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Abstract

We establish spectral and dynamical localization for several Anderson models on met-
ric and discrete radial trees. The localization results are obtained on compact intervals
contained in the complement of discrete sets of exceptional energies. All results are
proved under the minimal hypothesis on the type of disorder: the random variables
generating the trees assume at least two distinct values. This level of generality, in par-
ticular, allows us to treat radial trees with disordered geometry as well as Schrodinger
operators with Bernoulli-type singular potentials. Our methods are based on an inter-
play between graph-theoretical properties of radial trees and spectral analysis of the
associated random differential and difference operators on the half-line.
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1 Introduction
1.1 Description of main results

The central theme of this paper is Anderson localization for random models on tree
graphs. In the first part of this work we establish spectral and dynamical localiza-
tion for continuum Laplace operators subject to random Kirchhoff vertex conditions
on radial trees with disordered geometry. Specifically, we consider metric trees with
random branching numbers and random edge lengths. The second part of this paper
addresses analogous questions for random second order difference operators on dis-
crete radial trees with random branching numbers. At the outset, we emphasize that
our results are all proved under the minimal possible hypotheses. Namely, we assume
that the random variables used to generate the trees take at least two distinct values.
We will formulate this assumption more precisely as Hypothesis 3.1. In particular, we
can handle the case of Bernoulli distributions, which is generally considered to be the
most challenging setting.

To begin, let us describe the models. Let I' be a metric tree with vertices V, edges
&, and uniformly bounded edge lengths {£, > 0 : e € £}. We further assume that there
is a unique vertex o € V with degree 1, which we call the root of T'; see, for example,
Fig. 1. For each vertex v, gen(v) (the generation of v) is the combinatorial distance
from v to the root. One defines gen(e) for e € £ similarly. We consider the Laplace
operator H := —% acting in L>(I"). In order to ensure self-adjointness of H, we
impose a Dirichlet condition at o, that is,

f(o) =0, (1.1)

as well as Kirchhoff vertex conditions given by

f is continuous at v, veV
Y 0/ =g veNol (1.2)
ecc.vee
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where g : V — Ris areal-valued function, and 9 denotes the inward-pointed deriva-
tive along the edge ¢ € £. The assumption that deg(o) = 1 is purely for convenience. If
the root has degree 2 or higher, the Dirichlet condition (1.1) implies that the operators
we study decompose into a direct sum of operators covered by the deg(o) = 1 case. In
the simplified case I' = R the vertex conditions (1.2) provide a rigorous description
of the self-adjoint realization of Schrodinger operators with zero-range potentials and
coupling constants g (v) (cf., e.g., [7, Section II1.2.1], [9, Section 1.4.1]).

We denote the branching number of each vertex by b(v) = deg(v)—1forv € V\{o}.
In this work, we assume that all quantities are radial. That is to say, we assume that g (v)
and b(v) depend only on gen(v) and £, depends only on gen(e). The three continuum
random models treated in this paper are: the random branching model (RBM), the
random lengths model (RLM), and the random Kirchhoff model (RKM). In these
models, the branching numbers, the Kirchhoff coupling constants, and the edge lengths
are independent identically distributed Bernoulli-type random variables which depend
only on the distance to the root o; the precise description of these models is provided in
Sect. 3.1. In fact, our approach can allow all three parameters to vary simultaneously;
we simply single out RBM, RLM, and RKM as prominent applications of our method.
Thus, these models are parameterized by a choice of a probability measure it supported
onasetoftheform A = {b~, b~ +1,..., b7} x [, £T]x[g ™, g™ ], which gives the
probability distribution for the branching numbers, the edge lengths, and the Kirchhoff
potential at each generation. To be a little more specific, the probability space is
Q = AN with measure n = ,ZZN ; then, each w € Q produces a tree model with
parameters dictated by
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1340 D.Damanik et al.

b(v) = wi(gen(v)), Lo =wa(gen(e)), ¢(v) =w3(gen(v)), veEV, e€l.

Our approach is based on the orthogonal decomposition of L?(I") into a countable
collection of reducing subspaces of the operator H; cf. [52,53] (see also [22]). The
restriction of H on each subspace is unitarily equivalent to a shifted version of the model

half-line operator H := — % acting in L?(R.), subject to the Dirichlet condition at
0 and self-adjoint vertex conditions of the form

Vbifay) = fap, jeN (L.3)
fa) +aifa;) = /bif'a) jeN, '
where t; denotes the distance from the root to vertices of generation j € N. Simi-
larly b; denotes the branching number and g; is the Kirchhoff coupling constant at
generation j.

The natural occurrence of Bernoulli models in this paper is due to random branch-
ing; in particular, the branching at each generation may only take integral values, so
any randomness in the branching parameter must necessarily be discrete. Broadly
speaking, the behavior of random models (at least in one spatial dimension) tends to
be monotone in the randomness. In particular, increasing the randomness of the model
tends to make the spectrum more singular. Thus, proving localization statements in the
situation in which the single-site distribution is supported on two points (the Bernoulli
case) is the most challenging task.

To prove localization for the 1D half-line operator H,,, we adapt the approach
of [19], which itself fits into the general framework of spectral analysis via transfer
matrix techniques, see, e.g., [26,55] for illuminating discussions. Recall that a gen-
eralized eigenfunction is an solution ¥ of the eigenvalue equation Hy,y = E that
enjoys a linear upper bound; in this case, E is known as the corresponding generalized
eigenvalue.

For the proof, we first employ Fiirstenberg’s Theorem to ensure positivity of the Lya-
punov exponent away from a discrete set ® (Theorem 3.5), and then show that almost
surely all generalized eigenfunctions exhibit Lyapunov behavior in every compact
interval / C R\D, (Theorem 3.13). This shows that the generalized eigenfunctions
decay exponentially, which establishes spectral localization. At that point, the estab-
lished exponential decay of generalized eigenfunctions is combined with the proof of
spectral localization to bootstrap sharper bounds for the eigenfunctions in terms of
their centers of localization, cf. (3.23). The latter are crucial for showing dynamical
localization. We summarize this discussion by formulating the first main result of this
work.

Theorem 1.1 Suppose supp i contains at least two points. Then there exists a discrete
set ® C R such that for every compact interval I C R\© and every p > 0, there
exists Q2 C Q with u(2) = 1 such that

<00, weQ, (1.4

sup [ 1X17 1 (Hoye "oy |,
.

>0

@ Springer



Localization for Anderson models on metric... 1341

whenever € L*>(R,) and

w(x) . — O(ef]ogcx),

— 00

for some universal constant C > Q.

We prove this Theorem in Sect. 3. We deduce the second main result of the paper by
combining Theorem 1.1 and the orthogonal decomposition of radial trees; see Sect. 4.

Theorem 1.2 Suppose supp [t contains at least two points. Then, there exists a discrete
set ® C R such that the following two assertions hold.

(1) The operator H,, exhibits Anderson localization at all energies outside of .
That is, almost surely, H,, has pure point spectrum and any eigenfunction of Hy,,
corresponding to an energy E € o (H,)\® enjoys an exponential decay estimate
of the form

—Alx|
o< S (15)

wo (|x])
with C > 0 and » > 0, where w,(|x|) denotes the number of vertices in the
generation of x, i.e., w,(|x]) = #{y € V: gen(y) = gen(x)}.

(ii) For every compact interval I € R\®D and every p > 0, there exists a set 2* C Q

with (%) = 1 such that for every @ € Q* and every compact set K C Ty, ¢,
one has .

su H X171 (H)e ™™ i < oo,

=0 ¢ L*(Thgy t))

where x;(H,) is the spectral projection corresponding to I, and |X|P denotes
the operator of multiplication by the radial function f(x) := |x|?, x € T'p, ¢,
where |x| denotes the distance from x to the root o.

We note that the theorem above gives localization for RBM, RLM, and RKM. We
also note that the spectrum of H,, is given by a deterministic set. This is addressed in
Sect. 4.1 where we also point out that the analogous question for the half-line operator
H,, presents some complications which are not typical for full-line ergodic models,
see Remark 4.2.

Remark 1.3 A few remarks:

(1) The assumption that the support of the single-generation distribution contains at
least two points is clearly necessary. For, if supp i1 consists of a single point, then
there is only one operator H,,, which is then periodic and hence does not exhibit
Anderson localization.

(2) We will refer to functions on trees obeying an estimate like (1.5) as tree-
exponentially decaying. Since the number of vertices at the nth generation grows
exponentially with n, the factor of v/w,(]x[) in the denominator implies that the
eigenfunction decay leads to square-integrability.

(3) The transfer matrices for the half-line models can be bounded at isolated energies,
and hence one cannot avoid excluding a discrete set of energies. This will be
discussed in more detail in Sect. 3.
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1342 D. Damanik et al.

In Part 2 we address analogous questions for the discrete versions of RBM, RLM, and
RKM, namely, we consider discrete Schrodinger and weighted adjacency operators on
radial trees with random branching numbers, hopping parameters, and vertex poten-
tials. Concretely, we consider rooted radial tree graphs I' as before. Given functions
q:V — Rand p: £ — (0, 00), the corresponding Schrodinger operators A and S
are given by

[Af1) = =" pu,v)f(v), fe€lPV), veV. (1.6)

[SFI@) = Y (@) f@) = f). felV). veV. (1.7)

v~u

As before, we will assume that b, p, and ¢ are bounded radial functions, so the
randomness will be encoded in a measure ;& which gives the distribution of branching
numbers, edge weights, and vertex potentials in each generation. We will define this
more precisely in Part 2. Our third main result is the following theorem which is proved
in Sect. 5.3. The quantity wy (r) in (1.9) below denotes the number of points in the
subtree rooted at y that are at a distance » from y; see (2.1) for the definition.

Theorem 1.4 Assume supp i contains at least two points. Let J,, = A, or J, = Se.
Then there exists a set D of cardinality at most one such that the following assertions
hold.

(1) The operator J,, exhibits Anderson localization at all energies outside of D.
That is, almost surely, J,, has pure point spectrum and any eigenfunction of J,
corresponding to an energy E € o (J,)\D enjoys an exponential decay estimate
of the form

Cehl

<=L
VOIS 705

x e, (1.8)

where C, A > 0 are constants.
(ii) For every compact interval I C R\D there exist Q* C Q with u(Q*) = 1 and
0 > 0 such that for every x,y € V, |x| = |y|, ® € Q* one has

Ce—@ dist(x,y)

sup |(8x, x1 Je)e 28y) 2| < (1.9)

=0 Jwy(x[ =Ty’

for some C = C(y, w, 0) > 0. In particular, forall y € V, w € Q*, R > 0 one
has .
> sup (8. x1Tw)e o8y 2y < ye ™k, (1.10)
Ix|>R t>0

for somek = k(y) >0andy = y(y) > 0.
It is proved in Sect. 5.1 that the spectrum of A, is given by a deterministic set.
It is interesting to contrast this result with the work of Klein [51] (see also [2,34]

for alternative proofs), which works without the radial assumption. In that model,
each vertex potential is an i.i.d. random variable, and that model exhibits absolutely
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continuous spectrum in suitable energy regions for small coupling; it therefore does not
exhibit localization uniformly, whereas the model in this work does. In particular, the
model of [51] is more random than this one, and yet the spectral type is more regular.

Our work is motivated by the paper [44], which investigated RLM and RKM, and
can be viewed as a natural continuation of [27] where discrete RBM was considered. It
is worth noting that the methods of [44] are not applicable in the present setting since
they are based on spectral averaging and hence rely heavily on the assumption that the
random variables are absolutely continuous. Of course, in the case of random branching
numbers such a hypothesis cannot be made. We stress again that RBM naturally
presents the most challenging case of random models, which are commonly referred
to as Bernoulli-Anderson-type models. A textbook discussion of some difficulties
presented by Bernoulli-type potentials is provided in the Notes sections of Chapters
4,7, and 12 of [6].

1.2 Background

The spectral theory of Schrodinger operators on tree graphs has attracted a lot of atten-
tioncf., e.g., [1-3,13-18,22,27-30,32-35,42-44,49-53,57-59]. The recurring topic in
these works is the dependence of the spectrum of differential operators on the geometry
of trees, in particular, on their growth rates, edge lengths, and branching numbers. For
example, Ekholm, Frank, and Kovarik established Lieb—Thirring inequalities which
heavily depend on the growth rate and the global dimension of underlying trees, cf.
[29], and Frank and Kovarik obtained heat kernel estimates for various trees in [30].
Evans, Harris, and Pick studied Hardy inequalities on trees in the context of eigenvalue
counting for the Neumann Laplacian on bounded domains with fractal boundaries cf.
[31,32]. This topic was further developed by Naimark and Solomyak [52,53]. As far
as the discrete spectrum is concerned, Solomyak also obtained Weyl’s asymptotic
formula for compact metric trees with the standard power-law behavior replaced by
¢(I")~/A log X (this hints on mixed dimensionality of the model) with ¢(I") depending
on the tree, cf. [59]. Further, the dependence of the spectral type on the geometry
was investigated by Breuer et al. [13,16]. Exponential decay of the eigenfunctions on
trees (and more general graphs) was recently discussed by Harrell and Maltsev [43].
Aizenman, Sims, and Warzel studied the effects of disorder in the geometry of trees.
In particular, they considered trees with edge lengths given by £,(w) = ¢*®¢ where
A € [0, 1]and {w,},c¢ are i.i.d. random variables, and proved in [1] that the absolutely
continuous spectrum of the Laplace operator is continuous (in the sense of [1, Theo-
rem 1.1]) at A = O almost surely. That such a continuity property fails in the case of
radial disorder is conjectured in [1] and proved by Hislop and Post [44]. As already
mentioned earlier, the existence of absolutely continuous spectrum for the Anderson
Hamiltonian on the regular trees in the regime of small disorder was shown by Klein
[51] (and also by Aizenman et al. [2] as well as by Froese et al. [34]). Thematically
related recent results are due to Aizenman and Warzel [4,5] showing delocalization
near the spectral edges for random Schrodinger operators on discrete trees.

The structure of the paper follows. In Sect. 2, we discuss the spectral theory of
deterministic continuum operators on metric tree graphs. We use this to set notation
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1344 D. Damanik et al.

and to give the reader relevant background on a reduction from the metric tree graphs to
Schrodinger operators on a half-line with singular potentials. We prove a localization
result for these half-line operators in Sect. 3, which we then use to prove our main
results for metric tree graphs in Sect. 4. The case of discrete operators on random tree
graphs is taken up in Part 2.

Part 1. Anderson localization for continuum radial trees
2 Spectral theory of deterministic continuum operators

In this section we introduce deterministic Laplace operators on radial tree graphs,
discuss their orthogonal decomposition, and establish several auxiliary results regard-
ing the spectral theory of the one-dimensional half-line operators arising in such a
decomposition.

To set the stage, we fix a metric rooted tree I' = (V, £) with vertices V, edges &,
root 0 € V, and edge lengths {€,},c¢. The shortest path connectingx e "'and y € I"
and its length are denoted by p(x, y) and d(x, y), respectively, and |x| := d(o, x).
The generation and the branching number of a vertex v are defined by

gen(v) :=#{x € W\{v}: x € p(o,v)}, b(v):=

deg(v) — 1, v #o,
1 v =o0.
In other words, gen(v) is the combinatorial graph distance from v to the root and
b(v) is the number of children of v. For an edge ¢ = (u, v), we define gen(e) =
max(gen(u), gen(v)). Furthermore, 7;, C I denotes the “forward” subtree of I" rooted
atv, thatis, T, ;== {x € " : v € p(o, x), |v| < |x|}; its branching function is given by

wy(t) :=#{xeTy:dw,x)=t}, t >0. 2.1

For example, given a vertex v, w,(|v|) counts the number of vertices in the same
generation as v.

Hypothesis 2.1 T is a rooted radial metric tree with bounded branching b and bounded
edge lengths, ¢, and q : V — R is a bounded radial potential. More precisely:

(i) There are constants b* € [2, 00), £* € (0, 00) and sequences b := {bu}oo
0= {€,};2 such that

e b(v) = bgen(v) € [b7,bT 1NN forall v € V (except, b(o) = by = 1),
o e ="lgen(e) €[4, €T ] foralle € E.

9]

(i1) There are constants qi € Rand a sequence {q,},

lg=.q™)

such that q(v) = qgen(v) €

When I satisfies Hypothesis 2.1, we will write I' = I'j, o to emphasize the dependence
of I" on the branching and length sequences.
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Localization for Anderson models on metric... 1345

Given I" satisfying Hypothesis 2.1, we equip R4 with a sequence of degree two
vertices {t; }?O: |» Where 7; denotes the distance from the root to vertices at generation
Jj, thatis,

J
to:=0,tj:=> fi j>0. (2.2)

i=1

Then, we introduce the Sobolev spaces on such a chain of intervals

oo
HYRy) =@ H (1), 1j11). j€Zy, k=0.1,2.
j=0
A note on notation: throughout this paper, we write N for {1, 2, 3, ...} and Z, for

NU{0}. Let us note that we use the notation HF (R ) even though the exact composition
of the space depends on the vertices {#; }jio. Similarly, on I, we define

Tk i k 2 . 2 _
HY D) == D H @ 1 f 1y = DS e Mgy K =0,1,2.
eef eef

Notice that the elements of H* (R4) or H* (I") may be discontinuous at the vertices.

2.1 Orthogonal decomposition of radial trees

Given a radial tree I', ¢ and a potential g satisfying Hypothesis 2.1, we consider the
self-adjoint operator H = H(b, £, ¢) defined by

d2
H(b, ¢, q) = 2 H(b. £, q) : dom(H(b, £, q)) C L*(Tp.0) = L*(Tp0).

dom(H(b, £, q)) = {f € H*(Ty) : f satisfies (1.1) and (1.2)}.
2.3)

Due to the radial structure of the graph, L?(I'.¢) enjoys an orthogonal decomposition
into H-reducing subspaces; cf. [22,52,58,59]. Namely, to every vertex v € ) there
corresponds an H-reducing subspace S, such that

L*(Tp0) = @ S,. HPs, = Ps,H, (2.4)
veV

where Pgs, denotes the orthogonal projection onto S, in Lz(Fb, ¢). Furthermore, each
subspace S, can be further decomposed into bgeq(y) — 1 subspaces, each of which is
also H-reducing, that is,

bgen(v)—1 ’
’ v o,
S, = EB vk V7 2.5)
‘C()a v =o,
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1346 D.Damanik et al.

and HPz, , = Pr, H, HPz, = Pr,H. Moreover, the reduced operators are unitarily
equivalent to 1D Schrédinger operators acting in L2(R ). Concretely, the operators

H(b, ¢, q) Pr, ., Hb, L, q)Pr,,
are unitarily equivalent to the operator
H(T&"Wp, 7Ny 7800 gy acting in L2 (fgen(y), 00), v € V (2.6)

where T denotes the left shift (7'x), := x,+1 and

2
H(T*b, T*C, T*q) == ——,
( q) 2
H(T*b, T*C, T*q) : dom(H(T*b, T*, T*q)) C L*(t,., 00) — L*(t,., 0)

Q2.7

f satisfies (1.3) }

sy sy o 52 C () —
dom(H(T*b, T*¢, T Q))—{fEH (ts,00) 1 f(t) =0, forall j > s

(2.8)
for s € Z. The unitary map
Uni : Lok — L2 (tgenq), 00), v € W0}, 1 <k < bgenqw) — 1,
realizing the equivalence is defined by
I
UL = | — ot €T, 1<) <bgen)s  (29)

0, otherwise,

where T, (j) C T, denotes the forward subtree determined by the jth edge emanating
from the vertex v. Letting k = 0 in (2.9), one defines U,,. We point out that (L{;’ }( f) e
dom(H(b, ¢, g)) whenever f belongs to the domain of the operator defined in (2.6).
Indeed, continuity of ¢, ,1( f at v is ensured by the Dirichlet condition (2.8) while the
Kirchhoff condition at v is satisfied due to (2.9) and the fact that the sum of roots
of unity is equal to zero. At all other vertices, one has continuity and the Kirchhoff
condition by (1.3).
Combining these unitary operators together, one defines

bgcn(v)_1
Ve=U® P P U (2.10)
veWfo} k=1
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Localization for Anderson models on metric... 1347

and has, [52, Theorem 4.1],

oo m(n)
Wyt L2(Tp0) > P ED L2 (1. 00), 2.11)
n=0 k=1
oo m(n)
W, (H(b, £, )W, =P EP HT"b, T"¢, T"g),
n=0 k=1
by-by---by_y- (b, —1), > 1,
mn) = 1207 b1 n—1- by — 1), n 2.12)
1, n=0.

Next, we turn to the spectral analysis of H (b, £, g) for fixed admissible b, £, g. First,
the eigenvalue problem for this operator can be written in terms of suitable SL(2, R)
matrices. Namely, if f is a solution to the problem

—f"=Ef, f(t) =0,
[y =bifa;) jeN

T +g (T 2.13
) = G HZ;f(tj) e, (2.13)
feHXtj-1,t)) jeN,
then one has
£ p £ .
, =M=, l;, q; , forall j € N, 2.14

where ME (B, X, 3) := D(B)S(:)R jz(AWE) . Im(vE) > 0 and

. ,81/2 0 110 . cos ¢ sing
D() .—[ 0 ﬂ_m], S(4) = [% 1], Ru(@) = [_usmco‘éw]' (2.15)

In this case, we can interpolate between the vertices to get

f@f ) sin(VE(x —1j-1))
7 :

forall x € (tj_1,1;), j € Z. Conversely, given initial data (f(0T), £/(0t) T, then
(2.14) and (2.16) construct a solution to the problem (2.13). Furthermore, f € L2 Ry)

if and only if
feH ™ o o
!|:f/(tj+):|} 4 (Z+7(C )

j=0

(2.16)

J) = ff ) cosWEx —1j-1) +
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1348 D.Damanik et al.

2.2 Quadratic form of the model half-line operator

The following proposition describes the quadratic form of H (b, £, g) and provides
prerequisites for the Weyl criteria used in the proof of later results (e.g. Theorem 4.1).

Lemma 2.2 Assume Hypothesis 2.1 and consider the sesquilinear formh = b(b, £, q)
defined by

b : dom(h) x dom(h) — C, (2.17)
~ 0t) =0,

dom(h) = {f e H'(tg, 0) : \/Iij(t{)L)f(ﬁ) i 0}, 2.18)
J J 7

blu, vl = (', v') 120,00 + quu(t;)v(t;) u,v € dom(h). (2.19)

j=1

Then Yy is densely defined, closed, and bounded from below (i.e. for some y € R one
has hlu,u]l >y ”””%2(10 ooyt U € dom(h)). It is uniquely associated with the operator

H = H(,Y,q), that is,
blu, vl = (u, Hv) 12 o0)s (2.20)

for all u € dom(h) and v € dom(H). Furthermore, there exist positive constants
¢, C > 0 such that

cllull% < —y+ Dlu,ul < Cllu|? u € dom(h), (2.21)

H!(19,00) H(19,00)

where y is a lower bound of Y. In addition, the space of compactly supported functions
contained in dom(h) is a core of the form b.

Proof Throughout this proof we will abbreviate § := h(b, £, q) and H := H(b, ¢, q)
for an admissible fixed triple (b, £, g). First, we show that f is bounded from below. If
q~ = 0, the form is non-negative. Suppose that ¢~ < 0. By a standard Sobolev-type
inequality (cf., e.g. [21, Corollary 4.2.10], [46, IV.1.2]) one has

max {luf PGP} S Clulla, el 0 (222

foralle > Oand j € N, where C = C(g, £, £") > 0. Then

bl ul Z 10 1320 00y + 4 Clltl T 00+ €M 172 o0) (2.23)
> (I +q ol 2, ) + 4 Clulfsg, o
> 11l 7200y (2.24)

where we chose ¢ > Osothat 1 +¢g ¢ > Oandsety :=¢g C.
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Next, we prove that h is closed, i.e., that dom(h) is closed with respect to the
topology induced by the inner product h — y + 1. First, using (2.23), (2.24) one infers

(b —y + Dl ul 2 ul%, (2.25)

(10,00)"
Suppose that {ug}; > C dom(h) is a Cauchy sequence with respect to the inner product
h—y + 1. In that case, it is Cauchy in H! (to, c0) and hence has alimitu € H! (tg, 00):

up _—> uk— oo. (2.26)
H1(19.00)

In order to show that f is closed, it is enough to prove that u satisfies the vertex
conditions at every vertex ¢;. To that end, we notice that for all k € N, j > 0 we have
\/ITjuk(tj_) = uk(tj.r). Then, by (2.22) and (2.26) we may pass to the limit as k — oo
and obtain \/E u (tj_) = u(tj‘.”') for all j > 0. Similarly, we get u(to ) =0.

The first inequality in (2.21) is already proved; see (2.25). The second one follows
from the Cauchy—Schwarz inequality and the Sobolev-type estimate (2.22).

Next, we prove (2.20). Notice that the subspace

{v € dom(H) : supp(v) is compact in [fy, 00)} C dom(H),

is a core of H. Hence it is sufficient to check (2.20) for arbitrary u € dom(h), v €
dom(H) with supp(v) C [fg, tx) for some K € N. One has

(u, Hv) L2(10 00) = Z/ I/t(x)v//(x) dx
rj—1

= (' V) 121000 + (15 )V (r0)+Zu<t+>v(r+) u(t; (7))
j=1
V() + gy
= W) L2<,m+zm< S

= blu, v].

u(tj_)v’(tj_)

The following Weyl-type criterion holds.

Proposition 2.3 Assume Hypothesis 2.1, and denote h = h(b,€,q) and H =
H(b £,q) as in Lemma 2.2. Let D C dom(h) be a dense subset with respect to the
H! (to, 00) norm (or, equivalently, with respect to the norm || - ||2 bh—yv+ D[, D).
Then E € o (H) if and only if there exist {¢i};2, C D and {mk}k_l C N such that

”wk”Lz(to,oo) = 17 SuPp((Pk) (- [t()a tmk]7 (227)
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sup ||</)k||ﬁ1(,0,oo) < o0, (2.28)
keN
sup (b — E)[ek. gl = 0, k — oo. (2.29)
gedom(h)

I8l 71 .00 <1

Proof Since the norm ||- || 71 (10,00 is equivalent to the form domain norm || - ||, (2.27),
(2.29), together with the standard Wey!’s criterion cf., e.g, [60, Proposition 1.4.4], yield
E € o (H) proving the “if” part.

To prove the “only if ” part we combine Weyl’s criterion and the last part of
Lemma 2.2 to obtain a sequence satisfying (2.27), (2.29). Without loss of general-
ity we may assume that y > 0. In that case, one has

gkl S 1blek. ell = sup  [blgx. gl|
H(t0,00) gedom(h)
lgllp=1

< sup (b — B[, gl

gedom(h)

llgllp=1

+ sup  [E{pr, 82wyl = o) +O().

gedom(h) ko0

lgllp=1
Thus (2.28) holds as asserted. O

In the sequel we will refer to the Dirichlet—-Neumann truncation of the half-line
operator H (b, £, q) defined as follows

2
H* b, 0, q) = ——,
(b, ¢, q) 2
H*(b, £, q) : dom(H" (b, £, ¢)) C L*(to, tx) — L*(to, 1),
k _ g . fahH) =f'a)=0
dom(H"(b, ¢, 9)) = {H (0- 1)+ 1 caisies (1.3) forall 0 < j < k|’

Proposition 2.4 Letus fixn > 1, E ¢ o (H"(b, £, q)), and suppose that u satisfy
(13) forall 0 < j < n, —u/l = Euy, u_(t) = u/ (t;) = 0, and u'_(t]) =
u(t,) = 1. Then the Green function of the operator H" (b, £, q) is given by

>x
GEx,y) =GE ,|(x,y) = — v
w60 3) = G ) (52 9) W, u) lup(u_(y), y<x

’

1 {u+<y)u_<x),

where 0 # W(uy,u_) = u' (1) = u+(ta') denotes the Wronskian of linearly
independent solutions u~. That is, (H" (b, £, q) — E)~" is an integral operator with

E
the kernel G[to,tn]'

@ Springer



Localization for Anderson models on metric... 1351

Proof For a fixed g € L (1, t,,) the unique nonzero function u satisfying all vertex
conditions and solving the non-homogeneous differential equation —u” — Eu = g is
given by

In

u(y) = [Regl(y) :=/ Gl oy (x. Y)g(x)dx.

0]

Evidently, the operator Rr is bounded and
(H"(b, t,q) — EYRg = Rp(H" (b, £,9) — E) = I 201 )
as asserted. Finally, evaluating the Wronskian at #p and #,,41, we get
Wy, us) =u' (1) = uq(t))

(see also [44, Lemma D.12]). O

3 Proof of localization for half-line random operators

The main goal of this section is to prove dynamical and spectral localization for
the random half-line operators H,, arising in the orthogonal decomposition of H,.
Theorem 3.5 ensures positivity of the Lyapunov exponent outside of a discrete set
®. In Theorem 3.13 we prove spectral localization and SULE for H,,. Finally, we
conclude with the proof of Theorem 1.1, which addresses dynamical localization.

3.1 Description of random models

The random branching model (abbreviated RBM) is described by a family of Laplace
operators subject to Neumann—Kirchhoff vertex conditions on radial metric trees with
random branching numbers. In other words, we assume Hypothesis 2.1 with the fol-
lowing parameters

b= 1{by(Mlen C12,...,d}, d =3, ¢ =0"=1, ¢ =q" =0,

where {b,(n)},cn is a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

The random lengths model (RLM) is given by a family of the Neumann—Kirchhoff
Laplace operators on radial metric trees with random edge lengths. That is, we assume
Hypothesis 2.1 with

b= =b"=d, €={l,(M)}enCl, €], ¢~ =g =0,
where {£,(n)}cy 18 a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

The random Kirchhoff model (RKM) is given by the Laplace operators subject to
random §-type vertex conditions. That is, we assume Hypothesis 2.1 with
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b~ = b+ = d, T = €+ = 1, q = {qw(l’l)}neN C [qi,q+],

where {g,,(n)},cn 1s a sequence of independent and identically distributed random
variables whose common distribution contains at least two points in its support.

In order to unify these models we consider three-dimensional random variables
with common distribution 1.

Hypothesis 3.1 Let 1 be a probability measure with
supp(f) C A= {b™, ..., bF} x 07, e 1 x (g7, ¢
Suppose that supp(it) contains at least two distinct points, and let (2, ) =
N ~N
(A, ).
Remark 3.2 We notice that

e RBM arises when supp i € {b™, ..., b7} x {1} x {0},
e RLM arises when supp i € {d} x [£~, £7] x {0},
e RKM arises when supp it € {d} x {1} x [¢~,q™].

For w € Q2 we denote the components of w as w(n) = (by(n), £, (1), g, (n)), since
we will use them to define the branching, edge lengths, and Kirchhof potential of
an operator. In particular, the vertices in R are denoted 7, (n). Given w, define the
operators H,, = H(b,,, £., q,) acting in Lz(Fbw,gm) asin (2.3). Similarly, for j € Z,
define

Hypj, = H(T’b,, T'¢,, quw) acting in Lz(tw(j), 00),

as in (2.7), (2.8) and let h7;,,, denote the corresponding quadratic forms.
3.2 Positivity of Lyapunov exponents via Fiirstenberg’s theorem
Inspired by (2.14) and (2.15), we introduce an SL(2, R)-cocycle over T (the left shift

Q — Q) as follows. First, let A, bE, ¢+, and qjE be as in Hypothesis 3.1. For each
E € R, (2.14), (2.15) lead us to define MZ : A — SL(2, R) by

Asa=Bx )~ ME@) = DB)SCIR FGNVE). 3.1)

This induces amap ME : Q@ — SL(2, R) via ME (w) = M (w(1)), and then a skew
product

(T,ME) : Q@ xR*> > Q@ x R?, (T, ME)(w,v) = (Tw, ME (w)v).
Then denoting the n-step transfer matrix by
0
ME () = ]_[ ME(T w) = ME(T" 'w) - ME(To)ME (w), ne N, (3.2)
r=n—1
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we note that the iterates over the skew product are given by (T, ME)" = (T", M f ).
The Lyapunov exponent is defined by

1
L(E) = lim ~ /Q log I ME ()] du(@). (3:3)

By Kingman’s Subadditive Ergodic Theorem we have
. 1
L(E) = lim Fy(@, E); Fy(w, E) := —log | My ). (3.4)

for p-almost every w.

Remark 3.3 Let us note that there are two natural cocycles that one can work with
here. In addition to the discrete cocycle just described, there is also the continuum

cocycle ME defined by
~ ot +
MxE(w) : |::/((0+)):| = [Z/(())CC+))1|

whenever —u” = Eu and u satisfies the vertex conditions defining dom(H,,). Evi-
dently,

M () =M}, ().

This leads to a simple relationship between the Lyapunov exponents of M £ and ME.
By Birkhoff’s Ergodic Theorem,

n—oo n

lim ~t,(1) = (6) == / o dii(@),
A

the average length. Then, one has
L(E) = L(E) - (¢). (3.5)

Our next goal is to show that Lyapunov exponents are positive away from a discrete
set of energies. To that end, we first recall Fiirstenberg’s Theorem and some related
facts. In order to state Fiirstenberg’s Theorem, let us recall that a few definitions from
the general theory. A group G C SL(2, R) is called strongly irreducible if there does
not exist a finite set A € RP! such that {gv:ve A} = Aforall g € G; G is called
contracting if there exist g, € G, n > 1 such that ||g,||~'g, converges to a rank-one
operator as n — oo. Given Borel probability measures v supported in SL(2, R),
k > 1, we say vy — v weakly and boundedly if

/ log™ | M| dvi (M) + / log® [|M|| dv(M) — 0
IMI=N IMI=N

as N — oo, uniformly in k and
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/fdvk—>/fdv

for all continuous complex-valued functions f : SL(2,R) — C having compact
support.

Theorem 3.4 Let v be a probability measure on SL(2, R) satisfying

/log M| dv(M) < oo.

Let G, be the smallest closed subgroup of SL(2, R) that contains supp v.

(i) [36, Theorem 8.6] Assume that G, is not compact and that it is strongly irre-
ducible. Then the Lyapunov exponent L(v) associated with v is positive.
(i1) [37, Theorem B] Assume that the set

Fix(G,) := [V €RP! : MV =V for every M € GU]

contains at most one element. If vi — v weakly and boundedly, then L(vy) —
L) ask — oo.

In the present setting, we have a one-parameter family of measures induced on
SL(2, R), namely, we consider vg, the pushforward of it under the map M Ein 3.1).

Theorem 3.5 Assume Hypothesis 3.1. Then there is a discrete set ® C R such that
G = G (k) enjoys the following properties for E € R\D.

(i) G is noncompact
(i1) G is strongly irreducible
(iii) G is contracting
(iv) Fix(G) =0
In particular, L is continuous and positive on R\2.

Proof In view of Theorem 3.4, positivity follows from (i) and (ii), while continuity
on R\® follows from (iv). Moreover, (ii)) = (iv), so we only need to prove (i)—(iii).
Write

ME(B. 1, %) = D(B)SGOR /AN E)

_[vE o cosG/E)  GYE)
0 512
VB —VE sin(GE) cos(AWE)

B'/? cos(AE) ,31/2%
2812 cos(/E) = 12V E sin(/E) ZS0LE o 712 cos(uVE)

Now, let (b1, £1, q1) # (b2, £2, g2) be distinct elements of supp [, abbreviate
Mj = M;(E) := M*(bj, ¢}, q)),
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and define the commutator
g =g(E) =My, Mr] = MM — My M.

To conclude the proof, it suffices to show that g(E) does not vanish identically.
Concretely, it is easy to see that the matrices M; are analytic functions of E with
non-constant trace and that the entries of M are real whenever tr M; € [—2, 2]. Thus,
the matrices M ; (E) satisfy the first three hypotheses of [20, Theorem 2.1], so, if g(E)
does not vanish identically, we can conclude that there is a discrete set ® such that
(1)—(iii) hold for E € R\® by [20, Theorem 2.1].

To that end, suppose for the purpose of establishing a contradiction that g vanishes
identically. In particular, the upper left matrix element g11(E) vanishes identically.
One may calculate g11(E) directly:

gn(E) = b}/z% (qzb;‘/z cos(t2VE) — b;‘/zﬁsin(zzﬁ))

- bé/z Sin(fng—ﬁ) (‘]1191_1/2 cos(t1VE) — bl_l/zx/f sin(€1\/f)) )

For ease of notation, write r; = b;/z/b}/z, r = b%/z/b;/z, and w = VE. Expanding

the trigonometric functions, we get

2}"2 . . . .
gl = Ziw (elfzw +e t(izw)(ezllw —e tﬂlw)
_ Zl.rl (eiﬁ]w _i_efiﬁ]w)(eiezw o e*iezw)
LW
ri

—r2 . . . -
4 (ezﬁlw —e z@lw)(ezﬁzw —e zézw).

Thus,

4iw’gn = (6]27211) —qiriw — iw?(ry — r2)) ol bittw
+ (qmw — garow — iw’(r) — r2)> e Hhti)w
. (3.6)
+ (‘12r2w +qiriw + iw?(r — r2)) elti—t)w
+ <—611r1w — qaraw +iw*(ry — r2)) e~ ithi—t)w

Since g1 vanishes identically and ¢1, £> > O, this forces

.2 _
qrw —qiriw —iw (rp —rp) =0

.2 _
qirw — garw —iw(rp —r) =0
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It is easy to see that this yields r; = ry (hence by = by) and g1 = ¢g3. Since
(b1, L1, q1) # (b2, €2, q2), we must have £1 # £>. Going back to (3.6), this implies

garw + qiriw + iwz(rl —r) =0

—q1rw — qaraw + iwz(rl —1rp) =0.

and hence g1 = ¢» = 0. Writing by = b, =: b, and substituting g; = g2 = 0, we
may directly calculate g:

0 b=l sin (62 - €)VE)
gE)y=|, , vE 3.7)
T\/Esm ((62—&)@) 0
which clearly only vanishes on the discrete set
D = [(el ) 2% ke Z+},
a contradiction. O
The proof above implicitly uses the following statement.
Lemma 3.6 Suppose {aj :j=0,..., n} is a set of n + 1 distinct complex numbers

and {pj :j=0,..., n} are polynomials in z. Then, the function
n
Q@) =) pj(2)e
j=0

vanishes identically if and only if p; = 0 for each j.
Proof Write D = d/dz and M = max(deg(p;)). Suppose on the contrary that

n
Po(2)e™* =) pj()e’s*
j=1

with pg # 0. Notice that [}_; (D —a )M+ 1 annihilates the right hand side. However,
if b # agp, one readily verifies that

(D = b)[po(2)e™*] = po(2)e™”,

where pg has the same degree as po. Consequently, a straightforward induction implies
that

[[@ = ap™* ' po(2)e™?]
j=1

does not vanish identically, a contradiction. O
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Remark 3.7 Let us make a few comments about the proof of Theorem 3.5.

(1) Since the argument above is soft, we do not get any information about ©, except
that ®© is discrete. However, in concrete situations in which one has more infor-
mation, one can say more. For example, the g from (3.7) corresponds to the
RLM; we can explicitly see that ® = {(21 — 22)_2n2k2 ckeZy } For another
example, in the RBM, one has supp it C {b_, ..., by} x {1} x {0}, so one can
choose (b1, 1,0) # (b, 1,0) € supp [t. After some calculations, one obtains

by — by)?
detg = —M sin2(«/E),
biby

so Fiirstenberg’s Theorem holds away from ® = {n2k2 tkeZs } In this setting
there exists a finite set of invariant directions at these special energies. That said,
we note that the Lyapunov exponent is still positive by direct calculation.

(2) Let us also remark that the transfer matrices may be bounded at a discrete set of
energies (compare [25]). For example, take parameters (b1, £1, q1) = (2, 1,0)
and (b2, £2, ¢2) = (2,3,0). Then, at energies E = y72(2k + 1)> with k € Z,,
M and M, are commuting and elliptic.! In particular, the transfer matrices at
these energies are uniformly bounded, so [24, Corollaries 2.1 and 2.2] suggest
that dynamical localization as formulated in Theorem 1.2.(ii) cannot hold without
excluding these energies.

Remark 3.8 As far as spectral localization is concerned, it suffices to ensure that for
every compact interval / € R\D, almost surely all generalized eigenvalues exhibit
Lyapunov behavior. We will construct a full measure set Q* C €2 such that one has

1
0 < L(E) = lim -~ log||M, ()|

for every generalized eigenvalue E € [ of H, [MnE (w) is defined in (3.2)]. As dis-
cussed in [19], the work of Gorodetski and Kleptsyn [40] shows that dropping the
assumption that E is a generalized eigenvalue invalidates the above assertion.

3.3 Dynamical localization for half-line operators

Our approach relies on the Large Deviation Theorem (LDT) [19, Theorem 3.1].
Although this is not stated explicitly in [19], the LDT and its corollaries [19,
Theorem 4.1, Corollary 5.3, (5.13)] are applicable whenever the conditions of the
Fiirstenberg Theorem are met, the corresponding subgroup is contracting and the trans-
fer matrices satisfy Lipschitz estimates which are supplied by the following lemma.

Lemma 3.9 Fix a compact interval I C R. There are constants C > 0, p > 0 such
that /
IME (@) = MF ()| < Cnp" ' (|IE — E'| + o — @[l o)

Pe, [rM;| <2.
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Jorallw, o' € Q, E, E' € I, andn € Z,. The constants depend only on I and supp L.
Consequently,

|Fu(w, E) = Fy(@', E') < Cp" ' (|E = E'| + [0 — @[l 0), (3-8)

where Fy is defined as in (3.4).

Proof Letn, E, E',a = (B,5,)) € A, and o/ = (B, », 1) € A be given. One
immediately has , ,
1S(e) = SGI = |32 — s (3.9)

and

ID(B) — Iﬂ Bl (3.10)

since B, B/ > 2. Writing Kk = \/E, and k' = V E’, we get
R (i) = R (Wk) || < IR (kX) — R (k' M) || + | R (k' 1) — R (k1) |

CW*, D(E—E'|+|»=N). (3.11)

NN

Using the triangle inequality to change a single one-step transfer matrix at a time, one
has

IME (@) — MF ()|

ZH » 1(Tkﬂw/)(Ml (T*w) — MIE’(Tk /

where T is the left shift operator. Writing

,0=sup{||M1E(w)||:EeI, weQ], (3.12)

—k—1

we can estimate the first and third factors by p” and p* respectively. On other

other hand, (3.9), (3.10), and (3.11) yield
IME (T w) — ME(T* )| < CE — E'| + o — o/ |lo0).
so0, putting everything together, we have

n—1
IME @) — ME @) <Y Co" M (IE - E'|+ lo — @ llo)
k=0
= Cnp" N(|E — E'| + o — &/|ls0).

proving the first inequality. The second follows from this and the statement | loga —
logh| < |a —b|fora,b > 1. O

Having established Theorem 3.5 and Lemma 3.9, we may utilize the LDT in our
setting. In particular, we have the following:
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Theorem 3.10 Assume Hypothesis 3.1 holds true.
(i) [19, Theorem 3.1] For any € > 0, there exist C, n > 0 such that

1
u{a)eQ: ‘L(E)——logHMf(a))H‘ 28} < Ce M, (3.13)
n

foralln > 0andall E € 1.
(i) [19, Theorem 4.1] There exist constants C = C(I, 1), B = B, ) > 0 such
that
|L(E) — L(E')| < C|E—E'\P, E,E' €. (3.14)

(iii) [19, Corollary 5.3] For every ¢ € (0, 1) there exists a full measure set 21(g)
with w(21(e)) = 1 such that for every w € Q21(¢) there exists n1 = ni(g, w)
such that

! ~log IME(T®w)|| < L(E) + e, (3.15)

forany ¢y € Z4 and n > max(ny, log (Co+ 1)).
(iv) For every ¢ € (0, 1) there exists Q2(¢) C 2, n(R2(e)) = 1 with the following
property: For every o € Q2 (¢), there exists ny = na(w, €) such that

Z log | M,y (T w) |

L(E) — — e, (3.16)
Vl n
s=0
forall ¢ € Zy, n > max(ny, 10g3 & +1)),and E € 1.
Part (iii) yields
M{a) forall E € I, lim sup — log IME(w)| < L(E)} (3.17)
n—oo

This fact may also be derived from the Craig—Simon approach [23] (see also [45]).
Our main focus is on showing

lim 1nf - log IME(w)|| > L(E)
nyw : = 1.

for all genemlzzed eigenvalues E € 1

The next key step is an analog of the elimination of double resonances. Let us
note that we do not use the typical formulation of double resonances (cf., e.g., [47,
(9.21)]), since our ultimate goal is to work with transfer matrices in order to apply the
Avalanche Principle. The resonances we wish to exclude are those for which there are
large disjoint intervals I, I C Z so that some energy E is very close to an eigenvalue
of H, restricted to I, and the norm of the transfer matrix across I, at energy E
deviates substantially from exp(|/2|L(E)). In particular, we would like to show that
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this event occurs with very small probability, see [12]. We shall make this precise and
quantitative in Theorem 3.11.
By convention, we write ||[(H) — E)~ ||B(L2(t0 ) = = +o0 whenever E € o (H)).

Let us recall F,,(w, E) from (3.4), and abbreviate K := | K'°¢K |,
Theorem 3.11 Givene € (0,1), N € N, let

forsome ¢ € Z4, E €1,
K > max{N,log?(¢ + 1)}, 0 < n < K°, one has:
o . + _
Dn(e) = Jwe Q : ”(HQC) n_ E) 1”6(142([0![[“’)) >e
and |F,(T" ¥ w, E)| < L(E) —¢
for some KOV<r<K,me {K,2K}

Then there exist C = C(g) > 0, n(e) > 0 such that
1(Dy(e)) < Ce ™. (3.18)
In particular, one has

w(23(e)) = 1 where Q3(¢) := Q\ limsup Dy (¢). (3.19)

N—o00

Proof Let us fix

reZi K max{Nlog(;+1)}0<n<K9 K°<r<XK, jell2),
(3.20)
and denote

for some E € I, one has
_ 2
Di(K.n.r.0):={weQ: |(HS™ = E) g2 o)) eX” and
|Fixk(T"w, E)| < L(E) — ¢
In order to estimate u(D;(K,n,r,)), we pick o € D;j(K,n,r, ), consider the

corresponding E € I, and notice that (due to the resolvent bound) E is close to an
eigenvalue of the Dirichlet—-Neumann truncation, that is,

|E — Ep| < ¢~k for some Ey € o(HCf:Jr”). (3.21)
Combining (3.8), (3.14), (3.21), and choosing N (hence K) sufficiently large we obtain

Fix(T*"w, Eg) < L(Eg) — 5

whenever € D;(K,n,r,¢) and Eg = Eo(wi, ..., wr4y) is as in (3.21). In other
words R
Di(K,n,r,¢) CD;j(K,n,r, ),
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where

DiK.nr.0)= | {wesz : %gL(Eo)—F,K(TH’w, Eo)},
Eoco(HS™NT

where T := [min/ — 1, max I + 1]. We note that Hf)+" and the standard Dirichlet
Laplacian Héf” on (fy, t; ) are self-adjoint extensions of a symmetric (minimal)
operator with deficiency indices (2(¢ + n),2(¢ + n)) (Sect. 2.1, [10]). Then the
spectral shift for these two operators is at most 2(¢ + n), see [8, Lemma 9.3.2 p.214,
Theorem 9.3.3, p. 215]. Combining this with an explicit computation of eigenvalues
of H[C)Jrn we get
#(o(HSYNT) < CITI(n +0),

where C > 0 is a universal constant [we recall from (2.2) that £~ (¢ +n) < |tr4,] <
€7 (¢ +n)]. Then using (3.13) and [0, ¢ +n]N [ +7, ¢ +r 4+ jK] = ¥, we estimate

@K, n.r.0) < Cn+)e ™ <K+ eVK)e K < comK,

for some 11 = n1(e) > 0. Clearly, one has

1(Dy(e)) < > w@D;(K,n,r,1)).
K,n,r,z,jasin (3.20)

Then for a fixed K, the summation with respect to n, r introduces a subexponential
number of terms bounded by e~ X and summation with respect to ¢ introduces no

more than (e*/? 1 terms bounded by e~ X (the precise calculation is carried out in
the proof of [19, Proposition 6.1]). Thus (3.18) holds as asserted, which together with
the Borel-Cantelli lemma yields (3.19). O

Let us recall the Avalanche Principle employed in the proof of Theorem 3.13.
Lemma 3.12 (Avalanche Principle) Let AV, ..., A™ be afinite sequence in SL(2, R)

satisfying the following conditions:

min AV >4 > n,

I<j<sn

. . . . 1
max |log [AYFV] +1log [AY]| — log ||A<f+“A<J>||\ < 5 logh.

1<j<n

Then for some absolute constant C > 0 one has

n—1 n—1
log [A™ ... AV + 3 log AV ] — > " log AUV AW | < .
j=2 j=1

See [39, Proposition 2.2] for a proof of Lemma 3.12.
In order to streamline notation, we use the shorthand ¢, for the point 7, (n).
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Theorem 3.13 There exist a discrete set ® C R and a set §~C Q with M(fZ) = 1 such
that for every compact interval I C R\D and every w € 2 the following assertions
hold:

(i) For every generalized eigenvalue E € I of the operator H,, one has
.1 E
lim —log||M, (w)|| = L(E). (3.22)
n—-oon

(ii) The spectral subspace ran(x;(H,)) admits a basis of exponentially decaying
eigenfunctions.
(iii) Given § € (0, 1) and a normalized eigenfunction

feker(Hy — E)\{OL E € I, || fll 2w,y = L.
there exist { = {(f) € N, Cp.s > 0, Cs > 0 such that?
£ D] < €y 50 10E D= U=DLEN2] > (3.23)

for an absolute constant C > 0.

Proof We will show that the statement of the theorem holds with ® as in Theorem 3.5
and

~ 1
Q= ﬂ Q1(e) N (e) N Q(e), T:= —min L(E),
3 Eel
£€(0,7)NQ

where €21 23(¢) are defined in Theorem 3.10 (iii), (iv) and in Theorem 3.11 respec-
tively. Note that T > 0 by Theorem 3.5.

Proof of Part (i). Due to (3.17), it is enough to prove that for a given w € € and for
a generalized eigenvalue £ = E,, € I (which are henceforth fixed) one has

1
lim inf — log | ME (w)|| > L(E). (3.24)
n—oo n

Let u be the generalized eigenfunction of H,, corresponding to E, that is,

—u" = Eu,u(0%) =0, u satisfies (1.3) forall j > 0,

3.25
max { [’ (), u(t)|} < Cu(1 +n), n € Z., for some C;, > 0. (323)

Our goal is to show that for a given ¢ € (0, 7) and for all sufficiently large K one has
1 lo E _ 11 10 &
g |IM, (w)|| > L(E) —6¢, foralln e [K"" + K, K]. (3.26)
n

Since these intervals cover a half-line, (3.26) yields (3.24).

2 Recall that L and L are related via 3.5).
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For a given’ ¢ € Z let
KN = max (N, n1, nz, 3, Tlog?(¢ + 1}, (3.27)

where N € N is to be determined,* ny, n» are as in Theorem 3.10 (iii), (iv) corre-
spondingly, and n3 = n3(w, ¢€) is the smallest integer for which

we [ (\Di(e). (3.28)

i>n3
O

Step 1 There exists N = N(C,) > 0 such that for all K > K(N) there exists an
integer m € [0, ¢ + K°] such that

_ _ 2 _ _ 2
u(t,) < e 257 /()] < e (3.29)
Proof First we note that (3.16) with n = K3 yields

3
log [ME(T*T K w)|

L(E) - e

<&,

or, equivalently,
3
exp((L(E) — &)K?) < [|[Mg,(T* K w), (3.30)

forsome s € [0, K® —1]NZ.. . Focusing on the s-th block we introduce the following

notation
oa+p

2

Our argument is based on a representation of u in terms of its boundary values u(7}"),
u(t; ) and special solutions 14 satisfying certain boundary conditions. The choice of
the boundary conditions, hence the representation of u, depends on the entry of the
matrix

[, Bl:= [+ sK>, ¢+ (s+ DK, m:=|

].

S~ (gp) D™ (bp)M g5 (T w) (3.31)

that dominates its norm. Specifically, letting m;; denote the ijth entry of (3.31) and
assuming that ¥4 satisfy —y/ = E4, the interior vertex conditions in the interval
[a, B], and the boundary conditions indicated below, we consider the following four
cases.

Case 1.1f ||~ (gp) D™ (bp) ME,(T*w) || < 4|m11] then we let

Vo) =1, ¥ () =0, 91(t5) =0, ¥, (t5) =1,

3 In the sequel ¢ will be determined by the center of localization.

4 N will depend on u through Cy,. In particular, if all generalized eigenfunctions are uniformly bounded,
N is u-independent.
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1364 D. Damanik et al.

and observe that

W (Wi, vl = [ 1)) = [¥—(t5)] = Im11| > 0. (3.32)

In particular, (3.32) shows that 1/ and v/ are linearly independent, which shows that
we may represent

Y (4,) +u(t_)lﬁ—(t,;)

)y =u'(t) )
) =0 T

(3.33)

Case 2. If | S~ (gp) D™ (bp) M £, (T*w)|| < 4|m 2| then

Yot =0, ¥ (i) =1, 91(t5) =0, ¥, () =1,
1/f+(tm)Jr « )1/f (1)
Vi (ts) v-(ty )’

W (W, Y| = [ (1)) = [¥—(15)] = Im12| > 0.

u(ty) = u(t))

Case 3. If | S~ (gp) D™ (bp) M £, (T*w)|| < 4|m21| then

Y-t =1, v = 0,y4(g) = 1, ¥i(5) =0,
Ve (1) V(1)
+u )
V() s )wL(t;)
(W@, ¥l = 196D = WL (t5)] = Imar| > 0.

u(ty) = u' () —2=

Case 4. If | S~ (gp) D™ (bp) M £y (T*w)|| < 4|m2a| then

Y-t = 0. Y1) = 1.y (tg) = 1. ¥i(t5) =0,
Vi) o V- ()

— 4 U ;
veah Ty

W (W, ¥ = [ 6] = WL (15)] = Imaa] > 0.

u(ty) = u(y)

We proceed with Case 1; the other three cases can be handled similarly. Let us estimate
each term in the right-hand side of (3.33). Combining (3.3) and (3.32), we get

IS~ (gp) D~ (bp) ME, (T w)||
WG = -] = | > —— 0 2

Mg (Tew)| (3.34)
> P &
41D(bg)S(gp)ll
> c(b*, gF) exp((L(E) — &)K™),
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for some c(b™, gT) > 0. By (3.25) we get

max {[u/ ()1, [u;) || < Cu(B+ 1) < Culk” + ¢,

Employing (3.15) with n = LKT3J, Zo = ¢ + sK?3, and choosing N so that LKT3J >
logz(C + sK3) we obtain
_ 1 _ _ 3 1
AGIES K[O] S @) DT b M s (T4 ) [OM
e

(L(E) + s)K3>
—)

, (3.35)
< C(b*, ¢*)exp (

for some C(b*, g*) > 0. Similarly for N so large that LKT3J > log?(¢ +sK3 + %3)
we obtain

(L(E) +&)K3

[y ()] < Cb*, ) exp ( 5

), Cc(b*, g% > 0. (3.36)

Combining (3.33), (3.34)—(3.36) one obtains

—L(E)K? +3¢K3
|u(t,;>|<zcu0(bi,qi>(1<9+eﬁ)exp( (E)K 3 )<e—2’<2,

2
where the last inequality holds whenever N = N(C,) is large enough and

C(b*, g*) > 0.Replacing u(t,,) by u'(t,,), ¥+ (t,) by ¥/ (¢,,) in (3.33),and [1, 0] T
by [0, 117 in (3.35), (3.36) we obtain

- —2K?
(1) < e 2K
O

Step 2 Suppose that |u(t)| = 1 for some © € Ry, let ¢ be the largest integer such
that t < 7, and recall m € [0, ¢ + K] from Step 1 for such ¢. Then

— 2
ICH = E) M2y =€ - (3.37)

Proof 1t suffices to show that
2
IGE (0010 )1 = CK7, (x,y) € Ty X (tm — 8. tw), (3.38)
for some K-independent interval J C (f;, t;+1), K-independent § > 0, and C =
C(¢%, I). Indeed, denoting the characteristic functions of J, (¢t,, — 8, ty) by x1, x2

respectively, we get
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K2 < [{x1, (H} _E)_1X2>L2(t0,tm)|

<NHD — E) gz :
e el zega, (L= G0.tm))

for N in (3.27) sufficiently large (depending only on C(*, ). To prove (3.38) we
notice that

Y- (x)

Vi (x) vo(x) o,
u'(ty) ——
Wy, o)

Wy, ¥o) Wy, ¥o)

= u’(t,;)Gf:,m(x, tm), x € (tr, tr41),

u(x) =u(0h) +u'(t,,)

(this is similar to Case 4 in Step 1 above). By right-continuity of # and |u(7)| = 1
we have
1/2 < lu@)l, x € J C (tr, tr41),

for some K -independent interval J. Employing (3.29) one infers

Y—(x)
W(l/f+’ 1/[*)

)

1< )] = (1) ‘% < 2

for all x € J. That is,
621<2 < Y (x)
W, ¥-)

,xelJ

Furthermore, noticing that
Vi (y) = cos(WE(y — 1)) = 1/2forall y € (tyy — 68, tw],

for some K -independent sufficiently small constant § > 0, and using Proposition 2.4
we arrive at

’

Y_ ()Y (y) >’ Y (x) > 2K

GE = Z
| w,[(),tm](x Y)| ‘W(w+’¢_) 2W(¢+v '(p—) ~

for all (x,y) € J X (t,, — 8, t,]- Thus (3.38) holds as required. O

Step 3 Let ¢ be asin Step 2. Then there exists N = N (Cy) such that forall K > K (N)
andalln € [KY + K0 K] one has

1
—log [|MF(T¢w)|| > L(E) — Se. (3.39)
n
Proof Combining (3.28), (3.37) and Theorem 3.11 one infers
1 _
— log IME (T w)|| > L(E) — &, r € [K'°, K], m € {1,2}. (3.40)
m
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We will use (3.40) to apply the Avalanche principle, see Lemma 3.12. Concretely,
choose ¢ € Z4 with K'0 < g < K~'K — K?, define

AW = ME(THK‘OH;—UKQ)), 1<j<q.
With A :=exp(K(L(E) — €)), (3.40) gives
1AV =21 >q

for all j, where the second inequality holds as long as N, cf. (3.27), is sufficiently
large. Since K > 717 and K > log?(|¢| + |K| 4 1) (enlarge N if necessary), we may
use (3.15) to obtain

IAD ) < exp (K(L(E)+¢)), 1<j<aq.

Thus, implies

log AU+ || 4 Tog AV — log [AU+D A

log AV || 4+ log AV || — log AU+ A
<2K(L(E) +¢) —2K(L(E) — ¢)
=4Ke¢
< llog X,
2

where the final inequality needs ¢ to be sufficiently small; we note that this smallness
condition depends only on zi. Thus, taking N = gK and ro = K'°, we have N e
[K'!, K — K9] and the Avalanche Principle (Lemma 3.12) yields

log | Mg (T**w)|| = log A .- A1)

q—1 q—1
> log[ATTVAD) =B Tlog AP - C
Jj=1 Jj=2

> (g — D2K(L(E) — &) — (¢ — 2)K (L(E) +¢) —
> N(L(E) — 4¢)

again, by choosing N large.

Putting this together, we can control || ME (T¢w)|| for general K!' + K10 < n < K
by interpolation. In particular, writing n = gK + p with 0 < p < K and g >
K9+ K°, we have

1M, _ 10 (TEHE )|
IMgo(TCw)]

_xlo_ 10
p K TP M g0 (T )|

IME(TCw)| >

WV
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p—K1°—pe<qK—K1°)<L(E>—4e)

en(L(E)fﬁs)

VoWV

as long as N is sufficiently large [recall p from (3.12)]. O

Picking t € (o, t1) such that u(r) # 0, replacing u by
infers (3.26) which in turn yields (3.24) and (3.22).

Proof of Part (ii). By Part (i) and Ruelle’s deterministic version of Oseledec’ The-
orem [54,56], every generalized eigenvalue is, in fact, an eigenvalue corresponding
to an exponentially decaying eigenfunction. Furthermore, since the spectral measure
of Hy,xi(H,) is supported by the generalized eigenvalues belonging to I, cf. [44,
Theorem C.17], one infers that ran(y;(H,)) admits a basis of exponential decaying
eigenfunctions.

Proof of Part (iii). First, we notice that

and using (3.39) one

_u_
u(t)’

max {”f”Loo(tj,l‘jJr])a ”f/||L°°(l‘j,tj+])}
(L, K+)(||f||L2(zj,zj+l) + ”f//”LZ(zj,th)) (3.41)

<
< 5 DIf g, =@, €5, D),

and

||f ||L°°(t, v <CW™ e+)(||f||L2(z] tit1) + ||f 2 2(t;, l,+1))

(3.42)
SCUT DIy < CE DIl b0

for some C(¢~,£T,I) > 0, and all j € Z, cf, e.g, [21, Corollary 4.2.10], [46
IV.1.2]. In addition we remark that f attains its maximum since

1) (Zy, C?) and thus i "0 =0
Fin|| €@ Crmatus im(501+15 0D =0
=0

Therefore, we may repeat the arguments of the proof of Part (i) with

R
I fllLoe®y)’
T = argmax| f| (i.e. t is chosen so that | f(7)| = || f|lc0) in Step 2,

Cy =max {1,C(¢", ", )} inStep 1,

where we pick any value of argmax if there is more than one extremum. Then for a
given ¢ € (0, t) there exists N = N (g, w) (which does not depend on f) such that
forall K > K(N, log2(§ + 1) andalln € [K'" + K'0, K] one has

! ~ log IME(TCw)| > L(E) —
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Utilizing this with sufficiently small ¢ (depending on § only) and letting
wi=c(b™, X Dymax {1,C(¢™, ¢, D},
see (3.41), (3.42), we will show that

1
|fl )] < seeTOHEN foralln e [p P }

i

forall p € [K11 + K10, K,K > K (N). Asin Step 1 our subsequent argument relies
on a representation of f considered on the interval [#,, ;4 ] in terms of its boundary
values. Our choice of the representation, as before, depends on the entry of

ST Gep) D7 (bt p) My (T w)

that dominates its norm. We will provide the argument assuming that the maximizing
entry is 11 and note that the other three cases can be treated almost identically.
One has

f) _ F1aOv ) + Flig Y-ty

e — — : (3.43)
f Myl (1)) My, ,)
where My := || fllLo®,), =¥ = Ey, ¥+ satisfies the interior vertex conditions
in the interval [#;, f; 4 p], and
Vo) =1, vl = 0,94, ) =0, v, ) =1,
and
W@, o)l = W4 D] = -1l
- 1S~ (g p) D bey p) ME(TE )|
4 (3.44)

IME(T¢w)|
" 4D (besp)S(Geap)ll
> c(b*, £%) exp((L(E) — 6¢)p),

for some c(b*, £*) > 0. In order to estimate y_ (t{++n)’ we rewrite it in terms of the

transfer matrices and use (3.15) as follows

V() = K[‘l)] M (T w) [(I)M < exp((L(E) + e)n).
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Similarly one can estimate v (t;r+n). Combining this and (3.41), (3.42), (3.43), (3.44)
we get

| £t} )] < seexp((L(E) + &)n — (L(E) — 6¢)p)
+cexp((L(E) +&)(p —n) — (L(E) — 6¢)p)
< wexp(—(p —n)L(E) + (n + 6p)e)
+xexp(—nL(E) + (Tp — n)e)

2 exp(—nL(E) 4+ 8pe) < 2xcexp(—nL(E) + 32ne¢)

<
< ~(1=9)nL(E)

2ze

to facilitate the last inequality we pick ¢ = &(§) > O sufficiently small (depending
only on §). Thus
|f )] < 23007 1mOEER, (3.45)

foralln € [%KIO, %] and K > K(N). Since these intervals cover the half-line
[KT“, oo) for sufficiently large N, the inequality in (3.45) holds for all
K 11

1 ) 11
- = Emax{N(a),S),lOg ¢+ 1)} :

n

WV

. . +
Furthermore, estimating f (tg“ ) for

ne [o, 27! max {N(w, £), log2(¢ + 1)]“}

trivially and changing variables k = ¢ + n, we get

11
|f(t/j)| < 2%6(1—8)L(E)max{N(w,s),log2(§+l)} e~ (1= L(E)(k—¢)
(3.46)
<

C,p 5CO 1082 CHD = (I=OLEVK=C] p > ¢

A similar estimate can be obtained for k € [0, ¢]: In this case, the Lyapunov behavior
(3.45) is observed only for sufficiently large ¢, in which case (3.45) holds for k €

[0,¢ — KT”] (for small ¢, use the trivial bound).
In order to show a version of (3.46) with f replaced by f’/, we employ

@ty FaOvie,)  fag i,
My ML) My (i, ,)

bl

and repeat (3.44)—(3.46). Finally, keeping in mind Remark 3.3 and interpolating
between the discrete vertices, we infer (3.23). O

Having established existence of a basis of semi-uniformly localized eigenfunctions
(SULE) we turn to dynamical localization. Our argument stems from the proof of [38,
Theorem 2.1].
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Proof of Theorem 1.1 Our first goal is to derive an upper bound for the number of
centers of localization® located in a large interval [0, L]. Let {n};2 | be an L*(R,)-
orthonormal basis of exponentially decaying eigenfunctions of the spectral subspace
ran(y; (Hy)); the corresponding eigenvalues are denoted by E,, € I, n > 1. Then by
(3.23) with

8 = 1/2, v := min(min L(E),1) >0,

we have » _—
|§0n(x)| < CweClog (Zn-i-l)e—iz L x>=0. (3.47)

We claim that
ML) :=#{n:¢{ <L} <C(w,I)L, L > Lo, (3.48)

for sufficiently large Lo > 0. For L > 0 let x3;, € B(L*(R.)) denote the operator of
multiplication by the characteristic function of [0, 3L], let R(H,,) denote the resolvent
of H, at . = mino (H,) — 1 and note that ||R2(Hw) ||B(L2(R+)) < 1. Next we show

ML) < C(o, I tr(x3 R*(Ho) X3L). (3.49)
for sufficiently large L and some C(w, I). To that end, notice that

1

2
m = {(¢n, R (Hw)<ﬂn>L2(R+)

= (¢n, X3LR2(Ha))X3L(pn>L2(R+)
+ {pns 3L R*(Ho) (1 = X30)0n) 2R,
+ (@n. (1 = 3L R*(Ho) x30.0n) 12, (3.50)
+ (@, (1 = X3 R*(Ho) (1 — x30)0n) 2R, )- (3.51)
Assuming that¢, < L, E, € I,and C logzz(L +1) < % and using (3.47) we obtain

_ vx—&n|

lon(x)] < Coe'™ T, x=0,
and

@n, 161 B2 (Ho) (= X30)0n) 12, ) < 10 = X30)0n 2,

vL 1/2
< Cpe'd ( —V\’C l'n\dx
vL “Cn _3wL 1 _3wL 1
<Cpedee 2v2 Cpe 4v2 = o(l).
L—oo

Similar estimates hold for (3.50) and (3.51). Therefore we have

tr(x32 R*(Hw) X31)

5 ¢ from (3.23) is called the center of localization of f.
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> Z (@n, X3L Rz(Hw)X3L(/)n>L2(R+)
n:& <L

> ((E e 3cwe—3”fv—i>

n:¢n <L
> C,w)#{n: 5 < L},

for some C (I, w) > 0.
Next we estimate the right-hand side of (3.49). Let us recall that AB € By (L*(R,))
(the space of Hilbert—-Schmidt operators on L?(R)) and

IABlIs, 12wy S 1AL ® ), 2@ 1 BlBE2R ), Lo R, )

whenever A € B(L®(Ry), L>(Ry)), B € B(L?(R,), L>®(R)). A discussion of this
fact together with related references can be found, for instance, in [60, Section 4.1.11]
and [61, pp. 418—419]. This result is applicable in our case due to [44, Lemma C.12]
which asserts that R(H,,) maps (boundedly) L2(R+) into L°°(R.). Combining these
facts we infer

(6L R (Ho) x30) = 162 RUH) 5, 2q, )
) (3.52)
< (V 3L”R(Hw)||B(L2(R+),L°°(R+))) < C(w)L,

for some C(w) > 0. Then (3.49) and (3.52) yield (3.48).
Next, we turn to (1.4). For brevity, denote y := 22 + ¢ and let k > 0 be such that

VIX —
[log” (x + k) — log” (y + «)| < %, x,y > 0. (3.33)
Then we have
X|? H —itH,
|1x1 e ey
o0
<Y Hen ¥ 2@ 11X 1P @all 2, (3.54)
n=l1
> 22 vix—<¢nl 172
<Y Copy PCE D / W x)le 2 ( f xZPevwldx)
n=1 R+ R4
o0
< Z Co.l.pw €2C10222(§n+1)§’{’ o~ log" (xti) , de

Ry

3
Il
—_

Col poy €€ 10g? (¢ +1)+plog(n+1)—log” (ntx)

VAN
M2

=

X
Il
— 1L

o~ l0g" (x-+i) Hlog! (g-+i)— Xl

+

X
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o0
22
< : Z Cw,],p,x// e2C log™ (&n+1)+plog(gn+1)—log” (&n+i)
(53 1=

_vlx=&nl
x/ e” 4 dx
Ry

o0
~ 2C log?2 (¢p+1)+p log(Ln+1)—log? (&n
<Colpy Ze Clog™ (§u+1D)+plog(§u+1)—log? (¢ +x)

n=1

00
~ 2C log?? (L +1)+p log(Zn+1)—log?
<Colpy Z Z £2C1og™ (Gu+D)+plog(&u+1)—log (ntr)
L=0 n:{,=L
> 22 22
~ _ +e
< Ca),l,p,w ZN(L) e2C10g (L+1)+plog(L+1)—log (L+x) < 00,
L=0

where we used (3.48) in the last inequality.

4 Random metric trees

4.1 The almost-sure spectrum for continuum models

(3.55)

Our first objective is to show that almost surely the spectrum of H,, is given by a

deterministic set X.

Theorem 4.1 There exists a full p-measure set Q C Q such that

oM, == | J o tg) we.
Proof Since (b,¢,q) periodic
o(H(b. £, q) = | ] o(H(T*b, TEL, Trg)),
k€Z+
one has
oM, = | J otHp,): == ()  oHb. L)
keZy (b,t,q) periodic

First, we will first show that

o(H,) C X, forallw € 2,

and therefore o (H,) C X. Let us fix w € Q. Seeking a contradiction, we pick

E € 0(H,)\Z. Then there exist
{filee, C dom(H,) and {m}72, C N,
such that

”fk”Lz([(),oo) = 15 Supp(fk) - [t07 tmk],
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sup ho — E)[fx, g1 = 0, k — o0, “.1)
gedom(bhy)
el 715,00 <1

where h, = h(by, Ly, gw), cf. (2.17)—(2.19) [we recall that H'-norm is equivalent
to the form norm, see (2.21)]. Let (b*, X, qk) € Q denote the my-periodic sequence
whose first my elements are given by wy, ..., @y,. Then since E ¢ X one has

C = sup [| Fill g1y .00) < 000 Fic := (HBF, €5, ¢*) = E)~' fi.,
N

ke

where the first inequality follows from the fact that F{' = —EF; — fi and Sobolev
inequalities. Suitable truncations of Fj belong to dom(h,). Indeed, for k € N, let
¢r € C§°[ty, 00) be such that supp ¢ C [0, 411, 0 < @ (x) < 1, x > 19, and

11 X € [t09 tmk]v
0, x € [tmy+1,00).

or(x) = {

Then for all £ € N one has

(¢x Fi) € dom(b,,)

(4.2)
Ik Fell e,y < max {1 00kl oo IR 1 ) S 1

where we used ||(Pka||H‘(tmk,tmk+1) IS ||¢k||H1(tmk’tmk+l)||Fk||Hl([mkvtmk+l)’ see [41,
Theorem 4.14]. Moreover, one has

(ho — E)Lfx> e Frl = (o Fi, — fy — Efi) 2m,y)
= <st 7fk” — Efk)Lz(R+) (43)
= <(H(b’<,e’<,q") —E) fi, (HO* 65,45 — E)fk>L2(R = b
N

Combining (4.1), (4.2) and (4.3) we obtain a contradiction.
Next we show that exists a full -measure set & C 2 such that

T Co(H,), we Q. (4.4)
First of all, we note that £ € o (H,) whenever there exist two sequences of natural

numbers
(g2 © N, {me}2, C N, 4.5)

and a sequence of functions { f};2, such that f; € dom(bhzr,) satisfying
Hminf | fiell 2, r0),00) > 0: 8UPP(fit) € [t (). too (i + mi) ], k € N, (4.6)

and
sup (bT’kw - E)[fk’ g] i Oa k — 00, (47)
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where the supremum is taken over the set

{g € dom(bre) 181 11, ().00) < 1}

This is due to orthogonal decomposition (2.11) and the standard Weyl criterion for
H,,. Secondly, there exists 2 C €2, u(€2) = 1 such that for arbitrary

®eQ, (b, L, q) €supp(), fm}g; C N,
there exists a sequence {r¢ )2, such that for all k € N one has

bo(riy +1) =b; foralli € {1, ..., my},

=

Lw(i -4l < —, 4.8

lggklw(wrk) il X (4.8)
1

i —qil < -, 4.9

132);% |9 (@ + 1) — qil T 4.9

see, for example, [47, Proposition 3.8]. We claim that (4.4) holds with this choice
of Q. Indeed, pick any periodic sequence (b, ¢, q) and E € o(H (b, ¢, q)). Then by
Proposition 2.3 there exist

{er}p2) € dom(h(b, £, q)), {mi};2; CN,
such that

sug ol 319,000 < 095 N0kl 22(19,00) = 1, supp(@k) C [10, tm; ],
ke

sup h, L, q) — E)ek, gl > 0, k — oo. (4.10)

gedom(b(b.€,q))

gl 711,00 ST

In order to produce a singular sequence for H,, we will rescale ¢y from [#;,_1, #;] to
[to,(rk +1 — 1), 1,(rx +i)]. That is, for every i, k € N we let

Fe) = or(si L) Y € Mtk +i — 1), 1 (i + )],

where

to(re + 1) — to(re +i — 1)
4

Sik(x) = (x —tic1) F ok +1 = 1),

for x € [t;_1, t;]. Then changing variables one obtains

. 14

ro i / Y
{fi-8 >L2(tw(rk+i—1),tw(rk+i)) loi+1) (O @osik) )2y, > (1D
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bo(re +1)

Wt Datrct) = gy (P8O, (4.12)

(fkv g)LZ(

where g € H! (ty(rr), 00). Let us denote
gk(x) == (gosix)(x), x €lti—1.;], ieN, keN.

Then using (4.11), (4.12) with f; replaced by g we note that there exists a constant
C > 0 which does not depend on k such that

1B 71600 < C I 1207100 < 1o K EN. (4.13)

We claim that { f;}72, is a singular sequence satisfying (4.5)—(4.7). First, we know
that f; € dom(h7,,) holds since the vertex conditions displayed in (2.18) are scale-
invariant. Next, the conditions in (4.6) hold due to (4.10) and (4.12) (with g = f¢). In
order to check (4.7), let us fix k € N and g with ||g|| 51 < 1. Then one has

(1 (rg),00)
(7w — E)frs 81 — (b, £, q) — E)lgk, 8]l
nmi E
< T 1 /’ i ' . .
’; (Ew(rk +i) > (@ (8 081k 22y, 1)

e (Ew(rk +i)
1%

1> <(pk’ 80 Si,k)Lz(t,'_], ti)

+

mg
> @i = ol + D) gt ) (g 0 s,-,k><t;)’
i=1

_ ekl I3 21 )

k

2

<-—=0, k— oo.

x| =

In the first inequality we employed (4.11) and (4.12); in the second one we used the
Cauchy—Schwarz inequality, the fact that [ (1,)]| < lorll g, 0 (4.8), and (4.9);
and finally in the last inequality we used (4.10) and (4.13). Hence, (4.7) holds and
E € o (H,) as asserted. O

Remark 4.2 1t is natural to conjecture that the spectrum for the half-line operator H,,
is a deterministic set given by the union of periodic spectra of H (b, £, q). The latter,
under some spectral monotonicity assumption, in turn equals the union of constant
spectra, which in certain scenarios can be computed explicitly. However, neither stan-
dard ergodicity arguments (e.g., proof of Pastur’s Theorem) nor spectral theoretical
arguments (cf. [60, proof Lemma 1.4.2] and [48]) seem to be applicable to the half-line
models in question. We note that the half-line models present both probabilistic and
spectral-theoretical complications which are not typical for operators on R.
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4.2 Proof of dynamical and exponential localization for metric trees

We say that a function f : I',, — R is tree-exponentially decaying if there exist
A>0and C = C(f,A) > 0 such that

Ce Al

S —.
Lf (0l TR

where w, (|x|) denotes the number of vertices in the same generation as x; cf. (2.1).

Proof of Theorem 1.2 (i) By Theorem 4.1 and part (ii) of Theorem 3.13, there exist full
measure sets 2, Q C Q such that

o(H,) =%, 0(Hy)) =¥, 0eQNQ,

and the operator H,, enjoys a basis of exponentially decaying eigenfunctions. Then
letting
Q=) TR NR), (4.14)

nEZ+

we notice that ©(2*) = 1 and that

o(H,) =%, o.(H,) = | oc(Hry) =0, 0 € QF,

n€Z+

where we used the orthogonal decomposition (2.12). Next we show that H, admits a
basis of tree-exponentially decaying eigenfunctions almost surely. To thatend, let us fix
w € §~2, v e W{o}, gen(v) =n € N,and 1 < k < b,—1. Then it suffices to construct
a basis of tree-exponentially decaying eigenfunctions in £, y = LI; }((Lz(tw (n), 00)),
cf. (2.4), (2.5). For a basis element f € ker(Hrn, — E) of L2%(t,(n), 00), we define
the corresponding basis element of £, ,

Vg i=U, L f, V5 € dom(H,).

Then (2.9) yields
_ LB

Cyre
Vwy(Ix)

A basis of tree-exponentially decaying eigenfunctions of £, can be constructed
similarly.

(i1) Let v € V and n := gen(v), then by Part (iii) of Theorem 3.13, the subspace
ran(y;(Hrny)) is spanned by semi-uniformly localized eigenfunctions

V()| <

Ju,j € ker(Hyny — Ej(n)), j € Zy, Ej(n) € I,n = gen(v). (4.15)
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For 1 <k < b,_1, j € Z4 we introduce
Yok j i=Uy  fn.j € dom(H,),

and notice that
supp(Yv k,;) C Tv, (4.16)

the forward subtree rooted at v. Then for @ € Q* one has (abbreviating I' =TI',, ¢, ):

[117 1 (B e~ B e

L2(T)
by—1
<Y Y > |(Wok, s 20) 2y X PP Yol 2y
veV k=l (. Ejmel,
J: Ej(n) asin (4.15)
< Y D Wk i) 2y X 1Pkl 2y
@16) ey ks 1<k<bo—1
JiEj(m)el
1/2
< > / [Wok.j () |dx ( / xzwv,k,,-(xnzdx)
veV, Tynkze Y KTy r
1<k<by—1
JiEj(m)el
< X[ i wlar
veV, Tnke, ¥ K0Tl
n=gen(v)
1<k<by—1,
JiEj(mel

1/2
x ( /F 127 [y k. ,-(x>|2dx>

< c,Kf o+ oD dt
2 " Jnry

veV, TyNK#H,
n=gen(v)
JiEj(n)el

00 1/2
x (/ |T|2p|fn,j(f)|2df) , 4.17)
|

v

where || := [0, diam(K)]. Proceeding as in (3.54), (3.55) with ¢ replaced by the
characteristic function of the interval [0, diam(K)], we deduce that (4.17) converges
as asserted. O

Remark 4.3 We notice that all eigenfunctions g (including those corresponding to

energies £ € D) satisfy
Ce*EII

—_ 4.18
Vwo(lx]) 19

VE@)] <
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forsome g > 0and C > 0, where w, (|x|) denotes the number of vertices in the same
generation as x; cf. (2.1). Moreover, one has A > 0 whenever E ¢ D, in particular,
(4.18) yields Y g € L2(Fb,() in this case. Furthermore, if £ € © and A = O then ¥ g
still decays exponentially, |V g (v)| < W for all v € V. However, this inequality
alone is insufficient to deduce L>(I'y ¢) integrability. The analogous issue does not
arise in the setting of metric graphs for which the volume of the ball centered at the
root with radius » grows polynomially as r 1 +00, e.g., as in the metric graph spanned
by 7.

Part 2. Anderson localization for discrete radial trees
5 Random discrete trees

This part of the paper concerns Anderson localization for discrete radial trees.

Hypothesis 5.1 Let ' = (V, &) be a rooted, radial discrete tree. Assume that the
branching numbers b, € [b~,bT], b~ > 2, and the potential q, € [q—,q"] are
radial. Let

pi{,v) € V2 idu,v) =1} - [p~, p*l,

be radial, symmetric, and bounded, that is,

pu,v) = Pmin(gen(u),gen(v))» foru,v eV,

oo

and p == {p,}32, C [p~. pT1, p—1 =0, p* € (0,00).

Assuming this hypothesis, we introduce a bounded operator J(b, p, q) € B%(V)) as
follows

I, p.q) Hu) = Zp(u, V(g fw) = ), felWm), (.1

v~u

In this part, we adopt the notation of the previous sections with the convention that
all edges have length one. Thus, for vertices x, y € V, dist(x, y) is the combinatorial
distance between them, and, in particular |x| = gen(x) for all x € V.

5.1 The almost-sure spectrum for discrete models

The following hypothesis is assumed throughout this section.

Hypothesis 5.2 Let [t be a probability measure with supp(it) = A, #A > 2, and
either
AC{b_,....bi} x {1} x [g—, g+] (5.2)

or
A - {b—v "'1b+} X [p—v p-‘r] X {0}

(5.3)
and A(b, p,0), (', q',0) € supp i with p/'b # p'/b'.
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Let us remark that the secondary hypothesis in (5.3) is essential, for, if supp it is
concentrated on a set for which ¢ = 0 and p+/b = const., then the Jacobi matrices
arising in the orthogonal decomposition of J,, will all have constant entries.

We introduce (2, ) := (AZ+, i%+). For w € Q, define the operators J, :=
J(by, Pw, qw) and Jacobi matrices J,, := J (by, Pw, q»), Where

{(by(n), pu(n), Qw(n))}zozo,

is a sequence of i.i.d. random vectors with common distribution fi. Let us notice that

_ | Sw (cf. (1.6)), if (5.2) holds,

Jo = A, (cf. (1.7)), if (5.3) holds.

In particular,

e Random Branching Model (RBM) arises when supp it € {b_, ..., by} x {1} x {1},
e Random Weight Model (RWM) arises when supp it € {d} x [p—, p+] x {0},
e Random Schrodinger Operator (RSO) arises when supp it € {d} x {1} x [¢g—, g+].

Remark 5.3 We point out that RBM and RSO concern random realizations of the
discrete Laplace operator, while RWM is focused on the adjacency matrices, i.e.
g = 0. Typically (e.g., for Z¢ models) the distinction between the discrete Laplace
operator and the adjacency matrix of the graph is irrelevant as the two operators
differ by a scalar multiple of the identity operator. In the setting of non-constant trees,
however, the distinction is more subtle since it depends on the branching numbers.
What is more, the consecutive transfer matrices for RWM are correlated unless ¢ = 0.

Abusing notation somewhat, we will identify a scalar with a constant sequence
consisting of that scalar, for example writing A(2, 1, 0) to mean the adjacency operator

for which all branching numbers are two and all p’s are one.

Theorem 5.4 There exists a full p-measure set Q C Q such that

ch)=%:= |J oA®.p.0) wel (5.4)
(b,p) periodic

Proof First, we show that
o(A,) C X, forallw € 2.
Seeking contradiction, we assume that £ € o (A,)\X for some w € 2. Then there

exist
(i), € €3(D) and {m )32, C N,

such that
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I fell2ry = 1, supp(fx) C B(o; my),
I(Aw — E) fil 2y = 0, k — oo. (5.5)

where B(o; my) denotes the ball centered at o with radius my. The my + 2-periodic
sequence with the first m; + 2 elements given by wy, ..., wy, 41 is denoted by
(bk , pk ,0). Then since E ¢ X one has

IA®, p*.0) = E) g2y < € < o0,
and thus for all £ we get
(Ao = E) fillery = IAGY, p*.0) = E) fill oy = €' > 0,

which contradicts (5.5).
Next, we show
X Co(Ay)

for almost all w. To that end, we first notice that there exists Qc Q, ,u(ﬁ) = 1 such
that for arbitrary

w € Q, (b, p,0) € supp(u), and {my )3, C N, (5.6)

there exists a sequence {r¢};2, such that for all k € N one has

by(ry +1i) =b; foralli € {0, ..., my + 1}, 8.7
' —pil = o :
b P00 =il = 0D 59)

see, for example, [47, Proposition 3.8]. Pick an arbitrary periodic sequence (b, p, 0) €
supp(1) and an arbitrary E € o (A(b, p, 0)). Then there exist {g;}2, C £2(I") and
{mi}2, € N such that

lolle2ry = 1, supp(er) C B(osmy), k € N,
I(A®, p,q) — E)pilleqry = 0, k — oc. (5.9

Given (5.6)—(5.9) we are ready to produce a Weyl sequence for A,.

For a fixed k € N, pick two distinct vertices vy, vy in generation ry with common
backward neighbor u € V (in generation ry — 1), see Fig. 2. Then by (5.7) there exists
a pair of graph isomorphisms

§(k,i): Blo;mg + 1) — Ty, N B(vis my + 1).
We notice that
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Fig.2 Top panel: 7' (k). Bottom /I a
panel: vertices vy, v in ’
generation r with common 4
backward neighbor u, brk =2. x
Subtree in blue (dashed) is ’ :
T (k, 2). The isomporphism ’ 2l -
&(k, 2) maps T (k) onto T'(k, 2),

in particular o > vp, x >y, s
a — b, blue (dashed) tree in the 1o} e POk
top panel gets mapped into the >

blue (dashed) subtree in the RS
bottom panel

U1
yd
u
AN
V2 - -
\\ ::\ Yy=z-._ b
\ ~
\ I~
RS \‘:'
\ \\ ‘
\ S
\
n \\\\\ 1
1\\ v _‘Pk(g (k,2)e)
‘.\ V2
Ek,i)Y(o) =v;, i=1,2, keN. (5.10)
For brevity, we denote
T(k) =T NB(o;my+1), T(k,i):=Ty,, N Bv;; mg + 1). (5.11)
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Let us define

27120pEk, Dx), x €Tk, 1),
Wrp)(x) := § =27 12pE "1k, 2)x), x € T(k,2), (5.12)
0, otherwise

for ¢ € £2(V) which is supported on B(o, mi + 1). We claim that {Wigr}i>1 is a
Weyl sequence for A, w € Q. To that end, let us first notice

1AW, p.0) = EYorllery — (Ao — E)Wiekll )|
= [IWi(Ab, p,0) — E)prllary — (A — E)Wiklle2(r)|
< IWi(A®, p,0) — E)pr — (Aw — EYWewell 2y
= [[WiAD, p, 0)ox — Ao Wiokll 2y,
where we used [[(A(b, p,0) — E)gkll2ry = Wk(Ab, p,0) — E)gxllp2ry which

follows from the definition of Wy. Next, recalling (5.10) and the fact that u is the
common backward neighbor of vy, vy we get

Ao Wior) () = po(u, v)[Wiorl(v1) + po(u, v2)[Wegr](v2)
_ Do, V1) @i (0) — po(u, v2)@r(0)

V2

since py,(u, v1) = pe(u, v2). Further, one has

=0,

Wi (A, p, )e) () =0 = (Ap Wigr) (), (5.13)

where the first equality follows from (5.12). Next, let us fix i = 1,2, k € N and use
the shorthand & := &(k,i). Fory € T (k,i) letx := f;‘k_l(y), see Fig. 2, then one has

Wi(Ab, p, 0)@i)(y) — [Ao(Wigi)1(y) (5.14)

1
— (A, p,0 — [Aup(W,
ﬁ(( P2, 0)er) (x) — [Ap (W) 1(y)

1
== Y P i@ + Y pu(y. b)(Wigi) ()

1
_E(ZP(L@W(CD— Z Pw(ék(X),b)wk(é[lb)) (5.15)
amx b~E (x)

b~y

Let us point out that & ! (b) is not defined if b ¢ T, U T,,. However, one does have
Wik (b) = 0 and therefore the equality in (5.15) holds with

oe (& (B) := Wigr(b) = 0. (5.16)
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Moreover, combining this and (5.7) we obtain

Y pte.aypr(@) = Y po(y. Dypr (€ (b))

a~x b~y

= Z(p(x, a) — po(x(x), &k (@) (a).

a~x

(5.17)

Given (5.16) and (5.17) we are ready to continue (5.14), (5.15). Changing variables
viab = & (a), we get

Wi (A, p, 0)@i) (y) — [Aw(Wr@i)1(y)

1
= 5 (L0 0 - P&, &@la@).

(5.18)

where we made a change of variable b = & (a). Furthermore we note that (5.18) holds
for y € I'\(T'(k, 1) U T (k, 2)) trivially, i.e., both sides are equal to zero. Recalling
T (k) from (5.11) and using (5.8) yield

c(k) ;=  max Ip(x,a)—pw(ék(X),Ek(a))|2k= o(1). (5.19)

xeT (k),x~a —00
Then combining (5.13), (5.18), and (5.19), we obtain

IWLA®, p, 0)pr — Ao Wikl r

= 3" WA, p. 0@ () — [ho(Wig)]1 ()

yell

= Y Y6 a) = poE@). @)lea@ |
xeT (k) x~a

< cRCENelfary = o),

where C(b™) > 0 is some fixed constant. Therefore, we get

ICA®, p,0) = EYprllary = (Ao = EYWigrlla)|, = o(D).

—00
Thus {Wirer}i>1 is a Weyl sequence for A, and E € o (A,,) as asserted. O

Remark 5.5 (1) We emphasize that the equality in (5.17) requires special attention
if y € 9(T (k, i)), since in this case the inclusion

E&k({laeV:.ia~xh) cl{beV:b~y},

could be strict. However, by (5.16) the equality (5.17) holds as asserted even in
this special case. Due to this nuance the current proof is not applicable to J = S.
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@

3

(Informally, if ¢ # 0 in (5.1) then we “see” extra bits around v; which are not
observed near o).

The almost-sure spectrum ¥ for A, = A(b,, 1, 0) can be computed explicitly if
p = 1,q = 0, i.e. the random branching model for the adjacency matrix. Indeed,
in this case, the quadratic form a of the A is given by

alg, o] = =Y pe(v), ¢ € E(I).

therefore _
A, 1,032y < 1AWG, 1,0)l5e2(ry)

where b := max{P, supp 1} and P is the first coordinate function. Combining
this and (5.4) we get

2= (J o@A®.1,0) C=1AG. 1.0)lIgery. 1AG. 1,0)5e2ry)]

b periodic
=[-2vb,2Vb] C 3.

As before, we note that this proof is not applicable to the case g # 0 or p #
const.

Remark 5.3, the proof of Theorem 5.4, the previous remark, and the question of
computing the almost—sure spectrum itself illustrate a subtle distinction between
adjacency matrices and Schrodinger operators. This issue arises even in the most
simple case I' = Z4, p = 1, and random ¢, since [in view of (1.7)]

q(l) —1
-1 292 -1

S = -1 2¢(3) -1

To be more specific, if one considers

2g(1) —1
~ -1 2¢2) -1
S =

—1 29(3) —1

where {g(n)} is a sequence of i.i.d. random variables, then it is well-known that
the spectrum of S is almost surely given by [—2, 2] + 2 supp{g}. Since S is a
rank-one perturbation of S, their essential spectra coincide. However, depending
on the support of ¢, it can happen that S may have discrete eigenvalues outside
of oegs(S), and these eigenvalues may not be constant almost-surely. Thus, one
should not expect the analogue of Theorem 5.4 to hold for random Schrédinger
operators on graphs (as opposed to adjacency matrices).
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5.2 Breuer-type decomposition

Our next objective is to revise the Breuer decomposition [13, Theorem 2.4] which
may be viewed as a discrete version of the orthogonal decomposition of metric
trees. To point out a difference between the two, we note: The invariant subspaces
in (2.10) are parametrized by single vertices, while those in Breuer’s decomposition
are parametrized by entire generations of vertices.

Theorem 5.6 Assume Hypothesis 5.1. Then there exists a unitary operator

oo m(n)

o 2V —> PP @),

n=0 k=1

such that

oo m(n)

@, J(b. p. )0, =P EP J(T"b. T"p, T"q), (5.20)
n=0 k=1

where m(n) :=bo -by---by_1 - (by — 1), n € Z4, and J (b, p, q) denotes the Jacobi
matrix acting in 0*(Z,.) and given by

(bopo + P-1)q0 Vbopo 0
Vbopo (bip1 + po)qi Vbip1 -
J(b, p,q) = R E (5.21)

0 Vbipi

Proof Breuer’s inductive procedure [13, Theorem 2.4] yields an orthonormal basis
{pnkjin€Zy, 1 <k<m@n),jeZy)cC V).

For all admissible triples n, k, j, the basis elements satisfy

supp(@nk,j) C {veV:gen(v) =n+ j}, (5.22)
Onk,j(u)
—2i—_ y ~ v, gen(v) = gen(u) + 1,

Pk jr1(v) = § Voo (5.23)
0, otherwise,

and

Vbntj—1 Pntj—10n k. j—1
+bntjPntj + Pntj—1)qn+jPn k. j
+butj PutjPnjrts J =1,
bupn + Pr—1)qnPn k0 + \/Epn‘pn,k,la J=0.

Jb, ps Dnk.j = (5.24)
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The latter shows that the operator J(b, p, q) leaves the subspaces

Hy i :=span{gnr.j : j € L4} C €2(V)

invariant. Thus we have

oo m(n)

W) =P P Huk. Ib.q. w) Py, = J(T"b. T"p, T"q). (5.25)
n=0 k=1

where Py, , denotes an orthogonal projection onto H,,  in £2(V). Let us define unitary
operators

Uni - Hok = 2 (Zy), n € Zy, 1 <k <mn),
UnkPnik,j =8, j € Ly.

and
oo m(n)
@ = DDths
n=0 k=1
Then (5.24) together with (5.25) yield (5.20) and (5.21) as asserted. O

5.3 Dynamical and exponential localization for discrete random trees
In this section we discuss spectral and dynamical localization for three discrete models:
the random branching model (RBM), the random weights (RWM) model, and random

Schrodinger operators (RSO).
Let us denote the nonzero entries of J (b, p, g) by

Bi = Bjb,p.q) = bjpj+pj-1)q;
oj =a;b.p)=/bjpj. j € L.

Then a sequence u = {uj}?o:o satisfies J (b, p, q)u = Eu, E € R, that is,

oj_uj—1+ (,3/ — E)uj ‘+ajujr = 0, jeN,
(Bo — E)uo + aou; =0,

if and only if

[”j+1:| = ME’j(b,P,CI)[ 4 } forall j € N.

ozjuj Olj_luj_1
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where

: 1 [E—B; -1
MEI(b, p,q) = — !
o) ij[ o 0}

E—(bjpj+pj-1)4; _ _ 1 (5.26)
= |: No \/b_jpj:|
Vbipj 0

The transfer matrix (5.26) gives rise to an SL(2, R)-cocycle
(T,ME): Q@ xR?> > Q x R%, (T, M%) (w,v) = (Tw, ME (w)v),

where ME : Q@ — SL(2, R) and

E—(bo(0)po(0)+pu(=1)gu(0) _ 1
ME (C()) = \/bw 0)pw(0) «/bw 0)pw(0) .
Vb (0) pe,(0) 0

The n-step transfer matrix Mf (w) and the Lyapunov exponent are defined as in (3.2)
and (3.3) respectively.

Theorem 5.7 Assume Hypothesis 5.2. Then there is a set D C R of cardinality at most
one such that G = G (g) enjoys the following properties for E € R\D.

(1) G is noncompact

(i) G is strongly irreducible
(iii) G is contracting (cf. [ 19, Definition 2.8])
(iv) Fix(G) =¥

In particular, L is continuous and positive on R\D.

Proof Following the proof of Theorem 3.5, we choose

(b1, p1. q1) # (b2, p2.q2) € supp L,

let M;(E) denote the transfer matrix corresponding to (b;, p;,q;), and form the
matrices A = MM, Iand g = [M1, M>]. Let us comment briefly on the method of
proof. We can immediately apply [20] to deduce that there is an unspecified discrete
set of energies away from which (i)—(iv) hold. In fact, the argument of [20] applies
away from energies at which tr M ; (E) = 0 or det g(E) = 0, which allows us to refine
this to a discrete set with no more than 3 elements. However, we can do better still:
conditions (i)—(iv) hold for any E for which the following criterion is met:

3F < RP! with #F € {1, 2} such that M;F = Fforj=12. (5.27)
In particular, (5.27) implies (iii) which in turn implies (i) by standard arguments about
SL(2, R). Once (i) holds, then (5.27) immediately yields (iv) and also implies (ii) (cf.
[11]).
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Case 1: (5.2) holds. We have p; = pp = 1, so

I [E—(b;+ g —1}
Mj=— R A
TVE [ bi 0
We calculate
_ | by — by (b1 + Dg1 — (b + Dg2
biby (b1 —D2)E + ba(b1 + Vg1 — bi1(ba + Dg2 by — by ’

Case 1a: b| = by. It follows that g1 # ¢ and hence (b; + 1)q; # (by + 1)g2. One
can confirm that det g(E) # O for all E, so that M and M, have no eigenvectors
in common. Thus, there is no F of cardinality one with M;F = F for j = 1,2.
Now, suppose that an invariant 7 C RP! of cardinality two exists. We must then have
have F = {uy, uz2} and Mju, = us, Mjur = u; for some j; without loss, assume
j = 1. This forces tr M1 = 0. However, since (b; + 1)g; # (b2 + 1)g2, we must
have tr My # 0, so My F = F forces Mruy = uy for k = 1, 2, that is to say, each
ity is an eigendirection of M>. Identifying CP! with the Riemann sphere in the usual
way, write z; for the image of ity under the identification CP! = C U {oc}. Since
Mz, = zx, we have

E—(b+Dg 1
by byzk

From this, we deduce z;z2 = 1/b;. On the other hand, since tr M| = 0, we observe

1 1
Myzi = ———#22, Miza=——#121,
b1z) bi1z2
a contradiction. Thus, when b; = bj, (5.27) holds and we have (i)-(iv) for every

E e R.

Case 1b: by # by. There are two further subcases to consider.

Case 1bi: (b1 + 1)q1 = (ba + 1)g2. Then, det g(E) # O for every E. Thus, again M
and M, never share an eigenvector. At energy £ = Eq := (b1 + )g1 = (b + 1)q2,
both M| and M, preserve F = {span(e}), span(es)}. Since Ej is the only energy at
which tr M; vanishes for either j, we have ()—(iv) for E € R\{Eo}.

Case 1bii: (b1 + 1)g1 # (b2 + 1)g2. One can check that det g (E) vanishes for exactly
one value of E; € R. Using the same argument as in Case 1a, we see that there is no
invariant F of cardinality one or two away from E = E. Thus, (i)—(iv) hold away
from D = {E}.

Case 2: (5.3) holds. Then,

1 E -1
sz—[ 2. 0] and  piy/b1 # pay/bo.
pjybj LPjPi
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Notice that

_ 1 pby 0
A=MM L [ 2 .
2 pipavbiby | O pibi

Since pi+/b1 # pav/ba, Ais hyperbolic6 and any finite set of directions left invariant
by My, M5, and A must be a subset of {span(é;), span(é;)}. It is easy to see that this
cannot happen for E # 0, so we may take D = {0} in this case. O

Remark 5.8 Let us note that the need to remove a single point is sharp. For example,
in Case 1bi above, one can verify that L (Ey) = 0. To see this, write r = —(b1/by)'/?
and R = diag(r, r’]), and observe that

-1 j=k
Mj(Eo))Mi(Eo) = { R™" (j, k) =(1,2)
R (i k=@ 1).

Thus, by passing to blocks of length two and using the strong law of large numbers,
we deduce L(Ep) = 0.

Proof of Theorem 1.4 Now that we know that L is positive and obeys a uniform LDT
away from D, spectral and dynamical localization for J,, follows as in Theorem 3.13,
see also [27] where spectral localization was proved for the discrete RBM. Let Q*
be defined as in (4.14) (where Q is as in Theorem 5.4, and Q is a full measure set
realizing localization for J,) and fix w € Q*.

For all n € Z_, the spectral subspace ran(x;(Jr»4)) enjoys an orthonormal basis
{fn. j}j?';o of eigenfunctions of Jrn, corresponding to energies E € [. If we define

Ynk,j = LI;Lfn,j,then
Wnij nely,1<k<mn),jeZi}

is an orthonormal basis of ran(x;(J,)).
Proof of (1.8). For an arbitrary admissible triple n, k, j we will prove (1.8) with
f = V¥, ;. First, we note that by spectral localization for J,, one has

- . L(E)
| fnj (P < C(f )™, p € Zy; A = min

> 0,

for some C(fy,;) > 0. Then for [x| > n we get

Wk O = U g fj OO = 1 fnj (1X] = 1)@ ] =n ()]
C (W e l=m
(523) wo (X))

: (5.28)

6 Le., |tr(A)| > 2.
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which implies (1.8).
Proof of (1.9). Due to dynamical localization for J,, one has

D Ui fa @),y < Crele P79, (5.29)
JELy

forall p > ¢q,60 < minge; L(E), and a constant C,, = C(n, w,60) > 0 (cf, e.g.,
[19, Proof of Theorem 6.4] where this step is discussed for the standard Anderson

Hamiltonian). Next, we have

—it]

sup [(8x, x1(Jw)e™ "8y} 20l
t>0
o
< Y D Wk i)Yk O
neZy  j=0

1<k<m(n)

<D D Wk i Y )

52D o<nglyl  j=0
1<k<m(n)

= > Y (I = n)@uk e @) Fuj (191 = 1) @u k. y—n ()]

G2 o<yl =0
1<k<m(n)
< Z Z|fnj x| — )fn,j(|y|_n)|
62 o A2, S Vw(x=hI=D
1<k<m(n)
_ CpelVle=0UxI=IyD Cyefﬂ(dist(x,y))
B S .
629 ey iy VO K= DT=D V(=D
1<k<m(n)
Finally, (1.10) follows from (1.9) by summation in x. O

Acknowledgements We thank G. Berkolaiko, M. Lukic, and G. Stolz for helpful discussions, and P. Hislop
for bringing our attention to this subject and for motivating discussions.

References

1. Aizenman, M., Sims, R., Warzel, S.: Absolutely continuous spectra of quantum tree graphs with weak
disorder. Commun. Math. Phys. 264, 371-389 (2006)

2. Aizenman, M., Sims, R., Warzel, S.: Stability of the absolutely continuous spectrum of random
Schrodinger operators on tree graphs. Probab. Theory Relat. Fields 136, 363—-394 (2006)

3. Aizenman, M., Sims, R., Warzel, S.: Fluctuation Based Proof of the Stability of AC Spectra of Random
Operators on Tree Graphs. Recent Advances in Differential Equations and Mathematical Physics,
Contemp. Math., vol. 412, pp. 1-14. American Mathematical Society, Providence (2006)

4. Aizenman, M., Warzel, S.: Absence of mobility edge for the Anderson random potential on tree graphs
at weak disorder. EPL (Europhysics Letters) 96, 37004 (2011)

@ Springer



1392

D. Damanik et al.

10.

11.

12.

13.

15.

16.
17.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.
32.

. Aizenman, M., Warzel, S.: Resonant delocalization for random Schrodinger operators on tree graphs.

J. Eur. Math. Soc. 15, 1167-1222 (2013)

Aizenman, M., Warzel, S.: Random Operators: Disorder Effects on Quantum Spectra and Dynamics,
Graduate Studies in Mathematics, vol. 168. American Mathematical Society, Providence (2015)
Albeverio, S., Gesztesy, F., Hoegh-Krohn, R., Holden, H.: with app. by P. Exner, Solvable Models in
Quantum Mechanics, 2nd edn. AMS-Chelsea Series, Amer. Math. Soc. Providence, RI (2005)
Birman, BSh, Solomyak, M.Z.: Spectral Theory of Self-Adjoint Operators in Hilbert Space. D. Reidel
Publishing Co., Dordrecht (1987)

Berkolaiko, G., Kuchment, P.: Introduction to Quantum Graphs, Mathematical Surveys and Mono-
graphs, vol. 186. AMS, Providence (2012)

Berkolaiko, G., Latushkin, Y., Sukhtaiev, S.: Limits of quantum graph operators with shrinking edges.
Adv. Math. 352, 632-669 (2019)

Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrodinger Operators.
Birkhiuser, Basel (1985)

Bourgain, J., Schlag, W.: Anderson localization for Schrodinger operators on Z with strongly mixing
potentials. Commun. Math. Phys. 215, 143-175 (2000)

Breuer, J.: Singular continuous spectrum for the Laplacian on certain sparse trees. Commun. Math.
Phys. 219, 851-857 (2007)

Breuer, J.: Localization for the Anderson model on trees with finite dimensions. Ann. Henri Poincaré
8, 1507-1520 (2007)

Breuer, J., Denisov, S., Eliaz, L.: On the essential spectrum of Schrodinger operators on trees. Math.
Phys. Anal. Geom. 21(4), Art. 33, 25 pp (2018)

Breuer, J., Frank, R.: Singular spectrum for radial trees. Rev. Math. Phys. 21, 929-945 (2009)
Breuer, J., Keller, M.: Spectral analysis of certain spherically homogeneous graphs. Oper. Matrices 7,
825-847 (2013)

. Breuer, J., Levi, N.: On the decomposition of the Laplacian on metric graphs. Preprint

arXiv:1901.00349v1

Bucaj, V., Damanik, D., Fillman, J., Gerbuz, V., VandenBoom, T., Wang, F., Zhang, Z.: Localization for
the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent.
Trans. Am. Math. Soc. 372(5), 3619-3667 (2019)

Bucaj, V., Damanik, D., Fillman, J., Gerbuz, V., VandenBoom, T., Wang, F., Zhang, Z.: Positive
Lyapunov exponents and a large deviation theorem for continuum Anderson models, briefly. J. Funct.
Anal. 277(9), 3179-3186 (2019)

Burenkov, V.I.: Sobolev Spaces on Domains. B.G. Teubner, Stuttgart-Leipzig (1998)

Carlson, R.: Nonclassical Sturm-Liouville problems and Schrédinger operators on radial trees. Elec-
tron. J. Differ. Equ. 71, 1-24 (2000)

Craig, W., Simon, B.: Subharmonicity of the Lyaponov index. Duke Math. J. 50, 551-560 (1983)
Damanik, D., Lenz, D., Stolz, G.: Lower transport bounds for one-dimensional continuum Schrddinger
operators. Math. Ann. 336, 361-389 (2006)

Damanik, D., Sims, R., Stolz, G.: Lyapunov Exponents in Continuum Bernoulli-Anderson models,
Operator methods in ordinary and partial differential equations (Stockholm, 2000), Oper. Theory Adv.
Appl., vol. 132, pp. 121-130. Birkhauser, Basel (2002)

Damanik, D., Sims, R., Stolz, G.: Localization for one-dimensional continuum Bernoulli-Anderson
models. Duke Math. J. 114, 59-100 (2002)

Damanik, D., Sukhtaiev, S.: Anderson localization for radial tree graphs with random branching num-
bers. J. Funct. Anal. 277, 418433 (2019)

Ekholm, T., Frank, R., Kovarik, H.: Remarks about Hardy inequalities on metric trees. In: Exner, P.,
et al. (eds.) Proceedings of Symposium Pure Mathematical Analysis on Graphs and its Applications,
vol. 77, pp. 369-379. American Mathematical Society, Providence (2008)

Ekholm, T., Frank, R., Kovarik, H.: Eigenvalue estimates for Schrodinger operators on metric trees.
Adv. Math. 226, 5165-5197 (2011)

Frank, R., Kovarik, H.: Heat kernels of metric trees and applications. SIAM J. Math. Anal. 45, 1027—
1046 (2013)

Evans, W.D., Harris, D.J.: Fractals, trees and the Neumann Laplacian. Math. Ann. 296, 493-527 (1993)
Evans, W.D., Harris, D.J., Pick, L.: Weighted Hardy and Poincaré inequalities on trees. J. Lond. Math.
Soc. 52, 121-136 (1995)

@ Springer


http://arxiv.org/abs/1901.00349v1

Localization for Anderson models on metric... 1393

33.

34.

35.

36.
37.

38.

39.

40.

41.
42.

43.

44.

45.

46.
47.

48.

49.

50.

51.
52.

53.

54.

55.
56.

57.

58.

59.

60.

61.

Froese, R., Hasler, D., Spitzer, W.: Transfer matrices, hyperbolic geometry and absolutely continuous
spectrum for some discrete Schrodinger operators on graphs. J. Funct. Anal. 230, 184-221 (2006)
Froese, R., Hasler, D., Spitzer, W.: Absolutely continuous spectrum for the Anderson model on a tree:
a geometric proof of Klein’s theorem. Commun. Math. Phys. 269, 239-257 (2007)

Froese, R., Lee, D., Sadel, C., Spitzer, W., Stolz, G.: Localization for transversally periodic random
potentials on binary trees. J. Spectr. Theory 6, 557-600 (2016)

Fiirstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377-428 (1963)
Fiirstenberg, H., Kifer, Y.: Random matrix products and measures on projective spaces. Isr. J. Math.
46, 12-32 (1983)

Germinet, F.,, De Biévre, S.: Dynamical localization for discrete and continuous random Schrddinger
operators. Commun. Math. Phys. 194, 323-341 (1998)

Goldstein, M., Schlag, W.: Holder continuity of the integrated density of states for quasi-periodic
Schrodinger equations and averages of shifts of subharmonic functions. Ann. Math. (2) 154, 155-203
(2001)

Gorodetski, A., Kleptsyn, V.: Parametric Fiirstenberg theorem on random products of SL(2, R) matri-
ces. Preprint (arXiv:1809.00416)

Grubb, G.: Distributions and Operators. Springer, New York (2009)

Grigorchuk, R., Zuk, A.: The lamplighter group as a group generated by a 2-state automaton, and its
spectrum. Geom. Dedicata 87, 209-244 (2001)

Harrell, E.M., Maltsev, A.V.: On Agmon metrics and exponential localization for quantum graphs.
Commun. Math. Phys. 359, 429-448 (2018)

Hislop, P., Post, O.: Anderson localization for radial tree-like quantum graphs. Waves Random Complex
Media 19, 216-261 (2009)

Jitomirskaya, S., Zhu, X.: Large deviations of the Lyapunov exponent and localization for the 1D
Anderson model. Comm. Math. Phys. 370, 311-324 (2019)

Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1980)

Kirsch, W.: An invitation to random Schrédinger operators, Panor. Synthéses, Random Schrédinger
Operators, vol. 25, pp. 1-119. Society of Mathematics, Paris (2008)

Kirsch, W., Martinelli, F.: On the spectrum of Schrodinger operators with arandom potential. Commun.
Math. Phys. 85, 329-350 (1982)

Klein, A.: Absolutely continuous spectrum in the Anderson model on the Bethe lattice. Math. Res.
Lett. 1, 399-407 (1994)

Klein, A.: Spreading of wave packets in the Anderson model on the Bethe lattice. Commun. Math.
Phys. 177, 755-773 (1996)

Klein, A.: Extended states in the Anderson model on the Bethe lattice. Adv. Math. 133, 163—184 (1998)
Naimark, K., Solomyak, M.: Geometry of Sobolev spaces on regular trees and the Hardy inequalities.
Russ. J. Phys. 8, 322-335 (2001)

Naimark, K., Solomyak, M.: Eigenvalue estimates for the weighted Laplacian on metric trees. Proc.
Lond. Math. Soc. 80, 690-724 (2000)

Oseledec, V.I.: A multiplicative ergodic theorem. Characteristic Ljapunov, exponents of dynamical
systems (Russian). Trudy Moskov. Mat. Obs¢ 19, 179-210 (1968)

Pastur, L., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, Berlin (1992)
Ruelle, D.: Ergodic theory of differentiable dynamical systems. Inst. Hautes Etudes Sci. Publ. Math.
50, 27-58 (1979)

Schmied, M., Sims, R., Teschl, G.: On the absolutely continuous spectrum of Sturm-Liouville operators
with applications to radial quantum trees. Oper. Matrices 2, 417-434 (2008)

Sobolev, A., Solomyak, M.: Schrodinger operators on homogeneous metric trees: spectrum in gaps.
Rev. Math. Phys. 14, 421-467 (2002)

Solomyak, M.: On the spectrum of the Laplacian on regular metric trees. Special section on quantum
graphs. Waves Random Media 14, S155-S171 (2004)

Stollmann, P.: Caught by Disorder, Bound States in Random Media, Progress in Mathematical Physics,
vol. 20. Birkhiduser, Boston (2001)

Stollmann, P.: Scattering by obstacles of finite capacity. J. Funct. Anal. 121, 416-425 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer


http://arxiv.org/abs/1809.00416

	Localization for Anderson models on metric and discrete tree graphs
	Abstract
	1 Introduction
	1.1 Description of main results
	1.2 Background

	 Part 1. Anderson localization for continuum radial trees
	2 Spectral theory of deterministic continuum operators
	2.1 Orthogonal decomposition of radial trees
	2.2 Quadratic form of the model half-line operator

	3 Proof of localization for half-line random operators
	3.1 Description of random models
	3.2 Positivity of Lyapunov exponents via Fürstenberg's theorem
	3.3 Dynamical localization for half-line operators

	4 Random metric trees
	4.1 The almost-sure spectrum for continuum models
	4.2 Proof of dynamical and exponential localization for metric trees

	Part 2. Anderson localization for discrete radial trees
	5 Random discrete trees
	5.1 The almost-sure spectrum for discrete models
	5.2 Breuer-type decomposition
	5.3 Dynamical and exponential localization for discrete random trees

	Acknowledgements
	References




