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Abstract: We develop a class of exponential bounds for the probabil-
ity that a martingale sequence crosses a time-dependent linear threshold.
Our key insight is that it is both natural and fruitful to formulate ex-
ponential concentration inequalities in this way. We illustrate this point
by presenting a single assumption and theorem that together unify and
strengthen many tail bounds for martingales, including classical inequali-
ties (1960-80) by Bernstein, Bennett, Hoeffding, and Freedman; contem-
porary inequalities (1980—2000) by Shorack and Wellner, Pinelis, Black-
well, van de Geer, and de la Pefa; and several modern inequalities (post-
2000) by Khan, Tropp, Bercu and Touati, Delyon, and others. In each of
these cases, we give the strongest and most general statements to date,
quantifying the time-uniform concentration of scalar, matrix, and Banach-
space-valued martingales, under a variety of nonparametric assumptions
in discrete and continuous time. In doing so, we bridge the gap between
existing line-crossing inequalities, the sequential probability ratio test, the
Cramér-Chernoff method, self-normalized processes, and other parts of the
literature.
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1. Introduction

Concentration inequalities play an important role in probability and statistics,
giving non-asymptotic tail probability bounds for random variables or suprema
of random processes. In this paper, we consider a method to bound the prob-
ability that a martingale ever crosses a time-dependent linear threshold. We
were motivated by the fact that such bounds are the key ingredient in many
sequential inference procedures. We argue, however, that this formulation is
materially better for the development of exponential concentration inequalities,
even in some non-sequential settings. We give a master assumption and theorem
which handle all of these cases, in discrete and continuous time, for scalar-valued,
matrix-valued, and smooth Banach-space-valued martingales. By unifying and
organizing dozens of results, we illustrate how these results relate to one another
and highlight the specific ingredients contributed by each author. Our improve-
ments to existing results come in the form of weakened assumptions, extension
of fixed-time or finite-horizon bounds to infinite-horizon uniform bounds, and
improved exponents.

Our main results are presented in full generality in the following section. To
motivate these results, we first contrast a small handful of well-known, concrete
results from the exponential concentration literature; see Section 1.2 for a more
detailed overview of the literature we draw upon. Throughout the paper, most
of our results are presented for filtered probability spaces, and we use E; to
denote expectation conditional on the underlying filtration F; at time ¢. For
any discrete-time process (Y;)ien, we write AY; :=Y; —Y;_ for the increments.
Finally, we write H¢ for the space of d x d Hermitian matrices. The relation
A =< B denotes the semidefinite order on H¢, while Ymax : H? — R denotes the
maximum eigenvalue map.

Example 1. Unless indicated otherwise, let (S:){2, be a real-valued martingale
with respect to a filtration (F;)52, with Sp = 0.

(a) Three of the earliest and most well-known results for exponential con-
centration are attributed to Bernstein, Bennett, and Hoeffding. Assume
the increments (AS;) are independent, and let v; = ZZZI E(AS;)?. We
present Bernstein’s inequality (Bernstein, 1927) in a widely used form
(e.g., Boucheron et al., 2013, Corollary 2.11): if, for some fixed m € N
and ¢ > 0, the increments satisfy the moment condition > ;" E(AS,)* <
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klch=2y,, for all integers k > 3, then for any z > 0, we have
22
P(S,, > z) < B 1.1
Snz o) <o {5l (1)

Bernstein’s moment condition is easily seen to be satisfied if the incre-
ments are bounded. Bennett (1962, eq. 8b) improved Bernstein’s result
for bounded increments: if AS; < 1 for all ¢, then for any > 0 and
m € N, we have

Z+vm
v
P (Sm > ) < . T, 1.2
Snzos ;) e (12)
Finally, Hoeffding (1963, eq. 2.3) gave a simplified result for increments
bounded from above and below: if |AS;| < 1 for all ¢, then for any z > 0
and m € N, we have

P (S > 2) < /2, (13)

Blackwell (1997, Theorem 1): if |AS;| < 1 for all ¢, then for any a,b > 0,
we have

P(3t € N: S, > a+ bt) < e 2, (1.4)

Relative to Hoeffding’s inequality, Blackwell removes the assumption of
independent increments, although this possibility was noted by Hoeffding
himself (Hoeffding, 1963, p. 18). More importantly, Blackwell replaces the
event {S,, > x} for fixed time m with the time-uniform event {3t € N :
Sy > a+ bt}. To see that Blackwell’s result recovers and strengthens that
of Hoeffding, set a = z/2, b = x/2m and note that Blackwell’s uniform
bound recovers Hoeffding’s bound at time ¢ = m, so that Blackwell obtains
the same probability bound for a larger event.

Freedman (1975, Theorem 1.6): if |AS;| < 1 for all ¢, then writing V; =
S Var (AS;| Fi_1), then for any x,m > 0, we have

)Hm ev. (1.5)

Similar to Bernstein’s and Bennett’s inequalities, but unlike those of Ho-
effding and Blackwell, Freedman’s inequality measures time in terms of
a predictable quantity, the accumulated conditional variance V;, rather
than simply the number of observations ¢. Freedman’s inequality bounds
the deviations of (S;) uniformly over time, but only up to the finite time
horizon implied by V; < m.

de la Pefia (1999, Theorem 6.2, eq. 6.4): if the increments are condi-
tionally symmetric, that is, AS; ~ —AS; | Fy—1 for all ¢, then letting
Vi = 22:1 AS?, for any o > 0 and 3, z,m > 0 we have

P(HtEN:Vt<mandSt>x)<(
r+m

2

IP’<EIt€N:Vt2mand a—ftﬁV} Zx) SCXp{—zQ <2ﬂ_m+aﬂ>}.
(1.6)
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A remarkable feature of this result is that we measure time via the adapted
quantity V;. Unlike Freedman’s inequality, which uses the true conditional
variance to measure time, de la Pena’s inequality relies only on empirical
quantities. In further contrast to Freedman’s inequality, de la Pena’s bound
holds uniformly over V; > m rather than V; < m, and we bound the
deviations of the self-normalized process S;/(a + SV;).

(e) Tropp (2012, Theorem 6.2): departing from the above results for real-
valued martingales, here we begin with a martingale (Y;);cn taking values
in H%. Assume that the increments AY; are independent and, for some
fixed ¢ > 0 and H%valued sequence (Wi)ten, the moments of the incre-
ments satisfy E (ASf ‘ .7-}_1) = %’ck_QAWt for all t and all £ > 2. Then,
writing Sy = Ymax(Y:) and Vi = ymax(Wy), for any = > 0 and ¢ > 1, we
have

22
P(Sth)§d~exp{w}. (1.7)

This elegant result extends Bernstein’s inequality to the matrix setting.
Note the prefactor of d that appears when we bound the deviations of the
maximum eigenvalue of a d X d matrix-valued process.

(f) Finally, we recall a textbook result for Brownian motion (e.g., Durrett,
2017, Exercise 7.5.2): if (S¢)ie(0,00) is @ standard Brownian motion, then
for any a,b > 0, we have

P(3t € (0,00) : Sy > a+ bt) = e~ 2, (1.8)

The result closely resembles Blackwell’s inequality for discrete-time mar-
tingales with bounded increments, but here we have an equality.

Clearly, these results have much in common with each other and with myr-
iad other results from the exponential concentration literature. Examining the
proofs, we find many shared ingredients which are now well known: the notions
of sub-Gaussian and sub-exponential random variables, the Cramér-Chernoff
method, the large-deviations supermartingale, and so on. Nonetheless, there are
enough differences among the results and their proofs to leave us wondering
whether these results are merely similar in appearance, or whether they are all
special cases of some underlying, general argument.

In this paper, we provide a framework that formally unifies the above results
along with many others. Our framework consists of two pieces. First, we crys-
tallize the notion of a sub-y) process (Definition 1), a sufficient condition general
enough to encompass a broad set of results not previously treated together, yet
specific enough to derive a useful set of equivalent concentration inequalities.
This definition provides a convenient categorization of exponential concentra-
tion results into sub-Bernoulli, sub-Gaussian, sub-Poisson, sub-exponential, and
sub-gamma bounds. Second, we give a generalization of the Cramér-Chernoff ar-
gument, Theorem 1. This result yields strengthened versions of many existing
inequalities and illustrates equivalences among different forms of exponential
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bounds. For example, Theorem 1 strengthens both “Freedman-style” inequal-
ities such as (1.5) and “de la Pena-style” inequalities such as (1.6) to hold
uniformly over all time, and in these strengthened forms, the two styles of in-
equalities are shown to be equivalent, as depicted in Figure 1. We remark that
the seminal works from which these examples are drawn, like others referenced
below, include many other important contributions, and our claims about The-
orem 1 refer only to the particular inequalities cited from each work.

imply each other
This paper’s Theorem 1(b) This paper’s Theorem 1(c,d)

implies implies

do not imply
Freedman-style inequalities, each other de la Pena-style inequalities,

such as (1.5) such as (1.6)

Fig 1: This paper’s Theorem 1 implies both Freedman-style inequalities such
as (1.5) and de la Pena-style inequalities such as (1.6). Refer also to Figures 4
and 5 for visualizations of these implications.

Once the framework is in place, the proof of the main result follows using
tools from classical large-deviation theory (Dembo and Zeitouni, 2010). We con-
struct a nonnegative supermartingale as in Freedman (1975), and we obtain a
bound on its entire trajectory using Ville’s maximal inequality (Ville, 1939). We
invoke Tropp’s ideas (Tropp, 2011) to extend the results to the matrix setting.
The equivalences that follow from optimizing linear bounds are obtained using
convex analysis (Rockafellar, 1970). By drawing together various proof ingredi-
ents from different sources, we elucidate previously unrecognized or understated
connections. For example, we demonstrate how self-normalized matrix inequal-
ities follow easily upon combining ideas from the literature on self-normalized
processes with those from matrix concentration.

1.1. Paper organization

Section 2 lays out our framework for exponential line-crossing inequalities. Spe-
cifically, we formally state Definition 1 and Theorem 1 that together describe a
general formulation of the Cramér-Chernoff method. After stating Theorem 1,
we give a quick overview of existing results which can be recovered in our frame-
work and the improvements thus obtained. A short proof of our master theorem
comes next, and following some remarks, we provide three illustrative examples.

Sections 3 and 4 are devoted to a catalog of important results from the litera-
ture which fit into our framework, often yielding results which are stronger than
those originally published. In Section 3, we consider the maximum-eigenvalue
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process of a matrix-valued martingale and enumerate useful sufficient conditions
for such a process to be sub-, collecting and in some cases generalizing a variety
of ingenious results from the literature. Section 4 examines various instantiations
of our master theorem, obtaining corollaries by combining one of the sufficient
conditions from Section 3 with one of the four equivalent conclusions of The-
orem 1. These illustrate how our framework recovers and strengthens existing
exponential concentration results. We discuss sharpness, another geometrical
insight, and future work in Section 5. Proofs of most results are in Section 6.

1.2. Historical context

To aid the reader, we give here some historical context for the existing results
discussed below. This is not intended to be a comprehensive history of the
literature on exponential concentration, and we focus on the specific results
discussed in Section 4, giving pointers to further references as appropriate.

The Cramér-Chernoff method takes its name from the works of Cramér (1938)
and Chernoff (1952). Both of these authors were concerned with a precise char-
acterization of the asymptotic decay of tail probabilities beyond the regime
in which the central limit theorem applies; Cramér provided the first proof of
such a “large deviation principle”, while Chernoff gave a more general formu-
lation and placed more emphasis on the non-asymptotic upper bound which is
our focus. These results spawned a vast literature on large deviation principles,
with the goal of giving sharp upper and lower bounds on the limiting expo-
nential decay of certain probabilities under a sequence of measures; see Dembo
and Zeitouni (2010) for an excellent presentation of this literature. Our focus,
on non-asymptotic upper bounds for nonparametric classes of distributions, is
rather different, though such upper bounds often make an appearance in proofs
of large deviation principles.

Bernstein was perhaps the earliest proponent of the sort of exponential tail
bounds that are the focus of this paper, having proposed his famous inequality
in 1911, according to Prokhorov (1995); see also Craig (1933), Uspensky (1937,
ch. 10, ex. 12-14, pp. 204-205) and Bernstein (1927), though the last source
appears rather inaccessible. The modern theory of exponential concentration
began to take shape in the 1960’s, as (using the terminology of this paper,
from Section 3) Bennett (1962) improved Bernstein’s sub-gamma inequality to
sub-Bernoulli and sub-Poisson ones for random variables bounded from above.
Hoeffding (1963) gave alternative sub-Bernoulli and sub-Gaussian bounds for
random variables bounded from both above and below. For further references
on this line of work, see Boucheron et al. (2013), whose treatment of the Cramér-
Chernoff method has been invaluable in formulating our own framework, as well
as McDiarmid (1998).

Godwin (1955, p. 936) reports that Bernstein generalized his inequality to
dependent random variables. Hoeffding (1963, pp. 17-18) considered the gen-
eralization of his sub-Bernoulli and sub-Gaussian bounds to martingales and
the possibility of finite-horizon uniform inequalities based on Doob’s maximal
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inequality; the martingale generalization was later explored by Azuma (1967).
Freedman (1975) extended Bennett’s sub-Poisson bound to martingales, giv-
ing a uniform bound subject to a maximum value of the predictable quadratic
variation of the martingale. This “Freedman-style” bound has been generalized
to other settings in many subsequent works (de la Pefia, 1999; Khan, 2009;
Tropp, 2011; Fan et al., 2015). Chen (2012a,b) has considered the extension of
Chernoft-style bounds to hold uniformly over time for scalar-valued martingales
in a manner similar to our line-crossing inequalities, including a condition simi-
lar to our sub-v definition; our formulation further encompasses matrix-valued
processes and self-normalized inequalities.

The extension of these methods to matrix-valued processes, via control of
the matrix moment-generating function, originated with Ahlswede and Win-
ter (2002). The method was refined by Christofides and Markstrom (2007),
Oliveira (2010a,b) and then by Tropp (2011, 2012), whose influential treatment
synthesized and improved upon past work, generalizing many scalar exponen-
tial inequalities to operator-norm inequalities for matrix martingales. We have
incorporated Tropp’s formulation into our framework, and we focus on his theo-
rem statements for our matrix bound statements. See Tropp (2015) for a recent
exposition and further references.

There is a long history of investigation of the concentration of Student’s
t-statistic under non-normal sampling. Efron (1969) gives many references to
early work. He also shows, by making use of Hoeffding’s sub-Gaussian bound,
that the equivalent self-normalized statistic (3, X;) /1/>_; X7 satisfies a 1-sub-
Gaussian tail bound whenever the X; satisfy a symmetry condition, a result he
attributes to Bahadur and Eaton (Efron, 1969, p. 1284). Starting with Logan
et al. (1973), there has been a great deal of work on limiting distributions and
large deviation principles for self-normalized statistics; see Shao (1997) and ref-
erences therein. In terms of exponential tail bounds, de la Pena (1999) explored
general conditions for bounding the deviations of a martingale, introduced new
decoupling techniques (cf. de la Pefia and Giné, 1999), and showed that any
martingale with conditionally symmetric increments satisfies a self-normalized
sub-Gaussian bound with no integrability condition. This work laid the foun-
dation for the type of self-normalized exponential inequalities which we explore
in this paper. These methods were extended by de la Pena et al. (2000, 2004),
which introduced a general supermartingale “canonical assumption” that is a
key precursor of our sub-¢) condition, and initiated a flurry of subsequent ac-
tivity on self-normalized exponential inequalities (cf. de la Pena et al., 2007;
de la Pena, Klass and Lai, 2009). We note in particular inequality (3.9) of de la
Pena et al. (2001), which gives an infinite-horizon boundary-crossing inequal-
ity based on a mixture extension of their canonical assumption, as well as the
multivariate inequalities (3.24) (for a ¢-statistic) and (3.29) (for general mixture
boundaries) given by de la Pefia, Klass and Lai (2009). Bercu and Touati (2008)
gave a self-normalized sub-Gaussian bound without symmetry by incorporating
the conditional quadratic variation, requiring only finite second moments, and
some ingenious further extensions have been given by Delyon (2009), Fan et al.
(2015), and Bercu et al. (2015), many of which we include in our collection of
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sufficient conditions for a process to be sub-1 (Section 3.2). See de la Pefia, Lai
and Shao (2009) and Bercu et al. (2015) for further references.

Ville’s maximal inequality for nonnegative supermartingales, the technical
underpinning of Theorem 1, originates with Ville (1939, p. 101). It is commonly
attributed to Doob, though Doob acknowledged Ville’s priority extensively in
his works, e.g., Doob (1940, pp. 458-460). Mazliak and Shafer (2009) contains
further historical discussion and sources.

2. Main results

Let (St)teTu{oy be a real-valued process adapted to an underlying filtration
(Ft)teTu{oy, Where either 7 = N for discrete-time processes or 7 = (0,00)
for continuous-time processes. In continuous time, we assume (F;) satisfies the
“usual hypotheses”, namely, that it is right-continuous and complete, and we
assume (St) is cadlag; see, e.g., Protter (2005). In a statistical setting, we may
think of (S;) as a summary statistic accumulating over time, for example a
cumulative sum of observations, whose deviations from zero we would like to
bound under some null hypothesis. In this setting, a bound on the deviations
of (S¢) holding uniformly over time can be used to construct an appropriate se-
quential hypothesis test, a special case of which is Wald’s sequential probability
ratio test discussed in Section 4.6. We first explain our key condition on (.S;),
the sub-i¢ condition. We then state, prove, and interpret our master theorem,
followed by some more detailed examples of its application.

2.1. The sub-¢ condition

Our key condition on (S;) is stated in terms of two additional objects. The
first object is a real-valued, nondecreasing process (V;);c1ug0}, also adapted to
(F:) (and cadlag in the continuous-time case). It is an “accumulated variance”
process which serves as a measure of intrinsic time, an appropriate quantity
to control the deviations of S; from zero (Blackwell and Freedman, 1973). The
second object is a function 1 : R>¢ — R, reminiscent of a cumulant-generating
function, which quantifies the relationship between S; and V;. The simplest case
is when S; is a cumulative sum of i.i.d., real-valued, mean-zero random variables
with distribution F', in which case we take V; = ¢t and let 1()\) = log [ e** dF(z)
be the CGF of F. Our key condition requires that S; is unlikely to grow too
quickly relative to intrinsic time V;; it generalizes developments from Freedman
(1975); de la Pefia et al. (2004); Tropp (2011); Chen (2012b), and others.

Definition 1 (Sub-¢) process). Let (S¢)icrugoy and (Vi)ie7ugoy be two real-
valued processes adapted to an underlying filtration (F%)icrufoy with Sp =
Vo =0a.s. and V; > 0 a.s. for all t € T. For a function ¢ : [0, Amax) — R and
a scalar ly € [1,00), we say (S¢) is lo-sub-yp with variance process (V) if, for
each A € [0, Aax), there exists a supermartingale (L:()))ie7u0) With respect
to (Fi) such that Lo(\) <y a.s. and

exp {AS: —p(MVi} < Ly(X) as. forall t € T. (2.1)
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For given v and [y, we write Siﬁ for the class of pairs of lp-sub-v processes
(Stv ‘/t)

Siﬁ = {(S, Vi) : (St) is lp-sub-tp with variance process (V;)} . (2.2)

We often say simply that a process is sub-1, omitting [y from our terminology
for simplicity. All examples considered in this paper fit into three cases for the
value of ly: [ = 1, when deriving one-sided bounds on scalar martingales; [y = 2,
when deriving bounds on the norm of certain Banach-space-valued martingales;
or lyp = d, when deriving bounds on the maximum-eigenvalue process of a d x d
matrix-valued martingale. Also, though we often speak of a process (S;) being
sub-1, the sub-i condition formally applies to the pair (S, V;) and not to the
process (S;) alone, so that meaningful statements are always made in the context
of a specific intrinsic time process (V).

Definition 1 may at first defy intuition. We can motivate it from several
angles:

e Suppose S; is a scalar-valued martingale whose deviations we wish to
bound uniformly over time. We might like to apply Ville’s maximal in-
equality (see Section 2.3), but must first transform S; into a nonnegative
supermartingale. It is natural to consider the exponential transform et
for some A > 0, which immediately yields a submartingale. Our task, then,
is to find some appropriate ¢ and (V;) which “pull down” the submartin-
gale so that the process exp {\S; — ¥(A)V;} is a supermartingale. Intu-
itively, the exponential process exp {AS; — 1(A)V;} measures how quickly
S; has grown relative to intrinsic time V;, and the free parameter A\ deter-
mines the relative emphasis placed on the tails of the distribution of Sy, i.e.,
on the higher moments. Larger values of \ exaggerate larger movements
in S¢, and v captures how much we must correspondingly exaggerate V;.

e Consider again the simple case in which S; is a cumulative sum of i.i.d.
draws from a distribution F' over the reals with mean zero and CGF
PY(A) < oo for A € [0, Amax). Then, setting V; = ¢, we may take L;(\)
equal to the exponential process exp {\S; — ¥ (\)t}, which is a martingale
in this case, so that the defining inequality of Definition 1 is an equality.
The exponential process may be interpreted as the likelihood ratio in an
exponential family containing F’ with sufficient statistic S;. See Example 2
for a more detailed exposition of this setting and Section 4.6 for more on
the connection with exponential families.

e Alternatively, we may begin from the martingale method for concentra-
tion inequalities (Hoeffding, 1963; Azuma, 1967; McDiarmid, 1998; Ra-
ginsky and Sason, 2012, section 2.2), itself based on the classical Cramér-
Chernoff method (Cramér, 1938; Chernoff, 1952; Boucheron et al., 2013,
section 2.2). The martingale method starts from an assumption such as
E(eA(Xt_E(Xt‘f‘*l)) ‘ .7-}_1) < PNt for all t > 1 and A € [0, Apax)-
When 9(A) = A?/2 and Apax = oo (and the condition holds for A < 0
as well), this is the definition of a conditionally sub-Gaussian random
variable with variance parameter o7. When ¥%()\) = A?/(2(1 — ¢))) and
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Amax = 1/¢, we have the definition of a random variable which is condi-
tionally sub-gamma on the right tail with variance parameter o2 and scale
parameter ¢ (Boucheron et al., 2013). Writing S; == >/, (X; — E;_1 X))
and V; := 22:1 o2, the process exp {\S; — ¥(\)V;} is then a supermartin-
gale for each A € R. For example, if AS; € [as, b] for all ¢, then (S¢) is
1-sub-tp with 1(\) = A2/2 on A € [0,00), and V; = 3/, (b_Ta)2; this fact
underlies Example 1(a,b). Or, if S; < 1 for all ¢, then (S;) is 1-sub-¢) with
P(A) =e* =X —1on X € [0,), a fact which leads to Example 1(c).

e Uunlike the martingale method assumption, Definition 1 allows (V;) to be
adapted rather than predictable, which leads to a variety of self-normalized
inequalities (de la Pefa, 1999; de la Pena et al., 2004; de la Pefia, Lai
and Shao, 2009; Bercu et al., 2015; Fan et al., 2015), for example yield-
ing bounds on the deviation of a martingale in terms of its quadratic
variation. In this context, Definition 1 is closely related to the “canoni-
cal assumption” of de la Pena et al. (2004, eq. 1.6), which requires that
exp {AS; — ®(A\V;)} is a supermartingale for certain nonnegative, strictly
convex functions ®. We have found it more useful to separate the second
term into 1(A)V;, though both formulations yield interesting results. For
example, if AS; ~ —AS; | F;_1, then (S;) is l-sub-1) with (X)) = \2/2
over A € [0,00), and V; = Z§=1 AS2, from which we may obtain Exam-
ple 1(d).

e Also in contrast to de la Pefia et al. (2004), we allow the exponential pro-
cess to be merely upper bounded by a supermartingale, rather than being
a supermartingale itself; this permits us to handle bounds on the maxi-
mum eigenvalue process of a matrix-valued martingale, using techniques
from Tropp (2011). For example, under the conditions of Example 1(e), the
maximum eigenvalue process (S;) is d-sub-1) with ¥(A) = A2/[2(1 — c))]
on A € [0,1/c). In this case, the exponential process exp {AS; — () V;} is
not a supermartingale, but is upper bounded by the trace-exponential
supermartingale trexp {\Y; —¢¥(A\)W;}. The initial value of this trace-
exponential process is lp = d, which leads to the pre-factor of d in the
bound (1.7).

Section 3 collects a variety of sufficient conditions from the literature for a
process to be sub-1, including all of the examples given above. These conditions
illustrate the broad applicability of Definition 1 in nonparametric settings, i.e.,
those which restrict the distribution of (S;) to some infinite-dimensional class,
for example all processes with bounded increments, or with increments having
finite variance. Even in such nonparametric cases, v is still a CGF of some
distribution in all of our examples, though this is not required for the most
basic conclusion of Theorem 1. Indeed, the full force of Theorem 1 comes into
effect only when 1 satisfies certain properties which hold for CGFs of zero-mean,
non-constant random variables (Jorgensen, 1997, Theorem 2.3):

Definition 2. A real-valued function ¢ with domain [0, A\yax) is called CGF-
like if it is strictly convex and twice continuously differentiable with ¥ (0) =
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¥'(04) = 0 and sup,¢o,z,...) ¥(A) = oo. For such a function we define

b=b() = sup Y'(\) € (0,00]. (2.3)

A€[0,Amax)

In many typical cases we have Apa.x = 0o and b = oco. With Definitions 1
and 2 in place, we are ready to set up and state our main result in the following
section.

2.2. The master theorem

To state our main theorem on general exponential line-crossing inequalities, we
will make use of the following transforms of :

The Legendre-Fenchel transform: ¢*(u) == sup [Au—1(N)], foru > 0.
AE[0,Amax) 2.0
The “decay” transform: D(u) := sup {)\ € (0, Mnax) : @ < u} , foru>0.
(2.5)
The “slope” transform: s(u) := %;SL))), for u € (0,b). (2.6)

In the definition of D(u), we take the supremum of the empty set to equal zero
instead of the usual —oo. For u > 0, this case can arise in general, but not when
¢ is CGF-like. Note that D(u) can also be infinite. We call D(u) the “decay”
transform because it determines the rate of exponential decay of the upcrossing
probability bound in Theorem 1(a) below. We call s(u) the “slope” transform
because it gives the slope of the linear boundary in Theorem 1(b); this is defined
only when 9 is CGF-like. Defining 5(0) = 0 and s(b) = b when b < oo, we find
that s(u) is continuous, strictly increasing, and 0 < s(u) < u on u € [0,b) (see
Lemma 2). We do not know of other references for the slope transform, or other
situations where it arises naturally. Table 2 gives examples of these transforms
for some common 1 functions.

Our main theorem has four parts, each of which facilitates comparisons with
a particular related literature, as we discuss in Section 4. Recall Definition 1 of
the class Siﬁ of lp-sub-t) processes, and the underlying filtration (F;) to which
processes (S¢) and (V;) are adapted.

Theorem 1. Fiz any ¢ : R>o — R and [y € [1,00).
(a) For any a,b > 0, we have

sup P(HeT:S >a+bVi| Fo) <lpexp{—aD(d)}. (2.7)
(St,Vt)GSZ?

Additionally, whenever v is CGF-like, the following three statements are equiv-
alent to statement (a).
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(b) For any m >0 and x € (0,mb), we have

(St,svlj)igg)P<3tET:St Zx—f—s(%)-(Vt—m)‘ ]-'0)

<lpexp {—mw* (%)} . (2.8)

(¢) For any m >0 and z € (0,b), we have

sup P(HtGTZ&ZI— (Lﬁ(x)> -(Vt—m)’fo>
(Se.Vi)esy? Vi Vi

<lpexp{—my*(z)}. (2.9)

(d) For any m > 0, z > 0 and b > 0, we have (below we take mb = oo
whenever b = 00)

sup P(FHeT:Vi>mand S, >x+b(V,—m)| Fo)
(St»Vt)ESiz?

< lpexp{—(z — (bAb)m)D(b)}, x>mbors(Z)>b

- locxp{—mw*(m)}, xgml_)ands(m)gb.

m

(2.10)
m
We give a straightforward proof in Section 2.3 that uses only Ville’s maximal
inequality for nonnegative supermartingales (Ville, 1939) and elementary convex
analysis. Theorem 1 can be seen to unify and strengthen many known exponen-
tial bounds, showing that we lose nothing in going from a fixed-time to a uniform
bound. This includes classical inequalities by Hoeffding (Corollary 1a), Bennett
and Freedman (Corollary 1b), and Bernstein (Corollary 1¢), along with their ma-
trix extensions due to Tropp and Mackey et al. (Corollary la-c); discrete-time
scalar line-crossing inequalities due to Blackwell (Corollaries 4 and 5) and Khan
(Section 4.2); self-normalized bounds due to de la Pena (Corollaries 6 and 7),
Delyon (Corollary 8), Bercu and Touati (Corollary 8), and Fan (Corollary 9);
bounds for martingales in smooth Banach spaces due to Pinelis (Corollary 10);
continuous-time bounds due to Shorack and Wellner (Corollary 11) and van de
Geer (Corollary 11); and Wald’s sequential probability ratio test (Corollary 12).
Visualizations of how the bounds of Theorem 1 relate to Freedman’s and de la
Pena’s inequalities are provided in Figures 4 and 5. For convenience, Table 1
lists the existing results we recover and our corresponding corollaries, along with
ways in which our analysis strengthens conclusions.
For the remainder of the paper after Section 2.3, we will assume Fy is the
trivial o-field and omit from our notation the conditioning on Fy in the results
of Theorem 1 and its corollaries.

2.3. Proof of Theorem 1

Throughout the proof, we write Py(-) for the conditional probability P (-| Fo).
Ville’s maximal inequality for nonnegative supermartingales (Ville, 1939) is the
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TABLE 1
Some existing results which are strengthened by Theorem 1, as detailed in Section 4. For
clarity, we enumerate the different ways in which we strengthen or generalize existing
results with the following mnemonics:

[A] Assumptions: we recover the result under weaker conditions on the distributional or
dependence structure of the process.

[B] Boundary: we strengthen the result by replacing a fixed-time bound or a finite-horizon
constant uniform boundary with an infinite-horizon linear uniform boundary which is
everywhere at least as strong (i.e., low) as the fized-time or finite-horizon bound.

[C] Continuous time: we extend a discrete-time result to include continuous time.

[D] Dimension: we extend a result for scalar process to one for H%-valued processes, re-
covering the scalar result at d = 1.

[E] Ezponent: we improve the exponent in the result’s probability bound.

Existing result Our result [A] [B] [C] [D] I[E]
Bernstein (1927) Corollary 1(c) v v/
Bennett (1962, eq. 8b) Corollary 1(b) v v v Vv
Hoeffding (1963, Theorem 2) Corollary 1(a) v v v
Freedman (1975, Theorem 1.6) Corollary 1(b) v v
Shorack and Wellner (1986, App. B, Ineq. 1) Corollary 11(b) v
Pinelis (1994, Theorems 3.4, 3.5) Corollary 10 v
van de Geer (1995, Lemma 2.2) Corollary 11(c) v v
Blackwell (1997, Theorem 1) Corollary 4(a) v v oV
Blackwell (1997, Theorem 2) Corollary 5 v
Blackwell (1997, Theorem 2) Corollary 4(b) v v v
de la Pena (1999, Theorems 6.1, 1.2B (eq. 1.5)) Corollary 6 v v v
de la Pena (1999, Theorem 6.2) Corollary 7 v v v
Bercu and Touati (2008, Theorem 2.1)  Corollary 8 v v v
Delyon (2009, Theorem 4) Corollary 8 v v
Khan (2009, Theorem 4.2) Theorem 1(b) v v
Khan (2009, Theorem 4.3) Theorem 1(d) v v v
Tropp (2011, Theorem 1.2) Corollary 1(b) v
Tropp (2012, Theorem 1.3) Corollary 1(a) v v
Tropp (2012, Theorem 1.4) Corollary 1(c) v
Mackey et al. (2014, Corollary 4.2) Corollary 1(a) v v

foundation of all uniform bounds in this paper. It is an infinite-horizon uniform
extension of Markov’s inequality:

Lemma 1 (Ville’s inequality). If (Lt):e7ufo} i @ nonnegative supermartingale
with respect to the filtration (Fi)ie1uqoy, then for any a > 0, we have

PQ(EIIEETIL,&ECL)S

Lo
—. 2.11
2 2.11)

For completeness, we give an elementary proof of Lemma 1 in Section 6.1.
Applying Ville’s inequality to Definition 1 gives, for any (S;,V;) € S, X e
(0, Amax), and z € R,

Py (3t € T :exp{AS; — p(MV;} > €7)
S ]P)O (EIt € TZ Lt 2 ez) § L0€7Z S loeiz. (212)
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To derive Theorem 1(a) from (2.12), fix a,b > 0 and choose A € [0, Apax) such
that ¥(A) < b, supposing for the moment that some such value of \ exists.
Then

Po(3teT: S >a+bV,) =Py (3t €T :exp{AS; — bAV;} > ™) (2.13)
<Py (3t €T :exp{AS; —p(\Vi} >e™) (2.14)
< lpe™ ™, (2.15)

applying (2.12) in the last step. This bound holds for all choices of A in the
set {A € [0, Amax) : ¥(A)/A < b}, so to minimize the final bound, we take the
supremum over this set, recovering the stated bound lye~*P®) by the definition
of D(b). If no value A € [0, Apax) satisfies ¢(A\) < bA, then D(b) = 0 by defi-
nition, so that the bound holds trivially. This shows that Definition 1 implies
Theorem 1(a).

To complete the proof we will show that the four parts of Theorem 1 are
equivalent whenever 1 is CGF-like. We repeatedly use the well-known fact about
the Legendre-Fenchel transform that ¢~ ' (u) = ¢*'(u) for 0 < u < b, which
follows by differentiating the identity ¢*(u) = ut’ ™" (u) — (¢’ (u)). We also
require some simple facts about ¥(\)/A:

Lemma 2. Suppose ¢ is CGF-like with domain [0, Amax)-

(i) Y(N)/X <P (X) for all X € (0, Apax)-
(i) A= p(N)/X is continuous and strictly increasing on A > 0.
(i) Infxe(0 ) P(A) /A =Timryo (A) /A =0.
(1) SUPxe (0, Apay) P(A)/A = limygy,,. Y(A) /A = b.
(v) Y(D(b))/D(b) = b for any b € (0,b), that is, D(b) is the inverse of )(\)/A.
(vi) s(u) is continuous, strictly increasing, and 0 < s(u) < u for all u € (0,b).

Proof of Lemma 2. To see (i), write () = fo/\ P'(t)dt < AY'(X), where the
inequality follows since ) is strictly convex so that 1)’ is strictly increasing.
For (ii), the function is continuous because ¢ is continuous, and differentiating
reveals it to be strictly increasing by part (i). L’Hopital’s rule implies (iii) along
with the assumptions ¢¥(\) = ¢’(\) = 0 at A = 0, and implies (iv) along with
the CGF-like assumption sup, ¥(A) = oo, which means ¥(A) T 0o as A T Apax
since 9 is convex. Part (v) follows from the definition of D(-) and parts (ii),
(iii) and (iv). To obtain (vi), note that s is the composition of A — 1(\)/A with
1*'. Both of these are continuous and strictly increasing, the former by part (ii)
and the latter since ¢*' = ¢’ ! and 1)’ is continuous and strictly increasing by
the CGF-like assumption. As u | 0, we have ¢*'(u) = ¢/~ (u) | 0, so s(u) | 0
since 1(0) = ¢’(04) = 0. Likewise, if b < oo, then as u 1 b, ¥*'(u) 1 Amax and
s(u) 1 b. Hence s(u) is continuous as defined. Next, note that ¢(u) > 0 for u > 0
since ¥ is strictly convex with ¢(0) = ¢/(04) = 0, and ¢*'(u) = '~ "(u) > 0
since 1’(\) increases from zero at A = 0 to b as A T Apax. Hence s(u) > 0 for
u > 0. Finally, use part (i) to write s(u) = ¥(¥*' (u))/¢* (u) < ' (Y*' (v)) = u,
using the fact that ¢*'(u) = ¢’ (u) for u € (0,b). O
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Lemma 2 allows us to prove the equivalences among the parts of Theorem 1
as follows.

e (a) = (b): Fix m > 0 and = € (0,mb). Any line with slope b € (0,z/m)
and intercept x — bm passes through the point (m, x) in the (V4, S;) plane,
and part (a) yields

Po(FteT:S >x+bV,—m)) <lpexp{—(z—bdm)D(b)} (2.16)
= lyexp {—m (= D(b) - v(DO)) ) |
(2.17)

using Lemma 2(v) in the second step. Now we choose the slope b to
minimize the probability bound. The unconstrained optimizer b, satisfies
¥'(D(by)) = x/m, and a solution is guaranteed to exist by our restriction
on z. This solution is given by D(b,) = o'~ (z/m) = ¥*'(x/m). Hence
b, = s(z/m) using Lemma 2(v) and the definition of s(-). Lemma 2(vi)
shows 0 < by < x/m, verifying that b, is feasible. Identify the Legendre-
Fenchel transformation ¢*(x/m) = (x/m)D(by) — ¥(D(bs)) to complete
the proof of part (b).
e (b) = (¢): Fix m > 0 and « € (0,b) and observe that

P0<3t67:%>x—<x_7i(x)>~(vt—m)>

=Py (FHeT:S%>me+s(z) (Vi —m)). (2.18)

Now applying part (b) with values m and mx yields part (c).
e (¢) = (a): Fix a,b > 0. Suppose first that b < b, and set = ¢'(D(b)) and
m = a/(z—s(z)). Recalling *' = ¢/~ we see that s(x) = ¢(D(b))/D(b) =
b by Lemma 2(v). Also, Lemma 2(vi) shows that m > 0. Now apply part
(¢) to obtain
]P’O(EIL‘GT:StZa+b‘/t)§loexp{—a~m} (2.19)
z —5(x)
v*(z) (@) }
. (2.20)
2 (z) — (¢ (2))

Recognizing the Legendre-Fenchel transform in the denominator of the fi-
nal exponent, we see that the probability bound equals [y exp {faw*/(a:) }
Again using ¢*'(z) = @'~ (x) = D(b) yields part (a).

If instead b > b, then the above argument yields

= lgexp{a'

Po(3teT:Si>a+bVy) < infPy(IteT:S >a+b'Vy)
b’ <b

b’ <b

<lpexp {a sup D(b’)} . (2.21)

But supy 5 D(V') = Amax = D(b) from the definition of D(-).
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e (a) = (d): Fix m > 0 and z,b > 0. Observe that {3t € T : V; > m, S; >
zr+b(Vi—m)} C{IeT:5 >a"+0(V;—m)} for any 0 < 2’ < z and
0 < b <D, so part (a) yields

Po(FteT:Vi>m, Sy >x+bV,—m)) <lpexp{—(z' —b'm)D¥)}
(2.22)

for any («/,b') in the feasible set {z’ € (0,z],b’ € (0,b] : 2’ > mb'}. If
x > mb, then (z,b A b) is feasible; note that D(b A b) = D(b) by the
definition of D(-). If z < mb and b < s(z/m), then by Lemma 2(vi) and
the definition s(b) := b, we have b < x/m, so (z,b) is feasible and b < b.
Combining these two cases, we have

Po(3teT:V,>m, S, >z+bV,—m)) <lpexp{—(z — (b Ab)m)D(b
(2.23)

whenever > mb or b < s(x/m), proving the first case in (2.10). On the
other hand, if z < mb and s(xz/m) < b, then (2/, s(z’/m)) is feasible for
any 2’ < z, by Lemma 2(vi). This yields

!

Po(FeT:Vicm, Sy >x+bV,—m)) < loexp{mw* (;)}
(2.24)
as in part (b). We minimize the probability bound over 2’ < x, noting
that sup, ., ¥* (2’ /m) = ¢*(x/m) since ¢* is increasing (as v is CGF-
like) and closed (Rockafellar, 1970, Theorem 12.2). This proves the second

case in (2.10).

e (d) = (a): set m =0 and = = a to recover part (a). O

It is worth noting here that, unlike the proofs of Freedman (1975), Khan
(2009), Tropp (2011), and Fan et al. (2015), we do not explicitly construct a
stopping time in our proof. While an optional stopping argument is hidden
within the proof of Ville’s inequality, the underlying stopping time here is dif-
ferent from that in the aforementioned citations.

2.4. Interpreting the theorem

It is instructive to think of the parts of Theorem 1 as statements about the
process (V;,S;) or (Vi, S;/V;) in R2. Many of our results are better understood
via this geometric intuition. Specifically, Figure 2 illustrates the following points:

e Theorem 1(a) takes a given line a + bV; and bounds its Si-upcrossing
probability.

e Theorem 1(b) takes a point (m,z) in the (V;, S;)-plane and, out of the
infinitely many lines passing through it, chooses the one which yields the
tightest upper bound on the corresponding S;-upcrossing probability.
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Theorem 1(a) Theorem 1(b)
C’; @ Z -/
Slope b
(1/- T
m
Vf, Vt
Theorem 1(c) Theorem 1(d)
S z - /
= ?
m m
Vt Vt
Fig 2: Illustration of the equivalent statements of Theorem 1, as described in
the text.

e Theorem 1(c) is like part (b), but instead of looking at S;, we look at

St/ Vi, fix a point (m, ) in the (V4, S;/V;)-plane, and choose from among
the infinitely many curves b + a/V; passing through it to minimize the
probability bound.

e The intuition for Theorem 1(d) is as follows. If we want to bound the

upcrossing probability of the line (z—bm)+bV; on {V; > m}, we can clearly
obtain a conservative bound from Theorem 1(a) with a = & — bm. This
yields the first case in (2.10). However, we can also apply Theorem 1(b)
with the values m, x, obtaining a bound on the upcrossing probability for
a line which passes through the point (m, z) in the (V4, S;)-plane, and this
line yields the minimum possible probability bound among all lines passing
through (m,x). If the slope of this line, s(x/m), is less than b, then this
optimal probability bound is conservative for the upcrossing probability
over the original line = + b(V; — m) on {V; > m}. This gives the second
case in (2.10), which is guaranteed to be at least as small as the bound in
the first case when s(z/m) < b.

We make some additional remarks below:

e We extend bounds for discrete-time scalar-valued processes to include both

discrete-time matrix-valued processes and continuous-time scalar-valued
processes, but we do not handle continuous-time matrix-valued processes,
as this seems to require further technical developments beyond the scope
of this paper (see Bacry et al. (2018) for one approach to exponential
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bounds in this case). We write [C or D] when discussing extensions to
existing results to emphasize this fact (see Table 1).

e Most of this paper is concerned with right-tail bounds, hence the restric-
tion to A > 0 in Definition 1. It is understood that identical techniques
yield left-tail bounds upon verifying that Definition 1 holds for (—S;).

e The purpose of excluding ¢ being CGF-like from Definition 1 is to separate
the truth of statement (a), which follows solely from Definition 1, from its
equivalence to (b), (¢), and (d), which follows from 1 being CGF-like.

2.5. Three simple examples

We illustrate some simple instantiations of our theorem with three examples: a
sum of coin flips, a discrete-time concentration inequality for random matrices,
and a continuous-time scalar Brownian motion. These examples make use of
several results from Section 3 describing conditions under which a process is
sub-1; such results may be taken for granted on a first reading.

Example 2 (Coin flipping). Suppose X; id Ber(p), and let S; = Z:Zl(Xi —p)

denote the centered sum. The CGF of each increment of Sy, scaled by 1/[p(1—p)],
is ¥p(A) = [p(1—p)] =" log Eexp {\(X; — p)} = [p(1 — p)] ! log(pe P> 4 (1 —
p)e PA), 50 that Ayayx = 00 and b = 1/p. One may directly check the martingale
property to confirm that L:(\) := exp {AS: — ¢¥p(A\)p(1 — p)t} is a martingale
for any A, so that (S;) is 1-sub-¢p with V; = p(1 — p)t. Then, for any t; € N
and z € (0, (1 — p)to), setting m = p(1 — p)ty in Theorem 1(b) yields

P (Elt EN:S, >a+p(l—p)ss (pufw) (t— to)) (2.25)
< exp {tOKL <p n % p) } (2.26)

t
D p+x/to 1—p 1—p—xz/to] *° (2 27)
p+x/to 1—p—x/to ' '

Here KL denotes the Bernoulli Kullback-Leibler divergence,

KL (¢l p) = qlog (g) +(1—q)log (M) : (2.28)
P 1-p

It takes some algebra to obtain this KL as the Legendre-Fenchel transform of
1¥p; in Table 2 we summarize all such transforms used in this paper. The final
expression is Equation (2.1) of Hoeffding (1963), but here we have a bound
not just for the deviation of S, above its expectation at the fixed time m,
but for the upper deviations of S; for all ¢ € N, simultaneously. We can use
this to sequentially test a hypothesis about p, or to construct a sequence of
confidence intervals for p possessing a coverage guarantee holding uniformly
over unbounded time.
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The slope transform sp(u) for ¥ 5, given in Table 2, is unwieldy. To derive a
more analytically convenient bound, we use the fact that p(1 —p)yg(\) < A\2/8
for all A > 0; see the proof of Proposition 2, part 2. Hence exp {)\St — )\Qt/S} <
Ly()\) with L; defined as above, so (S;) is also 1-sub-1) with 1(\) = A\?/8 and
V; = t. Now Theorem 1(b) yields

22
IP’(EItEN:Sth+%-(t—m)>§exp{—%}. (2.29)

This is equivalent to Blackwell’s line-crossing inequality (1.4), and in the form
(2.29) it is clear that it recovers Hoeffding’s inequality at the fixed time ¢t = m.
Instead of using p(1 — p)ws(A) < A?/8, we might alternatively use 1g(A\) <
(1—2p)~2(e'=2P* — (1 —2p)\ — 1); see the proof of Proposition 2, part 3. This
will yield a uniform extension of Bennett’s inequality (1.2) which improves upon
Hoeffding’s inequality substantially for values of p near zero and one. We will

see other examples of such “sub-Poisson” bounds below.

Example 3 (Covariance estimation for a spiked random vector ensemble). The
estimation of a covariance matrix via an i.i.d. sample is a common application
of exponential matrix concentration, starting with Rudelson (1999). See also
Vershynin (2012), Gittens and Tropp (2011), Tropp (2015), and Koltchinskii and
Lounici (2017) for more recent treatments; this particular example is drawn from
Wainwright (2017). Let d > 2 and consider R%valued, mean-zero observations

X, = \/E&-eU” where &; id Rademacher, (ek)gzl are the standard basis vectors
and U; S Unif {1,...,d}. What can we say about the concentration of the
sample covariance matrix X = ¢! Zle X; X! around the true covariance I,
the d x d identity matrix? Let ymax(A) denote the maximum eigenvalue of a
matrix A. We have ymax(X; XT — I;) = d — 1 always, and E(X; X! — 1) =
(@) I,. Hence Fact 1(c) shows that S; = t’ymax(flt — 1) is d-sub-¢ with

. _ (d=1)%t
variance process V; = “——"—, where

eld=DA —(d—1)A -1 A2
\) = < . 2.30
¥(Y) (d—1)2 ~2(1—-(d-1)A/3) ( )
Here the inequality holds for all A € [0,3/(d — 1)) as demonstrated in the

proof of Proposition 2, part 5. Applying Theorem 1(c) with 1 equal to the final
expression in (2.30), we obtain, after some algebra, for any x,m > 0,

| o N 1+2/1422/3(d—1)
P(ﬂteN-Wmax(Et Is) 2 <1+¢m>>

mxz

a1 [(d—1)Jd+z/3] } - (231)

< dexp{

At the fixed time ¢t = m, this implies

- (im B Id) - \/Q(d — 1)dinlog(d/a) N 2(d — 1;:2g(d/a) (2.32)
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with probability at least 1 — «, a known fixed-sample result (Wainwright, 2017).
However, as above, (2.31) gives a bound on the upper deviations of S, for all
t € N simultaneously. Such a bound enables, for example, sequential hypothesis
tests concerning the true covariance matrix.

Example 4 (Line-crossing for Brownian motion). Let (S¢)¢c[0,0c) denote stan-
dard Brownian motion. It is a standard fact that the process exp {)\St — At/ 2}
is a martingale, so that (S;) is 1-sub-1) with ¢(\) = A\?/2 and V; = t. In this
case, Theorem 1 says that, for any a,b > 0,

P (3t € (0,00) : S; > a+bt) < e 2, (2.33)

a well-known line-crossing bound for Brownian motion, which in fact holds with
equality (Durrett, 2017, Exercise 7.5.2).

3. Sufficient conditions for sub-v) processes

Much of the power of Definition 1 comes from the array of sufficient conditions
for it which have been discovered under diverse, nonparametric conditions. In
this section, we define some standard v functions and collect a broad set of
conditions from the literature for a process (S;) to be sub-¢) with one of these
functions, summarized in Tables 3 and 4. In other words, we collect here some
families of process pairs (S;, V;) which are contained within St for standard
choices of 1. All discrete-time results in this paper use S; = Ymax(Y:) where
(Y;)¢en is a martingale taking values in H?, with the exception of Section 4.4,
which deals with martingales in abstract Banach spaces. Typically, setting d = 1
recovers the corresponding known scalar result exactly. We note also that our
results for Hermitian matrices extend directly to rectangular matrices using
Hermitian dilations (Tropp, 2012), as we illustrate in Corollary 2.

3.1. Five useful ¥ functions

We define five particular ¢ functions corresponding to five sub-v cases: the sub-
Gaussian case in Hoeffding’s inequality, the “sub-gamma’” case corresponding
to Bernstein’s inequality, the sub-Poisson case from Bennett’s and Freedman’s
inequalities, and the sub-exponential and sub-Bernoulli cases which are used in
several other existing bounds. The v functions and corresponding transforms for
these five cases are summarized in Table 2, while Figure 3 summarizes relation-
ships among these cases, with Proposition 2 containing the formal statements.
Recall b = SUP A€ [0, Amay) ¥’ (A) from Definition 2, and note that we take 1/0 = oo

by convention in the expressions for Aynax and b below.

1. We say (S) is sub-Bernoulli with range parameters g, h > 0 when it is
sub-1p 4, for some suitable variance process (V;), where

geM 4 he=9

1
YB.gn(A) = g_h log < pEws ) for 0 <A< o00=Amax, (3.1)
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which is the scaled CGF of a mean-zero random variable taking values —g
and h. Here b = 1/g.

2. We say (S;) is sub-Gaussian when it is sub-¢x for some suitable variance
process (V;), where

Pn(\) = A%/2 for 0 < A < 00 = A\pax- (3.2)

Here b = co.
3. We say (S;) is sub-Poisson with scale parameter ¢ € R when it is sub-¢p
for some suitable variance process (V;), where
e —eh—1
Ype(A) = ———F5—— for 0 < A < o0 = Apax- (3.3)
c
By taking the limit, we define ¢po = n. Here b = [c A 0|71
4. We say (S;) is sub-gamma with scale parameter ¢ € R when it is sub-tg .
for some suitable variance process (V;), where
)\2

=—F f < = Amax;
Yo\ = gq—oy for0sA< 55 =2

(3.4)

Here b = [2¢ A 0|1

5. We say (S) is sub-exponential with scale parameter ¢ € R when it is

sub-1g . for some suitable variance process (V;), where
—log(l —cX) —cA

YE.c(N) = = , for0< A<

= A (35)

By taking the limit, we define 1g o = ¢n. Here b = [c A 0|71

We will typically write ¥ g, ¥p, Vg, and ¥ g, omitting the range or scale
parameters from the notation when they are clear from the context. Whenever
Definition 1 holds, one can multiply ¢ by any positive constant and divide
Vi by the same constant without affecting (2.1); all of the above functions are
scaled so that 1" (04) = 1 by convention. We follow the definition of sub-gamma
from Boucheron et al. (2013), despite the somewhat inconsistent terminology:
unlike the other four cases, ¥ is not the CGF of a gamma-distributed random
variable. It is convenient for a number of reasons: it includes ¥ as a special
case, it gives a useful upper bound for ¥p (see Proposition 2 part 5, below),
it falls naturally out of the use of a Bernstein condition on higher moments
to bound the CGF, and it is simple enough to permit analytically tractable
results for the slope and decay transforms and the various bounds to follow.
We remark also that our definition of sub-exponential in terms of the CGF of
the exponential distribution follows that of Boucheron et al. (2013, Exercise
2.22), but differs from another well-known definition which says that the CGF
is bounded by A\?/2 for A in some neighborhood of zero. The two are equivalent
up to appropriate choice of constants, as detailed in Appendix E.

The sub-gamma and sub-exponential functions ¥¢g . and g . possess the
following universality property, which we prove in Section 6.2.
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TABLE 2
Summary of common ¢ functions and related transforms. KL denotes the Bernoulli

Kullback-Leibler divergence, KL (q|| p) = qlog (%) + (1 —q)log (%Z) . For the gamma and
exponential cases, the domain of 1 is bounded by Amax = 1/(c V 0); for the other three
cases, Amax = 00. For the Bernoulli, Poisson, and exponential cases, a closed-form
expression for D(u) is not available, but we give lower bounds based on Proposition 2;

©(g,h) is defined in (3.7).

Decay
Name P(N) Itfi?gf((i) rr;F,ZEC(};C)I Slope ifi?sform transform
D(u)
R = =T -
sl ge" +he” 9 1 g(1+hu) g hlog(l—gu) —glog(l+hu) 2ghu
. Bimoglh ) (—g+—h ) ok KL( aTh g+h) oh(los(1—gw)~Ttlog(i1hu)) = #(9.h)
B,SB, DB
Gaussian/ A2/2 u?/2 w/2 2u
normal
YN,sN, DN
o e —ca—1 (1+cu) log(14+cu)—cu cu—log(14-cu) 2w
. POIS;)H — B —Tog(i¥cu) 2 13073
p,sp,Up
« o A2 u? u 2y
" G;"m"g" 3(1—cN) TfcutvIT2en T+vIt2cu T+2cu
G,sa,Da
. log(1—cX) ~1—ex su—log(1+ce 1+cu) log(14cu)—e
Exponential % w (1+cu) szguﬂ@ cu —1+2;Cu

YE,$8, DE

Proposition 1. For any twice-differentiable ¢ : [0, Amax) — R with ¢(0) =
' (04) = 0, there exist constants a,c > 0 such that P(\) < avg (A) for all
A € [0, Amax)- Likewise, there exists constants a, ¢ > 0 such that ¥(\) < ayg ()
for all X\ € [0, Amax)-

In particular, this means that if S; = Z:Zl X, for any zero-mean, i.i.d. se-
quence (X;) satisfying Ee*** < oo for some A > 0, then (S;) is sub-gamma
and sub-exponential with appropriate scale constants and variance process V;
proportional to ¢. Furthermore, any process that is sub-¢ with a CGF-like ¢
function is also sub-gamma and sub-exponential with appropriate scaling of the
variance process by a constant.

3.2. Conditions for sub-1y processes

In Tables 3 and 4, we summarize a variety of standard and novel conditions for
a process (St) to be sub-1. Fact 1 and Lemma 3 contain discrete-time results,
while results for continuous time are in Fact 2. We let I; denote the d x d
identity matrix. For a process (Y;)ie1, [Y]: denotes the quadratic variation and
(Y), the conditional quadratic variation; in discrete time, [Y]; = 2221 AY}? and
(Y), = Z:=1 E;_1AY?. We extend a function f: R — R on the real line to an
operator f : H® — H? on the space of Hermitian matrices in the standard way:
if A € H? has the spectral decomposition UAU* where A is diagonal with ele-
ments A1, ..., Aq, then f(A) = Uf(A)U* where f(A) is diagonal with elements
f(A1),..., f(Ag). In particular, the absolute value function extends to H? by
taking absolute values of the eigenvalues, while [Y;]; = 22:1 max(0, AY;)? and
(Y_), = 22:1 [E;_; min(0, AY;)? operate by truncating the eigenvalues.
In the discrete-time case, we have the following known results.
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TABLE 3
Summary of sufficient conditions for a real-valued, discrete- or continuous-time martingale
(St) to be sub-yp with the given variance process. We use the shorthand uf = E¢_1(AS)*
and |p|F = Ei—q |AS:|*. In starred cases (*), the first moment E;_1AS; need not ezist, so
(St) need not be a martingale. See Facts 1 and 2 and Lemma 3 for details of each case. “=
Hoeffding I” indicates that the variance process (Vi) for Hoeffding-KS is smaller. “SN” is
short for “self-normalized”.

Condition P Vi
Discrete time, one-sided
Bernoulli 1T AS; < h,EAS? < gh VB ght
Bennett ASt <e¢ Pvp (S),
Bernstein uf < %ckfzu? Yo (S),
*Heavy on left Ei—1Ta(AS:) <0, Va >0 PN [S]¢
Bounded below ASt > —c Vg [S]e
Discrete time, two-sided
Parametric ASy oy log Ee*A51 t
Bernoulli I —g<AS:<h YB ght
Hoeffding-KS —gt < ASy < hy YN 22:1 ©(gi, hi)
= Hoeffding I —gi < ASy < hy - i (%)
*Symmetric ASy ~ —ASy | Fr—1 YN [S]e
SN I E; 1AS? < 00 N ([S]e +2(S),)/3
SN II Ei—1AS? < 00 N ([S+]e + (S=),)/2
Cubic SN E¢_1|AS:]? < oo e [Sle + ok |l
Continuous time, one-sided
Bennett ASt <e¢ PYp (S),
Bernstein Win,t < %’cm_QVt Ya Vi
Continuous time, two-sided
Lévy EerS1 < oo log Ee*51 t
Continuous paths AS; =0 YN (S),
TABLE 4

Summary from Fact 1 and Lemma 3 of sufficient conditions for an H®-valued, discrete-time
martingale (Yz) to have a sub-y) mazimum eigenvalue process St = Ymax(Yt) with variance
process Vi = Ymax(Z¢). We use the shorthand uf = Et_l(ASt)k and |u|éC =F_1 \AS’t|k.

In the symmetric* case, E;_1AY; need not exist, so (Y;) need not be a martingale. “=
Hoeffding I” indicates that (Vi) for Hoeffding-KS is smaller. “SN” is short for
“self-normalized”.

Condition P Zt

Discrete time, one-sided
Bernoulli 1T AY; = hId,]EAYt2 < ghly VB ghtly
Bennett AY: R cly Yp (Y),
Bernstein Mf =< %ck*ﬂb% Ya (Y),
Bounded below AY; = —cly Vg Y]t

Discrete time, two-sided
Bernoulli T —glg R AY: X hiy Yp ghtl,
Hoeffding-K$S —Gily < AY; = Hily N St w(Gy, Hy)y
— Hoeffding I Gy =< AY: < Hyly oN b (#)2 1,
Hoeffding 1T AY? < A? YN Si A2
*Symmetric AY; ~ =AY | Froa PN Y]
SN I E;1AY? < o0 YN ([Y]e +2(Y),)/3
SN II E;1AY? < oo N ([Yq)e + (Y=),)/2

Cubic SN E;—1|AY: |3 < oo e Y]+ 30wl
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Fact 1. Let (Y;)en be any H%valued martingale, and let S; = Ymax(Y;) for
t € N. In all cases we set Iy = d.

(a) (Scalar parametric) If d = 1 and S; is a cumulative sum of i.i.d., real-valued
random variables, each of which is mean zero with known CGF () that
is finite on A € [0, Amax), then (S;) is sub-¢) with variance process V; = t.

(b) (Bernoulli I) If —gI; X AY; = hly as. for all ¢ € N, then (S;) is sub-
Bernoulli with variance process V; = ght and range parameters g, h (Ho-
effding, 1963; Tropp, 2012).

(c) (Bennett) If AY; = cly a.s. for all t € N for some ¢ > 0, then (S;) is
sub-Poisson with variance process V; = ymax((Y’),) and scale parameter ¢
(Bennett, 1962; Hoeffding, 1963; Tropp, 2012).

(d) (Bernstein) If E;_1(AY;)* < (k!/2)ck~2E,_1(AY;)? for all t € N and k =

2,3,..., then (S;) is sub-gamma with variance process V; = ymax((Y),)
and scale parameter ¢ (Bernstein, 1927; Tropp, 2012; Boucheron et al.,
2013).

(e) (Heavy on left) Let T, (y) == (y A a) V —a for a > 0 denote the truncation
of y. If d=1 and

E: 1T,(AY;) <0 foralla>0,t€N, (3.6)

then (S;) is sub-Gaussian with variance process Vi = Ymax([Y]:). A ran-
dom variable satisfying (3.6) is called heavy on left, and (Y;) need not be a
martingale in this case (Bercu and Touati, 2008; Delyon, 2015; Bercu et al.,
2015). For example, the centered versions of the exponential, gamma,
Pareto, log-normal, Poisson (A € N), Bernoulli (p < 1/2) and geomet-
ric (0 < p < 1) distributions are known to be heavy on left. When —AY;
satisfies (3.6) we say AY; is heavy on right.

In addition to the above known results, we provide the following extensions
of known scalar results to matrices.

Lemma 3. Let (Y;)ien be any H-valued martingale, and let Sy := ~yax(Y:) for
t € N. In all cases we set lg = d.

(a) (Bernoulli II) If, for all t € N, AY; < hl; a.s. and EAY? < ghly, then
(St) is sub-Bernoulli with variance process Vi = ght.

(b) (Hoeffding-KS) If —G1lq = AY; = Hilg a.s. for allt € N for some real-
valued, predictable sequences (Gy) and (H), then (Si) is sub-Gaussian
with variance process Vy = S._, o(Gy, H;), where

2

h%—g
o(g, h) = 2loslh/a)’ g<h (3.7)
gh, g=>h.
(¢) (Hoeffding I) If —GI; < AY; = Hily a.s. for all t € N for some real-
valued, predictable sequences (Gy) and (H), then (Si) is sub-Gaussian
with variance process Vy = S._ (G + H;)? /4.
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(d) (Conditionally symmetric) If AY; ~ —AY; | Fi—1 for allt € N, then (Sy)
is sub-Gaussian with variance process Vi = ymax([Y]:). Here, AY; need
not be integrable, so (Y;) need not be a martingale.

(e) (Bounded from below) If AY; = —cly a.s. for allt € N for some ¢ > 0,
then (S:) is sub-exponential with variance process Vi = Ymax([Y]t) and
scale parameter c.

(f) (General self-normalized 1) If E;_1AY? is finite for all t € N, then (S;) is
sub-Gaussian with variance process Vi = Ymax([Y]: +2(Y),)/3.

(9) (General self-normalized II) If E,_1 AY}? is finite for all t € N, then (S;)
is sub-Gaussian with variance process Vi = Ymax([Y4]t + (Y-),)/2.

(h) (Hoeffding II) If AY;? < A2 a.s. for all t € N for some H*-valued pre-
dictable sequence (A;), then (Sy) is sub-Gaussian with variance process
Vi= ”YmaX(Z:j:l Azz)

(i) (Cubic self-normalized) If By_y |AY;|* is finite for all t € N, then (Sy)

is sub-gamma with variance process Vi = Ymax ([Y]t + Zle E;_1 |AY;|3)
and scale parameter ¢ =1/6.

The proof of the above lemma can be found in Section 6.5. Case (a) is a
straightforward extension of Bennett’s condition for upper-bounded random
variables with bounded variance to matrices with upper-bounded eigenvalues
and bounded matrix variance (Bennett, 1962, p. 42). Cases (b) and (c) are
similar extensions of Hoeffding’s sub-Gaussian conditions for bounded random
variables to matrices with bounded eigenvalues (Hoeffding, 1963, Theorems 1
and 2; Kearns and Saul, 1998; Bercu et al., 2015, Theorem 2.49). In the con-
ditionally symmetric case (d), we can achieve control without any moment or
boundedness assumptions by defining V; in terms of observed rather than ex-
pected squared deviations; this is known for d = 1 (de la Pena, 1999, Lemma
6.1; Bercu et al., 2015), allowing exponential concentration for distributions like
Cauchy. In the lower-bounded increments case (e), we have a self-normalized
complement to the Bennett-style bound, a result known for d = 1 (Fan et al.,
2015, Lemma 4.1). For the square-integrable martingale cases (f, g), we achieve
control for a broad class of processes by incorporating the conditional vari-
ance and the observed squared deviations, as known for d = 1 (Delyon, 2009,
Theorem 4; Bercu et al., 2015). The Hoeffding-like case (h) follows from the
self-normalized bounds, highlighting a connection implicit in the proof of Corol-
lary 4.2 of Mackey et al. (2014). The third moment bound (i) is similar to a
fixed-sample bound given by Fan et al. (2015, Corollary 2.2).

In the continuous-time, scalar case we have the following sufficient conditions
for a local martingale (S) to be sub-1). Here we always assume (S;) is cadlag,
AS; =S¢ — S;— denotes the jumps of S, [S]; denotes the quadratic variation,
and (S), is the conditional quadratic variation, the compensator of [S];.

Fact 2. Here 7 = (0,00) and d = 1, and we set [y = 1.

(a) (Lévy process) If (S;) is a Lévy process which is a martingale with the
CGF ()\) = logEe*t < oo for all A € [0, Apax), then (S;) is sub-¢) with
variance process V; = t. See, e.g., Papapantoleon (2008, Proposition 10.2).
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(b) (Continuous Bennett) If (S;) is a local martingale with AS; < ¢ for all ¢
a.s., then (S;) is sub-Poisson with scale parameter ¢ and variance process
Vi = (S), (Lepingle, 1978, p. 157).

(¢) (Continuous Bernstein) Suppose (S;) is a locally square integrable martin-
gale: let Wh; = (S),, and for m = 3,4, ... let W,, ; be the compensator of
the process >, .,|AS,|™. If, for some ¢ > 0 and predictably measurable,
cadlag, nondecreasing process (V4), it holds that W,,; < m?!cm’2‘/} for
all m > 2, then (S;) is sub-gamma with scale parameter ¢ and variance
process V; (van de Geer, 1995, implicit in the proof of Lemma 2.2).

(d) (Continuous paths) If (S;) is a local martingale with a.s. continuous paths,
then (S;) is sub-Gaussian with variance process V; = (S),. This may be
seen as a special case of (¢), or a limiting case of (b).

3.3. Implications between sub-1) conditions

In many settings, a process (S;) may satisfy Definition 1 with several differ-
ent choices of ¢ and (V;). Choosing a smaller ¢ function will lead to tighter
bounds in Theorem 1, but in some cases one may opt for a larger ¢ func-
tion to achieve analytical or computational convenience. It is clear that making
v uniformly larger retains the sub-1i property, since the exponential process
exp {AS: — ¥(A\)V;} can only become smaller. It is therefore useful to character-
ize relationships among the above sub-v conditions, so that, after invoking one
of the sufficient conditions given in Section 3.2, one may invoke Theorem 1 with

a different, more convenient v function.
—
<—
c<0

e ——
Fig 3: Each arrow indicates that any process satisfying the source sub-t condi-

c<0
tion, subject to a restriction on the scale parameter ¢, also satisfies the desti-
nation sub-t¢ condition with appropriately scaled variance process. See Table 5
and Proposition 2 for details.

Note that ¥ g, ¥p and 15 are nondecreasing in ¢ for all values of A > 0, so that
if a process is sub-t) with scale ¢ for any of these ¥ functions, then it is sub-v for
any scale ¢’ > ¢ as well. Similarly, g is nonincreasing in g and nondecreasing
in h. Table 5 and Proposition 2 fully characterize all implications among sub-1)
conditions, as illustrated in Figure 3. These follow from inequalities of the form
1 < ag, some of which are based on standard arguments; see Section 6.3.

Proposition 2. For each row in Table 5, if (S¢) is sub-11 with variance process
(Vi), and the given restrictions are satisfied, then (St) is also sub-ipy with vari-
ance process (aVy). Furthermore, when we allow only scaling of Vi by a constant,
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TABLE 5
If (St) is sub-11 with variance process (Vz), subject to the given restriction, then (St) is also
sub-1pa with variance process (aVi). ¢(g,h) is defined in (3.7). See Proposition 2 for details.

Y1 P2 a Restriction
(1)  ¥Bgh UN %
(2)  YBgn YN (g;;];b)z
(B)  YBgn Yrr—g 1
(4) N Ypo 1
(5) Yp,c YG,e/3 1
(6) ¢G,c wE,3c/2 1
(1) e Ya,c 1 c>0
(8) VB VG c/2 1 c<0
9) VG,e Yp2c 1 c<0
(10)  Ype N 1 c<0
(11)  Ype VB, —en 1 c<0,any h >0

these capture all possible implications among the five sub-y) conditions defined
above, and the given constants are the best possible (in the case of row (2), the
constant (g+h)?/4gh is the best possible of the form k/gh where k depends only
on the total range g + h).

4. Applications of Theorem 1

Here, we illustrate how Theorem 1 recovers or strengthens a wide variety of
existing results. Most results in this section follow immediately upon combining
one of the sufficient conditions from Fact 1, Lemma 3, or Fact 2 with Theorem 1,
and we omit proof details in many cases. As a rough plan, we first discuss
classical Cramér-Chernoff and Freedman-style bounds and then Blackwell’s line
crossing inequalities. After discussing de la Pena-style self-normalized bounds
and Pinelis’ Banach-space inequalities, we end by exhibiting some continuous
time results and mention connections to the sequential probability ratio test.

4.1. Fizxed-time Cramér-Chernoff and Freedman-style uniform
bounds

In the discrete-time, scalar setting, a simple sufficient condition for a process
(S¢) to be 1-sub-y with variance process (V;) is that

Ei1exp {A\AS, — p(VAV} < 1, W, (4.1)

which is the standard assumption for a martingale-method Cramér-Chernoff
inequality, typically with (V;) predictable (McDiarmid, 1998; Chung and Lu,
2006; Boucheron et al., 2013). When (V) is deterministic, the fixed-time Cramér-
Chernoff method gives, for fixed x and m,

B(Sm > ) < exp {—W* (V—m) } , (42)
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Freedman-style

8

Fixed-time Chernoff

Theorem 1(b)

Upper bound on S;

0 i
0 m

Vi

Fig 4: Comparison of (%) fixed-time Cramér-Chernoff bound (4.2), which bounds
the deviations of S, at a fixed time m; (i7) “Freedman-style” constant uniform
bound (4.3), which bounds the deviations of S; for all ¢ such that V; < m, with
a constant boundary equal in value to the fixed-time Cramér-Chernoff bound;
and (#4¢) linear uniform bound from Theorem 1(b), which bounds the deviations
of S; for all t € N, with a boundary growing linearly in V;. Each bound gives
the same tail probability and thus implies the preceding one.

so Theorem 1(b) is a uniform exztension of the Cramér-Chernoff inequality, losing
nothing at the fixed time m [B; C or D]. For random (V;), a stopping time
argument due to Freedman (1975) extends this to the uniform bound

PEteT:S >zand V; <m) Sexp{—mw* (%)} (4.3)
When (V;) is deterministic, analogous uniform bounds can be obtained from
Doob’s maximal inequality for submartingales, as in Hoeffding (1963, eq. 2.17).
Theorem 1 strengthens this “Freedman-style” inequality [B; C or D], since it
yields tighter bounds for all times ¢ such that V; < m, and also extends the
inequality to hold for all times ¢ with V; > m, as illustrated by Figure 4.

Tropp (2011, 2012) extends the scalar Cramér-Chernoff approach to random
matrices via control of the matrix moment-generating function, giving matrix
analogues of Hoeffding’s, Bennett’s, Bernstein’s and Freedman’s inequalities.
Following this approach, Theorem 1 gives corresponding strengthened versions
of these inequalities for matrix-valued processes [B].

We summarize explicit results below for three well-known special cases re-
viewed in Example 1(a): Hoeffding’s sub-Gaussian inequality for observations
bounded from above and below, with variance process depending only on the
radius of the interval of boundedness (Hoeffding, 1963); Bennett’s sub-Poisson
inequality for observations bounded from above, with variance process depend-
ing on the true variance of the observations (Bennett, 1962); and Bernstein’s
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sub-gamma inequality for observations satisfying a bound on growth of higher
moments, also with a variance process depending on the true variance (Bern-
stein, 1927). In each case below, we recover the standard, fixed-sample result at
Vi = m. Recall the definitions of sp, ¥}, sq, Y5 from Table 2.

Corollary 1. (a) Suppose (Y;)ien is an H%-valued martingale whose incre-

(b)

(c)

ments satisfy AY?2 < A% a.s. for all t for some H-valued, predictable
sequence (A¢). Let St = Ymax(Y:), and let either

1 : 2 - 2
V, = ifymax ((Y}t + ;AZ> or Vi = Ymax (Z A7 . (4.4)

i=1

Then for any x,m > 0, we have
x z?
S, > = (V; — < -, .
IP’(HtEN St_90+2m(Vt m))_dexp{ 5 } (4.5)

This strengthens Hoeffding’s inequality (Hoeffding, 1963) [A,B,D] and its
matriz analogues in Tropp (2012, Theorem 7.1) [B,E] and Mackey et al.
(2014, Corollary 4.2) [A,B].

Suppose (Yy)ien is an H-valued martingale satisfying ymax(AY;) < ¢ a.s.
for allt. Let Sy = ymax(Y:) and V; = ymax((Y),). Then for any x,m > 0,
we have

IP’(EIt EN:S, >u+sp (%) (v, —m)) < dexp{—mz/;; (%)}
fE2
< dexp{—m}. (4.6)

This strengthens Bennett’s and Freedman’s inequalities (Bennett, 1962;
Freedman, 1975) [B; C or D] for scalars and the corresponding matriz
bounds from Tropp (2011, 2012) [B].

Suppose (St) is lp-sub-gamma with variance process (Vi) and scale param-
eter c. Then for any z,m > 0, we have

P(HtET:St2x+5g<x)~(W—m)) §l0exp{—mz/15 (%)}

[ S R

This strengthens Bernstein’s inequality (Bernstein, 1927) [B; C or D],
along with the matriz Bernstein inequality (Tropp, 2012) [B].

Case (a) is a consequence of Lemma 3(g); see also Corollary 8, which uses
Vi = 29max (Y]t + (Y2),). The first setting of V; in case (a) follows from the
bound [Yy]; < 3¢_, A2, and further upper bounding (Y_), < S'_, A? yields
the second setting of V;. As is well known, the Hoeffding-style bound in part (a)
and the Bennett-style bound in part (b) are not directly comparable: V; may be
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smaller in part (b), but ¥5 < ¢%, so neither subsumes the other. We remark
that ¥} (u) > 2 arcsinh (%), so the Bennett-style inequality in part (b) is an
improvement on the inequality of Prokhorov (1959) for sums of independent
random variables, as noted by Hoeffding (1963), as well as its extension to
martingales in de la Pefia (1999).

As an example of the Hermitian dilation technique for extending bounds on
Hermitian matrices to bounds for rectangular matrices, we give a bound for
rectangular matrix Gaussian and Rademacher series, following Tropp (2012);

here ||A||op denotes the largest singular value of A. The proof is in Section 6.6.

Corollary 2. Consider a sequence (By)ien of fixzed matrices with dimension d; X
dy, and let (e1)ien be a sequence of independent standard normal or Rademacher
variables. Let Sy == ||t_, €;Billop and

t t
Vi = max{|§j BiB o IS B:Bz-nop} . (48)

i=1 i=1

Then for any x,m > 0, we have
P(HtEN:St>x+i(V},—m))<(d1—|—d2)exp o . (4.9)
- 2m - 2m
This strengthens Corollary 4.2 of Tropp (2012) [B].

4.2. Line-crossing inequalities

Before giving specific results in this section, we start with simplified versions of
Theorem 1(d) which are useful for recovering existing results. The probability
bound in (4.10) is merely an analytically simplified upper bound on that from
Theorem 1(d). We prove the following in Section 6.7.

Corollary 3. If (S;) is lo-sub-i) with variance process (V;) and 1 is CGF-like,
then for any m >0, x >0 and b € (0,b), we have

PEteT:Vi>mand Sy > x+b(V; —m))
<lpexp {—my*(b) — (z — bm)y*'(b)} . (4.10)

In particular, for m > 0, we have
PEteT :Vi>mand Sy > bV;) <lgexp {—map*(b)}. (4.11)

In fitting with the approach of this paper, Theorem 1(d) and Corollary 3
bound the upcrossing probability on {V; > m} using the results of Theo-
rem 1(a,b) and a geometric argument. It may seem naive and wasteful to bound a
line-crossing probability on {V; > m} using a bound which applies for {V; > 0}.
The literature includes a handful of results bounding line-crossing probabilities
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on {V; > m} which appear to give bounds tighter than what Theorem 1 of-
fers, by making more direct use of the intrinsic-time condition (Blackwell, 1997;
Khan, 2009). Below we demonstrate that this is not true: we give several special
cases of Theorem 1(d) and Corollary 3 which improve upon existing results.

Corollary 4. Suppose (St) is lo-sub-gamma with variance process (Vi) and scale
parameter c.

(a) For any a,b > 0, we have

1+ 2ch

When T =N, ¢ =0 and d = 1 this strengthens Theorem 1 of Blackwell
(1997) [A; C or D], which is written for discrete-time scalar processes with
bounded increments.

(b) For any m,b > 0, we have

]P’(HtGT:St>a+th)<loexp{— 2ab } (4.12)

PEteT:V,>mand S, >bV;) <lpexp{—mys(b)}

b*m
<l —— . (4.13
<toesp {5 T |- (@13
When T = N, ¢ = 0 and d = 1 this strengthens the second bound in
Theorem 2 of Blackwell (1997) [A; C or D], which is written for discrete-
time scalar processes with bounded increments.

In discrete time, as presented in Fact 1, for a process with bounded incre-
ments we may construct both sub-Bernoulli and sub-Gaussian bounds. The
sub-Bernoulli case, in combination with (4.11), yields the following:

Corollary 5. Suppose (Yy)ien is an H-valued martingale satisfying | AY:| op <
1 a.s. for allt € N. Then for any b € [0,1] and m > 1, we have

—m/2
P (3t € N:t>m and ymax(Y:) > bt) < [(1+ b)) (1 — p)1-0) . (4.14)

This strengthens the first bound in Theorem 2 of Blackwell (1997) [D].

Theorems 4.1-4.3 of Khan (2009) are closest in form to our main results and
represent key precedents to our framework. The simplified bound (4.10) recovers
Khan’s Theorem 4.3 [C or D], while Theorem 1(d) improves the exponent [E].
Our Theorem 1(b) gives a strengthened version of Khan’s “Freedman-style”
Theorem 4.2 [B; C or D]. Khan’s Theorem 4.1 is not strictly comparable to our
work since it involves an initial condition on nominal time, t > tg, rather than
on intrinsic time, V; > m, but when V; is deterministic, then our Theorem 1(d)
is tighter [B; C or D; E.

4.8. Self-normalized uniform bounds

Collectively, de la Pena (1999); de la Penia et al. (2000, 2004, 2007); de la Pena,
Klass and Lai (2009); and de la Pefia, Lai and Shao (2009) give a wide variety
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\ la Pefia-stvle
Theorem 1(c) de la Pena-style

Upper bound on S,/ V,
=

Vi

Fig 5: Comparison of our decreasing boundary from Theorem 1(c), as in inequal-
ity (4.16), to a “de la Pefia-style” constant uniform bound as in inequality (4.15),
which bounds the deviations of S;/V; for all ¢ such that V; > m with a constant
boundary.

of sufficient conditions for the exponential process exp {\S; — ¥(A\)V;} to be a
supermartingale in both discrete- and continuous-time settings. They formulate
their bounds for ratios involving S; in the numerator and V; in the denominator,
as in Theorem 1(c), and often specify initial-time conditions, as in Theorem 1(d).
In this section we draw some comparisons between Theorem 1 and their results.
As a first example, consider the boundary of Theorem 1(c) for the ratio S;/V;,
strictly decreasing towards the asymptotic level s(z). In particular, at time
Vi = m the boundary equals z, so Theorem 1(c) strengthens various theorems
of de la Pena (1999) and de la Pena et al. (2007) which use a constant boundary
after time V; = m [B; C or DJ; for example, Theorem 1.2B, eq. 1.5 of de la Pefia
(1999) states that

P (316 >1:V;>m and % > m) < exp {—myg(z)} (4.15)

t

for scalar processes (S;) which are 1-sub-gamma with variance process (V;). As
before, we give explicit results for special cases.

Corollary 6. Suppose (St) is lo-sub-gamma with variance process (Vi) and scale
parameter c. Then for any z,m > 0, we have

P (31& et > sg(x) (1 + m)) < lpexp {—myg(x)}
Vi Vi

2

me
< loexp{2

(ch)} . (4.16)

This strengthens eq. 1.5 from Theorem 1.2B of de la Penia (1999) [B; C or DJ.
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In the sub-Gaussian case (obtained at ¢ = 0), the above bound simplifies to

S
]P’(EItGT: V}—l—tm >x> gloexp{—meQ}. (4.17)

This strengthens Theorem 2.1 of de la Pena et al. (2007) and Theorem 6.1 of
de la Pena (1999) [B, C or Dj.

Recall that sg(z) = z/(1 + v/1+ 2cz), so for the boundary in (4.16), we
have sg(z)(1 + my/1+ 2cx/Vy) < z for all Vi > m with equality at V; = m.
Corollary 6(a), therefore, gives the same probability bound as (4.15) for a larger
crossing event. Figure 5 visualizes this relationship.

More generally, when we normalize by « + 8V; and include an initial time
condition V; > m, Theorem 1(d) and Corollary 3 become the following:

Corollary 7. If (St) is lo-sub-1 with variance process (V;), where ¢ is CGF-like
and b = oo, then for any B,z > 0 and a,m > 0 with at least one of a,m > 0,
we have

IP’(EItET:Vth QNdaf%V 23:) (4.18)
t
loexp {—axD(Bz)}, Br < 5 (Zotbm) (4.19)
ZO exp {—m’ll)* <$(ajnﬁm)) } , 5% 2 5 93(0‘:{87”) ’
< lpexp {—my*(Bz) — cxyp*’ (Bz)} . (4.20)

In the case (S) is sub-Gaussian, for any 8,2 > 0 and a,m > 0 with at least
one of a,m > 0, we have

Sy
Pt : > >
< eT ‘/,g_manda+5w_x)

< exp {:172 (2aﬂ 4 Bm= a)21“§5m> } . (4.21)

2m

taking 0/0 = 0 on the right-hand side when m = 0. With Lemma 3(d), this
improves eq. 6.4 from Theorem 6.2 of de la Pena (1999) [C or D; EJ.

A defining feature of self-normalized bounds is that they involve a vari-
ance process (V;) constructed with the squared observations themselves rather
than just conditional variances or constants. Such normalization can be found
in common statistical procedures such as the t-test. Furthermore, it allows
for Gaussian-like concentration while reducing or eliminating moment condi-
tions. Lemma 3 gives several extensions of well-known conditions for scalar sub-
Gaussian concentration of self-normalized processes. As one particular special
case, Lemma 3(f) and (g) yield general self-normalized uniform bounds for any
discrete-time, square-integrable, H%valued martingale, building upon break-
through results obtained for scalar processes by Bercu, Touati and Delyon:
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Corollary 8. Suppose (Y3)ien is an He-valued martingale with EY,? < oo for
all t € N. Let Sy = ymax(Y:) and either

V= sVl (V2),) or V= soma(Vh+2(V),). (422)

Then for any x,m > 0, we have

]P’(EItGN: %i}m>x> §dexp{—2mx2}. (4.23)
This strengthens eq. 20 from Theorem 4 of Delyon (2009) [B,D], Theorem 2.1
of Bercu and Touati (2008) [B,D,E], and an implicit self-normalized bound of
Mackey et al. (2014, Corollary 4.2) [B].

Corollary 8 is remarkable for the fact that it gives Gaussian-like concentration
with only the existence of second moments for the increments. If the increments
have conditionally symmetric distributions, one may instead apply Lemma 3(d)
to achieve Gaussian-like concentration without existence of any moments, as
discovered by de la Pena (1999) and illustrated in the following example.

Example 5 (Cauchy increments). Let (AS;)ien be i.i.d. standard Cauchy ran-
dom variables (symmetric about zero). Lemma 3(d) shows that (S;) is sub-
Gaussian with variance process V; = [S]¢. Corollary 6 yields, for any x,m > 0,

.S o2
]P’(EItEN.[S]t_’_mZx)SeXp{ 2ma®} . (4.24)

For another example, Lemma 3(i) gives a self-normalized bound involving
third rather than second moments:

Corollary 9. Suppose (Y;)ien is an H*-valued martingale with E |Y;|* finite for

all t € N. Let Sy = Ymax(Y2) and Vi = ymax (Y]t + o0 Ei_1(AY;)3). Then
for sq and Y} using c =1/6, we have for any x,m > 0,

P (Elt eN: S >z +s¢ (%) - (Vs — m)) < dexp {—rm/)é (%)} (4.25)
}. (4.26)

.T2

<d Y aN—
= Gexp { 2(m +2x/6)
This is a uniform alternative to Corollary 2.2 of Fan et al. (2015) [B,D].

Note the exponent in (4.26) is different from that in Fan et al. (2015); nei-
ther strictly dominates the other. Also note that, unlike the classical Bernstein
bound, neither of Corollaries 8 and 9 assume existence of moments of all orders.

4.4. Martingales in smooth Banach spaces

The applications presented thus far allow us to uniformly bound the opera-
tor norm deviations of a sequence of random Hermitian matrices. A different
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approach is due to Pinelis (1992, 1994), who gave an innovative approach to
exponential tail bounds in abstract Banach spaces. We describe how this ap-
proach can be incorporated into our framework. For this section, let (Y;):en be
a martingale with respect to (F;) taking values in a separable Banach space
(X, ]I-])- We can use Pinelis’s device to uniformly bound the process (¥(Y})) for
any function ¥ : X — R which satisfies the following smoothness property:

Definition 3 (Pinelis, 1994). A function ¥ : X — R is called (2, D)-smooth for
some D > 0 if, for all x,v € X, we have

T(0) =0 (4.27a)
Bz + ) — U(a)| < [lo] (4.27b)
U2 (2 4 v) — 202 (x) + U3 (z —v) < 2D?||v|>. (4.27¢)

A Banach space is called (2, D)-smooth if its norm is (2, D)-smooth; in such a
space we may take U(-) = ||-|| to uniformly bound the deviations of a martingale.
In this case, observe that property (4.27a) is part of the definition of a norm,
property (4.27b) is the triangle inequality, and property (4.27¢) can be seen to
hold with D = 1 for the norm induced by the inner product in any Hilbert
space, regardless of the (possibly infinite) dimensionality of the space. Note also
that setting = 0 shows that D > 1 whenever ¥(-) = ||-||. Finally, observe that
if we write f(z) = ¥?(z), then we may equivalently replace condition (4.27c)
by f(tz -+ (1 - £)y) > /() + (1 — £)£(y) — D*(1— 1)}z — y||°, a perhaps more
familiar definition of smoothness.

Corollary 10. Consider a martingale (Y;)ien taking values in a separable Ba-
nach space (X,||-||). Let the function ¥ : X — R be (2, D)-smooth and define
D, =1V D.

(a) Suppose ||AY;|| < ¢; a.s. for allt € N for some constants (¢;)ien, and let
Vi = Zle c2. Then for any z,m > 0, we have
D2x z?
PlIteN:U(Y;) > —=(V; — <2 —— . 4.28
(rem:vm zos 2om-m) s2em{-grt.

This strengthens Theorem 3.5 from Pinelis (1994) [B].
(b) Suppose ||AYi|| < ¢ a.s. for all t € N for some constant ¢, and let V; =
Zf.:l E;_1|AY;||?. Then for any x,m > 0, we have

IP(EItGN:\II(Y})Z:chDfsp(%)~(Vt—m)>
<9 D2maps [ — <9 o 4.2
<2ep{ D () | <200 g | (029

This strengthens Theorem 3.4 from Pinelis (1994) [B].

We prove this result in Section 6.8. As before, the Hoeffding-style bound in
part (a) and the Bennett-style bound in part (b) are not directly comparable:
Vi may be smaller in part (b), but the exponent is also smaller.
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We briefly highlight some of the strengths and limitations of this approach.
Since the Euclidean l,-norm is induced by the standard inner product in R?,
Corollary 10 gives a dimension-free uniform bound on the l3-norm deviations
of a vector-valued martingale in R? which exactly matches the form for scalars.
Compare this to bounds based on the operator norm of a Hermitian dila-
tion: the bound of Tropp (2012) includes dimension dependence [B,E] while
the bound of Minsker (2017, Corollary 4.1) incurs an extra constant factor of
14 [B,E]. Our bounds extend to martingales taking values in sequence space
{(a;)ien : 3_;|as]® < oo} or function space L?[0,1], and we may instead use the
[, norm, p > 2, in which case D = /p — 1. These cases follow from Pinelis
(1994, Proposition 2.1).

Similarly, Corollary 10 gives dimension-free uniform bounds for the Frobenius-
norm deviations of a matrix-valued martingale. This extends to martingales
taking values in a space of Hilbert-Schmidt operators on a separable Hilbert
space, with deviations bounded in the Hilbert-Schmidt norm; compare Minsker
(2017, §3.2), which gives operator-norm bounds. The method of Corollary 10
does not extend directly to operator-norm bounds because the operator norm
is not (2, D)-smooth for any D: for a simple illustration in H?, consider z = aly
and v = diag{b, —b}, so that ||z + v||2, + llz — v||Z, — 2[|=2, = 2b® + 4ab
and condition (4.27¢) cannot be satisfied. However, Corollary 10 does apply to
the matrix Schatten p-norm for p < oo, using D = 4/p — 1, and this holds for
rectangular matrices as well (Ball et al., 1994).

4.5. Continuous-time processes

While Corollaries 1, 4, 6, and 7 already generalize results known in discrete
time to new results for continuous-time martingales [C], here we summarize a
few more useful bounds explicitly for continuous-time processes which follow
from Theorem 1 and the conditions of Fact 2, making use of the novel strategies
devised by Shorack and Wellner (1986) and van de Geer (1995). These results
use the conditional quadratic variation (5),. We remind the reader that [S], =
(S), =t for Brownian motion, and the first equality holds more generally for
martingales with continuous paths, while for a Poisson process with rate one,
<S>t =t but [S]t = St.

Corollary 11. Let (S¢)tc(0,00) be a real-valued process.

(a) If (Sy) is a locally square-integrable martingale with a.s. continuous paths,
then for any a,b > 0, we have

P(3t € (0,00): Sy > a+b(S),) <e 2. (4.30)
If (S), T 00 as t 1 oo, then the probability upper bound holds with equality.

This recovers as a special case the standard line-crossing probability for
Brownian motion (e.g., Durrett, 2017, Exercise 7.5.2).
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(b) If (S;) is a local martingale with ASy < ¢ for all t, then for any x,m > 0,
we have

P (at € (0,00): 8, > a +sp (%) -((S), —m))

< exp {—mw} (%)} < exp {—m} . (4.31)

This strengthens Appendiz B, Inequality 1 of Shorack and Wellner (1986)
[B].

(¢) If (S;) is any locally square-integrable martingale satisfying the Bernstein
condition of Fact 2(c) for some predictable process (Vi), then for any
z,m > 0, we have

P(Hte (0,00) : S; > = + 5 (%)-(Vt—m))

372

<exp {—mz/)g (%)} < exp {—m} . (4.32)

This strengthens Lemma 2.2 of van de Geer (1995) [B,E].

Clearly, Corollary 11(b) applies to centered Poisson processes with ¢ = 1.
Of course, one can also apply Fact 2(a) for general Lévy processes, obtaining
the same bound (4.31). The point of Corollary 11(b) is that any local mar-
tingale with bounded jumps obeys this inequality, and so concentrates like a
centered Poisson process in this sense. Barlow et al. (1986, §4) describe fur-
ther exponential supermartingales obtained for continuous-time processes using
the quadratic variation, and derive “Freedman-style” self-normalized bounds;
incorporating these cases into our framework would be interesting future work.

4.6. Exponential families and the sequential probability ratio test

It is well known that the likelihood ratio fi+(X?%)/fo,+(X?) is a martingale under
the null hypothesis that X ~ fo ;. Then Ville’s inequality gives a sequential test
with valid type I error, equivalent to an open-ended sequential probability ratio
test (SPRT, Wald, 1945), in which we stop when the likelihood ratio exceeds an
upper threshold, but not when it drops below any lower threshold. In the one-
parameter exponential family case, we obtain a simple analytical result which
is equivalent to Theorem 1, as we detail below.

Suppose (X;)ten are i.i.d. from a one-parameter exponential family with nat-
ural parameter 6 and log-partition function A, so that X; has density fo(z) =
h(z) exp {0T(z) — A(8)}. Let S; = 3.'_, T(X;). An open-ended SPRT testing
Hy : 0 = 0y against Hy : 0 = 6y + A stops to reject Hy as soon as the likelihood
ratio Ly = exp {\S; — [A(6p + \) — A(6p)]t} exceeds the threshold a=! > 1.

Corollary 12. This one-sided SPRT has type I error rate no greater than «:
Pp,(3teN:L; > a ) <a.
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This standard fact follows easily from Theorem 1 because L; > A if and
only if S; > (log A)/A + ¥(A\)t/A, where (\) = A(fy + \) — A(f), the CGF
of T(X;) at 6 = 6y. Hence the rejection boundary for the SPRT is equivalent
to the linear boundary of Theorem 1. In light of this, we may interpret the
above sub-Gaussian, sub-Poisson, sub-exponential and sub-Bernoulli bounds as
open-ended SPRTs for i.i.d. observations from these exponential families. The
fact that such tests are also valid for testing various nonparametric classes of
distributions, as outlined in Section 3, illustrates how our framework provides
nonparametric generalizations of the SPRT. For example, if one wants to test
the mean of a bounded distribution, our framework suggests that one apply
an SPRT for Bernoulli or Poisson observations, for example. It has long been
known that the normal SPRT bound can be applied to sequential problems in-
volving any i.i.d. sequence of sub-Gaussian observations (Darling and Robbins,
1967; Robbins, 1970). Our work expands the breadth of nonparametric sequen-
tial problems amenable to such methods and deepens the connection between
exponential concentration inequalities and sequential testing procedures.

5. Discussion and extensions

This section is divided into three parts. We first discuss the sharpness of the
derived bounds. Then, building further on the geometric intuition of the paper,
we point out an interesting geometric relationship between fixed-sample expo-
nential bounds and our uniform bounds. We end by discussing directions for
future work.

5.1. When is Theorem 1 sharp?

In the discrete-time, sub-Gaussian case ¥ = ¥y and lyp = 1, Theorem 1(a) is
sharp: for any a,b > 0,

sup  P(FHeN:S >a+bV;| Fo) =e 2. (5.1)
(S"V*)qule

In fact, this can be achieved by rescaling any sum of i.i.d. observations with
finite variance, which we prove in Section 6.9 as a corollary of Theorem 2 of
Robbins and Siegmund (1970):

Corollary 13. Suppose (X;)ien are i.i.d. mean zero with variance 0? < co. Let
Sy =30_, Xi. Let St(m) = Si//m and Vt(m) = to?/m. Then for any a,b > 0,

lim P (Elt EN:S™ >a+ th(m)> = e~20b, (5.2)
m—0o0

The following more general sandwich relation, which we prove in Section 6.10,
quantifies the looseness in Theorem 1(a) and gives a sufficient condition for the
probability bound to be exact. This condition involves the “overshoot” of the
process Sy over the line a+bV;, a quantity which has been studied extensively in
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the context of sequential testing (Siegmund, 1985). The upper bound in equa-
tion (5.3) below is a restatement of Theorem 1(a); only the lower bound is new.

Proposition 3. Consider real-valued processes (St), (Vi) and a CGF-like func-
tion . Fix a > 0,b € (0,b) and suppose

1. My = exp{D(b)S: —(D(b))Vi} is a martingale with My = 1 (rather

than just upper bounded by a supermartingale, as Definition 1 requires),

2. St —bVy —» —oc0 as t T oo a.s., and

3. For somee >0, S; <a+bV;+¢€ as. on{r < oo}, wherer :=inf{t € T :

Sy > a+ bVi}.
Then we have
: >
~eD(b) < PEeT:S5 >a+bVy) <1 (5.3)
exp{—aD(b)}

In particular, if the conditions of Proposition 3 hold with € = 0, then the
probability bounds in Theorem 1 parts (a), (b) and (c¢) hold with equality. In
the continuous-time case with (S;) a continuous martingale, these conditions
often hold with ¢ = ¢ and V; = [S];. We give details for the following result

in Section 6.11; see Protter (2005, Theorem II1.44) for more on Kazamaki’s
criterion:

€

Corollary 14. Suppose (St)ic(0,00) 5 a continuous martingale with Sy = 0
and [S]; T 0o a.s. satisfying Kazamaki’s criterion: supy EeS7/2 < oo, where the
supremum is taken over all bounded stopping times T. Then P(3t € (0,00) :

S; > a+bV;) = e2ab,

In the discrete-time case with i.i.d. observations bounded above by € a.s.
and having CGF 1, the conditions of Proposition 3 hold, setting V; = ¢. Hence
the probability bound in Theorem 1(a) can be made arbitrarily close to exact
by taking b sufficiently small relative to €, and similarly for parts (b) and (c).
So Theorem 1 is sharp in the sense that for any such process, the probability
bound is arbitrarily close to exact for some choice of (a,b) or (z,m). To see
the connection with Corollary 13, rewrite (5.2) to keep the processes S; and
V, = to? fixed and take limits with respect to a, b:

. b _2a

mlgnooP<Elt€N:St>a\/ﬁ+ﬁ~taz>=e 2ab, (5.4)

5.2. Geometric relationship between Theorem 1 and
Cramér-Chernoff

Whenever a process (S;) is sub-¢ with V; = ¢, a fixed-time Cramér-Chernoff
upper bound of the form (4.2) holds: for any fixed ¢ € N, we have P(S; >
x) < exp{—ty*(z/t)}. Let f,(t) denote the curve of such fixed-time bounds
constructed for a fixed crossing probability « at each time ¢:

falt) =t* 7" <%> : (5.5)
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Linear uniform bounds

ixed—time Chernoff at V; =m

Upper bound on S,

3
LS . .
< Fixed-time Chernoff bounds
»
p exp(f m (z]m ) =«
. 4

|

T
0o m- m m.,
Vi

Fig 6: Geometric illustration of Theorem 1(b) and its relation to fixed-time
Cramér-Chernoff bounds. Theorem 1(b) chooses the linear boundary which is
optimal for V; = m, but other linear boundaries with the same crossing prob-
ability are illustrated, each of which achieves the optimal fixed-time bound at
some other time V; = m4. Each uniform Chernoff bound is tangent to the curve
of fixed-time bounds, and indeed the curve of fixed-time bounds may be defined
as the pointwise infimum of such linear uniform bounds.

where ¢* "1 (\) = inf{u > 0 : ¢»*(u) > A}. For example, in the sub-Gaussian
case P(A) = ¥ (N) = A2/2, we have the standard formula f,(t) = \/2tloga~1.

Proposition 4. Any line a + bt which is tangent to f.(t) satisfies P(3t € T :
S >a+bt) <a.

In words, the above proposition states that the set of linear boundaries from
Theorem 1 is exactly the set of tangent lines to f,, or conversely, f, is defined as
the pointwise infimum of this set of linear boundaries, as illustrated in Figure 6.
We give the proof in Section 6.12. This observation provides some intuition
for the appearance of the Legendre-Fenchel transform in the standard Cramér-
Chernoff formula (4.2).

5.3. Future work

Characterizing families of sub-i) processes Our Theorem 1 bounds the
maximal line-crossing probability over each family SL‘; and Section 3 collects
sufficient conditions for membership is many such families. It would be inter-
esting to better delineate such families, for example by characterizing necessary
conditions for inclusion. When v is CGF-like and (V%) is predictable, it is nec-
essary for the increments AS; to have finite conditional CGFs a.s. When S; is
a cumulative sum of i.i.d., real-valued random variables and V; o ¢, the exis-
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tence of the CGF is sufficient as well (Fact 1(a)). When the increments are not
i.i.d., however, existence of conditional CGFs is no longer sufficient. When (V;)
is not predictable, as with self-normalized bounds, it is no longer necessary for
increments to have finite CGFs (e.g., Example 5).

Determining optimal [y, values Smaller values of [y are preferable since
they lead to tighter bounds in Theorem 1. Most of the results in this paper take
either Iy = 1 for scalar observations or Iy = d for d x d matrix observations.
Taking A | 0 in Definition 1 shows we cannot have [y < 1. Furthermore, asymp-
totic results about maxima of independent Gaussians show that Iy = d is an
asymptotic lower bound as d 1 oo for operator-norm inequalities over any class
that includes matrices with independent Gaussians on the diagonal (Galambos,
1978; Boucheron et al., 2013, Exercise 2.17). It would be useful to derive more
results about optimal values of [y in various settings.

Generalizing assumptions Definition 1 can be further generalized, allowing
it to subsume more known inequalities and yield sharper results for certain cases.
However, the corresponding general theorem and specific results are less user-
friendly. We have chosen our Definition 1 and Theorem 1 to balance generality
and tractability, but in Appendix D we present one possible generalization of
our assumption and a corresponding general theorem and specific bound.

Polynomial line-crossing inequalities We have focused on exponential in-
equalities, but polynomial concentration also plays an important role in the
literature. A theory of polynomial line-crossing analogous to that presented
here may begin with the Dubins-Savage inequality (see Appendix B) and its I,
extension in Khan (2009).

Banach spaces The Banach space bounds in Section 4.4 give dimension-free
I, bounds for 2 < p < oo, but do not give [, bounds. In particular, this does not
yield operator-norm bounds for infinite-dimensional Hilbert-Schmidt operators,
as in Minsker (2017). Extending Minsker’s “effective rank” approach to the
uniform bounds of this paper would be an interesting future extension.

6. Proofs
6.1. Proof of Lemma 1

Define the stopping time 7 := inf{¢t € 7 : L; > a}, where inf ) = co. For any
fixed m € T, Markov’s inequality implies
E (Lram | Fo) _ Lo

P(T§m|]-"0)=IP’(LT/\m2a|}—0)§f_ _ (6.1)

where we have used Doob’s optional stopping theorem for bounded stopping
times in the final step (e.g., Durrett, 2017, Exercise 4.4.2; or Protter, 2005,
Theorem 1.17). Taking m — oo and using the bounded convergence theorem
yields P (7 < oo | Foy) < Lg/a, which is the desired conclusion.
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6.2. Proof of Proposition 1

Applying Taylor’s theorem to 1 at the origin, we have () = [w + h(/\)} A2
where h(A) — 0 as A | 0. Choose \g > 0 small enough so that 1(\) < 9" (04)\?
for all 0 < A < Ag. Then, setting a = 2¢"(04), ¢ := 1/Ao and using that
fact that ¢g. > ¢¥n for ¢ > 0, we have P(A) < ayy(A) < avpg,(A) for all
0 < X < 1/c. The same argument holds with g in place of ¥g. O

6.3. Proof of Proposition 2

In each case, we show an inequality between two v functions. The conclu-
sion then follows from the fact that is ¢y < g, then exp {AS; — ¥2(A\)V;} <
exp {AS: — ¥1(A\)V;}, showing that the key condition of Definition 1 continues
to hold with 15 in place of 1.

Part (1): the proof of Theorem 1 in Hoeffding (1963) shows that, for all
we (0,1)and all t € [0,1 — p),

(1 +1)log <u7+t) +(1—p—t)log (u)

1—u

1 1-p 1
2t2{1—21#1°g<u)’ VEHSE ()

2u(l—p)> 2 S 1% < ]-7

with equality at ¢ = 1 — 2u. Substituting 4 = ¢g/(¢g + h) and t = u/(g + h) for
u € [0,h), some algebra shows that the left-hand side is equal to ghy%(u/gh)
and the right-hand side is equal to ¥% (u)/¢(g,h), so that, for all g,h > 0
and u € [0,h), Yg(u/gh) > Yx(uw)/lghe(g, k)], with equality at u = h — g.
The order-reversing and scaling properties of the Legendre-Fenchel transform
now imply Y5 (A) < ¥ (p(g, h)A)/[ghe(g, h)] for all A > 0. Finally, since g
and vy are convex and continuous, each is equal to its biconjugate 1)** by the
Fenchel-Moreau theorem, so that ¥g(A) < %d}]\] (N).

Part (2): This follows directly from equation (4.15) in Hoeffding (1963)
which, in our notation, says that ¥p(\) < %UJN()\) for all A € R.

Part (3): In our notation, Lemma 2.32 of Bercu et al. (2015) shows that
(9¥B.g1) () > (g¢¥pi1—g)*(u) for all w € [0,1] and g > 0. The order-reversing
and scaling properties of the Legendre-Fenchel transform imply 1/1*Bfg71(/\) <
Yp1_g(A) for all A > 0. Since ¢p 41 and p1-4 are convex and continuous,
each is equal to its biconjugate ¢** by the Fenchel-Moreau theorem, so that
¥B,g,1(A) < ¥p1-g(N). The result now follows from algebraic identities involving
¥p and ¢¥p: for any g,h > 0,

1 1
YB.gn(N) = ﬁwB,g/h,l(h)\) < ﬁwP,(hfg)/h(h)Q =Yphr_g(A). (6.3)

Part (4) is immediate from the definition ¢p = ¢ when ¢ = 0.
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Part (5): since % ., (\) = A and Y7 ceN) =1 —ceN)?

(V)

= (1—c\/3)%e = f(1 —c)\/3), where f(y) = °Y) . (6.4)
wG (,/3( )

We have f(1) = 1 and f'(y) = 3y?e>0 =¥ (1—y), so that f'(y) < 0 for y > 1 and
f'(y) = 0fory < 1. Hence f(y) < f(1) = 1 for all y, i.e., ¥ .(N) < ¥, C/3( A) for
all A. Since 1¥pc(0) = ¥g,c/3(0) = 0 and ¥p (0) = ¢ . /5(0) = 0, we conclude

VYpe(N) <Paes(A) for all A
Parts (6, 7, 8): some algebra shows that

A[3cg — 2cg + ca(cr — 2¢g) ]
2(1 — Cg/\)2(1 - CE/\)

Voo (N) = Vg ep(N) = (6.5)
Since Y. (0) = Vg, (0) = 0, we have g, (A) > (<) ¥p.cp(A) for all X if
Voo = (D) Vg, for all A, and (6.5) shows the latter is true if and only if
f(\) =3cq — 2¢g + ca(ce — 2cg)A > ()0 for all A. Note we need only check
the domain 0 < A\ < ¢ A (2¢g) ™! on which both functions are defined.

e For part (6), if cg = 3cg/2, then f(\) = —cZ\/2 < 0, so that Y. <
wE,3C/2 for c € R.

e For part (7), if c¢ = cg > 0 then we have f(A) = ¢(1 —cA) > 0 for
0<A<c ! sothat Y. < g, for ¢ > 0.

e For part (8), if c¢ = cg/2 < 0, then f(\) = —cg/2 > 0, so that Y. <
Vg /2 for ¢ <O0.

2()\ _1

Part (9): from 95 ,.(\) = S5~ and ¢ .(A) = QA((lz:cc)\A))Z, we have
/ o _ 1= fd+ N _ .2 2(1—y)
T;Z)P,Qc()‘) Id)G,c()‘) - 2‘C|(1 _ C)\)Z ) where f(y) =ye . (66)

We have f(1) = 1 and f'(y) = 2ye?1"%)(1 —y) < 0 for all y > 1, so that
f(y) < 1forall y > 1. Hence ¢p,.(A) > g (A) for all A > 0. Together with
Yp2c.(0) = 1g,.(0) =0, we conclude Ypac(A) > g.c(A) for all A > 0.

Part (10) follows from the fact that ¢p. 1 ¥n as ¢ 1 0.

Part (11): for any g, h > 0, we have

ehA _ o9

— 6.7
ge’”‘ +he_9>" ( )

¢/B7g,h(/\) =

so limp 0¥, ,(A) = (1 — e 9 /g = Yp_4(A). Since g, (0) = Pp = 0 for
all g,h > 0 and all ¢ € R, we see that limp, 0 VB, gn(A) = ¥p,_g(A) for all X > 0.
Furthermore, differentiating (6.7) with respect to h reveals

d "M g+ h)2p _(gn)(A)
%wlB,g,h()‘) = (ge’”‘ ¥+ he—9*)2 > 07 (68)
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which implies g 4,1 () is nondecreasing with h for all A > 0. We conclude
YB.gn(A) 4 ¥p_g(A) as h | 0, hence ¢p. < g . for all b > 0 whenever
c < 0.

To see that no other implications are possible, observe that, as A — oo,
Ye(A) = O(N), ¥n(A) = O(A\?), and when ¢ > 0, ¥p()\) = O(e?), while g ()\)
and Y g(\) diverge at a finite value of A. So we cannot use atyp to upper bound
any of the other ¢ functions for any constant a. Likewise, we cannot use aiy
to upper bound 9 p, g or ¥, and we cannot use at)p to upper bound g or
YE.

Now if S; is a sum of i.i.d. A'(0, 1) random variables, then (S;) is sub-Gaussian
with variance process V; = t, and the exponential process exp {)\St — At/ 2}
is a martingale. Under any scaling of V; by a constant a > 0, (S;) cannot
be sub-Bernoulli, because E exp {AAS; — a1pp(A)} = exp {A?/2 — aypp(N)} > 1
for sufficiently large A, so the exponential process exp {\S; — ¥p(A)t} will be
expectation-increasing. Analogous arguments shows that other reverse implica-
tions are not possible.

To see that the above constants are the best possible when we allow only scal-
ing of V; by a constant, consider the third-order expansions of each v function
about A = 0:

2 _ 3
w0 = |5+ B2 | o (69)
Pn(A) = /\?2 (6.10)
2 c 3
Yp(N) = % + % +0(A\%) (6.11)
Ye(\) = A; + % +o(A\3) (6.12)
A2 edd
Ya(\) = T+t 5t o(A\3). (6.13)

It is clear from these expansions that parts (3), (4), (5), (6), and (11) have
the best possible constants. Part (7) is unimprovable because ¥ diverges at
A = 1/¢, and using any scale parameter in ¥ smaller than ¢ would make ¢
finite at A = 1/c. For part (8), recall that when ¢ < 0, b = |¢|™! for 1g, while
b = |2¢|7! for Y. Hence, if ¢ < ¢/2 < 0, then limy o0 90 o« (A) = [2¢/|71 <
le] 7! = limy_ o0 w};’c()\), so that ¥¢,(A\) must be smaller than g () for
sufficiently large A. Part (9) is unimprovable by an analogous argument.

For part (1), when g > h, we know that the constant of one in front of ()
is the best possible from the expansions above. When g < h, some algebra
shows that the inequality ¥p g1 (X) < %dn\;(}\) holds with equality at A =
(h—g)/(g,h), so the constant cannot be improved. For part (2), it is easy to

2
see that ¢(g,h) = (#) = g2 when g = h, so the constant (Z;“}}Z) is the best

possible of the form k/gh where k is a function of g + h alone. O

A brief remark on the rationale behind part (2). In the “Bernoulli I”
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(Fact 1(b)) and “Bernoulli II” (Lemma 3(a)) conditions, V; = ght, so apply-

2
ing Proposition 2, part (2) leads to V; = (#) t, a function of the total range
g + h alone. This is useful in the common case that observations are known to
be bounded in a range [a, b], and an inequality is desired which depends only on

the range b — a and not on the location of the means within [a, b].

6.4. An intermediate condition for sub-iy processes

In discrete time, the following result capture a useful general condition on
a matrix-valued process (Y;) that is sufficient to show that the maximum-
eigenvalue process S; = Ymax(Y) is sub-1.

Lemma 4. Let ¢ be a real-valued function with domain [0, Amax)- Let (Y)ien
be an adapted, He-valued process. Let (Wy)ien be predictable, He-valued, and
nondecreasing in the semidefinite order, with Wy = 0. Let (U)ten be defined by
Up =0 and AU, = w (AY;) for some uy : R — Rxq, for each t. If, for allt € N
and X € [0, Amax), we have

log Ey_1 exp {AAY; — $(\)AUL} < w(\)AW,, (6.14)
then St = Ymax(Yz) is d-sub-y with variance process Vi = ymax(Ur + W).

For a familiar example, suppose d = 1 and (Y;) has independent increments.
Let W; = t, U; = 0 and ¥()\) = A?/2. Then (6.14) reduces to the usual defini-
tion of a 1-sub-Gaussian random variable (Boucheron et al., 2013). For a self-
normalized example, let (AY;) be i.i.d. from any distribution symmetric about
zero. Then, again letting ¥(\) = A\?/2, an argument due to de la Pefia (1999)
shows that (6.14) holds with Wy =0 and U; = Zzzl AY?. See Lemma 3(d) for
a general statement of this condition.

The value [y = d, the ambient dimension, leads to a pre-factor of d in all of
our operator-norm matrix bounds. In cases when sup, oy rank(Us +W;) <r < d
a.s., the pre-factor d in our bounds may be replaced by r via an argument
originally due to Oliveira (2010b). See Appendix A for details.

Proof of Lemma 4. The key result here is Lieb’s concavity theorem:

Fact 3 (Lieb, 1973; Tropp, 2012). For any fixed H € H%, the function A
trexp {H + log(A)} is concave on the positive-definite cone.

Fixing A € [0, Amax), Lieb’s theorem and Jensen’s inequality together imply
Ei_1 trexp{\Y; —o(N\) - (Us + W)}
< trexp {/\Yt_l —Pp(A) - (Up—q + W) + log Et_le)‘AYFQZ’(A)'AUt} . (6.15)
Now we apply inequality (6.14) to the expectation and use the monotonicity of
the trace exponential to obtain
Ei—1trexp {AY: — () - (U + W)} <trexp {AY;—1 —¥(A) - (Up—1 + Wi—1)} .
(6.16)
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This shows that the process L; = trexp {\Y; — ¢(\) - (Uy + W;)} is a super-
martingale, with Ly = d. Next we show that the key condition of Definition 1
holds, L; > exp {Mmax(Y:) — ¥(AN)Ymax(Us + We)} a.s. for all t. We repeat a
short argument from Tropp (2012). First, by the monotonicity of the trace ex-
ponential,

trexp {AY; —(A) - (U + Wi)} (6.17)
> trexp {\Y; — (AN ymax (Ur + Wi) I} (6.18)
Z Ymax (eXp {)‘}/t - w()‘)'YmaX(Ut + Wt)Id}) = B. (619)

using the fact that the trace of a positive semidefinite matrix is at least as large
as its maximum eigenvalue. Then the spectral mapping property gives

B = exp {Vmax (AY: = V(AN Ymax(Us + We)14)} . (6.20)

Finally, we use the fact that ymax(A — clg) = Ymax(A) — ¢ for any A € H¢ and
¢ € R to see that B = exp {Mmax(Yz) — ¥ (XN)Ymax (Ut + We)}, completing the
argument. U

6.5. Proof of Lemma 3

We rely on the following transfer rule for the semidefinite ordering.

Fact 4 (Tropp, 2012, eq. 2.2). If f(a) < g(a) for all a € S, then f(A) < g(A)
when the eigenvalues of A lie in S.

We make frequent use of the martingale property E;_1AY; = 0, and prove in
most cases that

Ei_1 exp {AAY; — p(A)AU} < exp {p(\) AW, } (6.21)

for some (U;) and (W), then invoke Lemma 4. This a stronger condition than
property (6.14); the latter is implied by taking logarithms on both sides, recalling
the monotonicity of the matrix logarithm.

Part (a): we adapt the argument of Bennett (1962, p. 42). Fix A > 0 and
choose real numbers u,v,w so that e** < wx? + vz + w for all < h, with
equality at z = h and x = —g. Using the assumption AY; < hly, the transfer
rule implies

By 1Y <uB,  AY? + o, 1 AY; + wly < (ugh + w)ly, (6.22)
where the second inequality uses the assumption E; jAY? =< ghl; and the

martingale property. Now consider the random matrix

htg’ (6.23)

7= —gl;, with probability -
"~ | hl;,  with probability ~L.
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Evidently EZ = 0 and EZ? = ghl,, so Z also satisfies the aforementioned
assumptions. Note that for any function f: R — R,

h g

BAE) = [ -0+ o

f(h)] 1. (6.24)
By our choice of u, v, w, we see that Ee’? = E(uZ? +vZ +wly) = (ugh+w)ly,
so by direct calculation,

h g
htw)ly=Eer = | —— e 4 = M| [ =esNp, 0 (6.25
(ugh +w)ly e [h—f—g e +h—|—g e ia=e a-  (6.25)
Combining (6.25) with (6.22) shows that (6.21) holds with U; = 0 and W, =
ghtl,, as desired.

Part (b): As in Lemma 1 of Hoeffding (1963), we use the fact that e** <
9L hA 4 hoZo=9X for all o € [—g, h], along with the transfer rule, to conclude

g+h g+h
that, for each t,

G H _
]Et_le)‘AY‘ j (ﬁebft}\ + ﬁe Gt>\> Id = eXp {Gth,(/JB,Gt,Ht ()‘)}Id
t t t t
(6.26)

Now the proof of Proposition 2 part (1) shows that ¥ ¢.,(A) <¢(g, h)Yvn(N)/gh,
so we have

E,_1eMY < exp {vN(N) (G, Hy) I}, (6.27)

which shows that (6.21) holds with Uy = 0 and AW, = (G, Hy) 14, as desired.
Part (c): the argument is identical to that for part (a), except for the use of

¥B,g.n(A) < (ng;;t)z ¥y (A) from the proof of Proposition 2 part (2).

Part (d): From the standard inequality coshz < ™’ /2 we see that f(z) -
= e /2¢coshz < 1 for all z. Introducing an independent Rademacher random
variable ¢, we have for any ¢,

2 A2 2 A2
E;_ 1 exp {)\AYt — AAY; } =E;_1exp {)\sAY} — AAY; } (6.28)
ZAy2
=E;1E [exp {)\EAYt - A ¢ } ‘ Fi_1, AYt}
(6.29)
— i1 f(AAY) (6.30)
= I, (6.31)

applying the transfer rule in the last step. This shows that (6.21) holds with
Ut = [Y]t and Wt =0.
Part (e): Lemma 4.1 of Fan et al. (2015) shows that

exp {Az — [log(1 —A)"' =Nz} <1+ Az, forallz > —land 0 < A< 1.
(6.32)
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Applying the transfer rule and taking expectations, we have for any t,

AY, AY?
B, oxp {A O } <. (6.33)

Replace A with cA and identify ¥ g to complete the argument that (6.21) holds
with Uy = [Y]; and W; = 0.

Part (f): Proposition 12 of Delyon (2009) shows that e*=*"/6 < 1+ x4 22/3
for all x € R. This implies, by the transfer rule,

A2 A2
E; 1 exp {/\AYt - 6AY3} < Ig+ gEt_lAYf (6.34)

)\2
< exp {BEHAYE} : (6.35)

This shows that (6.21) holds with U; = [Y];/3 and W; = 2(Y), /3.
Part (g): Proposition 12 of Delyon (2009), together with the fact that e=® +

x —1<22/2 for z > 0, shows that e /2 < 1+z+2%/2. Again the transfer
rule implies

A2 A2
E¢—1 exp {AAY; - E(Am)i} <L+ S E 1 (AY)2 (6.36)

< exp {)\;Etl(AYt)z}. (6.37)

This shows that (6.21) holds with U, = [Y];/2 and W; = (Y_), /2.

Part (h): we appeal to part (d) to see that S; is d-sub-Gaussian with variance
process V; = ”ymax(%[Y]t + % (Y),). Now the condition AY,? < A? ensures that
Y]+ 2(Y), < 30_, A2, hence V; < ymax (35, A?). Substituting this larger
variance process only makes the exponential process in Definition 1 smaller, so
the assumption remains satisfied.

Part (i): the proof of Corollary 2.2 in Fan et al. (2015) is based on the
inequality et /2 <1 4 g4 a3 /3 for all x € R. The transfer rule implies

A2 9 A3 3 A3 3
E; 1 exp ¢ AAY; — 7Ayt = 1g+ ?Et—l(AYt)— = exp ?Et—l(AYt)_ .
(6.38)

Setting ¢ = 1/6 in g, we have for all = € [0,6) the obvious inequality z2/2 <
Vg (z) and we claim 23/3 < ¢g(x) as well; indeed,
3/3 (6 — x)

22/20—z/6) 9 (6:39)

which reaches a maximum value of one at * = 3. The transfer rule now implies

2
Ei—1 exp {AAY; — g (A)AY?} < E_jexp {/\AYt - %AYf} (6.40)
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< exp {%SJEH@W} (6.41)
< exp {Ya(A\Ei_1(AY;)? }, (6.42)

which shows that (6.21) holds with U; = [Y]; and V; = 2;;1 E,_1]|AY; 3.

6.6. Proof of Corollary 2

Define the H%+92_valued process (Y;) using the dilation of B;:

AY, = ¢, < o %) . (6.43)
t

Since the dilation operation is linear and preserves spectral information, we have
St = Ymax(Y:) = ||Zf:1 €;Billop (Tropp, 2012, Eq. 2.12). Furthermore, since
each B; is fixed and ¢; is 1-sub-Gaussian (in the usual sense for scalar random
variables), (Y;) satisfies the conditions of Lemma 4 with ¢ = ¢y, Uy =0, and

t
B;Bf 0
W, = Z ( 0 B;Bi> , (6.44)

i=1

by Tropp (2012, Lemma 4.3). Hence (.S;) is (dy +d3)-sub-Gaussian with variance
process

Vi = [[Wilop = max (6.45)

)

t
> BB}
i=1

t
> B;B;
=1

op op

The result now follows from Theorem 1(b).

6.7. Proof of Corollary 3

First, observe 5! (u) = /(D (u)) for any u € (0,b). Indeed, from the definition
of s(-) and Lemma 2(v) we see that if u = s(v) then D(u) = ¢*'(v) = '~ (v),
so that v = ¢/(D(u)). This identity will be used below.

Now let h(b) == me*(b) + (z — bm)y*'(b). We will show the following:

(I) fm=0o0rb<s(L), then h(b) < (z — (bAb)m)D(b).
(II) If m > 0 then h(b) < my* (%) =h(Z).

Together with Theorem 1(d) these prove that (4.10) holds, and (4.11) follows
upon setting x = bm.

First suppose m = 0, so it suffices to show ¥*'(b) < D(b) to prove (I) in
this case. But Lemma 2(vi) implies u < 5! (u) for any u € [0,b), and together
with the convexity of ¥*, we have ¢¥*'(b) < 1*'(s71(b)). Then the identities

571 (u) = ¢/ (D(w)) and *' = ¢/~ " imply ¢*' (s~ (b)) = D(b).
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Now suppose m > 0. It is easy to see that h'(b) = (z — bm)y*"(b). The
convexity of ¢¥* now implies h is nondecreasing for b < x/m and nonincreasing
for b > x/m. Hence h(b) is maximized at b = x/m, which proves (II). To prove
(I) in this case, we claim that h(s~1(b)) = (x — bm)D(b). Then the condition
b < s(x/m) and Lemma 2(vi) imply b < s~1(b) < x/m, so that h(b) < h(s~1(b))
since h is nondecreasing on this region, which is (I).

To prove the claim, substitute the identity s=*(u) = ¢/(D(u)) into the defi-
nition of h(-), yielding

h(s~1(b)) = M (D(b))) = my* (¥ (D(b))) + [z — my'(D(b)]D(b).  (6.46)
Now use the identity 1*(u) = uy*' (u) — 1 (*'(u)) to obtain

h(s~'(b)) = 2D(b) — myp(D(b)) (6.47)

= xD(b) — mbD(b), (6.48)

where the final equality uses Lemma 2(v), proving the claim.
The second statement (4.11) follows directly from Theorem 1(d) with x = mb.

When b < b, Lemma 2(vi) implies s(z/m) < x/m = b, so the second case
in (2.10) applies. When b > b, we have > mb, so the first case in (2.10)
applies. Noting that D(b) = co = ¢*(b) in this case using Lemma 2(i), we see
that (4.11) remains valid. O

6.8. Proof of Corollary 10

We invoke arguments from Pinelis (1994) and Pinelis (1992) to show that Defi-
nition 1 is satisfied.

For part (a), the proofs of Theorem 3 in Pinelis (1994) and Theorem 3 in
Pinelis (1992) show that, for each ¢ € N,

E;_y cosh (AU (Y;)) < €N P24/2 cosh (AW (Y;_1)). (6.49)
Hence L; = cosh ()\\If(Yt))e_)‘sz i=16/2 g a supermartingale, and the in-

equality coshz > e®/2 implies that Definition 1 is satisfied for S; = ¥(Y}),
Vi = D? Et ¢ and ¢ = ¢y with Apax = 00 and lg = 2. The conclusion (4.28)

=1 "1
follows from a slight reparametrization of V; to make D? explicit in the bound.

For part (b), the proof of Theorem 3 in Pinelis (1994) shows that
E;—1 cosh (A¥(Y};)) < exp {DEEt_l [eAHAYtH — MJAY; || — 1} } cosh (AU (Y;_1))
(6.50)

, (€N —ed—1 5
<expq D3 — Ei—1]|AY;||? ¢ cosh (A¥(Y;—1)),
(6.51)
using the fact that (e* — eA — 1)/c? is nondecreasing. Hence the process L; :
= cosh ()\\II(}Q))eﬂ/’P(/\)Df =1 Eic1lXil* is a supermartingale, and we see that

Definition 1 is satisfied for S; = ¥(Y;), V; = D? Z§=1 E;_1]|X;|? and ¢ = vp
with Apmax = 00 and [y = 2. The conclusion (4.29) follows as in part (a). O
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6.9. Proof of Corollary 13

We invoke Theorem 2 of Robbins and Siegmund (1970) for the sum S, /o with
g(t) = a/o + bot, noting that

2
lim P(ﬂteN:iza—f—m—U):limP(ﬂtENzizx/mg<t)).
m o

m—00 v/ m m—oo m

(6.52)

It is easy to verify the conditions of parts (i) and (ii) of Robbins and Siegmund’s
theorem, yielding the conclusion

lim P <3t eN: % > /myg (%)) =P(3t e (0,00): B, >g(t)), (6.53)

m—r o0

where (B;) is standard Brownian motion. The latter probability is equal to e~22?

by the standard line-crossing formula for Brownian motion (e.g., Durrett, 2017,
Exercise 7.5.2). O

6.10. Proof of Proposition 3

From the definition of D(-), we see that M; = exp {D(b) - (S¢ — bV;)}. Since T is
a stopping time, (M, ) is a martingale, so 1 = EM;, for each ¢t € N. The third
condition of the proposition ensures that My,, < eP(®) (@49 for all ¢ a.s., so by
dominated convergence we have EMr, — EM, = 1, where M., is defined as
the a.s. limit of (M;a,), whose existence is guaranteed since the stopped process
is a nonnegative martingale. The second condition of the proposition implies
M, *% 0, hence

1=EM, = EM.,-].(T<OO) + EMool(q—:oo) (654)
< exp {D(b) - (a+ )} P(r < o0), (6.55)

which gives the desired lower bound on P(r < 00).

6.11. Proof of Corollary 14

The conclusion follows immediately from Proposition 3 with € = 0 once we show
that the conditions of the proposition are satisfied for (S;) with V; = [S]; and
Y =19Yn.

In this case, since (S;) has continuous paths a.s, (M;) is the stochastic expo-
nential of the process (D(b)S;) (Protter, 2005, Ch. II, Theorem 37). Kazamaki’s
criterion is sufficient to ensure (M;) is a martingale (Protter, 2005, Ch. III, Theo-
rem 44) and My = 1 since Sy = 0. This shows that condition (1) of Proposition 3
holds. Condition (3) follows directly from the continuity of paths of (S;).

It remains to show that condition (2) holds. For this we express (S;) as a
time change of Brownian motion (Protter, 2005, Ch. II, Theorem 42): S; = Bjg,
where (B) is a standard Brownian motion (with respect to a different filtration).
From the law of the iterated logarithm we know that By /¢ 2% 0 ast — oo, hence
St — bS] = [S]¢(Bys,)/1S]t — b) — —o0 since [S]; T oc. d
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6.12. Proof of Proposition 4

Lemma 2.4 of Boucheron et al. (2013) shows that

o [loga™" 9(N)

fa(t) = II)\lf 3 + N t|, (6.56)
so that f,(t) is a pointwise infimum of lines indexed by A with intercepts a) =
(loga~ 1)/ and slopes by = ¥(\)/A. Hence D(by) = ), and by Theorem 1 the
crossing probability of each such line is e~**P(») = . Note we have also shown
that f, is concave. The optimizer A, (¢) in (6.56) is the solution in A of Ay’ (\) —
¥(\) = (loga1)/t. The left-hand side of this equation has positive derivative in
A by the convexity of ¥, so the map ¢t — A, (¢) is injective. Hence the optimum
line ay, (m) + b, (m)t is tangent to the curve f,(t) at t = m.

Appendix A: Sharpened pre-factors based on rank

This argument is adapted from Wainwright (2017), though the idea originates
in Oliveira (2010b). Suppose the conditions of Lemma 4 hold and

suprank(U; + Wy) < r < d, a.s. (A1)

teT
Since AU; = 0 and AW, > 0 for all ¢, we know that range(U; + W;) C S for
all ¢ a.s., where S is an r-dimensional subspace. Inequality (6.14) implies that
range(Y;) C S for all ¢ a.s. as well. Let M be a d x r matrix whose columns
form an orthonormal basis for this subspace. Then the r-dimensional process
Y; == M*Y; M has the same spectrum as Y; for all ¢ a.s., so we may apply our
bounds to (Y;), with (U;) and (W;) defined analogously, to obtain bounds with
lo =7T. O

Appendix B: Relation to the Dubins-Savage inequality

The Dubins-Savage inequality (Dubins and Savage, 1965) says that for any
martingale S; in discrete time with Sy = 0, setting V; = Zle Var;_1(St—S:-1),
we have

1
P(FteN:S5 >a+bV;) <

“1l+ab (B-1)

The Dubins-Savage inequality may be proved by means similar to ours, invoking
Ville’s inequality for a suitable supermartingale. The relationship of our bounds
to the Dubins-Savage inequality is analogous to that between fixed-time Cramér-
Chernoff bounds and Chebyshev’s inequality. More precisely, the Dubins-Savage
inequality is analogous to Uspensky’s one-sided version of Chebyshev’s inequal-
ity (Uspensky, 1937; Bennett, 1962):

Var X

P(X —EX > < — " B.2
( *x)*VarX+x2 (B-2)
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Similar to our Theorem 1(b), we may optimize the RHS of (B.1) over all lines
passing through a point (m, z) to obtain the equivalent bound

]P’(HteN:Sth—i—%(Vt—m))< m

S a2t (53)

recovering Uspensky’s inequality (B.2) with /2 in place of x. The Dubins-
Savage inequality does not recover Uspensky’s inequality at the fixed time m—
something is necessarily lost in going from a fixed time to a uniform bound. Com-
pare our Theorem 1(b), which exactly recovers the fixed-time Cramér-Chernoff
bound (4.2). For these exponential bounds, we lose nothing in going from a fixed
time to a uniform bound.

Appendix C: Graphical comparison of 1 functions

Fig 7: Comparison of @ functions given in Table 2. We have set ¢ = h = 1
in ¢Yp, c=11in ¢¥p, ¢ = 1/3 in ¥g, and ¢ = 1/2 in ¢g. These are all values
that might be used in bounding a process with [—1, 1]-valued increments using
the same variance process; see Figure 3 and Proposition 2. In general, bounds
based on different ¢ functions may have different assumptions and variance
processes, so may not be comparable based on 1 functions alone. However, with
identical variance processes, a smaller ¢ function yields a tighter bound. Note
all functions behave like ¢ (\) = A?/2 near the origin.

Figure 7 illustrates together the five standard i functions discussed in Sec-
tion 3, to help the reader gain intuition. With the given parameter settings, the
inequalities apparent in the figure do hold for all A > 0: ¥p(A) < ¥ny(N) <
Yp(A) <¢Ya(N) < Ygr(AN). See the proof of Proposition 2 in Section 6.3.
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Appendix D: A more general boundary-crossing result

The following assumption weakens Definition 1, replacing the product ¥(A\)AV;
with a function f(A, AV}).

Assumption 1. Let (St)ienufoy and (Vi)ienuqoy be two real-valued processes
adapted to an underlying filtration (F;)ienugoy with So = Vo =0 a.s. and V; > 0
a.s. for all t € N. Let f : [0, Amax) X (0,00) = R be concave in its second
argument for each value of the first, and let ly € [1,00). We assume, for each
A € [0, Amax), there exists a supermartingale (L¢(\))ienugoy with respect to (Fy)
such that Ly < ly a.s. and exp{)\St - 22:1 f()\,AVi)} < Li(N) a.s. for all
teN.

Clearly, when f(X,v) = 9()\)-v for some 1), Definition 1 holds and Theorem 1
applies. Under the weaker Assumption 1 we have the following results:

Theorem 2. If Assumption 1 holds for some real-valued processes (Si) and
(W), then for any A € [0, Amax) and a > 0, we have

tf(&%/ﬂ)
A

P (315 eEN:S, >a+ < lpe ™. (D.1)

Furthermore, if f,(-) = f(-,v) is CGF-like for each v > 0, then for any n € N,
m >0 and 0 <z < nsup, ffn/n()\), we have

(anesz o ()10 2)]) <o 2)

(D.2)
P (3t EN: Sy >z + L m/t) ; nf()\*’m/n)> <lpexp {—n m/n (%)}
(D.3)

where A, = (f*, ) (x/n).

m/n

The proof follows the same principles as that of Theorem 1 and is omit-
ted for brevity. One application of this result is to martingales with bounded
increments, making use of ¥g:

Corollary 15. Let (Y;)ien be an H-valued martingale and let Si == Ymax(Y7).
Suppose Ymax(AY:) < ¢ for allt for some ¢ > 0, and let Vi = ymax((Y),). Then
for any x,m > 0,n € N we have

(anisizernla(%)-o(2)
<x Tm)Hm <n i x>nx] o » (D4)
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and
m m
. S, > =) —ng (—
]P’(EIteN St_ertg(t) ng(n))
m z+m n n—x n/(n+m)
xr+m n—x
where
m+cn en __un 14+x/m
= — m-+4cn m+tcn = —— D
g(v) 01 0) 108 ¢ [vEmten + " mren | and € T~ 2/jen (D.6)

This generalizes Theorem 2.1 of Fan et al. (2012) [B, D].

One can further generalize Assumption 1 by replacing . f(A, AV;) with
>, fi(A, AV;), permitting f; to vary with time, but the added generality further
weakens the conclusions we can draw.

Appendix E: Equivalent sub-exponential conditions

Here we show that our sub-exponential condition (E.1) is equivalent to another
common definition (E.2) (Wainwright, 2017). We rephrase both conditions for
the right tail of a mean-zero random variable X.

Proposition 5. For a zero-mean random variable X, the following are equiva-
lent:
1. There exist 02 > 0 and ¢ > 0 such that
vx _ [—log(l —cA) —c)]o?
<
< e
2. There exist v > 0 and o > 0 such that

log Ee

for all A €10,1/c). (E.1)

2
log EeM < % for all A € 10,1/a). (E.2)

Proof. Suppose the first condition holds. A Taylor expansion of [—log(1—c\) —
cA]/c? about A = 0 yields

(cA)F  A20?
2+k

—log(1 —cA) —cAJo?  No? -
[ Log ;) Ao _ EEPYDY +o(A2).  (E3)
k=1

So choosing v > 02, we can find « sufficiently large to ensure that

—log(l—cA) —cAo? A2
[ los( - J=cAlo” _ 7” for all A € [0,1/a), (E.4)
c
implying the second condition holds.
Now suppose the second condition holds. Then since A > 0, the above series

expansion shows that the first condition holds with ¢ = v and ¢ = . O

Note that if the first condition (E.1) applies to both X and —X, then X
satisfies the usual, two-tailed sub-exponential condition, log Ee** < A2v/2 for
all |A] < 1/a.
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