
[22], the conduction Nusselt number of a spheroid follows:

(e

NLI(O) = (41)
8n2E2 3 167 (4m + 1 )QZ’“(; )’D2
m=0 Q2m( )
where
P C(m+n+1/2)
" T2n+ )T2m —2n+ 1) T(n—m+ 1/2)
2F1<*1/2,ﬂ+ 1/2;n+3/2;f§52)
* (42)
2n+1
Sp=2mn|1+——=coth” 1\/— (43)
m
= 44
==z “

Here, m and n are integers, Q,,, are Legendre functions of the sec-
ond kind [20] with Q’Zm(X) = d0>,(¥) /dX, and ,F, is the hyper-
geometric function [20]. The summation in the denominator of
Eq. (41) converges very quickly, to the extent that taking only two
terms of the series produces results accurate to within 0.25% of
the exact values. Furthermore, the parameter ¢ is real for ¢ < 1
(oblate spheroids) and is imaginary for ¢ > 1 (prolate spheroids).
It is interesting to contrast Eq. (41) with its counterpart for the
problem of conduction heat transfer from a spheroid with a uniform
surface temperature 7T, which is (see, e.g., Refs. [23] and [24])

n-VTdS
Nu® = — L _VIo# (45)
n 2nlTy  cos~le

Allowing for imaginary values of the square root and inverse
cosine functions, this expression and also the forthcoming
Eq. (48) are valid for the entire range of ¢. Here, the Nusselt num-
ber is denoted by a different symbol so it is easily distinguished
from its analog for the constant heat flux surface condition.
Clearly, Eq. (45) is far less cumbersome than Eq. (41). That aside,
the substitution of either Egs. (41) or (45) in Eq. (19) gives the
Nusselt number correct to the order of Pe for incompressible uni-
form laminar flows past a spheroid.

5.2 Limit of Pe > 1. Consider the spheroid of Sec. 5.1 with
its axis of revolution coinciding with the z axis of the Cartesian
coordinate system, and suppose that e =e.. To determine the
0(Pe'/?) Nusselt number and its first correction, we need to calcu-
late the integrals in Egs. (36) and (40), which involve the func-
tions ¢(x), t(x), A(x), B(x), and C(x). The first and last functions
depend only on the geometry of the spheroid whereas the remain-
ing three are additionally dependent on the flow field. It is more
convenient to express these functions in the terms of a new vari-
able 1, where

dx &2+ (1 —&2)p?
. IS E-UES B
with n=1 and n = —1 corresponding to x =0 and x = X,

respectively. The stream function for axisymmetric Stokes flow
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past a spheroid is known (see, e.g., Ref. [25]). Granted this, we
find, following the definitions given in Sec. 4, that

e(m = V1-n (47a)
F
t(n) = Fi(cos_ln -1 - 112> (47b)
_ 1 2 5¢2 .
A(”I) = zhnﬁ |:(1 —& ) — m} (47¢)
n po 1 3/2 382
B(n) = had
") 3hy \ﬁ{(l - ;72)3} 12 + (1 — 2))
x{1+3(gz—1)(1—n2)} —(1+62)} (47d)
cmy =— |1 : 47
0= | e e
where
32
Fo 8n(1 — &%) (48)

(1 —2¢2)cos e+ eVl — &2

is the magnitude of the Stokes drag experienced by the spheroid.
This quantity is made dimensionless by uU..¢. The average surface
temperature and its first correction can now be calculated by replac-
ing the foregoing relations in Eqs. (36) and (40). Substitution of

7 and 7" in Eqs. (28b) and (28¢) then yields Nu® and Nu'.
Equation (47) can also be used to determine the 0(Pe'/?) and
O(1) contributions to the Nusselt number for high-Peclet number
heat transfer from an isothermal spheroid in axisymmetric Stokes
flow. Availing ourselves of the general results of Acrivos and

Goddard [6], it can be shown, after much reduction, that

1 1/3
Nu® = —————(12nF 49
u 8F(4/3)( nFe) (49a)
Nu® = Ng® 42 + 1
u = usphereT (49b)
where
5 41(2/3
Nui}il)"terezo'92301:— I—L)Z
3 a3
1 -2/3 . 13
n [y —5sin2y y—=sin2y
XJ 27 1_27
0 b =
1—
Xﬂ Sinzydy} (50)
i

Again, simplicitywise, the contrast between the above formulas and
those for Nul® and Nu'V is quite remarkable. Equation (49a) was
also reported by Sehlin [26], though in a different form. However,
to the best of our knowledge, Eq. (49b) has not been reported else-
where, and is, therefore, another original contribution of this article.

Finally, we note that the existence of a rear stagnation point on
the spheroid in Stokes flow renders the perturbation expansion
described by Eq. (27a) invalid in the vicinity of n = —1. Fortu-
nately, however, the contribution of this singular region to the
Nusselt number is beyond O(1), and, hence, has no effect on Nul
and Nul [6].
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5.3 Comparison With Full Numerical Solution. To find out
the true limits for which the perturbation calculations of Secs. 5.1
and 5.2 for the Nusselt number are valid, we compare our theoreti-
cal results with those obtained from the full numerical solution of
Eq. (1). A second-order finite volume method as implemented in
OPENFOAM (see, e.g., Ref. [27]) is used to perform the numerical
calculations. The Stokes equations for the velocity field u are
solved first using the SIMPLE algorithm, and the advection-
diffusion equation for the temperature distribution 7 is treated
next. The outer boundary at infinity is modeled as a large cylinder,
whose center coincides with the center of the spheroid. The diam-
eter of the cylinder is equal to its length, which is 200 times the
semimajor axis of the spheroid. 2D axisymmetric meshes concen-
trated around S, are employed to discretize the physical domain
and grid-independence tests are performed by refining the mesh in
the entire domain and repeating the simulations. In all cases con-
sidered, the computational grid is chosen such that the change in
the results due to the refinement is marginal. Figure 3 shows the
results of the numerical calculations for the spheroids of various
aspect ratios. Interestingly, the plots of Nu versus Pe for constant
heat flux and isothermal boundary conditions are very much alike,
not only qualitatively but also quantitatively (compare solid and
dashed lines).

Perhaps, the simplest way to construct a global approximation
for the Nusselt number based on the two-term asymptotic expres-
sions for Pe < 1 and Pe > 1 (see Egs. (51) and (52)) is

(~uf”)
Nu = { Nul” + Pe Y if Pe < Pe, (51)

Pe'ANu + Null if  Pe > Pe,
where Pe, is the cut-off Peclet number and the subscripts / and /
indicate that the coefficients belong to the low and high Pe limits,
respectively. Alternatively, the Nusselt number may be approxi-
mated over the entire range of the Peclet number by (see Refs.
[23] and [28])

; 1/3
(0) (0) 3
N N 3
Nu=—L 4+ (u’ > + <NU;(,°)> Pe

2 > (52)

which only incorporates the leading order terms in the perturba-
tion expansions of Nu in the asymptotic limits of Pe. Figure 4
presents the percent difference between the results of Fig. 3 and
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Fig. 3 Numerically calculated plots of the Nusselt number ver-
sus Peclet number for forced convection heat transfer from
spheroids of various aspect ratios in an axisymmetric uniform
Stokes flow subject to constant heat flux (solid lines) and iso-
thermal (dashed lines) boundary conditions on the surface of
the spheroid
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Fig. 4 Percent difference A between the numerical and approximate asymptotic results for the Nusselt number
corresponding to (a) and (b) constant heat flux and (c) and (d) isothermal boundary conditions. (a)-(c) and (b)—(d)
present A versus Pe curves for approximations based on Egs. (51) and (52), respectively. The cut-off Peclet num-
bers for the aspect ratios ¢=0.2,051,25 in (a) and (¢) are, respectively, Pe,=0.2,1,1,0.35,0.25 and

Pe.=1,1,1,0.35,0.25.

those of Eqgs. (51) and (52). Overall, we see that both approxima-
tions are quite accurate. Specifically, Eq. (51) provides more pre-
cise predictions when Pe < 1 and Pe > 1, whereas better
estimates are given by Eq. (52) at intermediate values of Pe,
where the approximations deviate the most from the numerical
results. Finally, we note that the kinks in Figs. 4(a) and 4(c) are
associated with transition from low- to high-Peclet-number solu-
tions at Pe,, which vary from 0.2 to 1 for the range of aspect ratios
considered. In comparison with the plots for ¢ = 0.2,0.5, 1,2, the
transition in the curves corresponding to ¢ = 5 is smoother as, in
these cases, both asymptotic formulas overestimate the Nusselt
number (i.e., A is positive) in the neighborhood of the cut-off
point and no discontinuity exist at Pe,.

6 Summary

We examined the problem of heat transfer from a stationary hot
(or cold) particle immersed in an unbounded fluid in the presence
of a uniform background flow. We used the perturbation theory to
derive two-term approximations for the average Nusselt number
in the asymptotic limits of the Peclet number. At small Pe, Nu
was approximated as the summation of the conduction Nu and the
O(Pe) correction. We showed that for arbitrary particle shapes
and flow Reynolds numbers, the correction term is equal to the
square of the zeroth-order term divided by four (see Eq. (19)). At
high Pe, the boundary layer theory was employed to analytically
solve for the temperature distribution within the thermal boundary
layer up to 0(Pe=?/3). The solutions were used to calculate the
0(Pe!/?) and O(1) contributions to the Nusselt number. These cal-
culations were restricted to axisymmetric and two-dimensional
problems with low to moderate Reynolds numbers. It is important

Journal of Heat Transfer

to note that the primary novelty of both low and high Peclet num-
ber results is due to the assumption of constant heat flux condition
on the surface of the particle.

We exemplified the general perturbation calculations through
the problem of axisymmetric Stokes flow past a spheroid. The
specific results were then compared against those obtained from
the full numerical solution of the underlying conservation of ther-
mal energy equation. The comparisons confirmed the accuracy of
the approximations for Nu over a wide range of Pe. Overall, our
theoretical calculations are meant to provide a simple, yet asymp-
totically correct, approach for estimating the Nusselt number in a
fundamental problem in heat transfer. Needless to say, the calcu-
lations are equally valid for approximating the Sherwood number
in the equivalent mass transfer problem.
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Nomenclature

A = function of x (or 1)
A = A written in terms of X
B = function of x (or 1)
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BB = B written in terms of %
C = function of x (or 1)
C = C written in terms of X

cp = fluid specific heat
D,, = function series
e = base of natural logarithm
e = unit vector
e, = unit vector in x direction
e, = unit vector in y direction
e, = unit vector in z direction
f = function of t and z (or t and 7)
F = magnitude of Stokes drag
1F1 = confluent hypergeometric function of the first kind
2F; = hypergeometric function
G = green’s function
h, = scale factor of x coordinate
hy = scale factor of y coordinate
hy, = scale factor of # coordinate
h, = scale factor of ¢ coordinate
= imaginary unit
I_1/3 = modified Bessel function of first kind and order —1 /3
k = fluid thermal conductivity
¢ = characteristic length scale
= differential operator
£ = differential operator
m = integer variable
n = integer variable
n = outward normal unit vector
Nu = Nusselt number (constant flux boundary condition)
Nu = Nusselt number (constant temperature boundary
condition)
Nu;, = Nu obtained in limit of high Pe
Nu; = Nu obtained in limit of low Pe
Nugphere = Nu for sphere

Nu'® = zeroth-order term in expansion of Nu

) = zeroth-order term in expansion of Nu
Nu'" = first-order term in expansion of Nu
Nul = first-order term in expansion of Nu

Pe = Peclet number
Pe. = cut-off Peclet number
gs = heat flux at S,
= position vector
= magnitude of position vector
= Legendre function of second kind
= rescaled position vector
= magnitude of rescaled position vector
= three-dimensional real space
Reynolds number
= dummy variable
= surface
= particle surface
= surface area of particle
= Sherwood number
= zeroth-order term in expansion of Sh
t = first component of transformed boundary layer
coordinates

= dummy coordinate variable corresponding to X
= dummy coordinate variable corresponding to X
= temperature field
temperature field in terms of rescaled variables
= temperature on S,
average T
= zeroth-order term in expansion of T’
= first-order term in expansion of 7'
= first-order term in expansion of T
= zeroth-order term in expansion of T,
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= first-order term in expansion of T’
u = fluid velocity
uy = velocity component in x direction
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uy = velocity component in y direction
u, = velocity component in ¢ direction
U~ = magnitude of undisturbed velocity
U, = undisturbed fluid velocity
V = volume of fluid domain
= first component of Cartesian coordinates
tangential component of boundary layer coordinates
dummy coordinate variable
= dummy coordinate variable
= maximum value of x on S,
= second component of Cartesian coordinates
normal component of boundary layer coordinates
= rescaled y coordinate
= third component of Cartesian coordinates
= second component of transformed rescaled boundary
layer coordinates
dummy coordinate variable corresponding to X
= 0 or cosine of the angle between the axis of rotation
and the tangent to S, for 3D axisymmetric particles
y = dummy variable
I' = gamma function
0 = Dirac delta function
A = percent difference between numerical and asymptotic
calculations
& = aspect ratio of spheroid
n = elliptic coordinate parameterizing surface of spheroi-
dal particle
0 = polar angle in spherical coordinates
K = curvature of S,
u = fluid viscosity
&o = function of ¢
7 = Pi number
p = fluid density
7o = shear stress at S,
¢ = third component of boundary layer coordinates; azi-
muthal angle in spherical coordinates
Yy = stream function
> = second-order term in expansion of s
W, = Y, written in terms of X
3 = third-order term in expansion of
¢ = 1 or rotation radius of S, for 3D axisymmetric
particles
= @ written in terms of X

=
\

E s
| Il

N g i < 3
Il
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= @ written in terms of X
= dummy variable

2D = two dimensional

3D = three dimensional
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