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Abstract
We establish spectral and dynamical localization for several Anderson models on met-
ric and discrete radial trees. The localization results are obtained on compact intervals
contained in the complement of discrete sets of exceptional energies. All results are
proved under the minimal hypothesis on the type of disorder: the random variables
generating the trees assume at least two distinct values. This level of generality, in par-
ticular, allows us to treat radial trees with disordered geometry as well as Schrödinger
operators with Bernoulli-type singular potentials. Our methods are based on an inter-
play between graph-theoretical properties of radial trees and spectral analysis of the
associated random differential and difference operators on the half-line.
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1 Introduction

1.1 Description of main results

The central theme of this paper is Anderson localization for random models on tree
graphs. In the first part of this work we establish spectral and dynamical localiza-
tion for continuum Laplace operators subject to random Kirchhoff vertex conditions
on radial trees with disordered geometry. Specifically, we consider metric trees with
random branching numbers and random edge lengths. The second part of this paper
addresses analogous questions for random second order difference operators on dis-
crete radial trees with random branching numbers. At the outset, we emphasize that
our results are all proved under the minimal possible hypotheses. Namely, we assume
that the random variables used to generate the trees take at least two distinct values.
We will formulate this assumption more precisely as Hypothesis 3.1. In particular, we
can handle the case of Bernoulli distributions, which is generally considered to be the
most challenging setting.

To begin, let us describe the models. Let � be a metric tree with vertices V, edges
E, and uniformly bounded edge lengths {�e > 0 : e ∈ E}. We further assume that there
is a unique vertex o ∈ V with degree 1, which we call the root of �; see, for example,
Fig. 1. For each vertex v, gen(v) (the generation of v) is the combinatorial distance
from v to the root. One defines gen(e) for e ∈ E similarly. We consider the Laplace
operator H := − d2

dx2
acting in L2(�). In order to ensure self-adjointness of H, we

impose a Dirichlet condition at o, that is,

f (o) = 0, (1.1)

as well as Kirchhoff vertex conditions given by

⎧
⎨

⎩

f is continuous at v, v ∈ V
∑

e∈E:v∈e
∂eν f (v) = q(v) f (v) v ∈ V\{o}, (1.2)
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Fig. 1 b0 = 1, b1 = 2, b2 = 2, b3 = 3

where q : V → R is a real-valued function, and ∂eν denotes the inward-pointed deriva-
tive along the edge e ∈ E. The assumption that deg(o) = 1 is purely for convenience. If
the root has degree 2 or higher, the Dirichlet condition (1.1) implies that the operators
we study decompose into a direct sum of operators covered by the deg(o) = 1 case. In
the simplified case � = R+ the vertex conditions (1.2) provide a rigorous description
of the self-adjoint realization of Schrödinger operators with zero-range potentials and
coupling constants q(v) (cf., e.g., [7, Section III.2.1], [9, Section 1.4.1]).

Wedenote the branching number of each vertex by b(v) = deg(v)−1 for v ∈ V\{o}.
In thiswork,we assume that all quantities are radial. That is to say,we assume that q(v)

and b(v) depend only on gen(v) and �e depends only on gen(e). The three continuum
random models treated in this paper are: the random branching model (RBM), the
random lengths model (RLM), and the random Kirchhoff model (RKM). In these
models, the branching numbers, theKirchhoff coupling constants, and the edge lengths
are independent identically distributed Bernoulli-type random variables which depend
only on the distance to the root o; the precise description of these models is provided in
Sect. 3.1. In fact, our approach can allow all three parameters to vary simultaneously;
we simply single out RBM, RLM, and RKM as prominent applications of our method.
Thus, thesemodels are parameterized by a choice of a probabilitymeasure μ̃ supported
on a set of the formA = {

b−, b− + 1, . . . , b+
}×[�−, �+]×[q−, q+], which gives the

probability distribution for the branching numbers, the edge lengths, and the Kirchhoff
potential at each generation. To be a little more specific, the probability space is
� = AN with measure μ = μ̃N; then, each ω ∈ � produces a tree model with
parameters dictated by
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1340 D. Damanik et al.

b(v) = ω1(gen(v)), �e = ω2(gen(e)), q(v) = ω3(gen(v)), v ∈ V, e ∈ E.

Our approach is based on the orthogonal decomposition of L2(�) into a countable
collection of reducing subspaces of the operator H; cf. [52,53] (see also [22]). The
restriction ofHon each subspace is unitarily equivalent to a shifted versionof themodel
half-line operator H := − d2

dx2
acting in L2(R+), subject to the Dirichlet condition at

0 and self-adjoint vertex conditions of the form

{√
b j f (t

−
j ) = f (t+j ), j ∈ N

f ′(t−j ) + q j f (t
−
j ) = √

b j f ′(t+j ) j ∈ N,
(1.3)

where t j denotes the distance from the root to vertices of generation j ∈ N. Simi-
larly b j denotes the branching number and q j is the Kirchhoff coupling constant at
generation j .

The natural occurrence of Bernoulli models in this paper is due to random branch-
ing; in particular, the branching at each generation may only take integral values, so
any randomness in the branching parameter must necessarily be discrete. Broadly
speaking, the behavior of random models (at least in one spatial dimension) tends to
be monotone in the randomness. In particular, increasing the randomness of the model
tends to make the spectrummore singular. Thus, proving localization statements in the
situation in which the single-site distribution is supported on two points (the Bernoulli
case) is the most challenging task.

To prove localization for the 1D half-line operator Hω, we adapt the approach
of [19], which itself fits into the general framework of spectral analysis via transfer
matrix techniques, see, e.g., [26,55] for illuminating discussions. Recall that a gen-
eralized eigenfunction is an solution ψ of the eigenvalue equation Hωψ = Eψ that
enjoys a linear upper bound; in this case, E is known as the corresponding generalized
eigenvalue.

For the proof,wefirst employFürstenberg’sTheorem to ensure positivity of theLya-
punov exponent away from a discrete setD (Theorem 3.5), and then show that almost
surely all generalized eigenfunctions exhibit Lyapunov behavior in every compact
interval I ⊂ R\D, (Theorem 3.13). This shows that the generalized eigenfunctions
decay exponentially, which establishes spectral localization. At that point, the estab-
lished exponential decay of generalized eigenfunctions is combined with the proof of
spectral localization to bootstrap sharper bounds for the eigenfunctions in terms of
their centers of localization, cf. (3.23). The latter are crucial for showing dynamical
localization. We summarize this discussion by formulating the first main result of this
work.

Theorem 1.1 Suppose supp μ̃ contains at least two points. Then there exists a discrete
set D ⊂ R such that for every compact interval I ⊆ R\D and every p > 0, there
exists �̃ ⊂ � with μ(�̃) = 1 such that

sup
t>0

∥
∥
∥|X |pχI (Hω)e−i t Hωψ

∥
∥
∥
L2(R+)

< ∞, ω ∈ �̃, (1.4)
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whenever ψ ∈ L2(R+) and

ψ(x) =
x→∞ O(e− logC x ),

for some universal constant C > 0.

We prove this Theorem in Sect. 3. We deduce the second main result of the paper by
combining Theorem 1.1 and the orthogonal decomposition of radial trees; see Sect. 4.

Theorem 1.2 Suppose supp μ̃ contains at least two points. Then, there exists a discrete
setD ⊆ R such that the following two assertions hold.

(i) The operator Hω exhibits Anderson localization at all energies outside of D.
That is, almost surely, Hω has pure point spectrum and any eigenfunction of Hω

corresponding to an energy E ∈ σ(Hω)\D enjoys an exponential decay estimate
of the form

| f (x)| � Ce−λ|x |
√

wo(|x |) (1.5)

with C > 0 and λ > 0, where wo(|x |) denotes the number of vertices in the
generation of x, i.e., wo(|x |) = #{y ∈ V : gen(y) = gen(x)}.

(ii) For every compact interval I ∈ R\D and every p > 0, there exists a set�∗ ⊂ �

with μ(�∗) = 1 such that for every ω ∈ �∗ and every compact set K ⊂ �bω,�ω

one has
sup
t>0

∥
∥
∥|X |pχI (Hω)e−i tHωχK

∥
∥
∥
L2(�bω,�ω )

< ∞,

where χI (Hω) is the spectral projection corresponding to I , and |X |p denotes
the operator of multiplication by the radial function f (x) := |x |p, x ∈ �bω,�ω ,
where |x | denotes the distance from x to the root o.

We note that the theorem above gives localization for RBM, RLM, and RKM. We
also note that the spectrum of Hω is given by a deterministic set. This is addressed in
Sect. 4.1 where we also point out that the analogous question for the half-line operator
Hω presents some complications which are not typical for full-line ergodic models,
see Remark 4.2.

Remark 1.3 A few remarks:

(1) The assumption that the support of the single-generation distribution contains at
least two points is clearly necessary. For, if supp μ̃ consists of a single point, then
there is only one operator Hω, which is then periodic and hence does not exhibit
Anderson localization.

(2) We will refer to functions on trees obeying an estimate like (1.5) as tree-
exponentially decaying. Since the number of vertices at the nth generation grows
exponentially with n, the factor of

√
wo(|x |) in the denominator implies that the

eigenfunction decay leads to square-integrability.
(3) The transfermatrices for the half-linemodels can be bounded at isolated energies,

and hence one cannot avoid excluding a discrete set of energies. This will be
discussed in more detail in Sect. 3.
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1342 D. Damanik et al.

In Part 2 we address analogous questions for the discrete versions of RBM, RLM, and
RKM, namely, we consider discrete Schrödinger and weighted adjacency operators on
radial trees with random branching numbers, hopping parameters, and vertex poten-
tials. Concretely, we consider rooted radial tree graphs � as before. Given functions
q : V → R and p : E → (0,∞), the corresponding Schrödinger operators A and S

are given by

[A f ](u) = −
∑

v∼u

p(u, v) f (v), f ∈ �2(V), v ∈ V. (1.6)

[S f ](u) =
∑

v∼u

(q(u) f (u) − f (v)), f ∈ �2(V), v ∈ V. (1.7)

As before, we will assume that b, p, and q are bounded radial functions, so the
randomness will be encoded in a measure μ̃ which gives the distribution of branching
numbers, edge weights, and vertex potentials in each generation. We will define this
more precisely in Part 2. Our thirdmain result is the following theoremwhich is proved
in Sect. 5.3. The quantity wy(r) in (1.9) below denotes the number of points in the
subtree rooted at y that are at a distance r from y; see (2.1) for the definition.

Theorem 1.4 Assume supp μ̃ contains at least two points. Let Jω = Aω or Jω = Sω.
Then there exists a set D of cardinality at most one such that the following assertions
hold.

(i) The operator Jω exhibits Anderson localization at all energies outside of D.
That is, almost surely, Jω has pure point spectrum and any eigenfunction of Jω

corresponding to an energy E ∈ σ(Jω)\D enjoys an exponential decay estimate
of the form

| f (x)| � Ce−λ|x |
√

wo(|x |) , x ∈ V, (1.8)

where C, λ > 0 are constants.
(ii) For every compact interval I ⊂ R\D there exist �∗ ⊂ � with μ(�∗) = 1 and

θ > 0 such that for every x, y ∈ V, |x | � |y|, ω ∈ �∗ one has

sup
t>0

|〈δx , χI (Jω)e−i tJωδy〉�2(V)| � Ce−θ dist(x,y)
√

wy(|x | − |y|) , (1.9)

for some C = C(y, ω, θ) > 0. In particular, for all y ∈ V, ω ∈ �∗, R > 0 one
has ∑

|x |�R

sup
t>0

|〈δx , χI (Jω)e−i tJωδy〉�2(V)| � γ e−κR, (1.10)

for some κ = κ(y) > 0 and γ = γ (y) > 0.

It is proved in Sect. 5.1 that the spectrum of Aω is given by a deterministic set.
It is interesting to contrast this result with the work of Klein [51] (see also [2,34]
for alternative proofs), which works without the radial assumption. In that model,
each vertex potential is an i.i.d. random variable, and that model exhibits absolutely
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continuous spectrum in suitable energy regions for small coupling; it therefore does not
exhibit localization uniformly, whereas the model in this work does. In particular, the
model of [51] is more random than this one, and yet the spectral type is more regular.

Our work is motivated by the paper [44], which investigated RLM and RKM, and
can be viewed as a natural continuation of [27] where discrete RBMwas considered. It
is worth noting that the methods of [44] are not applicable in the present setting since
they are based on spectral averaging and hence rely heavily on the assumption that the
randomvariables are absolutely continuous.Of course, in the case of randombranching
numbers such a hypothesis cannot be made. We stress again that RBM naturally
presents the most challenging case of random models, which are commonly referred
to as Bernoulli–Anderson-type models. A textbook discussion of some difficulties
presented by Bernoulli-type potentials is provided in the Notes sections of Chapters
4, 7, and 12 of [6].

1.2 Background

The spectral theory of Schrödinger operators on tree graphs has attracted a lot of atten-
tion cf., e.g., [1–3,13–18,22,27–30,32–35,42–44,49–53,57–59]. The recurring topic in
theseworks is the dependence of the spectrumof differential operators on the geometry
of trees, in particular, on their growth rates, edge lengths, and branching numbers. For
example, Ekholm, Frank, and Kovarik established Lieb–Thirring inequalities which
heavily depend on the growth rate and the global dimension of underlying trees, cf.
[29], and Frank and Kovarik obtained heat kernel estimates for various trees in [30].
Evans, Harris, and Pick studied Hardy inequalities on trees in the context of eigenvalue
counting for the Neumann Laplacian on bounded domains with fractal boundaries cf.
[31,32]. This topic was further developed by Naimark and Solomyak [52,53]. As far
as the discrete spectrum is concerned, Solomyak also obtained Weyl’s asymptotic
formula for compact metric trees with the standard power-law behavior replaced by
c(�)

√
λ log λ (this hints on mixed dimensionality of the model) with c(�) depending

on the tree, cf. [59]. Further, the dependence of the spectral type on the geometry
was investigated by Breuer et al. [13,16]. Exponential decay of the eigenfunctions on
trees (and more general graphs) was recently discussed by Harrell and Maltsev [43].
Aizenman, Sims, and Warzel studied the effects of disorder in the geometry of trees.
In particular, they considered trees with edge lengths given by �e(ω) = eλωe where
λ ∈ [0, 1] and {ωe}e∈E are i.i.d. random variables, and proved in [1] that the absolutely
continuous spectrum of the Laplace operator is continuous (in the sense of [1, Theo-
rem 1.1]) at λ = 0 almost surely. That such a continuity property fails in the case of
radial disorder is conjectured in [1] and proved by Hislop and Post [44]. As already
mentioned earlier, the existence of absolutely continuous spectrum for the Anderson
Hamiltonian on the regular trees in the regime of small disorder was shown by Klein
[51] (and also by Aizenman et al. [2] as well as by Froese et al. [34]). Thematically
related recent results are due to Aizenman and Warzel [4,5] showing delocalization
near the spectral edges for random Schrödinger operators on discrete trees.

The structure of the paper follows. In Sect. 2, we discuss the spectral theory of
deterministic continuum operators on metric tree graphs. We use this to set notation
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1344 D. Damanik et al.

and to give the reader relevant background on a reduction from themetric tree graphs to
Schrödinger operators on a half-line with singular potentials. We prove a localization
result for these half-line operators in Sect. 3, which we then use to prove our main
results for metric tree graphs in Sect. 4. The case of discrete operators on random tree
graphs is taken up in Part 2.

Part 1. Anderson localization for continuum radial trees

2 Spectral theory of deterministic continuum operators

In this section we introduce deterministic Laplace operators on radial tree graphs,
discuss their orthogonal decomposition, and establish several auxiliary results regard-
ing the spectral theory of the one-dimensional half-line operators arising in such a
decomposition.

To set the stage, we fix a metric rooted tree � = (V, E) with vertices V, edges E,
root o ∈ V, and edge lengths {�e}e∈E. The shortest path connecting x ∈ � and y ∈ �

and its length are denoted by p(x, y) and d(x, y), respectively, and |x | := d(o, x).
The generation and the branching number of a vertex v are defined by

gen(v) := #{x ∈ V\{v} : x ∈ p(o, v)}, b(v) :=
{
deg(v) − 1, v 
= o,

1 v = o.

In other words, gen(v) is the combinatorial graph distance from v to the root and
b(v) is the number of children of v. For an edge e = (u, v), we define gen(e) =
max(gen(u), gen(v)). Furthermore, Tv ⊂ � denotes the “forward” subtree of� rooted
at v, that is, Tv := {x ∈ � : v ∈ p(o, x), |v| � |x |}; its branching function is given by

wv(t) := #{x ∈ Tv : d(v, x) = t}, t > 0. (2.1)

For example, given a vertex v, wo(|v|) counts the number of vertices in the same
generation as v.

Hypothesis 2.1 � is a rooted radialmetric treewith bounded branching b and bounded
edge lengths, �, and q : V → R is a bounded radial potential. More precisely:

(i) There are constants b± ∈ [2,∞), �± ∈ (0,∞) and sequences b := {bn}∞n=0,
� := {�n}∞n=1 such that

• b(v) = bgen(v) ∈ [b−, b+] ∩ N for all v ∈ V (except, b(o) = b0 = 1),
• �e = �gen(e) ∈ [�−, �+] for all e ∈ E.

(ii) There are constants q± ∈ R and a sequence {qn}∞n=1 such that q(v) = qgen(v) ∈
[q−, q+].

When� satisfies Hypothesis 2.1, we will write� = �b,� to emphasize the dependence
of � on the branching and length sequences.
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Given � satisfying Hypothesis 2.1, we equip R+ with a sequence of degree two
vertices

{
t j
}∞
j=1, where t j denotes the distance from the root to vertices at generation

j , that is,

t0 := 0, t j :=
j∑

i=1

�i , j > 0. (2.2)

Then, we introduce the Sobolev spaces on such a chain of intervals

Ĥ k(R+) :=
∞⊕

j=0

Hk(t j , t j+1), j ∈ Z+, k = 0, 1, 2.

A note on notation: throughout this paper, we write N for {1, 2, 3, . . .} and Z+ for
N∪{0}. Let us note thatwe use the notation Ĥ k(R+) even though the exact composition
of the space depends on the vertices

{
t j
}∞
j=0. Similarly, on �, we define

Ĥ k(�) :=
⊕

e∈E
Hk(e), ‖ f ‖2

Ĥ k (�)
:=
∑

e∈E
‖ f �e ‖2Hk (e), k = 0, 1, 2.

Notice that the elements of Ĥ k(R+) or Ĥ k(�) may be discontinuous at the vertices.

2.1 Orthogonal decomposition of radial trees

Given a radial tree �b,� and a potential q satisfying Hypothesis 2.1, we consider the
self-adjoint operator H = H(b, �, q) defined by

H(b, �, q) := − d2

dx2
, H(b, �, q) : dom(H(b, �, q)) ⊂ L2(�b,�) → L2(�b,�),

dom(H(b, �, q)) =
{
f ∈ Ĥ2(�b,�) : f satisfies (1.1) and (1.2)

}
.

(2.3)

Due to the radial structure of the graph, L2(�b,�) enjoys an orthogonal decomposition
into H-reducing subspaces; cf. [22,52,58,59]. Namely, to every vertex v ∈ V there
corresponds an H-reducing subspace Sv such that

L2(�b,�) =
⊕

v∈V
Sv, HPSv = PSvH, (2.4)

where PSv denotes the orthogonal projection onto Sv in L2(�b,�). Furthermore, each
subspace Sv can be further decomposed into bgen(v) − 1 subspaces, each of which is
also H-reducing, that is,

Sv =

⎧
⎪⎨

⎪⎩

bgen(v)−1⊕

k=1
Lv,k, v 
= o,

Lo, v = o,

(2.5)
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1346 D. Damanik et al.

and HPLv,k = PLv,kH, HPLo = PLoH. Moreover, the reduced operators are unitarily
equivalent to 1D Schrödinger operators acting in L2(R+). Concretely, the operators

H(b, �, q)PLv,k ,, H(b, �, q)PLo,

are unitarily equivalent to the operator

H(T gen(v)b, T gen(v)�, T gen(v)q) acting in L2(tgen(v),∞), v ∈ V (2.6)

where T denotes the left shift (T x)n := xn+1 and

H(Tκb, Tκ�, Tκq) := − d2

dx2
,

H(Tκb, Tκ�, Tκq) : dom(H(Tκb, Tκ�, Tκq)) ⊂ L2(tκ,∞) → L2(tκ,∞)

(2.7)

dom(H(Tκb, Tκ�, Tκq)) =
{

f ∈ Ĥ2(tκ,∞) : f (t+
κ

) = 0,
f satisfies (1.3)
for all j > κ

}

(2.8)

for κ ∈ Z+. The unitary map

Uv,k : Lv,k → L2(tgen(v),∞), v ∈ V\{o}, 1 � k � bgen(v) − 1,

realizing the equivalence is defined by

(U−1
v,k f )(x) =

⎧
⎪⎨

⎪⎩

exp

(
2π i jk
bgen(v)

)

f (|x |)
√

wv(|x |) , x ∈ Tv( j), 1 � j � bgen(v),

0, otherwise,

(2.9)

where Tv( j) ⊂ Tv denotes the forward subtree determined by the j th edge emanating
from the vertex v. Letting k = 0 in (2.9), one defines Uo. We point out that (U−1

v,k f ) ∈
dom(H(b, �, q)) whenever f belongs to the domain of the operator defined in (2.6).
Indeed, continuity of U−1

v,k f at v is ensured by the Dirichlet condition (2.8) while the
Kirchhoff condition at v is satisfied due to (2.9) and the fact that the sum of roots
of unity is equal to zero. At all other vertices, one has continuity and the Kirchhoff
condition by (1.3).

Combining these unitary operators together, one defines

�b,� := Uo ⊕
⊕

v∈V\{o}

bgen(v)−1
⊕

k=1

Uv,k, (2.10)
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and has, [52, Theorem 4.1],

�b,� : L2(�b,�) →
∞⊕

n=0

m(n)⊕

k=1

L2(tn,∞), (2.11)

�b,�H(b, �, q)�−1
b,� =

∞⊕

n=0

m(n)⊕

k=1

H(T nb, T n�, T nq),

m(n) :=
{
b0 · b1 · · · · bn−1 · (bn − 1), n � 1,

1, n = 0.
(2.12)

Next, we turn to the spectral analysis of H(b, �, q) for fixed admissible b, �, q. First,
the eigenvalue problem for this operator can be written in terms of suitable SL(2, R)

matrices. Namely, if f is a solution to the problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

− f ′′ = E f , f (t0) = 0,

f (t+j ) = √
b j f (t

−
j ) j ∈ N

f ′(t+j ) = f ′(t−j )+q j f (t
−
j )√

b j
j ∈ N,

f ∈ H2(t j−1, t j ) j ∈ N,

(2.13)

then one has

[
f (t+j )

f ′(t+j )

]

= ME (b j , � j , q j )

[
f (t+j−1)

f ′(t+j−1)

]

for all j ∈ N, (2.14)

where ME (β, λ, κ) := D(β)S(κ)R√
E (λ

√
E) , Im(

√
E) � 0 and

D(β) :=
[
β1/2 0
0 β−1/2

]

, S(κ) :=
[
1 0
κ 1

]

, Rμ(ϕ) :=
[

cosϕ
sin ϕ
μ

−μ sin ϕ cosϕ

]

. (2.15)

In this case, we can interpolate between the vertices to get

f (x) = f (t+j−1) cos(
√
E(x − t j−1)) +

f ′(t+j−1) sin(
√
E(x − t j−1))√
E

, (2.16)

for all x ∈ (t j−1, t j ), j ∈ Z+. Conversely, given initial data ( f (0+), f ′(0+))�, then
(2.14) and (2.16) construct a solution to the problem (2.13). Furthermore, f ∈ L2(R+)

if and only if

{[
f (t+j )

f ′(t+j )

]}∞

j=0

∈ �2(Z+, C
2).
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2.2 Quadratic form of themodel half-line operator

The following proposition describes the quadratic form of H(b, �, q) and provides
prerequisites for the Weyl criteria used in the proof of later results (e.g. Theorem 4.1).

Lemma 2.2 Assume Hypothesis 2.1 and consider the sesquilinear form h = h(b, �, q)

defined by

h : dom(h) × dom(h) → C, (2.17)

dom(h) =
{

f ∈ Ĥ1(t0,∞) : f (0+) = 0,√
b j f (t

−
j ) = f (t+j ), j > 0

}

, (2.18)

h[u, v] = 〈u′, v′〉L2(t0,∞) +
∞∑

j=1

q ju(t−j )v(t−j ) u, v ∈ dom(h). (2.19)

Then h is densely defined, closed, and bounded from below (i.e. for some γ ∈ R one
has h[u, u] � γ ‖u‖2

L2(t0,∞)
, u ∈ dom(h)). It is uniquely associated with the operator

H = H(b, �, q), that is,
h[u, v] = 〈u, Hv〉L2(t0,∞), (2.20)

for all u ∈ dom(h) and v ∈ dom(H). Furthermore, there exist positive constants
c,C > 0 such that

c‖u‖2
Ĥ1(t0,∞)

� (h− γ + 1)[u, u] � C‖u‖2
Ĥ1(t0,∞)

, u ∈ dom(h), (2.21)

where γ is a lower bound of h. In addition, the space of compactly supported functions
contained in dom(h) is a core of the form h.

Proof Throughout this proof we will abbreviate h := h(b, �, q) and H := H(b, �, q)

for an admissible fixed triple (b, �, q). First, we show that h is bounded from below. If
q− � 0, the form is non-negative. Suppose that q− < 0. By a standard Sobolev-type
inequality (cf., e.g. [21, Corollary 4.2.10], [46, IV.1.2]) one has

max
{
|u(t+j−1)|2, |u(t−j )|2

}
� C‖u‖2L2(t j−1,t j )

+ ε‖u′‖2L2(t j−1,t j )
, (2.22)

for all ε > 0 and j ∈ N, where C = C(ε, �−, �+) > 0. Then

h[u, u] � ‖u′‖2L2(t0,∞)
+ q−C‖u‖2L2(t0,∞)

+ q−ε‖u′‖2L2(t0,∞)
(2.23)

� (1+ q−ε)‖u′‖2L2(R+)
+ q−C‖u‖2L2(t0,∞)

� γ ‖u‖2L2(t0,∞)
, (2.24)

where we chose ε > 0 so that 1+ q−ε > 0 and set γ := q−C .
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Next, we prove that h is closed, i.e., that dom(h) is closed with respect to the
topology induced by the inner product h− γ + 1. First, using (2.23), (2.24) one infers

(h− γ + 1)[u, u] � ‖u‖2
Ĥ1(t0,∞)

. (2.25)

Suppose that {uk}k�1 ⊂ dom(h) is aCauchy sequencewith respect to the inner product
h−γ +1. In that case, it is Cauchy in Ĥ1(t0,∞) and hence has a limit u ∈ Ĥ1(t0,∞):

uk −→
Ĥ1(t0,∞)

u, k → ∞. (2.26)

In order to show that h is closed, it is enough to prove that u satisfies the vertex
conditions at every vertex t j . To that end, we notice that for all k ∈ N, j > 0 we have√
b juk(t

−
j ) = uk(t

+
j ). Then, by (2.22) and (2.26) we may pass to the limit as k → ∞

and obtain
√
b ju(t−j ) = u(t+j ) for all j > 0. Similarly, we get u(t+0 ) = 0.

The first inequality in (2.21) is already proved; see (2.25). The second one follows
from the Cauchy–Schwarz inequality and the Sobolev-type estimate (2.22).

Next, we prove (2.20). Notice that the subspace

{v ∈ dom(H) : supp(v) is compact in [t0,∞)} ⊂ dom(H),

is a core of H . Hence it is sufficient to check (2.20) for arbitrary u ∈ dom(h), v ∈
dom(H) with supp(v) ⊂ [t0, tK ) for some K ∈ N. One has

〈u, Hv〉L2(t0,∞) = −
K∑

j=1

∫ t j

t j−1

u(x)v′′(x) dx

= 〈u′, v′〉L2(t0,∞) + u(t+0 )v′(t+0 ) +
K∑

j=1

u(t+j )v′(t+j ) − u(t−j )v′(t−j )

= 〈u′, v′〉L2(t0,∞) +
K∑

j=1

√
b ju(t−j )

v′(t−j ) + q jv(t−j )
√
b j

− u(t−j )v′(t−j )

= h[u, v].

��
The following Weyl-type criterion holds.

Proposition 2.3 Assume Hypothesis 2.1, and denote h = h(b, �, q) and H =
H(b, �, q) as in Lemma 2.2. Let D ⊂ dom(h) be a dense subset with respect to the
Ĥ1(t0,∞) norm (or, equivalently, with respect to the norm ‖·‖2h := (h−γ + 1)[·, ·]).
Then E ∈ σ(H) if and only if there exist {ϕk}∞k=1 ⊂ D and {mk}∞k=1 ⊂ N such that

‖ϕk‖L2(t0,∞) = 1, supp(ϕk) ⊂ [t0, tmk ], (2.27)
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sup
k∈N

‖ϕk‖Ĥ1(t0,∞) < ∞, (2.28)

sup
g∈dom(h)

‖g‖Ĥ1(t0,∞)
�1

(h− E)[ϕk, g] → 0, k → ∞. (2.29)

Proof Since the norm ‖·‖Ĥ1(t0,∞) is equivalent to the form domain norm ‖·‖h, (2.27),
(2.29), togetherwith the standardWeyl’s criterion cf., e.g, [60, Proposition 1.4.4], yield
E ∈ σ(H) proving the “if” part.

To prove the “only if ” part we combine Weyl’s criterion and the last part of
Lemma 2.2 to obtain a sequence satisfying (2.27), (2.29). Without loss of general-
ity we may assume that γ � 0. In that case, one has

‖ϕk‖2Ĥ1(t0,∞)
� |h[ϕk, ϕk]| = sup

g∈dom(h)
‖g‖h=1

|h[ϕk, g]|

� sup
g∈dom(h)
‖g‖h=1

|(h− E)[ϕk, g]|

+ sup
g∈dom(h)
‖g‖h=1

|E〈ϕk, g〉L2(R+)| =
k→∞ o(1) +O(1).

Thus (2.28) holds as asserted. ��
In the sequel we will refer to the Dirichlet–Neumann truncation of the half-line

operator H(b, �, q) defined as follows

Hk(b, �, q) := − d2

dx2
,

Hk(b, �, q) : dom(Hk(b, �, q)) ⊂ L2(t0, tk) → L2(t0, tk),

dom(Hk(b, �, q)) =
{

Ĥ2(t0, tk) : f (t+0 ) = f ′(t−k ) = 0
f satisfies (1.3) for all 0 < j < k

}

.

Proposition 2.4 Let us fix n � 1, E /∈ σ(Hn(b, �, q)), and suppose that u± satisfy
(1.3) for all 0 < j < n, −u′′± = Eu±, u−(t+0 ) = u′+(t−n ) = 0, and u′−(t+0 ) =
u+(t−n ) = 1. Then the Green function of the operator Hn(b, �, q) is given by

GE
n (x, y) = GE[t0,tn ](x, y) :=

1

W (u+, u−)

{
u+(y)u−(x), y � x,

u+(x)u−(y), y � x,

where 0 
= W (u+, u−) = u′−(t−n ) = u+(t+0 ) denotes the Wronskian of linearly
independent solutions u±. That is, (Hn(b, �, q) − E)−1 is an integral operator with
the kernel GE[t0,tn ].
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Proof For a fixed g ∈ L2(t0, tn) the unique nonzero function u satisfying all vertex
conditions and solving the non-homogeneous differential equation −u′′ − Eu = g is
given by

u(y) = [REg](y) :=
∫ tn

t0
GE[t0,tn ](x, y)g(x)dx .

Evidently, the operator RE is bounded and

(Hn(b, �, q) − E)RE = RE (Hn(b, �, q) − E) = IL2(t0,tn),

as asserted. Finally, evaluating the Wronskian at t0 and tn+1, we get

W (u+, u−) = u′−(t−n ) = u+(t+0 )

(see also [44, Lemma D.12]). ��

3 Proof of localization for half-line random operators

The main goal of this section is to prove dynamical and spectral localization for
the random half-line operators Hω arising in the orthogonal decomposition of Hω.
Theorem 3.5 ensures positivity of the Lyapunov exponent outside of a discrete set
D. In Theorem 3.13 we prove spectral localization and SULE for Hω. Finally, we
conclude with the proof of Theorem 1.1, which addresses dynamical localization.

3.1 Description of randommodels

The random branching model (abbreviated RBM) is described by a family of Laplace
operators subject to Neumann–Kirchhoff vertex conditions on radial metric trees with
random branching numbers. In other words, we assume Hypothesis 2.1 with the fol-
lowing parameters

b = {bω(n)}n∈N ⊂ {2, . . . , d}, d � 3, �− = �+ = 1, q− = q+ = 0,

where {bω(n)}n∈N is a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

The random lengths model (RLM) is given by a family of the Neumann–Kirchhoff
Laplace operators on radial metric trees with random edge lengths. That is, we assume
Hypothesis 2.1 with

b− = b+ = d, � = {�ω(n)}n∈N ⊂ [�−, �+], q− = q+ = 0,

where {�ω(n)}∈N is a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

The random Kirchhoff model (RKM) is given by the Laplace operators subject to
random δ-type vertex conditions. That is, we assume Hypothesis 2.1 with
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b− = b+ = d, �− = �+ = 1, q = {qω(n)}n∈N ⊂ [q−, q+],

where {qω(n)}n∈N is a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

In order to unify these models we consider three-dimensional random variables
with common distribution μ̃.

Hypothesis 3.1 Let μ̃ be a probability measure with

supp(μ̃) ⊂ A := {
b−, . . . , b+

}× [�−, �+] × [q−, q+].

Suppose that supp(μ̃) contains at least two distinct points, and let (�,μ) :=
(AN, μ̃N).

Remark 3.2 We notice that

• RBM arises when supp μ̃ ⊆ {
b−, . . . , b+

}× {1} × {0},
• RLM arises when supp μ̃ ⊆ {d} × [�−, �+] × {0},
• RKM arises when supp μ̃ ⊆ {d} × {1} × [q−, q+].
For ω ∈ �we denote the components of ω as ω(n) = (bω(n), �ω(n), qω(n)), since

we will use them to define the branching, edge lengths, and Kirchhof potential of
an operator. In particular, the vertices in R+ are denoted tω(n). Given ω, define the
operatorsHω = H(bω, �ω, qω) acting in L2(�bω,�ω ) as in (2.3). Similarly, for j ∈ Z+,
define

HT jω := H(T jbω, T j�ω, T jqω) acting in L2(tω( j),∞),

as in (2.7), (2.8) and let hT jω denote the corresponding quadratic forms.

3.2 Positivity of Lyapunov exponents via Fürstenberg’s theorem

Inspired by (2.14) and (2.15), we introduce an SL(2, R)-cocycle over T (the left shift
� → �) as follows. First, let A, b±, �±, and q± be as in Hypothesis 3.1. For each
E ∈ R, (2.14), (2.15) lead us to define ME : A → SL(2, R) by

A � α = (β, λ, κ) �→ ME (α) = D(β)S(κ)R√
E (λ

√
E). (3.1)

This induces a map ME : � → SL(2, R) via ME (ω) = ME (ω(1)), and then a skew
product

(T , ME ) : � × R
2 → � × R

2, (T , ME )(ω, v) = (Tω, ME (ω)v).

Then denoting the n-step transfer matrix by

ME
n (ω) =

0∏

r=n−1

ME (T rω) = ME (T n−1ω) · · ·ME (Tω)ME (ω), n ∈ N, (3.2)
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we note that the iterates over the skew product are given by (T , ME )n = (T n, ME
n ).

The Lyapunov exponent is defined by

L(E) := lim
n→∞

1

n

∫

�

log ‖ME
n (ω)‖ dμ(ω). (3.3)

By Kingman’s Subadditive Ergodic Theorem we have

L(E) = lim
n→∞ Fn(ω, E); Fn(ω, E) := 1

n
log ‖ME

n (ω)‖, (3.4)

for μ-almost every ω.

Remark 3.3 Let us note that there are two natural cocycles that one can work with
here. In addition to the discrete cocycle just described, there is also the continuum
cocycle M̃ E defined by

M̃ E
x (ω) :

[
u(0+)

u′(0+)

]

�→
[
u(x+)

u′(x+)

]

whenever −u′′ = Eu and u satisfies the vertex conditions defining dom(Hω). Evi-
dently,

ME
n (ω) = M̃ E

tω(n)(ω).

This leads to a simple relationship between the Lyapunov exponents of ME and M̃ E .
By Birkhoff’s Ergodic Theorem,

lim
n→∞

1

n
tω(n) = 〈�〉 :=

∫

A
α2 dμ̃(α),

the average length. Then, one has

L(E) = L̃(E) · 〈�〉. (3.5)

Our next goal is to show that Lyapunov exponents are positive away from a discrete
set of energies. To that end, we first recall Fürstenberg’s Theorem and some related
facts. In order to state Fürstenberg’s Theorem, let us recall that a few definitions from
the general theory. A group G ⊆ SL(2, R) is called strongly irreducible if there does
not exist a finite set � ⊆ RP

1 such that {gv : v ∈ �} = � for all g ∈ G; G is called
contracting if there exist gn ∈ G, n � 1 such that ‖gn‖−1gn converges to a rank-one
operator as n → ∞. Given Borel probability measures νk supported in SL(2, R),
k � 1, we say νk → ν weakly and boundedly if

∫

‖M‖�N
log+ ‖M‖ dνk(M) +

∫

‖M‖�N
log+ ‖M‖ dν(M) → 0

as N → ∞, uniformly in k and
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∫

f dνk →
∫

f dν

for all continuous complex-valued functions f : SL(2, R) → C having compact
support.

Theorem 3.4 Let ν be a probability measure on SL(2, R) satisfying

∫

log ‖M‖ dν(M) < ∞.

Let Gν be the smallest closed subgroup of SL(2, R) that contains supp ν.

(i) [36, Theorem 8.6] Assume that Gν is not compact and that it is strongly irre-
ducible. Then the Lyapunov exponent L(ν) associated with ν is positive.

(ii) [37, Theorem B] Assume that the set

Fix(Gν) :=
{
V ∈ RP

1 : MV = V for every M ∈ Gν

}

contains at most one element. If νk → ν weakly and boundedly, then L(νk) →
L(ν) as k → ∞.

In the present setting, we have a one-parameter family of measures induced on
SL(2, R), namely, we consider νE , the pushforward of μ̃ under the map ME in (3.1).

Theorem 3.5 Assume Hypothesis 3.1. Then there is a discrete set D ⊆ R such that
G = Gν(E) enjoys the following properties for E ∈ R\D.

(i) G is noncompact
(ii) G is strongly irreducible
(iii) G is contracting
(iv) Fix(G) = ∅
In particular, L is continuous and positive on R\D.

Proof In view of Theorem 3.4, positivity follows from (i) and (ii), while continuity
on R\D follows from (iv). Moreover, (ii) �⇒ (iv), so we only need to prove (i)–(iii).
Write

ME (β, λ, κ) = D(β)S(κ)R√
E (λ

√
E)

=
[√

β 0
0 1√

β

][
1 0
κ 1

][
cos(λ

√
E)

sin(λ
√
E)√

E
−√

E sin(λ
√
E) cos(λ

√
E)

]

=
[

β1/2 cos(λ
√
E) β1/2 sin(λ

√
E)√

E

κβ−1/2 cos(λ
√
E) − β−1/2

√
E sin(λ

√
E)

κ sin(λ
√
E)

β1/2
√
E

+ β−1/2 cos(λ
√
E)

]

Now, let (b1, �1, q1) 
= (b2, �2, q2) be distinct elements of supp μ̃, abbreviate

Mj = Mj (E) := ME (b j , � j , q j ),
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and define the commutator

g = g(E) = [M1, M2] = M1M2 − M2M1.

To conclude the proof, it suffices to show that g(E) does not vanish identically.
Concretely, it is easy to see that the matrices Mj are analytic functions of E with
non-constant trace and that the entries of Mj are real whenever tr Mj ∈ [−2, 2]. Thus,
the matrices Mj (E) satisfy the first three hypotheses of [20, Theorem 2.1], so, if g(E)

does not vanish identically, we can conclude that there is a discrete set D such that
(i)–(iii) hold for E ∈ R\D by [20, Theorem 2.1].

To that end, suppose for the purpose of establishing a contradiction that g vanishes
identically. In particular, the upper left matrix element g11(E) vanishes identically.
One may calculate g11(E) directly:

g11(E) = b1/21
sin(�1

√
E)√

E

(
q2b

−1/2
2 cos(�2

√
E) − b−1/2

2

√
E sin(�2

√
E)
)

− b1/22
sin(�2

√
E)√

E

(
q1b

−1/2
1 cos(�1

√
E) − b−1/2

1

√
E sin(�1

√
E)
)

.

For ease of notation, write r1 = b1/22 /b1/21 , r2 = b1/21 /b1/22 , and w = √
E . Expanding

the trigonometric functions, we get

g11 = q2r2
4iw

(ei�2w + e−i�2w)(ei�1w − e−i�1w)

− q1r1
4iw

(ei�1w + e−i�1w)(ei�2w − e−i�2w)

− r1 − r2
4

(ei�1w − e−i�1w)(ei�2w − e−i�2w).

Thus,
4iw2g11 =

(
q2r2w − q1r1w − iw2(r1 − r2)

)
ei(�1+�2)w

+
(
q1r1w − q2r2w − iw2(r1 − r2)

)
e−i(�1+�2)w

+
(
q2r2w + q1r1w + iw2(r1 − r2)

)
ei(�1−�2)w

+
(
−q1r1w − q2r2w + iw2(r1 − r2)

)
e−i(�1−�2)w.

(3.6)

Since g11 vanishes identically and �1, �2 > 0, this forces

q2r2w − q1r1w − iw2(r1 − r2) ≡ 0

q1r1w − q2r2w − iw2(r1 − r2) ≡ 0
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It is easy to see that this yields r1 = r2 (hence b1 = b2) and q1 = q2. Since
(b1, �1, q1) 
= (b2, �2, q2), we must have �1 
= �2. Going back to (3.6), this implies

q2r2w + q1r1w + iw2(r1 − r2) ≡ 0

−q1r1w − q2r2w + iw2(r1 − r2) ≡ 0.

and hence q1 = q2 = 0. Writing b1 = b2 =: b, and substituting q1 = q2 = 0, we
may directly calculate g:

g(E) =
⎡

⎣
0 b−1√

E
sin
(
(�2 − �1)

√
E
)

b−1
b

√
E sin

(
(�2 − �1)

√
E
)

0

⎤

⎦ (3.7)

which clearly only vanishes on the discrete set

D =
{
(�1 − �2)

−2π2k2 : k ∈ Z+
}
,

a contradiction. ��
The proof above implicitly uses the following statement.

Lemma 3.6 Suppose
{
a j : j = 0, . . . , n

}
is a set of n + 1 distinct complex numbers

and
{
p j : j = 0, . . . , n

}
are polynomials in z. Then, the function

Q(z) :=
n∑

j=0

p j (z)e
a j z

vanishes identically if and only if p j ≡ 0 for each j .

Proof Write D = d/dz and M = max(deg(p j )). Suppose on the contrary that

p0(z)e
a0z ≡

n∑

j=1

p j (z)e
a j z

with p0 
≡ 0. Notice that
∏n

j=1(D−a j )
M+1 annihilates the right hand side. However,

if b 
= a0, one readily verifies that

(D − b)[p0(z)ea0z] = p̃0(z)e
a0z,

where p̃0 has the same degree as p0. Consequently, a straightforward induction implies
that

n∏

j=1

(D − a j )
M+1[p0(z)ea0z]

does not vanish identically, a contradiction. ��
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Remark 3.7 Let us make a few comments about the proof of Theorem 3.5.

(1) Since the argument above is soft, we do not get any information aboutD, except
that D is discrete. However, in concrete situations in which one has more infor-
mation, one can say more. For example, the g from (3.7) corresponds to the
RLM; we can explicitly see thatD = {

(�1 − �2)
−2π2k2 : k ∈ Z+

}
. For another

example, in the RBM, one has supp μ̃ ⊆ {b−, . . . , b+} × {1} × {0}, so one can
choose (b1, 1, 0) 
= (b2, 1, 0) ∈ supp μ̃. After some calculations, one obtains

det g = − (b1 − b2)2

b1b2
sin2(

√
E),

so Fürstenberg’s Theoremholds away fromD = {
π2k2 : k ∈ Z+

}
. In this setting

there exists a finite set of invariant directions at these special energies. That said,
we note that the Lyapunov exponent is still positive by direct calculation.

(2) Let us also remark that the transfer matrices may be bounded at a discrete set of
energies (compare [25]). For example, take parameters (b1, �1, q1) = (2, 1, 0)
and (b2, �2, q2) = (2, 3, 0). Then, at energies E = 1

4π
2(2k + 1)2 with k ∈ Z+,

M1 and M2 are commuting and elliptic.1 In particular, the transfer matrices at
these energies are uniformly bounded, so [24, Corollaries 2.1 and 2.2] suggest
that dynamical localization as formulated in Theorem1.2.(ii) cannot holdwithout
excluding these energies.

Remark 3.8 As far as spectral localization is concerned, it suffices to ensure that for
every compact interval I ∈ R\D, almost surely all generalized eigenvalues exhibit
Lyapunov behavior. We will construct a full measure set �∗ ⊂ � such that one has

0 < L(E) = lim
n→∞

1

n
log ‖ME

n (ω)‖

for every generalized eigenvalue E ∈ I of Hω [ME
n (ω) is defined in (3.2)]. As dis-

cussed in [19], the work of Gorodetski and Kleptsyn [40] shows that dropping the
assumption that E is a generalized eigenvalue invalidates the above assertion.

3.3 Dynamical localization for half-line operators

Our approach relies on the Large Deviation Theorem (LDT) [19, Theorem 3.1].
Although this is not stated explicitly in [19], the LDT and its corollaries [19,
Theorem 4.1, Corollary 5.3, (5.13)] are applicable whenever the conditions of the
FürstenbergTheorem aremet, the corresponding subgroup is contracting and the trans-
fer matrices satisfy Lipschitz estimates which are supplied by the following lemma.

Lemma 3.9 Fix a compact interval I ⊆ R. There are constants C > 0, ρ > 0 such
that

‖ME
n (ω) − ME ′

n (ω′)‖ � Cnρn−1(|E − E ′| + ‖ω − ω′‖∞
)

1 I.e., | tr Mj | < 2.
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1358 D. Damanik et al.

for allω,ω′ ∈ �, E, E ′ ∈ I , and n ∈ Z+. The constants depend only on I and supp μ̃.
Consequently,

|Fn(ω, E) − Fn(ω
′, E ′) � Cρn−1(|E − E ′| + ‖ω − ω′‖∞), (3.8)

where Fn is defined as in (3.4).

Proof Let n, E , E ′, α = (β, κ, λ) ∈ A, and α′ = (β ′, κ
′, λ′) ∈ A be given. One

immediately has ‖S(κ) − S(κ′)‖ = |κ − κ
′| (3.9)

and
‖D(β) − D(β ′)‖ =

∣
∣
∣
√

β −√β ′
∣
∣
∣ � 1

2
√
2
|β − β ′| (3.10)

since β, β ′ � 2. Writing κ = √
E , and κ ′ = √

E ′, we get

‖Rκ(λκ) − Rκ ′(λ
′κ ′)‖ � ‖Rκ(κλ) − Rκ ′(κ

′λ)‖ + ‖Rκ ′(κ
′λ) − Rκ ′(κ

′λ′)‖
� C(�±, I )(|E − E ′| + |λ − λ′|). (3.11)

Using the triangle inequality to change a single one-step transfer matrix at a time, one
has

‖ME
n (ω) − ME ′

n (ω′)‖

�
n−1∑

k=0

∥
∥
∥ME ′

n−k−1(T
k+1ω′)(ME

1 (T kω) − ME ′
1 (T kω′))ME

k (ω)

∥
∥
∥,

where T is the left shift operator. Writing

ρ = sup
{
‖ME

1 (ω)‖ : E ∈ I , ω ∈ �
}
, (3.12)

we can estimate the first and third factors by ρn−k−1 and ρk respectively. On other
other hand, (3.9), (3.10), and (3.11) yield

‖ME
1 (T kω) − ME ′

1 (T kω′)‖ � C(|E − E ′| + ‖ω − ω′‖∞),

so, putting everything together, we have

‖ME
n (ω) − ME ′

n (ω′)‖ �
n−1∑

k=0

Cρn−1(|E − E ′| + ‖ω − ω′‖∞)

= Cnρn−1(|E − E ′| + ‖ω − ω′‖∞),

proving the first inequality. The second follows from this and the statement | log a −
log b| � |a − b| for a, b � 1. ��

Having established Theorem 3.5 and Lemma 3.9, we may utilize the LDT in our
setting. In particular, we have the following:
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Theorem 3.10 Assume Hypothesis 3.1 holds true.

(i) [19, Theorem 3.1] For any ε > 0, there exist C, η > 0 such that

μ

{

ω ∈ � :
∣
∣
∣
∣L(E) − 1

n
log ‖ME

n (ω)‖
∣
∣
∣
∣ � ε

}

� Ce−ηn, (3.13)

for all n � 0 and all E ∈ I .
(ii) [19, Theorem 4.1] There exist constants C = C(I , μ̃), β = β(I , μ̃) > 0 such

that
|L(E) − L(E ′)| � C |E − E ′|β, E, E ′ ∈ I . (3.14)

(iii) [19, Corollary 5.3] For every ε ∈ (0, 1) there exists a full measure set �1(ε)

with μ(�1(ε)) = 1 such that for every ω ∈ �1(ε) there exists n1 = n1(ε, ω)

such that
1

n
log ‖ME

n (T ζ0ω)‖ � L(E) + ε, (3.15)

for any ζ0 ∈ Z+ and n � max(n1, log2(ζ0 + 1)).
(iv) For every ε ∈ (0, 1) there exists �2(ε) ⊆ �, μ(�2(ε)) = 1 with the following

property: For every ω ∈ �2(ε), there exists n2 = n2(ω, ε) such that

∣
∣
∣
∣
∣
∣
L(E) − 1

n2

n2−1∑

s=0

log ‖ME
n (T ζ+snω)‖
n

∣
∣
∣
∣
∣
∣
< ε, (3.16)

for all ζ ∈ Z+, n � max(n2, log
2
3 (ζ + 1)), and E ∈ I .

Part (iii) yields

μ

{

ω : for all E ∈ I , lim sup
n→∞

1

n
log ‖ME

n (ω)‖ � L(E)

}

= 1. (3.17)

This fact may also be derived from the Craig–Simon approach [23] (see also [45]).
Our main focus is on showing

μ

⎧
⎨

⎩
ω : lim inf

n→∞
1

n
log ‖ME

n (ω)‖ � L(E)

for all generalized eigenvalues E ∈ I

⎫
⎬

⎭
= 1.

The next key step is an analog of the elimination of double resonances. Let us
note that we do not use the typical formulation of double resonances (cf., e.g., [47,
(9.21)]), since our ultimate goal is to work with transfer matrices in order to apply the
Avalanche Principle. The resonances we wish to exclude are those for which there are
large disjoint intervals I1, I2 ⊆ Z so that some energy E is very close to an eigenvalue
of Hω restricted to I1, and the norm of the transfer matrix across I2 at energy E
deviates substantially from exp(|I2|L(E)). In particular, we would like to show that
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1360 D. Damanik et al.

this event occurs with very small probability, see [12]. We shall make this precise and
quantitative in Theorem 3.11.

By convention, we write ‖(Hn
ω − E)−1‖B(L2(t0,tn)) = +∞ whenever E ∈ σ(Hn

ω).
Let us recall Fn(ω, E) from (3.4), and abbreviate K := �K log K �.
Theorem 3.11 Given ε ∈ (0, 1), N ∈ N, let

DN (ε) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ω ∈ � :

for some ζ ∈ Z+, E ∈ I ,

K � max{N , log2(ζ + 1)}, 0 < n � K 9, one has:
⎧
⎪⎨

⎪⎩

‖(H ζ+n
ω − E)−1‖B(L2(t0,tζ+n))

� eK
2

and |Fm(T r+ζ ω, E)| � L(E) − ε

for some K 10 � r � K ,m ∈ {K , 2K }

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Then there exist C = C(ε) > 0, η(ε) > 0 such that

μ(DN (ε)) � Ce−ηN . (3.18)

In particular, one has

μ(�3(ε)) = 1 where �3(ε) := �\ lim sup
N→∞

DN (ε). (3.19)

Proof Let us fix

ζ ∈ Z+, K � max
{
N , log2(ζ + 1)

}
, 0 < n � K 9, K 10 � r � K , j ∈ {1, 2},

(3.20)
and denote

D j (K , n, r , ζ ) :=

⎧
⎪⎪⎨

⎪⎪⎩

ω ∈ � :
for some E ∈ I , one has

‖(H ζ+n
ω − E)−1‖B(L2(t0,tζ+n))

� eK
2
and

|FjK (T r+ζ ω, E)| � L(E) − ε

⎫
⎪⎪⎬

⎪⎪⎭

In order to estimate μ(D j (K , n, r , ζ )), we pick ω ∈ D j (K , n, r , ζ ), consider the
corresponding E ∈ I , and notice that (due to the resolvent bound) E is close to an
eigenvalue of the Dirichlet–Neumann truncation, that is,

|E − E0| � e−K 2
for some E0 ∈ σ(H ζ+n

ω ). (3.21)

Combining (3.8), (3.14), (3.21), and choosing N (hence K ) sufficiently largewe obtain

FjK (T ζ+rω, E0) � L(E0) − ε

2
,

whenever ω ∈ D j (K , n, r , ζ ) and E0 = E0(ω1, . . . , ωζ+n) is as in (3.21). In other
words

D j (K , n, r , ζ ) ⊂ D̂ j (K , n, r , ζ ),
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where

D̂ j (K , n, r , ζ ) :=
⋃

E0∈σ(H ζ+n
ω )∩ Î

{
ω ∈ � : ε

2
� L(E0) − FjK (T ζ+rω, E0)

}
,

where Î := [min I − 1,max I + 1]. We note that H ζ+n
ω and the standard Dirichlet

Laplacian H ζ+n
D on (t0, tζ+n) are self-adjoint extensions of a symmetric (minimal)

operator with deficiency indices (2(ζ + n), 2(ζ + n)) (Sect. 2.1, [10]). Then the
spectral shift for these two operators is at most 2(ζ + n), see [8, Lemma 9.3.2 p.214,
Theorem 9.3.3, p. 215]. Combining this with an explicit computation of eigenvalues
of H ζ+n

D we get
#
(
σ(H ζ+n

ω ) ∩ Î
)

� C | Î |(n + ζ ),

where C > 0 is a universal constant [we recall from (2.2) that �−(ζ + n) � |tζ+n| �
�+(ζ + n)]. Then using (3.13) and [0, ζ + n] ∩ [ζ + r , ζ + r + j K ] = ∅, we estimate

μ(D̂ j (K , n, r , ζ )) � C(n + ζ )e−ηK � C(K 9 + e
√
K )e−ηK � Ce−η1K ,

for some η1 = η1(ε) > 0. Clearly, one has

μ(DN (ε)) �
∑

K ,n,r ,ζ, j as in (3.20)

μ(D̂ j (K , n, r , ζ )).

Then for a fixed K , the summation with respect to n, r introduces a subexponential
number of terms bounded by e−η1K , and summation with respect to ζ introduces no
more than �e

√
K � terms bounded by e−η1K (the precise calculation is carried out in

the proof of [19, Proposition 6.1]). Thus (3.18) holds as asserted, which together with
the Borel–Cantelli lemma yields (3.19). ��

Let us recall the Avalanche Principle employed in the proof of Theorem 3.13.

Lemma 3.12 (AvalanchePrinciple)Let A(1), . . . , A(n) be a finite sequence inSL(2, R)

satisfying the following conditions:

min
1� j�n

‖A( j)‖ � λ > n,

max
1� j<n

∣
∣
∣log ‖A( j+1)‖ + log ‖A( j)‖ − log ‖A( j+1)A( j)‖

∣
∣
∣ <

1

2
log λ.

Then for some absolute constant C > 0 one has

∣
∣
∣
∣
∣
∣
log ‖A(n) . . . A(1)‖ +

n−1∑

j=2

log ‖A( j)‖ −
n−1∑

j=1

log ‖A( j+1)A( j)‖
∣
∣
∣
∣
∣
∣
� C

n

λ
.

See [39, Proposition 2.2] for a proof of Lemma 3.12.
In order to streamline notation, we use the shorthand tn for the point tω(n).
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Theorem 3.13 There exist a discrete setD ⊂ R and a set �̃ ⊂ � with μ(�̃) = 1 such
that for every compact interval I ⊂ R\D and every ω ∈ �̃ the following assertions
hold:

(i) For every generalized eigenvalue E ∈ I of the operator Hω, one has

lim
n→∞

1

n
log ‖ME

n (ω)‖ = L(E). (3.22)

(ii) The spectral subspace ran(χI (Hω)) admits a basis of exponentially decaying
eigenfunctions.

(iii) Given δ ∈ (0, 1) and a normalized eigenfunction

f ∈ ker(Hω − E)\{0}, E ∈ I , ‖ f ‖L2(R+) = 1,

there exist ζ = ζ( f ) ∈ N, Cω,δ > 0, Cδ > 0 such that2

| f (x+)| � Cω,δe
Cδ logC (ζ+1)e−(1−δ)L̃(E)|x−ζ |, x � 0, (3.23)

for an absolute constant C > 0.

Proof Wewill show that the statement of the theorem holds withD as in Theorem 3.5
and

�̃ :=
⋂

ε∈(0,τ )∩Q

�1(ε) ∩ �2(ε) ∩ �3(ε), τ := 1

3
min
E∈I L(E),

where �1,2,3(ε) are defined in Theorem 3.10 (iii), (iv) and in Theorem 3.11 respec-
tively. Note that τ > 0 by Theorem 3.5.

Proof of Part (i). Due to (3.17), it is enough to prove that for a given ω ∈ �̃ and for
a generalized eigenvalue E = Eω ∈ I (which are henceforth fixed) one has

lim inf
n→∞

1

n
log ‖ME

n (ω)‖ � L(E). (3.24)

Let u be the generalized eigenfunction of Hω corresponding to E , that is,

− u′′ = Eu, u(0+) = 0, u satisfies (1.3) for all j > 0,

max
{|u′(t±n )|, |u(t±n )|} � Cu(1+ n), n ∈ Z+, for some Cu > 0.

(3.25)

Our goal is to show that for a given ε ∈ (0, τ ) and for all sufficiently large K one has

1

n
log ‖ME

n (ω)‖ � L(E) − 6ε, for all n ∈ [K 11 + K 10, K ]. (3.26)

Since these intervals cover a half-line, (3.26) yields (3.24).

2 Recall that L and L̃ are related via (3.5).
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For a given3 ζ ∈ Z+ let

K (N ) := max
{
N , n1, n2, n3, �log2(ζ + 1)�

}
, (3.27)

where N ∈ N is to be determined,4 n1, n2 are as in Theorem 3.10 (iii), (iv) corre-
spondingly, and n3 = n3(ω, ε) is the smallest integer for which

ω ∈
⋂

i�n3

(
�\Di (ε)

)
. (3.28)

��
Step 1 There exists N = N (Cu) > 0 such that for all K � K (N ) there exists an
integer m ∈ [0, ζ + K 9] such that

|u(t−m )| � e−2K 2
, |u′(t−m )| � e−2K 2

. (3.29)

Proof First we note that (3.16) with n = K 3 yields

L(E) − log ‖ME
K 3(T

ζ+sK 3
ω)‖

K 3 < ε,

or, equivalently,

exp((L(E) − ε)K 3) < ‖ME
K 3(T

ζ+sK 3
ω)‖, (3.30)

for some s ∈ [0, K 6−1]∩Z+ . Focusing on the s-th block we introduce the following
notation

[α, β] := [ζ + sK 3, ζ + (s + 1)K 3], m := �α + β

2
�.

Our argument is based on a representation of u in terms of its boundary values u(t+α ),
u(t−β ) and special solutions ψ± satisfying certain boundary conditions. The choice of
the boundary conditions, hence the representation of u, depends on the entry of the
matrix

S−1(qβ)D−1(bβ)ME
K 3(T

αω) (3.31)

that dominates its norm. Specifically, letting mi j denote the i j th entry of (3.31) and
assuming that ψ± satisfy −ψ ′′± = Eψ±, the interior vertex conditions in the interval
[α, β], and the boundary conditions indicated below, we consider the following four
cases.
Case 1. If ‖S−1(qβ)D−1(bβ)ME

K 3(T
αω)‖ � 4|m11| then we let

ψ−(t+α ) = 1, ψ ′−(t+α ) = 0, ψ+(t−β ) = 0, ψ ′+(t−β ) = 1,

3 In the sequel ζ will be determined by the center of localization.
4 N will depend on u through Cu . In particular, if all generalized eigenfunctions are uniformly bounded,
N is u-independent.
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and observe that

|W (ψ+, ψ−)| = |ψ ′+(t+α )| = |ψ−(t−β )| = |m11| > 0. (3.32)

In particular, (3.32) shows thatψ− andψ+ are linearly independent, which shows that
we may represent

u(t−m ) = u′(t+α )
ψ+(t−m )

ψ ′+(t+α )
+ u(t−β )

ψ−(t−m )

ψ−(t−β )
. (3.33)

Case 2. If ‖S−1(qβ)D−1(bβ)ME
K 3(T

αω)‖ � 4|m12| then

ψ−(t+α ) = 0, ψ ′−(t+α ) = 1, ψ+(t−β ) = 0, ψ ′+(t−β ) = 1,

u(t−m ) = u(t+α )
ψ+(t−m )

ψ+(t+α )
+ u(t−β )

ψ−(t−m )

ψ−(t−β )
,

|W (ψ+, ψ−)| = |ψ+(t+α )| = |ψ−(t−β )| = |m12| > 0.

Case 3. If ‖S−1(qβ)D−1(bβ)ME
K 3(T

αω)‖ � 4|m21| then

ψ−(t+α ) = 1, ψ ′−(t+α ) = 0, ψ+(t−β ) = 1, ψ ′+(t−β ) = 0,

u(t−m ) = u′(t+α )
ψ+(t−m )

ψ ′+(t+α )
+ u′(t−β )

ψ−(t−m )

ψ ′−(t−β )
,

|W (ψ+, ψ−)| = |ψ ′+(t+α )| = |ψ ′−(t−β )| = |m21| > 0.

Case 4. If ‖S−1(qβ)D−1(bβ)ME
K 3(T

αω)‖ � 4|m22| then

ψ−(t+α ) = 0, ψ ′−(t+α ) = 1, ψ+(t−β ) = 1, ψ ′+(t−β ) = 0,

u(t−m ) = u(t+α )
ψ+(t−m )

ψ+(t+α )
+ u′(t−β )

ψ−(t−m )

ψ ′−(t−β )
,

|W (ψ+, ψ−)| = |ψ+(t+α )| = |ψ ′−(t−β )| = |m22| > 0.

We proceed with Case 1; the other three cases can be handled similarly. Let us estimate
each term in the right-hand side of (3.33). Combining (3.3) and (3.32), we get

|ψ ′+(t+α )| = |ψ−(t−β )| = |m11| �
‖S−1(qβ)D−1(bβ)ME

K 3(T
αω)‖

4

�
‖ME

K 3(T
αω)‖

4‖D(bβ)S(qβ)‖
� c(b±, q±) exp((L(E) − ε)K 3),

(3.34)
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for some c(b±, q±) > 0. By (3.25) we get

max
{
|u′(t+α )|, |u(t−β )

}
| � Cu(β + 1) � Cu(K

9 + e
√
K ).

Employing (3.15) with n = � K 3

2 �, ζ0 = ζ + sK 3, and choosing N so that � K 3

2 � �
log2(ζ + sK 3) we obtain

|ψ−(t−m )| �
∣
∣
∣
∣

〈[
1
0

]

, S−1(qm)D−1(bm)ME

� K3
2 �(T

ζ+sK 3
ω)

[
1
0

]〉∣
∣
∣
∣

� C(b±, q±) exp

(
(L(E) + ε)K 3

2

)

,

, (3.35)

for some C(b±, q±) > 0. Similarly for N so large that � K 3

2 � � log2(ζ + sK 3 + K 3

2 )

we obtain

∣
∣ψ+(t−m )

∣
∣ � C(b±, q±) exp

(
(L(E) + ε)K 3

2

)

, C(b±, q±) > 0. (3.36)

Combining (3.33), (3.34)–(3.36) one obtains

|u(t−m )| � 2CuC(b±, q±)(K 9 + e
√
K ) exp

(−L(E)K 3 + 3εK 3

2

)

� e−2K 2
,

where the last inequality holds whenever N = N (Cu) is large enough and
C(b±, q±) > 0. Replacing u(t−m ) by u′(t−m ),ψ±(t−m ) by ψ ′±(t−m ) in (3.33), and [1, 0]�
by [0, 1]� in (3.35), (3.36) we obtain

|u′(t−m )| � e−2K 2
.

��
Step 2 Suppose that |u(τ )| = 1 for some τ ∈ R+, let ζ be the largest integer such
that tζ � τ , and recall m ∈ [0, ζ + K 9] from Step 1 for such ζ . Then

‖(Hm
ω − E)−1‖B(L2(t0,tm )) � eK

2
. (3.37)

Proof It suffices to show that

|GE
ω,[0,tm ](x, y)| � Ce2K

2
, (x, y) ∈ J1 × (tm − δ, tm), (3.38)

for some K -independent interval J ⊂ (tζ , tζ+1), K -independent δ > 0, and C =
C(�±, I ). Indeed, denoting the characteristic functions of J , (tm − δ, tm) by χ1, χ2
respectively, we get
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eK
2 �

|〈χ1, (Hm
ω − E)−1χ2〉L2(t0,tm )|

‖χ1‖L2(t0,tm )‖χ2‖L2(t0,tm )

� ‖(Hm
ω − E)−1‖B(L2(t0,tm )),

for N in (3.27) sufficiently large (depending only on C(�±, I )). To prove (3.38) we
notice that

u(x) = u(0+)
ψ+(x)

W (ψ+, ψ−)
+ u′(t−m )

ψ−(x)

W (ψ+, ψ−)
= u′(t−m )

ψ−(x)

W (ψ+, ψ−)

= u′(t−m )GE
ω,m(x, tm), x ∈ (tζ , tζ+1),

(this is similar to Case 4 in Step 1 above). By right-continuity of u and |u(τ )| = 1
we have

1/2 � |u(x)|, x ∈ J ⊂ (tζ , tζ+1),

for some K -independent interval J . Employing (3.29) one infers

1 � |u(x)| = |u′(tm)|
∣
∣
∣
∣

ψ−(x)

W (ψ+, ψ−)

∣
∣
∣
∣ � e−2K 2

∣
∣
∣
∣

ψ−(x)

W (ψ+, ψ−)

∣
∣
∣
∣ ,

for all x ∈ J . That is,

e2K
2 �

∣
∣
∣
∣

ψ−(x)

W (ψ+, ψ−)

∣
∣
∣
∣ , x ∈ J .

Furthermore, noticing that

ψ+(y) = cos(
√
E(y − tm)) � 1/2 for all y ∈ (tm − δ, tm],

for some K -independent sufficiently small constant δ > 0, and using Proposition 2.4
we arrive at

|GE
ω,[0,tm ](x, y)| =

∣
∣
∣
∣
ψ−(x)ψ+(y)

W (ψ+, ψ−)

∣
∣
∣
∣ �

∣
∣
∣
∣

ψ−(x)

2W (ψ+, ψ−)

∣
∣
∣
∣ � e2K

2
,

for all (x, y) ∈ J × (tm − δ, tm]. Thus (3.38) holds as required. ��

Step 3 Let ζ be as in Step 2. Then there exists N = N (Cu) such that for all K � K (N )

and all n ∈ [K 11 + K 10, K ] one has

1

n
log ‖ME

n (T ζ ω)‖ � L(E) − 5ε. (3.39)

Proof Combining (3.28), (3.37) and Theorem 3.11 one infers

1

mK
log ‖ME

mK (T ζ+rω)‖ � L(E) − ε, r ∈ [K 10, K ], m ∈ {1, 2}. (3.40)
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We will use (3.40) to apply the Avalanche principle, see Lemma 3.12. Concretely,
choose q ∈ Z+ with K 10 � q � K−1K − K 9, define

A( j) := ME
K (T ζ+K 10+( j−1)Kω), 1 � j � q.

With λ := exp(K (L(E) − ε)), (3.40) gives

‖A( j)‖ � λ � q

for all j , where the second inequality holds as long as N , cf. (3.27), is sufficiently
large. Since K � ñ1 and K � log2(|ζ | + |K | + 1) (enlarge N if necessary), we may
use (3.15) to obtain

‖A( j)‖ � exp
(
K (L(E) + ε)

)
, 1 � j � q.

Thus, implies

∣
∣
∣log ‖A( j+1)‖ + log ‖A( j)‖ − log ‖A( j+1)A( j)‖

∣
∣
∣

log ‖A( j+1)‖ + log ‖A( j)‖ − log ‖A( j+1)A( j)‖
< 2K (L(E) + ε) − 2K (L(E) − ε)

= 4K ε

� 1

2
log λ,

where the final inequality needs ε to be sufficiently small; we note that this smallness
condition depends only on μ̃. Thus, taking N̂ = qK and r0 = K 10, we have N̂ ∈
[K 11, K − K 10] and the Avalanche Principle (Lemma 3.12) yields

log ‖MN̂ (T ζ+r0ω)‖ = log ‖A(q) · · · A(1)‖

�
q−1∑

j=1

log ‖A( j+1)A( j)‖ −
q−1∑

j=2

log ‖A( j)‖ − C
q

λ

� (q − 1)2K (L(E) − ε) − (q − 2)K (L(E) + ε) − C

� N̂ (L(E) − 4ε)

again, by choosing N large.
Putting this together, we can control ‖ME

n (T ζ ω)‖ for general K 11+K 10 � n � K̄
by interpolation. In particular, writing n = qK + p with 0 � p < K and q �
K 10 + K 9, we have

‖ME
n (T ζ ω)‖ � ‖Mn−K 10(T ζ+K 10

ω)‖
‖MK 10(T ζ ω)‖

� ρ−K 10−p‖MqK−K 10(T ζ+K 10
ω)‖
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1368 D. Damanik et al.

� ρ−K 10−pe(qK−K 10)(L(E)−4ε)

� en(L(E)−5ε),

as long as N is sufficiently large [recall ρ from (3.12)]. ��

Picking τ ∈ (t0, t1) such that u(τ ) 
= 0, replacing u by u
u(τ )

, and using (3.39) one
infers (3.26) which in turn yields (3.24) and (3.22).

Proof of Part (ii). By Part (i) and Ruelle’s deterministic version of Oseledec’ The-
orem [54,56], every generalized eigenvalue is, in fact, an eigenvalue corresponding
to an exponentially decaying eigenfunction. Furthermore, since the spectral measure
of HωχI (Hω) is supported by the generalized eigenvalues belonging to I , cf. [44,
Theorem C.17], one infers that ran(χI (Hω)) admits a basis of exponential decaying
eigenfunctions.

Proof of Part (iii). First, we notice that

max
{‖ f ‖L∞(t j ,t j+1), ‖ f ′‖L∞(t j ,t j+1)

}

� c(�−, �+)(‖ f ‖L2(t j ,t j+1)
+ ‖ f ′′‖L2(t j ,t j+1)

)

� c(�−, �+, I )‖ f ‖L2(R+) = c(�−, �+, I ),

(3.41)

and

‖ f ′‖L∞(t j ,t j+1) � C(�−, �+)(‖ f ‖L2(t j ,t j+1)
+ ‖ f ′′‖L2(t j ,t j+1)

)

� C(�−, �+, I )‖ f ‖L2(t j ,t j+1)
� C(�−, �+, I )‖ f ‖L∞(t j ,t j+1),

(3.42)

for some C(�−, �+, I ) > 0, and all j ∈ Z+ cf., e.g, [21, Corollary 4.2.10], [46,
IV.1.2]. In addition we remark that f attains its maximum since

{[
f (t+j )

f ′(t+j )

]}∞

j=0

∈ �2(Z+, C
2) and thus lim

t→∞(| f (t)| + | f ′(t)|) = 0.

Therefore, we may repeat the arguments of the proof of Part (i) with

u = f

‖ f ‖L∞(R+)

, Cu = max
{
1,C(�−, �+, I )

}
in Step 1,

τ = argmax| f | (i.e. τ is chosen so that | f (τ )| = ‖ f ‖∞) in Step 2,

where we pick any value of argmax if there is more than one extremum. Then for a
given ε ∈ (0, τ ) there exists N = N (ε, ω) (which does not depend on f ) such that
for all K � K (N , log2(ζ + 1)) and all n ∈ [K 11 + K 10, K ] one has

1

n
log ‖ME

n (T ζ ω)‖ � L(E) − 6ε.
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Utilizing this with sufficiently small ε (depending on δ only) and letting

κ := c(b±, �± I )max
{
1,C(�−, �+, I )

}
,

see (3.41), (3.42), we will show that

| f (t+ζ+n)| � κe−(1−δ)L(E)n, for all n ∈
[
p

4
,
p − 1

2

]

,

for all p ∈ [K 11+ K 10, K ], K � K (N ). As in Step 1 our subsequent argument relies
on a representation of f considered on the interval [tζ , tζ+p] in terms of its boundary
values. Our choice of the representation, as before, depends on the entry of

S−1(qζ+p)D
−1(bζ+p)M

E
p (T ζ ω)

that dominates its norm. We will provide the argument assuming that the maximizing
entry is 11 and note that the other three cases can be treated almost identically.

One has

f (t+ζ+n)

M f
= f ′(t+ζ )ψ+(t+ζ+n)

M f ψ
′+(t+ζ )

+ f (t−ζ+p)ψ−(t+ζ+n)

M f ψ−(t−ζ+p)
, (3.43)

where M f := ‖ f ‖L∞(R+), −ψ ′′± = Eψ±, ψ± satisfies the interior vertex conditions
in the interval [tζ , tζ+p], and

ψ−(t+ζ ) = 1, ψ ′−(t+ζ ) = 0, ψ+(t−ζ+p) = 0, ψ ′+(t−ζ+p) = 1,

and

|W (ψ+, ψ−)| = |ψ ′+(t+ζ )| = |ψ−(t−ζ+p)|

�
‖S−1(qζ+p)D−1(bζ+p)ME

p (T ζ ω)‖
4

�
‖ME

p (T ζ ω)‖
4‖D(bζ+p)S(qζ+p)‖

� c(b±, �±) exp((L(E) − 6ε)p),

(3.44)

for some c(b±, �±) > 0. In order to estimate ψ−(t+ζ+n), we rewrite it in terms of the
transfer matrices and use (3.15) as follows

|ψ−(t+ζ+n)| =
∣
∣
∣
∣

〈[
1
0

]

, ME
n (T ζ ω)

[
1
0

]〉∣
∣
∣
∣ � exp((L(E) + ε)n).
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1370 D. Damanik et al.

Similarly one can estimateψ+(t+ζ+n). Combining this and (3.41), (3.42), (3.43), (3.44)
we get

| f (t+ζ+n)| � κ exp((L(E) + ε)n − (L(E) − 6ε)p)

+κ exp((L(E) + ε)(p − n) − (L(E) − 6ε)p)

� κ exp(−(p − n)L(E) + (n + 6p)ε)

+κ exp(−nL(E) + (7p − n)ε)

� 2κ exp(−nL(E) + 8pε) � 2κ exp(−nL(E) + 32nε)

� 2κe−(1−δ)nL(E),

to facilitate the last inequality we pick ε = ε(δ) > 0 sufficiently small (depending
only on δ). Thus

| f (t+ζ+n)| � 2κe−(1−δ)L(E)n, (3.45)

for all n ∈ [ K 11+K 10

4 , K−1
2 ] and K � K (N ). Since these intervals cover the half-line

[ K 11

2 ,∞) for sufficiently large N , the inequality in (3.45) holds for all

n � K 11

2
= 1

2
max

{
N (ω, ε), log2(ζ + 1)

}11
.

Furthermore, estimating f (t+ζ+n) for

n ∈
[

0, 2−1 max
{
N (ω, ε), log2(ζ + 1)

}11
]

trivially and changing variables k = ζ + n, we get

| f (t+k )| � 2κe(1−δ)L(E)max
{
N (ω,ε),log2(ζ+1)

}11
e−(1−δ)L(E)(k−ζ )

� Cω,δe
Cδ log22(ζ+1)e−(1−δ)L(E)|k−ζ |, k � ζ.

(3.46)

A similar estimate can be obtained for k ∈ [0, ζ ]: In this case, the Lyapunov behavior
(3.45) is observed only for sufficiently large ζ , in which case (3.45) holds for k ∈
[0, ζ − K 11

2 ] (for small ζ , use the trivial bound).
In order to show a version of (3.46) with f replaced by f ′, we employ

f ′(t+ζ+n)

M f
= f ′(t+ζ )ψ ′+(t+ζ+n)

M f ψ
′+(t+ζ )

+ f (t−ζ+p)ψ
′−(t+ζ+n)

M f ψ−(t−ζ+p)
,

and repeat (3.44)–(3.46). Finally, keeping in mind Remark 3.3 and interpolating
between the discrete vertices, we infer (3.23). ��

Having established existence of a basis of semi-uniformly localized eigenfunctions
(SULE) we turn to dynamical localization. Our argument stems from the proof of [38,
Theorem 2.1].
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Localization for Anderson models on metric... 1371

Proof of Theorem 1.1 Our first goal is to derive an upper bound for the number of
centers of localization5 located in a large interval [0, L]. Let {ϕn}∞n=1 be an L2(R+)-
orthonormal basis of exponentially decaying eigenfunctions of the spectral subspace
ran(χI (Hω)); the corresponding eigenvalues are denoted by En ∈ I , n � 1. Then by
(3.23) with

δ := 1/2, ν := min(min
E∈I L̃(E), 1) > 0,

we have
|ϕn(x)| � Cωe

C log22(ζn+1)e−
ν|x−ζn |

2 , x � 0. (3.47)

We claim that
N(L) := #{n : ζn � L} � C(ω, I )L, L � L0, (3.48)

for sufficiently large L0 > 0. For L > 0 let χ3L ∈ B(L2(R+)) denote the operator of
multiplication by the characteristic function of [0, 3L], let R(Hω) denote the resolvent
of Hω at λ = min σ(Hω) − 1 and note that ‖R2(Hω)‖B(L2(R+)) � 1. Next we show

N(L) � C(ω, I ) tr(χ3L R
2(Hω)χ3L), (3.49)

for sufficiently large L and some C(ω, I ). To that end, notice that

1

(En − λ)2
= 〈ϕn, R

2(Hω)ϕn〉L2(R+)

= 〈ϕn, χ3L R
2(Hω)χ3Lϕn〉L2(R+)

+ 〈ϕn, χ3L R
2(Hω)(1− χ3L)ϕn〉L2(R+)

+ 〈ϕn, (1− χ3L)R2(Hω)χ3Lϕn〉L2(R+) (3.50)

+ 〈ϕn, (1− χ3L)R2(Hω)(1− χ3L)ϕn〉L2(R+). (3.51)

Assuming that ζn � L , En ∈ I , and C log22(L + 1) < νL
4 and using (3.47) we obtain

|ϕn(x)| � Cωe
νL
4 e−

ν|x−ζn |
2 , x � 0,

and

〈ϕn , χ3L R
2(Hω)(1− χ3L )ϕn〉L2(R+) � ‖(1− χ3L )ϕn‖L2(R+)

� Cωe
νL
4

(∫ ∞
3L

e−ν|x−ζn |dx
)1/2

� Cωe
νL
4 e

νζn
2 e−

3νL
2 ν

− 1
2 � Cωe

− 3νL
4 ν

− 1
2 =

L→∞ o(1).

Similar estimates hold for (3.50) and (3.51). Therefore we have

tr(χ3L R
2(Hω)χ3L)

5 ζ from (3.23) is called the center of localization of f .

123



1372 D. Damanik et al.

�
∑

n: ζn�L

〈ϕn, χ3L R
2(Hω)χ3Lϕn〉L2(R+)

�
∑

n: ζn�L

(
1

(En − λ)2
− 3Cωe

− 3νL
4 ν−

1
2

)

� C(I , ω) #{n : ζn � L},

for some C(I , ω) > 0.
Next we estimate the right-hand side of (3.49). Let us recall that AB ∈ B2(L2(R+))

(the space of Hilbert–Schmidt operators on L2(R+)) and

‖AB‖B2(L2(R+)) � ‖A‖B(L∞(R+),L2(R+))‖B‖B(L2(R+)),L∞(R+)),

whenever A ∈ B(L∞(R+), L2(R+)), B ∈ B(L2(R+), L∞(R+)). A discussion of this
fact together with related references can be found, for instance, in [60, Section 4.1.11]
and [61, pp. 418–419]. This result is applicable in our case due to [44, Lemma C.12]
which asserts that R(Hω) maps (boundedly) L2(R+) into L∞(R+). Combining these
facts we infer

tr(χ3L R
2(Hω)χ3L) = ‖χ3L R(Hω)‖2B2(L2(R+))

�
(√

3L‖R(Hω)‖B(L2(R+),L∞(R+))

)2
� C(ω)L,

(3.52)

for some C(ω) > 0. Then (3.49) and (3.52) yield (3.48).
Next, we turn to (1.4). For brevity, denote γ := 22+ ε and let κ > 0 be such that

| logγ (x + κ) − logγ (y + κ)| � ν|x − y|
4

, x, y > 0. (3.53)

Then we have
∥
∥
∥|X |pχI (Hω)e−i t Hωψ

∥
∥
∥
L2(R+)

�
∞∑

n=1

|〈ϕn, ψ〉L2(R+)| ‖|X |pϕn‖L2(R+) (3.54)

�
∞∑

n=1

Cω,I e
2C log22(ζn+1)

∫

R+
|ψ(x)|e− ν|x−ζn |

2 dx

(∫

R+
x2pe−ν|x−ζn |dx

)1/2

�
∞∑

n=1

Cω,I ,p,ψ e2C log22(ζn+1)ζ
p
n

∫

R+
e− logγ (x+κ)e−

ν|x−ζn |
2 dx

�
∞∑

n=1

Cω,I ,p,ψ e2C log22(ζn+1)+p log(ζn+1)−logγ (ζn+κ)

×
∫

R+
e− logγ (x+κ)+logγ (ζn+κ)− ν|x−ζn |

2 dx
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�
(3.53)

∞∑

n=1

Cω,I ,p,ψ e2C log22(ζn+1)+p log(ζn+1)−logγ (ζn+κ)

×
∫

R+
e−

ν|x−ζn |
4 dx

� C̃ω,I ,p,ψ

∞∑

n=1

e2C log22(ζn+1)+p log(ζn+1)−logγ (ζn+κ)

� C̃ω,I ,p,ψ

∞∑

L=0

∑

n:ζn=L

e2C log22(ζn+1)+p log(ζn+1)−logγ (ζn+κ)

� C̃ω,I ,p,ψ

∞∑

L=0

N(L) e2C log22(L+1)+p log(L+1)−log22+ε(L+κ) < ∞, (3.55)

where we used (3.48) in the last inequality.

4 Randommetric trees

4.1 The almost-sure spectrum for continuummodels

Our first objective is to show that almost surely the spectrum of Hω is given by a
deterministic set �.

Theorem 4.1 There exists a full μ-measure set �̂ ⊂ � such that

σ(Hω) = � :=
⋃

(b,�,q) periodic

σ(H(b, �, q)), ω ∈ �̂.

Proof Since
σ(H(b, �, q)) =

⋃

k∈Z+
σ(H(T kb, T k�, T kq)),

one has
σ(Hω) =

⋃

k∈Z+
σ(HTkω); � =

⋃

(b,�,q) periodic

σ(H(b, �, q)).

First, we will first show that

σ(Hω) ⊂ �, for all ω ∈ �,

and therefore σ(Hω) ⊂ �. Let us fix ω ∈ �. Seeking a contradiction, we pick
E ∈ σ(Hω)\�. Then there exist

{ fk}∞k=1 ⊂ dom(Hω) and {mk}∞k=1 ⊂ N,

such that

‖ fk‖L2(t0,∞) = 1, supp( fk) ⊂ [t0, tmk ],
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sup
g∈dom(hω)

‖g‖Ĥ1(t0,∞)
�1

(hω − E)[ fk, g] → 0, k → ∞, (4.1)

where hω = h(bω, �ω, qω), cf. (2.17)–(2.19) [we recall that Ĥ1-norm is equivalent
to the form norm, see (2.21)]. Let (bk, �k, qk) ∈ � denote the mk-periodic sequence
whose first mk elements are given by ω1, . . . , ωmk . Then since E /∈ � one has

C := sup
k∈N

‖Fk‖Ĥ1(t0,∞) < ∞, Fk := (H(bk, �k, qk) − E)−1 fk,

where the first inequality follows from the fact that F ′′
k = −EFk − fk and Sobolev

inequalities. Suitable truncations of Fk belong to dom(hω). Indeed, for k ∈ N, let
ϕk ∈ C∞

0 [t0,∞) be such that suppϕk ⊂ [t0, tmk+1], 0 � ϕk(x) � 1, x � t0, and

ϕk(x) =
{
1, x ∈ [t0, tmk ],
0, x ∈ [tmk+1,∞).

Then for all k ∈ N one has

(ϕk Fk) ∈ dom(hω)

‖ϕk Fk‖Ĥ1(R+) � max
{
1, ‖ϕk‖H1(tmk ,tmk+1)

}
‖Fk‖Ĥ1(R+) � 1,

(4.2)

where we used ‖ϕk Fk‖H1(tmk ,tmk+1)
� ‖ϕk‖H1(tmk ,tmk+1)

‖Fk‖H1(tmk ,tmk+1)
, see [41,

Theorem 4.14]. Moreover, one has

(hω − E)[ fk , ϕk Fk ] = 〈ϕk Fk ,− f ′′k − E fk〉L2(R+)

= 〈Fk ,− f ′′k − E fk〉L2(R+)

=
〈
(H(bk , �k , qk) − E)−1 fk , (H(bk , �k , qk) − E) fk

〉

L2(R+)
= 1.

(4.3)

Combining (4.1), (4.2) and (4.3) we obtain a contradiction.
Next we show that exists a full μ-measure set �̂ ⊂ � such that

� ⊂ σ(Hω), ω ∈ �̂. (4.4)

First of all, we note that E ∈ σ(Hω) whenever there exist two sequences of natural
numbers

{rk}∞k=1 ⊂ N, {mk}∞k=1 ⊂ N, (4.5)

and a sequence of functions { fk}∞k=1 such that fk ∈ dom(hT rkω) satisfying

lim inf
k→∞ ‖ fk‖L2(tω(rk ),∞) > 0, supp( fk) ⊂ [tω(rk), tω(rk + mk)], k ∈ N, (4.6)

and
sup (hT rkω − E)[ fk, g] → 0, k → ∞, (4.7)
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where the supremum is taken over the set

{g ∈ dom(hT rkω) : ‖g‖Ĥ1(tω(rk ),∞) � 1}.

This is due to orthogonal decomposition (2.11) and the standard Weyl criterion for
Hω. Secondly, there exists �̂ ⊂ �, μ(�̂) = 1 such that for arbitrary

ω ∈ �̂, (b, �, q) ∈ supp(μ), {mk}∞k=1 ⊂ N,

there exists a sequence {rk}∞k=1 such that for all k ∈ N one has

bω(rk + i) = bi for all i ∈ {1, . . . ,mk},

max
1�i�mk

|�ω(i + rk) − �i | �
√

�−
k

, (4.8)

max
1�i�mk

|qω(i + rk) − qi | � 1

k
, (4.9)

see, for example, [47, Proposition 3.8]. We claim that (4.4) holds with this choice
of �̂. Indeed, pick any periodic sequence (b, �, q) and E ∈ σ(H(b, �, q)). Then by
Proposition 2.3 there exist

{ϕk}∞k=1 ⊂ dom(h(b, �, q)), {mk}∞k=1 ⊂ N,

such that

sup
k∈N

‖ϕk‖Ĥ1(t0,∞) < ∞, ‖ϕk‖L2(t0,∞) = 1, supp(ϕk) ⊂ [t0, tmk ],
sup

g∈dom(h(b,�,q))
‖g‖Ĥ1(t0,∞)

�1

(h(b, �, q) − E)[ϕk, g] → 0, k → ∞. (4.10)

In order to produce a singular sequence for Hω we will rescale ϕk from [ti−1, ti ] to
[tω(rk + i − 1), tω(rk + i)]. That is, for every i, k ∈ N we let

fk(y) := ϕk(s
−1
i,k (y)), y ∈ [tω(rk + i − 1), tω(rk + i)],

where

si,k(x) := tω(rk + i) − tω(rk + i − 1)

�i
(x − ti−1) + tω(rk + i − 1),

for x ∈ [ti−1, ti ]. Then changing variables one obtains

〈 f ′k, g′〉L2
(
tω(rk+i−1),tω(rk+i)

) = �i

�ω(rk + i)
〈ϕ′

k, (g ◦ si,k)′〉L2(ti−1, ti ), (4.11)
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〈 fk, g〉L2
(
tω(rk+i−1),tω(rk+i)

) = �ω(rk + i)

�i
〈ϕk, g ◦ si,k〉L2(ti−1, ti ), (4.12)

where g ∈ Ĥ1(tω(rk),∞). Let us denote

g̃k(x) := (g ◦ si,k)(x), x ∈ [ti−1, ti ], i ∈ N, k ∈ N.

Then using (4.11), (4.12) with fk replaced by g we note that there exists a constant
C > 0 which does not depend on k such that

‖g̃k‖Ĥ1(t0,tmk ) � C if ‖g‖Ĥ1(tω(rk ),∞) � 1, k ∈ N. (4.13)

We claim that { fk}∞k=1 is a singular sequence satisfying (4.5)–(4.7). First, we know
that fk ∈ dom(hT rkω) holds since the vertex conditions displayed in (2.18) are scale-
invariant. Next, the conditions in (4.6) hold due to (4.10) and (4.12) (with g = fk). In
order to check (4.7), let us fix k ∈ N and g with ‖g‖Ĥ1(tω(rk ),∞) � 1. Then one has

|(hT rkω − E)[ fk, g] − (h(b, �, q) − E)[ϕk, g̃k]|

�
∣
∣
∣

mk∑

i=1

(
�i

�ω(rk + i)
− 1

)

〈ϕ′
k, (g ◦ si,k)′〉L2(ti−1, ti )

− E

(
�ω(rk + i)

�i
− 1

)

〈ϕk, g ◦ si,k〉L2(ti−1, ti )

∣
∣
∣

+
∣
∣
∣
∣
∣

mk∑

i=1

(qi − qω(rk + i)) ϕk(t
−
i )(g ◦ si,k)(t−i )

∣
∣
∣
∣
∣

�
‖ϕk‖Ĥ1(R+) ‖g̃k‖Ĥ1(R+)

k

� 1

k
→ 0, k → ∞.

In the first inequality we employed (4.11) and (4.12); in the second one we used the
Cauchy–Schwarz inequality, the fact that |ϕk(t

−
i )| � ‖ϕk‖Ĥ1(ti−1,ti ), (4.8), and (4.9);

and finally in the last inequality we used (4.10) and (4.13). Hence, (4.7) holds and
E ∈ σ(Hω) as asserted. ��

Remark 4.2 It is natural to conjecture that the spectrum for the half-line operator Hω

is a deterministic set given by the union of periodic spectra of H(b, �, q). The latter,
under some spectral monotonicity assumption, in turn equals the union of constant
spectra, which in certain scenarios can be computed explicitly. However, neither stan-
dard ergodicity arguments (e.g., proof of Pastur’s Theorem) nor spectral theoretical
arguments (cf. [60, proof Lemma 1.4.2] and [48]) seem to be applicable to the half-line
models in question. We note that the half-line models present both probabilistic and
spectral-theoretical complications which are not typical for operators on R.
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4.2 Proof of dynamical and exponential localization for metric trees

We say that a function f : �b,� → R is tree-exponentially decaying if there exist
λ � 0 and C = C( f , λ) > 0 such that

| f (x)| � Ce−λ|x |
√

wo(|x |) ,

where wo(|x |) denotes the number of vertices in the same generation as x ; cf. (2.1).

Proof of Theorem 1.2 (i) By Theorem 4.1 and part (ii) of Theorem 3.13, there exist full
measure sets �̂, �̃ ⊂ � such that

σ(Hω) = �, σc(Hω) = ∅, ω ∈ �̂ ∩ �̃,

and the operator Hω enjoys a basis of exponentially decaying eigenfunctions. Then
letting

�∗ :=
⋂

n∈Z+
T−n(�̂ ∩ �̃), (4.14)

we notice that μ(�∗) = 1 and that

σ(Hω) = �, σc(Hω) =
⋃

n∈Z+
σc(HTnω) = ∅, ω ∈ �∗,

where we used the orthogonal decomposition (2.12). Next we show that Hω admits a
basis of tree-exponentially decaying eigenfunctions almost surely. To that end, let us fix
ω ∈ �̃, v ∈ V\{o}, gen(v) = n ∈ N, and 1 � k � bn−1. Then it suffices to construct
a basis of tree-exponentially decaying eigenfunctions in Lv,k = U−1

v,k(L
2(tω(n),∞)),

cf. (2.4), (2.5). For a basis element f ∈ ker(HTnω − E) of L2(tω(n),∞), we define
the corresponding basis element of Lv,k ,

ψ f := U−1
v,k f , ψ f ∈ dom(Hω).

Then (2.9) yields

|ψ f (x)| � C f e−
L̃(E)|x |

2√
wv(|x |) .

A basis of tree-exponentially decaying eigenfunctions of Lo can be constructed
similarly.

(ii) Let v ∈ V and n := gen(v), then by Part (iii) of Theorem 3.13, the subspace
ran(χI (HTnω)) is spanned by semi-uniformly localized eigenfunctions

fn, j ∈ ker(HTnω − E j (n)), j ∈ Z+, E j (n) ∈ I , n = gen(v). (4.15)
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For 1 � k � bn−1, j ∈ Z+ we introduce

ψv,k, j := U−1
v,k fn, j ∈ dom(Hω),

and notice that
supp(ψv,k, j ) ⊂ Tv, (4.16)

the forward subtree rooted at v. Then for ω ∈ �∗ one has (abbreviating � = �bω,�ω ):

∥
∥
∥|X |pχI (Hω)e−i tHωχK

∥
∥
∥
L2(�)

�
∑

v∈V

bv−1∑

k=1

∑

{

j : E j (n)∈I ,
E j (n) as in (4.15)

}
|〈ψv,k, j , χK〉L2(�)| ‖|X |pψv,k, j‖L2(�)

�
(4.16)

∑

v∈V, Tv∩K
=∅

∑

1�k�bv−1
j :E j (n)∈I

|〈ψv,k, j , χK〉L2(�)| ‖|X |pψv,k, j‖L2(�)

�
∑

v∈V, Tv∩K
=∅
1�k�bv−1
j :E j (n)∈I

∫

K∩Tv

|ψv,k, j (x)|dx
(∫

�

x2p|ψv,k, j (x)|2dx
)1/2

�
∑

v∈V, Tv∩K
=∅,
n=gen(v)

1�k�bv−1,
j :E j (n)∈I

∫

|K∩Tv |
(wv(t))

1/2| fn, j (t + |v|)|dt

×
(∫

�

|x |2p|ψv,k, j (x)|2dx
)1/2

�
∑

v∈V, Tv∩K
=∅,
n=gen(v)
j :E j (n)∈I

Cv,K

∫

|K∩Tv |
| fn, j (t + |v|)|dt

×
(∫ ∞

|v|
|τ |2p| fn, j (τ )|2dτ

)1/2

, (4.17)

where |K| := [0, diam(K)]. Proceeding as in (3.54), (3.55) with ψ replaced by the
characteristic function of the interval [0, diam(K)], we deduce that (4.17) converges
as asserted. ��

Remark 4.3 We notice that all eigenfunctions ψE (including those corresponding to
energies E ∈ D) satisfy

|ψE (x)| � Ce−λE |x |
√

wo(|x |) , (4.18)
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for some λE � 0 andC > 0, wherewo(|x |) denotes the number of vertices in the same
generation as x ; cf. (2.1). Moreover, one has λE > 0 whenever E /∈ D, in particular,
(4.18) yields ψE ∈ L2(�b,�) in this case. Furthermore, if E ∈ D and λE = 0 then ψE

still decays exponentially, |ψE (v)| � C
2|gen(v)|/2 for all v ∈ V. However, this inequality

alone is insufficient to deduce L2(�b,�) integrability. The analogous issue does not
arise in the setting of metric graphs for which the volume of the ball centered at the
root with radius r grows polynomially as r ↑ +∞, e.g., as in the metric graph spanned
by Z

d .

Part 2. Anderson localization for discrete radial trees

5 Random discrete trees

This part of the paper concerns Anderson localization for discrete radial trees.

Hypothesis 5.1 Let � = (V, E) be a rooted, radial discrete tree. Assume that the
branching numbers bv ∈ [b−, b+], b− � 2, and the potential qv ∈ [q−, q+] are
radial. Let

p : {(u, v) ∈ V2 : d(u, v) = 1} → [p−, p+],
be radial, symmetric, and bounded, that is,

p(u, v) = pmin(gen(u),gen(v)), for u, v ∈ V;

and p := {pn}∞n=0 ⊂ [p−, p+], p−1 = 0, p± ∈ (0,∞).

Assuming this hypothesis, we introduce a bounded operator J(b, p, q) ∈ B(�2(V)) as
follows

(J(b, p, q) f )(u) :=
∑

v∼u

p(u, v)
(
q(u) f (u) − f (v)

)
, f ∈ �2(V). (5.1)

In this part, we adopt the notation of the previous sections with the convention that
all edges have length one. Thus, for vertices x, y ∈ V, dist(x, y) is the combinatorial
distance between them, and, in particular |x | = gen(x) for all x ∈ V.

5.1 The almost-sure spectrum for discrete models

The following hypothesis is assumed throughout this section.

Hypothesis 5.2 Let μ̃ be a probability measure with supp(μ̃) = A, #A � 2, and
either

A ⊆ {b−, . . . , b+} × {1} × [q−, q+] (5.2)

or
A ⊆ {b−, . . . , b+} × [p−, p+] × {0}

and ∃(b, p, 0), (b′, q ′, 0) ∈ supp μ̃ with p
√
b 
= p′

√
b′.

(5.3)
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Let us remark that the secondary hypothesis in (5.3) is essential, for, if supp μ̃ is
concentrated on a set for which q = 0 and p

√
b = const., then the Jacobi matrices

arising in the orthogonal decomposition of Jω will all have constant entries.
We introduce (�,μ) := (AZ+ , μ̃Z+). For ω ∈ �, define the operators Jω :=

J(bω, pω, qω) and Jacobi matrices Jω := J (bω, pω, qω), where

{(bω(n), pω(n), qω(n))}∞n=0,

is a sequence of i.i.d. random vectors with common distribution μ̃. Let us notice that

Jω =
{

Sω (cf. (1.6)), if (5.2) holds,

Aω (cf. (1.7)), if (5.3) holds.

In particular,

• RandomBranchingModel (RBM) arises when supp μ̃ ⊆ {b−, ..., b+}×{1}×{1},
• Random Weight Model (RWM) arises when supp μ̃ ⊆ {d} × [p−, p+] × {0},
• Random Schrödinger Operator (RSO) arises when supp μ̃ ⊆ {d}×{1}×[q−, q+].

Remark 5.3 We point out that RBM and RSO concern random realizations of the
discrete Laplace operator, while RWM is focused on the adjacency matrices, i.e.
q ≡ 0. Typically (e.g., for Z

d models) the distinction between the discrete Laplace
operator and the adjacency matrix of the graph is irrelevant as the two operators
differ by a scalar multiple of the identity operator. In the setting of non-constant trees,
however, the distinction is more subtle since it depends on the branching numbers.
What is more, the consecutive transfer matrices for RWM are correlated unless q ≡ 0.

Abusing notation somewhat, we will identify a scalar with a constant sequence
consisting of that scalar, for examplewritingA(2, 1, 0) tomean the adjacency operator
for which all branching numbers are two and all p’s are one.

Theorem 5.4 There exists a full μ-measure set �̂ ⊂ � such that

σ(Aω) = � :=
⋃

(b,p) periodic

σ(A(b, p, 0)), ω ∈ �̂. (5.4)

Proof First, we show that

σ(Aω) ⊂ �, for all ω ∈ �.

Seeking contradiction, we assume that E ∈ σ(Aω)\� for some ω ∈ �. Then there
exist

{ fk}∞k=1 ⊂ �2(�) and {mk}∞k=1 ⊂ N,

such that
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‖ fk‖�2(�) = 1, supp( fk) ⊂ B(o;mk),

‖(Aω − E) fk‖�2(�) → 0, k → ∞. (5.5)

where B(o;mk) denotes the ball centered at o with radius mk . The mk + 2-periodic
sequence with the first mk + 2 elements given by ω1, . . . , ωmk+1 is denoted by
(bk, pk, 0). Then since E /∈ � one has

‖(A(bk, pk, 0) − E)−1‖B(�2(�)) � C < ∞,

and thus for all k we get

‖(Aω − E) fk‖�2(�) = ‖(A(bk, pk, 0) − E) fk‖�2(�) � C−1 > 0,

which contradicts (5.5).
Next, we show

� ⊂ σ(Aω)

for almost all ω. To that end, we first notice that there exists �̂ ⊂ �, μ(�̂) = 1 such
that for arbitrary

ω ∈ �̂, (b, p, 0) ∈ supp(μ), and {mk}∞k=1 ⊂ N, (5.6)

there exists a sequence {rk}∞k=1 such that for all k ∈ N one has

bω(rk + i) = bi for all i ∈ {0, . . . ,mk + 1}, (5.7)

max
0�i�mk+1

|pω(i + rk) − pi | =
k→∞ o(1), (5.8)

see, for example, [47, Proposition 3.8]. Pick an arbitrary periodic sequence (b, p, 0) ∈
supp(μ) and an arbitrary E ∈ σ(A(b, p, 0)). Then there exist {ϕk}∞k=1 ⊂ �2(�) and
{mk}∞k=1 ⊂ N such that

‖ϕk‖�2(�) = 1, supp(ϕk) ⊂ B(o;mk), k ∈ N,

‖(A(b, p, q) − E)ϕk‖�2(�) → 0, k → ∞. (5.9)

Given (5.6)–(5.9) we are ready to produce a Weyl sequence for Aω.
For a fixed k ∈ N, pick two distinct vertices v1, v2 in generation rk with common

backward neighbor u ∈ V (in generation rk − 1), see Fig. 2. Then by (5.7) there exists
a pair of graph isomorphisms

ξ(k, i) : B(o;mk + 1) → Tvi ∩ B(vi ;mk + 1).

We notice that
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Fig. 2 Top panel: T (k). Bottom
panel: vertices v1, v2 in
generation rk with common
backward neighbor u, brk = 2.
Subtree in blue (dashed) is
T (k, 2). The isomporphism
ξ(k, 2) maps T (k) onto T (k, 2),
in particular o �→ v2, x �→ y,
a �→ b, blue (dashed) tree in the
top panel gets mapped into the
blue (dashed) subtree in the
bottom panel

ξ(k, i)(o) = vi , i = 1, 2, k ∈ N. (5.10)

For brevity, we denote

T (k) := � ∩ B(o;mk + 1), T (k, i) := Tvi ∩ B(vi ;mk + 1). (5.11)
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Let us define

(Wkϕ)(x) :=

⎧
⎪⎨

⎪⎩

2−1/2ϕ(ξ−1(k, 1)x), x ∈ T (k, 1),

−2−1/2ϕ(ξ−1(k, 2)x), x ∈ T (k, 2),

0, otherwise

(5.12)

for ϕ ∈ �2(V) which is supported on B(o,mk + 1). We claim that {Wkϕk}k�1 is a
Weyl sequence for Aω, ω ∈ �̂. To that end, let us first notice

∣
∣‖(A(b, p, 0) − E)ϕk‖�2(�) − ‖(Aω − E)Wkϕk‖�2(�)

∣
∣

= ∣
∣‖Wk(A(b, p, 0) − E)ϕk‖�2(�) − ‖(Aω − E)Wkϕk‖�2(�)

∣
∣

� ‖Wk(A(b, p, 0) − E)ϕk − (Aω − E)Wkϕk‖�2(�)

= ‖WkA(b, p, 0)ϕk − AωWkϕk‖�2(�),

where we used ‖(A(b, p, 0) − E)ϕk‖�2(�) = ‖Wk(A(b, p, 0) − E)ϕk‖�2(�) which
follows from the definition of Wk . Next, recalling (5.10) and the fact that u is the
common backward neighbor of v1, v2 we get

(AωWkϕk)(u) = pω(u, v1)[Wkϕk](v1) + pω(u, v2)[Wkϕk](v2)
= pω(u, v1)ϕk(o) − pω(u, v2)ϕk(o)√

2
= 0,

since pω(u, v1) = pω(u, v2). Further, one has

Wk(A(b, p, q)ϕk)(u) = 0 = (AωWkϕk)(u), (5.13)

where the first equality follows from (5.12). Next, let us fix i = 1, 2, k ∈ N and use
the shorthand ξk := ξ(k, i). For y ∈ T (k, i) let x := ξ−1

k (y), see Fig. 2, then one has

Wk(A(b, p, 0)ϕk)(y) − [Aω(Wkϕk)](y) (5.14)

= 1√
2
(A(b, p, 0)ϕk)(x) − [Aω(Wkϕk)](y)

= − 1√
2

∑

a∼x

p(x, a)ϕk(a) +
∑

b∼y

pω(y, b)(Wkϕk)(b)

= − 1√
2

(∑

a∼x

p(x, a)ϕk(a) −
∑

b∼ξk (x)

pω(ξk(x), b)ϕk(ξ
−1
k b)

)

. (5.15)

Let us point out that ξ−1
k (b) is not defined if b /∈ Tv1 ∪ Tv2 . However, one does have

Wkϕk(b) = 0 and therefore the equality in (5.15) holds with

ϕk(ξ
−1
k (b)) := Wkϕk(b) = 0. (5.16)
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Moreover, combining this and (5.7) we obtain

∑

a∼x

p(x, a)ϕk(a) −
∑

b∼y

pω(y, b)ϕk(ξ
−1
k (b))

=
∑

a∼x

(p(x, a) − pω(ξk(x), ξk(a)))ϕk(a).
(5.17)

Given (5.16) and (5.17) we are ready to continue (5.14), (5.15). Changing variables
via b = ξk(a), we get

Wk(A(b, p, 0)ϕk)(y) − [Aω(Wkϕk)](y)
= − 1√

2

(∑

a∼x

[p(x, a) − pω(ξk(y), ξk(a))]ϕk(a)
)
,

(5.18)

where we made a change of variable b = ξk(a). Furthermore we note that (5.18) holds
for y ∈ �\(T (k, 1) ∪ T (k, 2)) trivially, i.e., both sides are equal to zero. Recalling
T (k) from (5.11) and using (5.8) yield

c(k) := max
x∈T (k),x∼a

|p(x, a) − pω(ξk(x), ξk(a))|2 =
k→∞ o(1). (5.19)

Then combining (5.13), (5.18), and (5.19), we obtain

‖WkA(b, p, 0)ϕk − AωWkϕk‖2�2(�)

=
∑

y∈�

|Wk(A(b, p, 0)ϕk)(y) − [Aω(Wkϕk)](y)|2

=
∑

x∈T (k)

∣
∣
∑

x∼a

[p(x, a) − pω(ξk(x), ξk(a))]ϕk(a)
∣
∣2

� c(k)C(b+)‖ϕk‖2�2(�)
=

k→∞ o(1),

where C(b+) > 0 is some fixed constant. Therefore, we get

∣
∣‖(A(b, p, 0) − E)ϕk‖�2(�) − ‖(Aω − E)Wkϕk‖�2(�)

∣
∣ =
k→∞ o(1).

Thus {Wkϕk}k�1 is a Weyl sequence for Aω and E ∈ σ(Aω) as asserted. ��
Remark 5.5 (1) We emphasize that the equality in (5.17) requires special attention

if y ∈ ∂(T (k, i)), since in this case the inclusion

ξk({a ∈ V : a ∼ x}) ⊂ {b ∈ V : b ∼ y},

could be strict. However, by (5.16) the equality (5.17) holds as asserted even in
this special case. Due to this nuance the current proof is not applicable to J = S.
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(Informally, if q 
= 0 in (5.1) then we “see” extra bits around vi which are not
observed near o).

(2) The almost-sure spectrum � for Aω = A(bω, 1, 0) can be computed explicitly if
p ≡ 1, q ≡ 0, i.e. the random branching model for the adjacency matrix. Indeed,
in this case, the quadratic form a of the A is given by

a[ϕ, ϕ] = −
∑

u∼v

ϕ(u)ϕ(v), ϕ ∈ �2(�).

therefore
‖A(b, 1, 0)‖B(�2(�)) � ‖A(̃b, 1, 0)‖B(�2(�)),

where b̃ := max{P1 suppμ} and P1 is the first coordinate function. Combining
this and (5.4) we get

� =
⋃

b periodic

σ(A(b, 1, 0)) ⊂ [−‖A(̃b, 1, 0)‖B(�2(�)), ‖A(̃b, 1, 0)‖B(�2(�))]

= [−2
√
b̃, 2

√
b̃] ⊂ �.

As before, we note that this proof is not applicable to the case q 
≡ 0 or p 
≡
const.

(3) Remark 5.3, the proof of Theorem 5.4, the previous remark, and the question of
computing the almost–sure spectrum itself illustrate a subtle distinction between
adjacency matrices and Schrödinger operators. This issue arises even in the most
simple case � = Z+, p ≡ 1, and random q, since [in view of (1.7)]

S =

⎡

⎢
⎢
⎢
⎣

q(1) −1
−1 2q(2) −1

−1 2q(3) −1
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

.

To be more specific, if one considers

S̃ =

⎡

⎢
⎢
⎢
⎣

2q(1) −1
−1 2q(2) −1

−1 2q(3) −1
. . .

. . .
. . .

⎤

⎥
⎥
⎥
⎦

where {q(n)} is a sequence of i.i.d. random variables, then it is well-known that
the spectrum of S̃ is almost surely given by [−2, 2] + 2 supp{q}. Since S is a
rank-one perturbation of S̃, their essential spectra coincide. However, depending
on the support of q, it can happen that S may have discrete eigenvalues outside
of σess(̃S), and these eigenvalues may not be constant almost-surely. Thus, one
should not expect the analogue of Theorem 5.4 to hold for random Schrödinger
operators on graphs (as opposed to adjacency matrices).
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5.2 Breuer-type decomposition

Our next objective is to revise the Breuer decomposition [13, Theorem 2.4] which
may be viewed as a discrete version of the orthogonal decomposition of metric
trees. To point out a difference between the two, we note: The invariant subspaces
in (2.10) are parametrized by single vertices, while those in Breuer’s decomposition
are parametrized by entire generations of vertices.

Theorem 5.6 Assume Hypothesis 5.1. Then there exists a unitary operator

�b : �2(V) →
∞⊕

n=0

m(n)⊕

k=1

�2(Z+),

such that

�b J(b, p, q)�−1
b =

∞⊕

n=0

m(n)⊕

k=1

J (T nb, T n p, T nq), (5.20)

where m(n) := b0 · b1 · · · bn−1 · (bn − 1), n ∈ Z+, and J (b, p, q) denotes the Jacobi
matrix acting in �2(Z+) and given by

J (b, p, q) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

(b0 p0 + p−1)q0
√
b0 p0 0

√
b0 p0 (b1 p1 + p0)q1

√
b1 p1

. . .

0
√
b1 p1

. . .
. . .

. . .
. . .

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (5.21)

Proof Breuer’s inductive procedure [13, Theorem 2.4] yields an orthonormal basis

{ϕn,k, j : n ∈ Z+, 1 � k � m(n), j ∈ Z+} ⊂ �2(V).

For all admissible triples n, k, j , the basis elements satisfy

supp(ϕn,k, j ) ⊂ {v ∈ V : gen(v) = n + j}, (5.22)

ϕn,k, j+1(v) =
⎧
⎨

⎩

ϕn,k, j (u)√
bn+ j

, u ∼ v, gen(v) = gen(u) + 1,

0, otherwise,
(5.23)

and

J(b, p, q)ϕn,k, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

√
bn+ j−1 pn+ j−1ϕn,k, j−1

+(bn+ j pn+ j + pn+ j−1)qn+ jϕn,k, j

+√bn+ j pn+ jϕn,k, j+1, j � 1,

(bn pn + pn−1)qnϕn,k,0 +√
bn pnϕn,k,1, j = 0.

(5.24)
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The latter shows that the operator J(b, p, q) leaves the subspaces

Hn,k := span{ϕn,k, j : j ∈ Z+} ⊂ �2(V)

invariant. Thus we have

�2(V) =
∞⊕

n=0

m(n)⊕

k=1

Hn,k, J(b, q, w)PHn,k = J (T nb, T n p, T nq), (5.25)

where PHn,k denotes an orthogonal projection ontoHn,k in �2(V). Let us define unitary
operators

Un,k : Hn,k → �2(Z+), n ∈ Z+, 1 � k � m(n),

Un,kϕn,k, j := δ j , j ∈ Z+.

and

�b :=
∞⊕

n=0

m(n)⊕

k=1

Un,k .

Then (5.24) together with (5.25) yield (5.20) and (5.21) as asserted. ��

5.3 Dynamical and exponential localization for discrete random trees

In this sectionwe discuss spectral and dynamical localization for three discretemodels:
the random branching model (RBM), the randomweights (RWM)model, and random
Schrödinger operators (RSO).

Let us denote the nonzero entries of J (b, p, q) by

β j = β j (b, p, q) = (b j p j + p j−1)q j ,

α j = α j (b, p) =
√
b j p j , j ∈ Z+.

Then a sequence u = {u j }∞j=0 satisfies J (b, p, q)u = Eu, E ∈ R, that is,

{
α j−1u j−1 + (β j − E)u j + α j u j+1 = 0, j ∈ N,

(β0 − E)u0 + α0u1 = 0,

if and only if

[
u j+1
α j u j

]

= ME, j (b, p, q)

[
u j

α j−1u j−1

]

, for all j ∈ N.
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where

ME, j (b, p, q) := 1

α j

[
E − β j −1

α2
j 0

]

=
[ E−(b j p j+p j−1)q j√

b j p j
− 1√

b j p j√
b j p j 0

]

.

(5.26)

The transfer matrix (5.26) gives rise to an SL(2, R)-cocycle

(T , ME ) : � × R
2 → � × R

2, (T , ME )(ω, v) = (Tω, ME (ω)v),

where ME : � → SL(2, R) and

ME (ω) =
[

E−(bω(0)pω(0)+pω(−1))qω(0)√
bω(0)pω(0)

− 1√
bω(0)pω(0)√

bω(0)pω(0) 0

]

.

The n-step transfer matrix ME
n (ω) and the Lyapunov exponent are defined as in (3.2)

and (3.3) respectively.

Theorem 5.7 Assume Hypothesis 5.2. Then there is a setD ⊆ R of cardinality at most
one such that G = Gν(E) enjoys the following properties for E ∈ R\D.

(i) G is noncompact
(ii) G is strongly irreducible
(iii) G is contracting (cf. [19, Definition 2.8])
(iv) Fix(G) = ∅
In particular, L is continuous and positive on R\D.

Proof Following the proof of Theorem 3.5, we choose

(b1, p1, q1) 
= (b2, p2, q2) ∈ supp μ̃,

let Mj (E) denote the transfer matrix corresponding to (b j , p j , q j ), and form the
matrices A = M1M

−1
2 and g = [M1, M2]. Let us comment briefly on the method of

proof. We can immediately apply [20] to deduce that there is an unspecified discrete
set of energies away from which (i)–(iv) hold. In fact, the argument of [20] applies
away from energies at which tr Mj (E) = 0 or det g(E) = 0, which allows us to refine
this to a discrete set with no more than 3 elements. However, we can do better still:
conditions (i)–(iv) hold for any E for which the following criterion is met:

�F ⊆ RP
1 with #F ∈ {1, 2} such that MjF = F for j = 1, 2. (5.27)

In particular, (5.27) implies (iii) which in turn implies (i) by standard arguments about
SL(2, R). Once (i) holds, then (5.27) immediately yields (iv) and also implies (ii) (cf.
[11]).
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Case 1: (5.2) holds. We have p1 = p2 = 1, so

Mj = 1
√
b j

[
E − (b j + 1)q j −1

b j 0

]

.

We calculate

g= 1√
b1b2

[
b1 − b2 (b1 + 1)q1 − (b2 + 1)q2

(b1 − b2)E + b2(b1 + 1)q1 − b1(b2 + 1)q2 b2 − b1

]

.

Case 1a: b1 = b2. It follows that q1 
= q2 and hence (b1 + 1)q1 
= (b2 + 1)q2. One
can confirm that det g(E) 
= 0 for all E , so that M1 and M2 have no eigenvectors
in common. Thus, there is no F of cardinality one with MjF = F for j = 1, 2.
Now, suppose that an invariant F ⊆ RP

1 of cardinality two exists. We must then have
have F = {ū1, ū2} and Mj ū1 = ū2, Mj ū2 = ū1 for some j ; without loss, assume
j = 1. This forces tr M1 = 0. However, since (b1 + 1)q1 
= (b2 + 1)q2, we must
have tr M2 
= 0, so M2F = F forces M2ūk = ūk for k = 1, 2, that is to say, each
ūk is an eigendirection of M2. Identifying CP

1 with the Riemann sphere in the usual
way, write zk for the image of ūk under the identification CP

1 ∼= C ∪ {∞}. Since
M2zk = zk , we have

E − (b2 + 1)q2
b2

− 1

b2zk
= zk, k = 1, 2.

From this, we deduce z1z2 = 1/b2. On the other hand, since tr M1 = 0, we observe

M1z1 = − 1

b1z1

= z2, M1z2 = − 1

b1z2

= z1,

a contradiction. Thus, when b1 = b2, (5.27) holds and we have (i)–(iv) for every
E ∈ R.
Case 1b: b1 
= b2. There are two further subcases to consider.
Case 1bi: (b1 + 1)q1 = (b2 + 1)q2. Then, det g(E) 
= 0 for every E . Thus, again M1
and M2 never share an eigenvector. At energy E = E0 := (b1 + 1)q1 = (b2 + 1)q2,
both M1 and M2 preserve F = {span(#e1), span(#e2)}. Since E0 is the only energy at
which tr Mj vanishes for either j , we have (i)–(iv) for E ∈ R\{E0}.
Case 1bii: (b1+1)q1 
= (b2+1)q2. One can check that det g(E) vanishes for exactly
one value of E1 ∈ R. Using the same argument as in Case 1a, we see that there is no
invariant F of cardinality one or two away from E = E1. Thus, (i)–(iv) hold away
from D = {E1}.
Case 2: (5.3) holds. Then,

Mj = 1

p j
√
b j

[
E −1

p2j b j 0

]

, and p1
√
b1 
= p2

√
b2.
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Notice that

A := M1M
−1
2 = 1

p1 p2
√
b1b2

[
p22b2 0
0 p21b1

]

.

Since p1
√
b1 
= p2

√
b2, A is hyperbolic6 and any finite set of directions left invariant

by M1, M2, and A must be a subset of {span(#e1), span(#e2)}. It is easy to see that this
cannot happen for E 
= 0, so we may take D = {0} in this case. ��
Remark 5.8 Let us note that the need to remove a single point is sharp. For example,
in Case 1bi above, one can verify that L(E0) = 0. To see this, write r = −(b1/b2)1/2

and R = diag(r , r−1), and observe that

Mj (E0)Mk(E0) =

⎧
⎪⎨

⎪⎩

−I j = k

R−1 ( j, k) = (1, 2)

R ( j, k) = (2, 1).

Thus, by passing to blocks of length two and using the strong law of large numbers,
we deduce L(E0) = 0.

Proof of Theorem 1.4 Now that we know that L is positive and obeys a uniform LDT
away fromD, spectral and dynamical localization for Jω follows as in Theorem 3.13,
see also [27] where spectral localization was proved for the discrete RBM. Let �∗
be defined as in (4.14) (where �̂ is as in Theorem 5.4, and �̃ is a full measure set
realizing localization for Jω) and fix ω ∈ �∗.

For all n ∈ Z+, the spectral subspace ran(χI (JT nω)) enjoys an orthonormal basis
{ fn, j }∞j=0 of eigenfunctions of JT nω corresponding to energies E ∈ I . If we define

ψn,k, j := U−1
n,k fn, j , then

{ψn,k, j : n ∈ Z+, 1 � k � m(n), j ∈ Z+}

is an orthonormal basis of ran(χI (Jω)).
Proof of (1.8). For an arbitrary admissible triple n, k, j we will prove (1.8) with

f = ψn,k, j . First, we note that by spectral localization for Jω one has

| fn, j (p)| � C( fn, j )e
−λp, p ∈ Z+; λ := min

E∈I
L(E)

2
> 0,

for some C( fn, j ) > 0. Then for |x | > n we get

|ψn,k, j (x)| = |U−1
n,k fn, j (x)| = | fn, j (|x | − n)ϕn,k,|x |−n(x)|

�
(5.23)

C(ψn,k, j )e−λ(|x |−n)

√
wo(|x |) , (5.28)

6 I.e., | tr(A)| > 2.
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which implies (1.8).
Proof of (1.9). Due to dynamical localization for Jω one has

∑

j∈Z+
|〈 fn, j (p), fn, j (q)〉�2(Z+)| � Cne

qe−θ(p−q), (5.29)

for all p � q, θ < minE∈I L(E), and a constant Cn = C(n, ω, θ) > 0 (cf., e.g.,
[19, Proof of Theorem 6.4] where this step is discussed for the standard Anderson
Hamiltonian). Next, we have

sup
t>0

|〈δx , χI (Jω)e−i tJωδy〉�2(V)|

�
∑

n∈Z+
1�k�m(n)

∞∑

j=0

|ψn,k, j (x)ψn,k, j (y)|

�
(5.22)

∑

0�n�|y|
1�k�m(n)

∞∑

j=0

|ψn,k, j (x)ψn,k, j (y)|

=
(5.28)

∑

0�n�|y|
1�k�m(n)

∞∑

j=0

| fn, j
(|x | − n

)
ϕn,k,|x |−n(x) fn, j

(|y| − n
)
ϕn,k,|y|−n(y)|

�
(5.23)

∑

0�n�|y|
1�k�m(n)

∞∑

j=0

| fn, j
(|x | − n

)
fn, j
(|y| − n

)|
√

wy(|x | − |y| − 1)

�
(5.29)

∑

0�n�gen(y)
1�k�m(n)

Cne|y|e−θ(|x |−|y|)
√

wy(|x | − |y| − 1)
� Cye−θ(dist(x,y))

√
wy(|x | − |y|) .

Finally, (1.10) follows from (1.9) by summation in x . ��
Acknowledgements We thank G. Berkolaiko, M. Lukic, and G. Stolz for helpful discussions, and P. Hislop
for bringing our attention to this subject and for motivating discussions.
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