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SOLAR-GP: Sparse Online Locally Adaptive
Regression Using Gaussian Processes for Bayesian

Robot Model Learning and Control
Brian Wilcox and Michael C. Yip

Abstract—Machine learning methods have been widely used in
robot control to learn inverse mappings. These methods are used
to capture the entire non-linearities and non-idealities of a system
that make geometric or phenomenological modeling difficult. Most
methods employ some form of off-line or batch learning where
training may be performed prior to a task, or in an intermittent
manner, respectively. These strategies are generally unsuitable for
teleoperation, where commands and sensor data are received in
sequential streams and models must be learned on-the-fly. We com-
bine sparse, local, and streaming methods to form Sparse Online
Locally Adaptive Regression using Gaussian Processes (SOLAR–
GP), which trains streaming data on localized sparse Gaussian
Process models and infers a weighted local function mapping of
the robot sensor states to joint states. The resultant prediction of
the teleoperation command is used for joint control. The algorithm
was adapted to perform on arbitrary link manipulators including
the Baxter robot, where modifications to the algorithm are made
to run training and prediction in parallel so as to keep consis-
tent, high-frequency control loop rates. This framework allows
for a user-defined cap on complexity of generated local mod-
els while retaining information on older regions of the explored
state-space.

Index Terms—Model learning for control, learning and adaptive
systems, neural and fuzzy control.

I. INTRODUCTION

MANY non-trivial robotic scenarios involve operations
under noisy, biased, and/or uncertain robot kinematics

and environmental influences. This includes surgery, search and
rescue, underwater navigation, and human-robot interactions.
Many of these robots, due to the sensitivities of their envi-
ronments and the objects and actors in those environments,
often have mechanical compliance in their system for safety.
Normally, control for precision tasks involves accurate modeling
and feedback control, yet complex robot mechanics can be
overwhelming to model sufficiently and accurately for precision
tracking and control. For precise control, these models must be
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accurate across large operating state spaces and multiple dimen-
sions, and may need to describe non-stationary and dynamically
changing phenomenon. Similarly the environmental effects, in-
cluding heat, fluid, non-prehensile contact and obstruction may
change the effective control mappings from joints to end-effector
pose. Furthermore, in cases of teleoperation, inaccurate models
can result in confusion to the operator, reduced or unstable
tracking performance and significant detrimental effects into
their ability to perform tasks [1].

Rather than phenomenological modeling all of the robot and
environmental effects, model-free machine learning methods
have been explored to learning the inverse mapping directly
from sensor outputs to joint inputs. Most methods employed
fixed parameter non-linear regressors such as neural networks
or Gaussian mixture models [2] that are not suitable for online
learning [3] nor teleoperation in unknown and new scenarios
(unknown robot manipulator, unknown enviroments, or both).
Adaptive control, an early class of online learning strategies,
provides robust control but under strong assumptions on the
robot kinematics, dynamics, and environment [4], and is thus not
entirely model-free. Model-free, Jacobian-based controllers [1]
provide online learning under very few assumptions but do not
build a global model. Recently, Gaussian Process regression
(GPR) has shown promise in modeling the inverse dynamics
of robotic systems [5]. Its intuitive structure and Bayesian
framework allow for the uncertainties associated with model
regression and prediction, as well as noise, to be explicitly
expressed.

In this letter, we consider Gaussian Processes for online
learning of a Bayesian model for control during teleoperation.
However, the computational cost of training and prediction
for GPs easily reaches above 1 second and several hundred
milliseconds for real-time control even with a small number
(under 100) of free parameters, making it a challenge for use in
control loops. Prediction involves inversion of the covariance
matrix of order O(N3), where N is the number of training
data points [6]. Sparse Gaussian Processes reduce the computa-
tional complexity of regression (and optimization); by selecting
M � N support points, this complexity can be reduced to
O(NM2). Various sparse methods for Gaussian processes have
been introduced in the literature, with large focus on selection
of the support points [7], [8]. Online sparse methods exist,
which take advantage of incremental updates to the model and
training while forgetting old data [9]. However, global sparse

2377-3766 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on August 15,2020 at 20:50:13 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-3200-1927
https://orcid.org/0000-0001-9689-0172
mailto:bpwilcox@ucsd.edu
mailto:yip@ucsd.edu


WILCOX AND YIP: SOLAR-GP: SPARSE ONLINE LOCALLY ADAPTIVE REGRESSION USING GAUSSIAN PROCESSES 2833

methods rely on an assumption of stationary data and a global
distance metric. Additionally, the pre-set size of the sparse
model may not appropriately handle a growing training set, as
one would expect during teleoperation tasks. Local Gaussian
process methods provide an approach to handle non-stationary
data while maintaining low computation cost by focusing on
regression in local regions of the data [10], [11]. Such models
rely on partitioning the contribution of new data to a local model
and performing prediction under these new local neighborhoods.
Selection of neighborhood size becomes either a challenging
tuning or optimization problem.

For online GPR, incremental updates to models and hyper-
parameters have been proposed [10], [12], while others have
suggested schemes such as forgetting rates to reduce computa-
tion. In data retrieved from trajectories with correlated paths,
drifting Gaussian process models have been suggested to keep
track of a sliding window of data [13]. These approaches, though
low in computation cost, may be inefficient when locations in
the state-space are being revisited since the regression must be
performed again from scratch. However, recent work in the GPR
literature has shown promising results for sparse online imple-
mentations in the streaming setting for continual learning [14],
[15].

Robot teleoperation task assumes a streaming setting of data
coming in sequentially of the form D = {(xt, yt)}Nt=1, where
training pair (xt, yt) is now generally taken to be ordered in
the data streams such that (xt+1, yt+1) is only available after
(xt, yt). In teleoperation, this entails that not only the training
data, but also the next test signal, xtest, comes in streams to the
model for prediction. Though many works in online GP focus
on tracking problems, we move our focus to active control using
the model’s prediction to generate the next training input-output
pair. More interestingly, we are concerned with from-scratch
learning, where the initial model is presumed not to cover
the regions of input state-space that test signals will uncover
throughout the teleoperation. Therefore, for this task, we de-
sire an approach with the following properties: data-efficient,
low memory-usage, iterative, real-time, and retains past
information.

In order to handle the streaming case for teleoperation and
control, we formulate a framework called Sparse Online Locally
Adaptive Regression using Gaussian Processes (SOLAR–GP).
The major contribution of this letter is a strategy for online
non-parametric Bayesian model learning for real-time robot
control. SOLAR-GP parallelizes strategies of GP sparsification,
continual learning and local optimization to learn inverse models
for control, leverage old models when revisiting previously
explored state spaces, and adapting local models to new data
(Fig. 1). Experiments are presented from various complexities
of simulation environment and a real-life Baxter robot making no
phenomenological assumptions. These strategies are thus useful
for robots with challenging mechanics (i.e. soft-jointed or soft
robots), those that are affected by environment effects, and those
systems that uncertainty and noise that affect their performance;
using a model-free strategy such as SOLAR–GP also means
transferabilty of the framework between robot systems and
applications with ease.

Fig. 1. SOLAR-GP is a Gaussian Process framework for efficient robot model
learning and control. It generates local, streaming, sparse Gaussian Process
models from input-output data during robot navigation of its configuration
state-space, and usesk local models for prediction, resulting in a fast-to-compute
and update mixture of Gaussians.

II. BACKGROUND

SOLAR–GP builds, and modifies a set of works for computa-
tionally efficient GPs: sparsification [7], local partitioning [11],
and streaming [14]. Below we describe these core works in the
Gaussian Process literature.

A. Gaussian Processes

A Gaussian Process (GP) is a collection of random variables,
any finite number of which have a joint Gaussian distribution. In
another view, GPs represent a distribution over functions, char-
acterized by a mean function m(x) and a covariance function
V (x) :

f(x) ∼ GP (m(x), k(x,x′))

m(x) = E[f(x)],

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (1)

The mean function is the a priori expectation of the unknown
function. It is often assumed as zero without any prior knowl-
edge. The covariance function, or kernel, is typically selected
by design as a measure of similarity between data points. A
popular kernel choice is the squared exponential, also known as
the radial basis function or Gaussian kernel:

k(x,x′) = σ2
s exp

(− 1
2 (x− x′)�W(x− x′)

)
(2)

In this kernel, the signal variance σ2
s and the characteristic

length-scale or width W are free parameters, or hyperparam-
eters, that can be varied (or learned) in the GP model. The
characteristic length-scales (one for each input dimension), for
example, affects how quickly the function values change, and
thus selection of these hyperparameters is crucial to good data
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fit. An N ×N kernel matrix, K, is constructed from this kernel
function for every pairwise point in the N training data points.

Regression in a GP amounts to inferring the conditional
probability of the function output given the known data and a
test point. This forms a posterior distribution of the model with
the following mean and covariance:

m∗(x) = K�
∗ (σ

2
nI +K)−1y (3)

V∗(x∗) = k∗∗ −K�
∗ (σ

2I +K)−1K∗ (4)

where K is the covariance matrix, K(X,X), formed by the
full training data using the kernel function from (2), K∗ is the
covariance matrix, K(X,x∗), between the test point and the full
training data, k∗∗ is the kernel function evaluated at the test point,
k(x∗, x∗), σ2

n is the noise variance, and y is the observed output.
Here, y can be thought of as the observed underlying function
values plus some noise. The noise variance of the data, σ2

n, is
another hyper-parameter to be learned in the model. As seen in
(3) and (4), this regression requires the inversion of the kernel
matrix, which has cubed computational complexity and is thus
very costly as N becomes large.

Learning in GPs involves optimizing the hyper-parameters of
the kernel with the data. This is achieved by maximizing the log
marginal likelihood of the data:

log p(y) = log[N (y|0, σ2I +K)] (5)

After hyperparameter optimization in (5), prediction can be
performed which robustly fits an arbitrary function. However,
due to the O(N3) efficiency, the standard GPR is not suitable
for online implementations. To increase this efficiency, sparse
methods are usually employed.

B. Sparse Gaussian Processes

Several methods in previous literature have addressed the
expensive computational complexity of GP regression, of which
many propose a sparse subset approach where M � N support
(or inducing) points are used to approximate the function space.
If we augment the posterior distribution p(f |y) with function
values, u, of the inducing points, then we can obtain an aug-
mented posterior distribution [7]:

p(f, u|y) = p(f |u)p(u)p(y|f)
p(y)

(6)

We note that the augmented joint distribution p(f, u, y) =
p(f |u)p(u)p(y|f), which is the same as the joint distribution
of f and y when marginalized over u. In [7], Titsias proposes
another distribution, q(f, u), which may approximate the orig-
inal posterior. To accomplish this approximation, a distribution
with free variational parameters is proposed and are fitted to
match the original posterior by minimizing the Kullback-Liebler
divergence,KL(q(f, u)||p(f, u|y)). From the KL-divergence, a
lower bound on the marginal likelihood may be determined such
that:

KL(q(f, u)||p(f, u|y)) = log p(y)

+

∫
q(f, u) log

q(f, u)

p(f, u, y)
dudf

(7)

The evidence lower bound, ELBO, on the log marginal likeli-
hood is the second part of the equation. Further, [7] chooses the
approximate distribution, q(f, u), to be of the following form.

q(f, u) = p(f |u)q(u) (8)

By replacing q(f |u) with p(f |u), the prior conditional distribu-
tion, the only free parameter is q(u), whose optimal distribution
can be analytically obtained. The lower bound, F(q(u)), then
becomes:

F(q(u)) =

∫
p(f |u)q(u) log p(u)p(y|f)

q(u)
dudf (9)

With the bound in terms of the variational parameter, the
optimal form of q(u) can be derived. Thus, given the optimal
choice of q(u), the bound on the log marginal likelihood is

F(q(u)) = logN (y|0, σ2I +KNMK−1
MMKMN )

− 1

2σ2
Tr[KNN −KNMK−1

MMKMN ] (10)

where KNM is the kernel matrix between the M support points
and N training points, and KMM is the kernel matrix between
the M support points. Therefore, learning and optimization
under sparse GPs via variational inference equates to maximiz-
ing the bound in (10) for both the M support point locations
of u and the hyper-parameters of the kernel, which reduces
the computational complexity to O(NM2), allowing for low
computation cost while maintaining accuracy close to the full
GP as M increases.

C. Local Gaussian Processes

As described in [11], local GP models are separate Gaussian
models defined by local partitions of the training data into clus-
ters, each defined by a model center location. Data is separated
into the closest local model until a point exceeds a threshold
distance,wgen, at which point a new model is created. Prediction
of a query point becomes a weighted average of the local models
according to the distance of the query point to each model center.

A distance metric, wk, is defined between the location of each
data point x and the center of each kth local model, ck:

wk = exp

(
−1

2
(x− ck)

�W(x− ck)

)
(11)

where W is the kernel width parameter that is learned from the
squared exponential kernel. After the addition of each new data
point to a local model, the model center is recomputed as the
mean of all the data in its local partition.

After the data has been partitioned, the kernel matrix is
updated for each local GP model. In order to deal with the
ever-growing number of training examples, a limit on the number
of data points in each local model is enforced. Additionally, [16]
proposes an incremental update to the covariance matrix and pre-
diction vector via updating the Cholesky decomposition of the
Gram matrix. Regression and prediction under these local mod-
els is a weighted average of each local model’s predicted mean,
yk, for a query point with the distance metric wk of that point
from each model center. Optimization of the hyper-parameters
of the kernel function is typically done on a subsample of the
the full training data.
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D. Streaming Gaussian Processes

While other GP formulations may naively append new data
and retrain, [14] proposed a framework to eloquently leverage
previously trained model information into the next sequential
updates for the streaming data case.

In the streaming setting where data arrives sequentially, new
data (xnew,ynew) will be added to the old data, (xold,yold).
Via variational inference, assuming only direct access to the
new data, the old data must be encoded into the previous pos-
terior distribution. The old posterior approximation, qold(f) ≈
p(f |yold), and the new posterior approximation, qnew(f) ≈
p(f |yold,ynew), are of the forms

qold(f) =
1

Z1(θold)
p(f |θold)p(yold|f) (12)

qnew(f) =
1

Z2(θnew)
p(f |θnew)p(yold|f)p(ynew|f), (13)

where the exact posterior distributions are parameterized by the
kernel hyperparameters, θ. Here we recognize that though the
new exact posterior, p(f |yold,ynew), would incorporate the new
data, they must find an approximation for p(yold|f) since it
cannot be obtained directly. By approximating as p(yold|f) ≈
Z1(θold)qold(f)/p(f |θold), we have

p(f |yold,ynew) =
Z1(θold)

Z2(θnew)
p(f |θnew)p(ynew|f) qold(f)

p(f |yold)
(14)

However, p(f |yold,ynew) is intractable, thus [14] introduces the
variational distribution using inducing point locations which are
allowed to change after each step. The previous approximate
posterior then becomes qold(f) = p(f �=a|a, θold)qold(a) with
a = f(zold) evaluated at the previous z inducing point locations,
representing the approximate distribution of the latent function
given the induced function values at their respective input loca-
tions. Likewise of similar form, the new approximate posterior
distribution is of the form qnew(f) = p(f �=b|b, θnew)qnew(b),
where b = f(znew). With the variational parameter, qnew(b),
from the new approximate posterior distribution, qnew(f), a new
lower bound on the log marginal likelihood can be found from
the KL-divergence,

KL[qnew(f)||p(f |yold,ynew)] = log
Z1(θold)

Z2(θnew)

+

∫
dfqnew(f)

[
log

p(a|θold)qnew(b)
p(b|θnew)qold(a)p(ynew|f)

]
(15)

Note that the previous approximate posterior distribution is
assumed to be qold(a) = N (a|ma,Sa). This implies that it can
be resolved just by the previous inducing point locations and the
kernel hyperparameters.

III. SOLAR–GP: SPARSE ONLINE LOCALLY ADAPTIVE

REGRESSION USING GAUSSIAN PROCESSES

SOLAR–GP comprises a model initialize, a model partition
function, a predictor/generator, a trainer, and the tester (i.e.
operator). A block diagram is shown in Fig. 2.

Fig. 2. Block diagram of control flow for SOLAR–GP. The forward pass
operates at the max control loop rate, while the feedback path may be at slower
speeds (e.g. as-fast-as-possible) using parallelization.

Fig. 3. Top: Sparse GP fit on sin(x). Red marks represent inducing point
locations. bottom: SOLAR–GP fit on sin(x). Different colored marks represent
inducing points for unique local models.

1) Model Initialization: Before regression, a sparse GP
model with Ninit points is initialized. For robot teleoperation,
this initialization can come from random jitters of the robot’s
joints or from some sampled, idealized model of the system.
Then, variational inference [16] may be used to train a sparse
local GP of size M , where M < Ninit.

2) Local Model Partitioning: Describing a local model
partition scheme requires a distance metric to determine when a
new model should be generated given new training inputs. Local
GPR [11] computes this distance metric for each model center
using (11). Since in the streaming-from-scratch context such as
teleoperation we assume no initial access to a reasonable sub-
sample of the taskspace, SOLAR–GP continuously computes
the kernel width, Wbase, computed from a separately trained
base model, a single streaming sparse model which incorporates
new data into its model across the entire task state-space.

After finding the nearest model or following a new local
model initialization, the new training pair is incorporated into
the nearest model. In contrast to the previous work’s strategy
of limiting memory complexity by retaining no more than a
fixed number of local model data points before deleting points,
SOLAR–GP leverages the sparse streaming model [14] as an
analogue to the information gain strategy, which enables updates
with only the inducing points of the prior sparse model and the
new streaming data.
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Fig. 4. Traces of a simulated planar 3, 4, 6 DOF manipulator arm recreating a pentagon, spiral, and star trajectory, as well as 3, 6, and 3 DOF 3D serial link arms
recreating a helix, circle, and rectangle from simulated teleoperation test points. Red (top row) and orange (bottom row) show the end effector trace and blue shows
the commanded trajectories. The colored dots on the image (top row) represent locations of the support points optimized from the SOLAR–GP.

3) Training: Training occurs online in order to keep the
local models up-to-date with the most recent training data.
After a new training experience pair (xnew, ynew) is received,
two updates occur. First, the training pair is added to the
base model and trained via streaming GP optimization [15]
via variational inference. This step updates the kernel width
to be used for partitioning the data into its respective local
models as well as for prediction. Then, once the base model
is trained and the experience pair partitioned into a local model,
mk, it is trained, optimizing the kernel hyperparameters and
inducing point locations. For training, the model is seeded with
the previous mk model, taking advantage of its past state.
Typically, the M inducing inputs are initialized with those
from the previous model; however, incorporating new data as
part of the initial support points can help bias towards newer
data.

For new model initialization, we seed it with the current
base model and allow the inducing inputs to quickly bias to
newer points. By setting the max number of inducing points
for each local model, the complexity of each model is fixed
even as regression persists for an indefinite amount of time.
Whereas the training complexity for sparse models is O(nM2),
under the local model scheme the cost for training one local
model becomes O(nkM

2
k ). If we consider n training exam-

ples partitioned equally into K local models, nk = n/K > 1,
with Mk = M/K > 1 inducing inputs, the overall complexity
of training the local models is lower (since O(KnkM

2
k ) =

O(nM2

K2 )) than in the batch case.

4) Prediction: A prediction over a set of local K models for
a test input becomes a Mixture of Gaussians g(x),

g(x) =

K−1∑

i=0

N (μi,Σi)

=

K−1∑

i=0

exp
(− 1

2 (x− ci)
�V −1

i (x− ci)
)

√
(2π)d|Vi|

(16)

where ci, Vi ∼ GPi and d is the state-space dimension. For
control, one may calculate the expected values of the first
and second moments where E[g(x)] =

∫∞
−∞ xg(x)dx, though in

practice the integral is computationally intractable. The simplest
method may be to use the nearest local model. Alternatively, a
weighted prediction on test inputs is used for the local models,
where the kernel width is taken from the trained base model
when computing the distance metric from the test input, xtest,
to each model’s center, ck. The weighted predictions are then:

ypred =

∑K
k=1 wkyke

−Vk

∑K
k=1 wke−Vk

(17)

The variance of each local model’s prediction is used as
an additional, independent weight. This modification holds the
advantage of weighting the contribution of each local model
with not only its proximity to the queried test signal but also the
uncertainty associated with each model.

In contrast to other GP variants, now prediction retain high
predictive power due to use of local models and training data
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Fig. 5. (a) Test path for Baxter simulation covering large workspace for its left
arm (b) Plot of path error [m] vs time for SOLAR–GP with 25 inducing inputs
per local model. Green vertical lines represent locations of training updates. The
magenta vertical line indicates that a new local model has been added. (c) Plot
of path error [m] vs time for Streaming Sparse GP with 40 inducing inputs. The
initial (orange) trajectory path errors and final (blue) after 3 training passes are
shown for each plot.

partitioning, while having low computational complexity due to
the local models being sparse.

5) Tester: The tester represents the streaming, commanded
trajectory of the system, e.g. a teleoperator that comes following
model initialization.

A. Online Robot Teleoperation Using ROS-Enabled
SOLAR-GP

Per our model, we can describe the control flow of the al-
gorithm as Tester, Predictor, Generator, Partitioner, and Trainer
(base and local), where for a robot, the Generator is analogous
to the robot’s controller and sensing, which is responsible for
taking a prediction and generating its relevant experience. For
online robot teleoperation, we formulate the problem for parallel
implementation using the Robot Operating System (ROS).

Fig. 6. (a) Plot of number of inducing points vs average RMSE, (b) Plot of
number of wgen vs average RMSE.

Because local model partitioning, generation, and optimiza-
tion are slower processes than affordable within a robot control
loop (which requires only the predictor), parallelization of all
the above models are implemented in SOLAR–GP, and is nec-
essary for real-time teleoperation. Under a parallel framework,
prediction of robot joint angles for joint position control can
be consistently computed at a higher frequency while data
collection and training can occur at a different frequency. Since
it is expected that the robot moves and experiences regions of the
state-space even while the Trainer is still optimizing the model
on the previous points, an experience buffer node accumulates
the experiences of the robot. Utilizing the ROS node graph
and messaging for asynchronous input/output streams, we can
implement the SOLAR–GP algorithm across separate nodes
with independent, as-fast-as-possible loop rates and allow them
to run in parallel.

IV. EXPERIMENTS AND RESULTS

We tested SOLAR–GP on sample n-link robots in the se-
quential position trajectory tracking as well as demonstrate the
capability of our method to run live teleoperation on both a sim-
ulated and real Baxter robot, without using its kinematic model
for inverse kinematics mapping. We leverage the GPy library
for its GP data structures and optimization solutions [17]; we
also adapted the streaming Gaussian Process method from [14]
to work within the GPy framework.

A. Toy Example

As an initial demonstration of the SOLAR–GP algorithm, we
employed training and prediction on a simple toy problem in
Fig. 3, a sinusoidal wave, and compare it to the sparse Gaussian
process method from Titsias [7].

When the input space grows, as in the simple sinusoidal series
data, more inducing inputs or support points are required to
approximate the full model posterior distribution. Though one
can select a larger number of support points for the data, coverage
is bound by this predetermined limit, and the regression erodes.
With SOLAR–GP, new models are produced to cover growing
input spaces, allowing for each local model’s inducing point
limit to be reduced, an advantage for learning in continual,
growing or undetermined input spaces (i.e. a robot exploring
its configuration space).
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Fig. 7. Motion path progression of Baxter arm performing real-time teleoperation demos for a simulated query point (top row), simulated pickup task (middle
row), and a rectangular path (bottom row) on the real Baxter.

TABLE I
RMSE FOR n-LINK ROBOT TELEOPERATION EXPERIMENTS

B. Sequential Robot Teleoperation for n-Link Manipulators

In these experiments, an inverse kinematic learning problem
for n-link manipulators are presented, where the end-effector
position represents the x input state, and the joint positions
represent the output, y. No geometric information is provided to
SOLAR–GP and test signals arrive sequentially. Fig. 4 shows the
resultant paths of concurrent model learning and online predic-
tion on three planar robots with 3, 4, and 6 links. Support points
for each local model cover the path as the task space is explored.
Furthermore, trajectories for 3- and 6-link manipulators in 3D
space is also demonstrated. Tracking errors are shown in Table I.

C. Teleoperation Control on a 7-DOF Robot Arm

The following describe several demonstrations using
SOLAR-GP for teleoperation on a 7-DOF robot manipulator on
the Baxter Robot (Rethink Robotics). Just as in the previous
n-link manipulator experiments, we are learning the inverse
kinematics for Baxter’s arm.

1) Baxter Simulator Teleoperation: In these experiments, we
perform real-time teleoperation on Baxter using a Microsoft
Xbox controller. We use ROS to support parallel teleoperation,

prediction, and training. Joint positions are determined from
the SOLAR–GP model and sent to Baxter’s position controller.
As opposed to the sequential n-link experiments, the Baxter
robot used a parallelized version of SOLAR–GP. In our tests,
the position of the end effector was commanded to track a
teleoperated input from an Xbox controller. The prediction loop
ran at a publish rate of 100 Hz, while the training loop, dominated
by the model optimization time, effectively operated between
0.3–2 Hz.

Fig. 5(a) shows a trajectory commanded via teleoperation.
In order to demonstrate improved performance after learning
the path, the trajectory is looped two times after the first pass
while still training online followed by a final pass with training
disabled. Fig. 5(b) shows a run of SOLAR-GP with 25 inducing
points per local model with the absolute errors of the path on
both the first pass through the trajectory and on the final pass
after training. We compare to an example of the streaming sparse
method [14] alone with 40 inducing points in Fig. 5(c), where
no local models have been generated during the entire run. We
generally found better performance with 40 inducing points than
at greater numbers, where the additional training computation
time may affect performance in this parallel training/prediction
setting.

The first pass in Fig. 5(c) shows less than a 1 cm root-mean-
squared (RMS) deviation from the desired position on average,
with maximum 3 cm deviation before recovering. Peak perfor-
mance of 4.4 mm was reached on the final trial after training
updates stopped. In the Streaming Sparse GP run, it had an aver-
age RMS of 2.6 cm on the first pass, with a maximum deviation
of about 6 cm. On its final pass, the peak performance reached
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7.7 mm RMS. Though the Streaming Sparse GP algorithm by
itself performed well, SOLAR–GP was able to out-perform the
Sparse GP method.

Fig. 6 shows a summary of 140 test runs while varying key hy-
perparameters to show sensitivity to the parameters. A suitable
range of hyperparameters to test were chosen after moving the
robot manipulator over a large range of workspace and selecting
the number of inducing points and the model generation distance
threshold that fit well to the arm for performance during the
tests. Using 25 inducing points had the lowest average RMSE
on the test trajectory, with wgen = 0.8 being the best on average
distance threshold. Though one might expect a positive trend
with more inducing points and more models created to resolve in
lowerRMSE, in the streaming online prediction, there are other
factors. Since the robot generates experience from predictions,
the training data will be partitioned based on how close the
actual pose is to the model centers. The partitions are thus biased
from the initial model created from a random jitter as well as on
delayed training updates which may lag good predictions.

Fig. 7 shows a set of experiments with the Baxter system,
initialized with jitter and then commanded. Setpoint control (top
row) is where the SOLAR–GP model estimates the inverse kine-
matic solution repeatedly as it minimizes its error to the setpoint.
It shows rapid convergence to the goal with minimal deviation
from a straight-line path. Robot pick-up (middle row) shows a
similar learning pattern but for a sequence of setpoints, with a
grasp in-between to pick up the block. Finally, live teleoperation
(bottom row) shows a Baxter being fed a live, interpolated
sequence of setpoints to create a smooth square trajectory.

V. CONCLUSION

In this letter, we present SOLAR–GP, which combines the
strengths of Local Gaussian Process Regression with those of
Streaming Sparse Gaussian Processes in a principled manner.
As a result, SOLAR–GP can learn continually with a lower
fixed computational complexity and memory storage of either
method alone and retain info on the whole work space through
sparse local models. Experiments and demonstrations on n-link
robots showed the versatility of the method for online prediction,
training, and control, and several experiments on a Baxter robot
highlighted the real-time performance using parallel training and
predictions.

Our method maintains a competitive edge since training and
predictions are done per local model’s induced parameters in-
stead of over the entire set of inducing points. Thus, since we
can maintainMlocal < Mbatch, our method can be more flexible
to cover larger areas of the input state space without incurring
larger penalties in complexity.

For online robot control, SOLAR–GP performs like open
loop control with adaptive parameters. Since these “parame-
ter” updates occur after the robot has generated new experi-
ence for the next batch, the robot’s estimate approaches the
truth when more data closer to the target is trained, learning
until the predictions converge. Thus, we see in Fig. 5 that

even after the resultant pose from a joint prediction is far
from the desired pose, that new experience pushes the model’s
next prediction closer to the truth. An advantage of the par-
allel use-case in ROS is that all intermediate points can be
buffered for training while the algorithm continuously makes
predictions.

An immediate area of interest for future work on the SOLAR–
GP method lies in optimizing the weighted distance threshold,
wgen, for a learning setting, since the choice of wgen affects
when new models are created. Additionally, though SOLAR–GP
maintains low computational complexity and memory, there
is no implicit regulation on the number of local models that
are created throughout a learning session. It is inherent that
for very large input spaces, many models are possibly pro-
duced. Future work may consider how to redistribute mod-
els, potentially combining and re-partitioning as needed to
satisfy both computational constraints and some optimality
criterion.
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