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ABSTRACT
Probabilistic graphical models, such as Markov random fields (MRF),
exploit dependencies among random variables to model a rich family
of joint probability distributions. Inference algorithms, such as belief
propagation (BP), can effectively compute the marginal posteriors
for decision making. Nonetheless, inferences involve sophisticated
probability calculations and are difficult for humans to interpret.
Among all existing explanation methods for MRFs, no method is
designed for fair attributions of an inference outcome to elements on
the MRF where the inference takes place. Shapley values provide
rigorous attributions but so far have not been studied on MRFs. We
thus define Shapley values for MRFs to capture both probabilistic
and topological contributions of the variables on MRFs. We theoreti-
cally characterize the new definition regarding independence, equal
contribution, additivity, and submodularity. As brute-force computa-
tion of the Shapley values is challenging, we propose GraphShapley,
an approximation algorithm that exploits the decomposability of
Shapley values, the structure of MRFs, and the iterative nature of BP
inference to speed up the computation. In practice, we propose meta-
explanations to explain the Shapley values and make them more
accessible and trustworthy to human users. On four synthetic and
nine real-world MRFs, we demonstrate that GraphShapley generates
sensible and practical explanations.

CCS CONCEPTS
• Computing methodologies→ Learning in probabilistic graph-
ical models.

KEYWORDS
Graphical models; explainability

ACM Reference Format:
Yifei Liu†, Chao Chen∗, Yazheng Liu†, Xi Zhang†, Sihong Xie∗. 2020.
Shapley Values and Meta-Explanations for Probabilistic Graphical Model
Inference. In Proceedings of the 29th ACM International Conference on
Information and Knowledge Management (CIKM ’20), October 19–23, 2020,
Virtual Event, Ireland. ACM, New York, NY, USA, 10 pages. https://doi.org/
10.1145/3340531.3411881

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’20, October 19–23, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6859-9/20/10. . . $15.00
https://doi.org/10.1145/3340531.3411881

X<latexit sha1_base64="kpPTAtGMnO2krFRSnNrra2xDivU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ftweM4A==</latexit>

X1
<latexit sha1_base64="p9qLsPMM/IM4urClatRfBR9vyt8=">AAAB+nicbVDLSsNAFL2pr1pfVZdugkVwVRIrPnZFNy4r2ge0oUymk3bozCTMTIQS+wlude9O3Pozbv0SJ2kQaz1w4XDOvdx7jx8xqrTjfFqFpeWV1bXiemljc2t7p7y711JhLDFp4pCFsuMjRRgVpKmpZqQTSYK4z0jbH1+nfvuBSEVDca8nEfE4GgoaUIy0ke46fbdfrjhVJ4O9SNycVCBHo1/+6g1CHHMiNGZIqa7rRNpLkNQUMzIt9WJFIoTHaEi6hgrEifKS7NSpfWSUgR2E0pTQdqb+nkgQV2rCfdPJkR6pv14q/ud1Yx1ceAkVUayJwLNFQcxsHdrp3/aASoI1mxiCsKTmVhuPkERYm3Tmtvh8WspCuUxx9hPBImmdVN1atXZ7Wqlf5fEU4QAO4RhcOIc63EADmoBhCE/wDC/Wo/VqvVnvs9aClc/swxysj28pJJRd</latexit>

�(X1)
<latexit sha1_base64="rHzQCYZHGkndpBbv3J5r6l7IUTM=">AAACAHicbVDLSsNAFL2pr1pfVZdugkWom5JY8bErunFZwT6kDWUynbRDZyZhZiKU0o2/4Fb37sStf+LWL3GSBrHWAxcO59zLvff4EaNKO86nlVtaXlldy68XNja3tneKu3tNFcYSkwYOWSjbPlKEUUEammpG2pEkiPuMtPzRdeK3HohUNBR3ehwRj6OBoAHFSBvpvhsNabndc497xZJTcVLYi8TNSAky1HvFr24/xDEnQmOGlOq4TqS9CZKaYkamhW6sSITwCA1Ix1CBOFHeJD14ah8ZpW8HoTQltJ2qvycmiCs15r7p5EgP1V8vEf/zOrEOLrwJFVGsicCzRUHMbB3ayfd2n0qCNRsbgrCk5lYbD5FEWJuM5rb4fFpIQ7lMcPYTwSJpnlTcaqV6e1qqXWXx5OEADqEMLpxDDW6gDg3AwOEJnuHFerRerTfrfdaas7KZfZiD9fENHtuWhw==</latexit>

 (X, X1)
<latexit sha1_base64="61Kbfy0pOsjgYCgK4AIj+IFPUXk=">AAACAnicbVDLSsNAFJ3UV62vqks3g0WoICWx4mNXdOOygm0DaSiT6aQdOpMJMxOhlO78Bbe6dydu/RG3fomTNIi1HrhwOOde7r0niBlV2rY/rcLS8srqWnG9tLG5tb1T3t1rK5FITFpYMCHdACnCaERammpG3FgSxANGOsHoJvU7D0QqKqJ7PY6Jz9EgoiHFSBvJ68aKVt0Tt+cc98oVu2ZngIvEyUkF5Gj2yl/dvsAJJ5HGDCnlOXas/QmSmmJGpqVuokiM8AgNiGdohDhR/iQ7eQqPjNKHoZCmIg0z9ffEBHGlxjwwnRzpofrrpeJ/npfo8NKf0ChONInwbFGYMKgFTP+HfSoJ1mxsCMKSmlshHiKJsDYpzW0J+LSUhXKV4vwngkXSPq059Vr97qzSuM7jKYIDcAiqwAEXoAFuQRO0AAYCPIFn8GI9Wq/Wm/U+ay1Y+cw+mIP18Q1Q6pcq</latexit>

b(X)
<latexit sha1_base64="UZiSbhXKpsHkIvDdX/JV1F+wYxM=">AAAB+3icbVDLSsNAFL2pr1pfVZduBotQNyW14mNXdOOygn1AG8pkOmmHzkzCzEQoIb/gVvfuxK0f49YvMUmDWOuBC4dz7uXee9yAM21s+9MqrKyurW8UN0tb2zu7e+X9g472Q0Vom/jcVz0Xa8qZpG3DDKe9QFEsXE677vQ29buPVGnmywczC6gj8FgyjxFsUsmt9k6H5YpdszOgZVLPSQVytIblr8HIJ6Gg0hCOte7X7cA4EVaGEU7j0iDUNMBkise0n1CJBdVOlN0ao5NEGSHPV0lJgzL190SEhdYz4SadApuJ/uul4n9ePzTelRMxGYSGSjJf5IUcGR+lj6MRU5QYPksIJooltyIywQoTk8SzsMUVcSkL5TrFxU8Ey6RzVqs3ao3780rzJo+nCEdwDFWowyU04Q5a0AYCE3iCZ3ixYuvVerPe560FK585hAVYH9+GF5SK</latexit>

X<latexit sha1_base64="kpPTAtGMnO2krFRSnNrra2xDivU=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlZqdfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJu1b1Lqq15mWlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8ftweM4A==</latexit>

X1
<latexit sha1_base64="p9qLsPMM/IM4urClatRfBR9vyt8=">AAAB+nicbVDLSsNAFL2pr1pfVZdugkVwVRIrPnZFNy4r2ge0oUymk3bozCTMTIQS+wlude9O3Pozbv0SJ2kQaz1w4XDOvdx7jx8xqrTjfFqFpeWV1bXiemljc2t7p7y711JhLDFp4pCFsuMjRRgVpKmpZqQTSYK4z0jbH1+nfvuBSEVDca8nEfE4GgoaUIy0ke46fbdfrjhVJ4O9SNycVCBHo1/+6g1CHHMiNGZIqa7rRNpLkNQUMzIt9WJFIoTHaEi6hgrEifKS7NSpfWSUgR2E0pTQdqb+nkgQV2rCfdPJkR6pv14q/ud1Yx1ceAkVUayJwLNFQcxsHdrp3/aASoI1mxiCsKTmVhuPkERYm3Tmtvh8WspCuUxx9hPBImmdVN1atXZ7Wqlf5fEU4QAO4RhcOIc63EADmoBhCE/wDC/Wo/VqvVnvs9aClc/swxysj28pJJRd</latexit>

�(X1)
<latexit sha1_base64="rHzQCYZHGkndpBbv3J5r6l7IUTM=">AAACAHicbVDLSsNAFL2pr1pfVZdugkWom5JY8bErunFZwT6kDWUynbRDZyZhZiKU0o2/4Fb37sStf+LWL3GSBrHWAxcO59zLvff4EaNKO86nlVtaXlldy68XNja3tneKu3tNFcYSkwYOWSjbPlKEUUEammpG2pEkiPuMtPzRdeK3HohUNBR3ehwRj6OBoAHFSBvpvhsNabndc497xZJTcVLYi8TNSAky1HvFr24/xDEnQmOGlOq4TqS9CZKaYkamhW6sSITwCA1Ix1CBOFHeJD14ah8ZpW8HoTQltJ2qvycmiCs15r7p5EgP1V8vEf/zOrEOLrwJFVGsicCzRUHMbB3ayfd2n0qCNRsbgrCk5lYbD5FEWJuM5rb4fFpIQ7lMcPYTwSJpnlTcaqV6e1qqXWXx5OEADqEMLpxDDW6gDg3AwOEJnuHFerRerTfrfdaas7KZfZiD9fENHtuWhw==</latexit>

 (X, X1)
<latexit sha1_base64="61Kbfy0pOsjgYCgK4AIj+IFPUXk=">AAACAnicbVDLSsNAFJ3UV62vqks3g0WoICWx4mNXdOOygm0DaSiT6aQdOpMJMxOhlO78Bbe6dydu/RG3fomTNIi1HrhwOOde7r0niBlV2rY/rcLS8srqWnG9tLG5tb1T3t1rK5FITFpYMCHdACnCaERammpG3FgSxANGOsHoJvU7D0QqKqJ7PY6Jz9EgoiHFSBvJ68aKVt0Tt+cc98oVu2ZngIvEyUkF5Gj2yl/dvsAJJ5HGDCnlOXas/QmSmmJGpqVuokiM8AgNiGdohDhR/iQ7eQqPjNKHoZCmIg0z9ffEBHGlxjwwnRzpofrrpeJ/npfo8NKf0ChONInwbFGYMKgFTP+HfSoJ1mxsCMKSmlshHiKJsDYpzW0J+LSUhXKV4vwngkXSPq059Vr97qzSuM7jKYIDcAiqwAEXoAFuQRO0AAYCPIFn8GI9Wq/Wm/U+ay1Y+cw+mIP18Q1Q6pcq</latexit>

b(X)
<latexit sha1_base64="UZiSbhXKpsHkIvDdX/JV1F+wYxM=">AAAB+3icbVDLSsNAFL2pr1pfVZduBotQNyW14mNXdOOygn1AG8pkOmmHzkzCzEQoIb/gVvfuxK0f49YvMUmDWOuBC4dz7uXee9yAM21s+9MqrKyurW8UN0tb2zu7e+X9g472Q0Vom/jcVz0Xa8qZpG3DDKe9QFEsXE677vQ29buPVGnmywczC6gj8FgyjxFsUsmt9k6H5YpdszOgZVLPSQVytIblr8HIJ6Gg0hCOte7X7cA4EVaGEU7j0iDUNMBkise0n1CJBdVOlN0ao5NEGSHPV0lJgzL190SEhdYz4SadApuJ/uul4n9ePzTelRMxGYSGSjJf5IUcGR+lj6MRU5QYPksIJooltyIywQoTk8SzsMUVcSkL5TrFxU8Ey6RzVqs3ao3780rzJo+nCEdwDFWowyU04Q5a0AYCE3iCZ3ixYuvVerPe560FK585hAVYH9+GF5SK</latexit>

X2
<latexit sha1_base64="a4gvyF6K9ANoQe6TtWVRrQYuh4s=">AAAB+nicbVDLSsNAFL3xWeur6tLNYBFclaQVH7uiG5cV7QPaUCbTSTt0ZhJmJkKJ/QS3uncnbv0Zt36JSRrEWg9cOJxzL/fe44WcaWPbn9bS8srq2npho7i5tb2zW9rbb+kgUoQ2ScAD1fGwppxJ2jTMcNoJFcXC47Ttja9Tv/1AlWaBvDeTkLoCDyXzGcEmke46/Wq/VLYrdga0SJyclCFHo1/66g0CEgkqDeFY665jh8aNsTKMcDot9iJNQ0zGeEi7CZVYUO3G2alTdJwoA+QHKilpUKb+noix0HoivKRTYDPSf71U/M/rRsa/cGMmw8hQSWaL/IgjE6D0bzRgihLDJwnBRLHkVkRGWGFiknTmtnhiWsxCuUxx9hPBImlVK06tUrs9Ldev8ngKcAhHcAIOnEMdbqABTSAwhCd4hhfr0Xq13qz3WeuSlc8cwBysj28quJRe</latexit>

X3
<latexit sha1_base64="6g4VWDL+pJyuCQXH51NOewW+eSU=">AAAB+nicbVDLSsNAFL2pr1pfVZdugkVwVRIrPnZFNy4r2ge0oUymk3bozCTMTIQS+wlude9O3Pozbv0SJ2kQaz1w4XDOvdx7jx8xqrTjfFqFpeWV1bXiemljc2t7p7y711JhLDFp4pCFsuMjRRgVpKmpZqQTSYK4z0jbH1+nfvuBSEVDca8nEfE4GgoaUIy0ke46/Vq/XHGqTgZ7kbg5qUCORr/81RuEOOZEaMyQUl3XibSXIKkpZmRa6sWKRAiP0ZB0DRWIE+Ul2alT+8goAzsIpSmh7Uz9PZEgrtSE+6aTIz1Sf71U/M/rxjq48BIqolgTgWeLgpjZOrTTv+0BlQRrNjEEYUnNrTYeIYmwNunMbfH5tJSFcpni7CeCRdI6qbq1au32tFK/yuMpwgEcwjG4cA51uIEGNAHDEJ7gGV6sR+vVerPeZ60FK5/ZhzlYH98sTJRf</latexit>

X4
<latexit sha1_base64="QVmtXSMaA3jFGUQoaKCEDP57CyY=">AAAB+nicbVBNS8NAEJ3Ur1q/qh69BIvgqSS2+HErevFY0dpCG8pmu2mX7m7C7kYosT/Bq969iVf/jFd/iZs0iLU+GHi8N8PMPD9iVGnH+bQKS8srq2vF9dLG5tb2Tnl3716FscSkhUMWyo6PFGFUkJammpFOJAniPiNtf3yV+u0HIhUNxZ2eRMTjaChoQDHSRrrt9Ov9csWpOhnsReLmpAI5mv3yV28Q4pgToTFDSnVdJ9JegqSmmJFpqRcrEiE8RkPSNVQgTpSXZKdO7SOjDOwglKaEtjP190SCuFIT7ptOjvRI/fVS8T+vG+vg3EuoiGJNBJ4tCmJm69BO/7YHVBKs2cQQhCU1t9p4hCTC2qQzt8Xn01IWykWK058IFsn9SdWtVWs39UrjMo+nCAdwCMfgwhk04Bqa0AIMQ3iCZ3ixHq1X6816n7UWrHxmH+ZgfXwDLeCUYA==</latexit>

Figure 1: Left: the probabilistic contribution of the explaining variable
𝑋1 to the target𝑋 ’s belief 𝑏 (𝑋 ) depends on the prior distribution 𝜙 (𝑋1)
and their dependency encoded by the compatibility matrix 𝜓 (𝑋,𝑋1) .
Right: the contribution of 𝑋1 to 𝑏 (𝑋 ) is made up of two parts: its own
prior 𝜙 (𝑋1) and the messages from 𝑋2, 𝑋3, and 𝑋4 to 𝑋1. The Shapley
value of 𝑋1 should reflect both parts of the contribution of 𝑋1.

1 INTRODUCTION
Probabilistic graphical models (PGMs) play an important role in
many real-world applications where dependencies between entities
are essential to describe uncertain and complex interactions and
dynamics. For example, fraudulent activities in review and auction
networks [27, 31] and personal interests on social networks [24] can
be modeled by PGMs and detected by various inference algorithms.
However, the lack of explanations of the models and inferences limits
the practical utility. For example, compared with “the detection” of
fraudulent accounts, it is equally, if not more, important to explain
“why” the detected accounts are suspicious so the users can decide if
the detection is trustworthy, and if not, how to rectify the data and
model for more accurate detection [33].

We focus on explaining the results produced by belief propaga-
tion (BP) on Markov Random Fields (MRF). As shown in Figure 1,
an MRF is a graph that describes the dependencies among random
variables (shown as circles). Each variable is assigned a prior distri-
bution (e.g., 𝜙 (𝑋 )), representing prior knowledge of the variable 𝑋
without the dependencies. The dependencies among the variables
are represented by the edges, each of which has compatibility param-
eters (e.g., 𝜓 (𝑋,𝑋1) in the figure) that describe how two variables
(e.g., 𝑋 and 𝑋1) interact with each other. BP computes the beliefs
(posteriors) 𝑏 (𝑋 ) of each random variable 𝑋 by passing messages
between variables until the messages converge. When the computed
beliefs are used to aid decision making, we aim to find the elements
of the MRF that contribute most to the beliefs as explanations.

Different from the explainable AI techniques that focus on inde-
pendent variables, explainable MRF needs to handle the probabilistic
dependencies. On the one hand, the dependencies may capture the in-
teractions between the variables more accurately in certain situations
(e.g., in spam detection, an account is more suspicious if it posts
suspicious reviews to dishonest businesses). On the other hand, the
dependencies compound with other elements on the MRF so that the
inferred beliefs are computed using complex probability calculations
and cannot be easily interpreted by human decision-makers. For
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example, an Amazon reviewer account has a high belief of being
a spammer since it posted reviews to some dishonest businesses,
whose beliefs can further depend on thousands of reviews.

Existing explainable AI methods are insufficient in handling ex-
plainable MRF (see the surveys [8, 13]). The methods in [32, 35]
assign an importance score to each feature without taking into ac-
count the dependencies between the features. On graphs, the authors
of [46] explain arbitrary graph neural networks using explainer mod-
els but neither consider PGMs nor topological importance. The
methods proposed in [4, 5, 7] are more relevant to PGM inference
explanations: they use gradients or greedy search to find salient
elements to explain beliefs. Unlike Shapley values, these methods
lack a rigorous characterization of the attribution. Visualization of a
graph (a knowledge graph or a graph generated by DeepWalk) via
embedding [16] help users understand the semantics of a node in
the graph but do not address the probabilistic dependencies between
variables. Interactive graphic user interfaces for PGMs, especially
Bayesian networks [18], have been developed to provide a more intu-
itive understanding of the models but do not compute Shapley values
that are designed for attributions. Attention weights learned through
an attention mechanism have been used as explanations [15], but
probabilistic inference on MRFs does not involve attention weights.

On explainable MRF inferences, we argue that a more principled
explanation is necessary to complement the prior work on explaining
MRF inferences [4, 5, 7]. We adopt Shapley’s framework, which
originally attempts to provide a fair attribution of a total gain to
the players in a cooperative game [34]. When used to explain a
machine learning model, the explaining variables are the players,
who cooperate to generate the model outputs and the attributions are
considered as explanations of the outputs. Since an MRF represents
a joint distribution of a set of random variables using a graph, the
desired Shapley values should reflect the probabilistic and topologi-
cal importance of the variables. See Figure 1 for examples. In [35],
multiple explanation methods for classification are unified as Shap-
ley value computation. In [36], they deal with Shapley and Myerson
values for graph-restricted games rather than PGMs. In [6], only
linear chains and grids are considered while we deal with a general
graph topology. None of these Shapley value definitions quantifies
both probabilistic and topological importance.

We define the Shapley value SV(𝑋𝑖 ;𝑋,𝐺) that measures the topo-
logical and probabilistic contribution of any explaining variable 𝑋𝑖
to the belief 𝑏 (𝑋 ) of a target random variable 𝑋 on a given MRF 𝐺 .
To compute SV(𝑋𝑖 ;𝑋,𝐺), we enumerate all possible subgraphs of
𝐺 where 𝑋𝑖 and 𝑋 are connected. On each subgraph, we compute
the contribution of 𝑋𝑖 to 𝑏 (𝑋 ), measured by the change in 𝑏 (𝑋 )
before and after 𝑋𝑖 is omitted from the subgraph. For example, in
the right panel of Figure 1, by removing 𝑋1, the variables 𝑋2, 𝑋3, 𝑋4
can not contribute to 𝑏 (𝑋 ), which will change dramatically, and we
have measured the topological importance of 𝑋1 on this subgraph.
This topological contribution cannot be measured by alternating𝑋1’s
prior only [6], as𝑋1 and its other connections remain in the subgraph
and still play a role in message passing. These subgraphs also help
measure the probabilistic importance of 𝑋𝑖 since the prior 𝜙 (𝑋𝑖 ) will
be removed as 𝑋𝑖 is omitted (try removing 𝑋1 from the subgraph in
the left of Figure 1). Theoretically, we prove several properties of
the Shapley values to deliver deeper insights (Section 5). This defini-
tion can be generalized to measure the contribution of a subgraph

𝐺𝑠 ⊂ 𝐺 as a single explaining unit. For example, the Shapley value
SV(𝐺𝑠 ;𝑋,𝐺) of the combination 𝐺𝑠 = (𝑋1, 𝑋2) explains the belief
𝑏 (𝑋 ). Note that each enumerated subgraph, though containing the
target variable 𝑋 , is not expected to approximate the belief of 𝑋 but
to measure the contribution of an explaining variable (see Eq. (6)).
This is different from the prior work [5, 6] where subgraphs are used
to approximate the inference on the original graphical models.

Computationally, enumerating all subgraphs can be expensive and
we propose to approximate SV(𝑋𝑖 ;𝑋,𝐺) on a small neighborhood of
the target𝑋 that contains most of the salient explaining variables. We
design a depth-first subgraph search algorithm called GraphShapley
(Algorithm 1) that avoids duplicated enumeration while including
most relevant subgraphs. By exploiting the iterative computations
in BP, we retrieve the cached results from processed subgraphs to
incrementally compute the messages on larger subgraphs during
the DFS search. Empirically, on four synthetic MRFs, we provide
explanations of the Shapley value explanations, termed as “meta-
explanations” (Section 4) to confirm the validity of the exact and
approximated Shapley values. On nine real-world MRFs, we confirm
that GraphShapley is computationally efficient and can better iden-
tify influential explaining variables, compare to the gradient-based
and other explanation methods (Section 6).

2 PROBLEM FORMULATION
An MRF is an undirected graph 𝐺 = (V, E), whereV is the set of
random variables. As commonly found in multi-class classification
problems [31], we assume that each random variable 𝑋𝑖 is discrete,
taking values 𝑋𝑖 = 𝑥𝑖 from 𝑐 classes [𝑐] = {1, . . . , 𝑐}. Each random
variable 𝑋𝑖 ∈ V has a prior distribution 𝜙 (𝑥𝑖 ) ∈ R𝑐 , and each edge
(𝑋𝑖 , 𝑋 𝑗 ) ∈ R𝑐×𝑐 has the compatibility matrix𝜓 (𝑥𝑖 , 𝑥 𝑗 ) to encode the
likelihood of 𝑋𝑖 and 𝑋 𝑗 taking value (𝑥𝑖 , 𝑥 𝑗 ) jointly. The graph 𝐺

factorizes the joint distribution 𝑃 (V) as

𝑃 (V) = 1
𝑍

∑
𝑋𝑖 ∈V

𝜙 (𝑋𝑖 )
∏

𝑋 𝑗 ∈N(𝑋𝑖 )
𝜓 (𝑋𝑖 , 𝑋 𝑗 ), (1)

where 𝑍 normalizes the product to a probability distribution, and
N(𝑋𝑖 ) = {𝑋 𝑗 | (𝑋 𝑗 , 𝑋𝑖 ) ∈ E} is the neighbors of 𝑋𝑖 .

Belief propagation (BP) is a general algorithm to compute the mar-
ginal distributions 𝑏 (𝑋 ) by message passing. Specifically,𝑚 𝑗→𝑖 (𝑥𝑖 )
is the message from 𝑋 𝑗 to 𝑋𝑖 , recursively defined as:

𝑚 𝑗→𝑖 (𝑥𝑖 ) =
1
𝑍𝑖

∑
𝑥 𝑗 ∈[𝑐 ]

𝜓 (𝑥𝑖 , 𝑥 𝑗 )𝜙 (𝑥 𝑗 )
∏

𝑘∈N(𝑋 𝑗 )\{𝑖 }
𝑚𝑘→𝑗 (𝑥 𝑗 )

 ,
(2)

where 𝑍𝑖 is the normalization factor. The belief (marginal posterior)
of 𝑋𝑖 , denoted by 𝑏 (𝑋𝑖 ), can be inferred using:

𝑏 (𝑋𝑖 ) ∝ 𝜙 (𝑋𝑖 )
∏

𝑋 𝑗 ∈N(𝑋𝑖 )
𝑚 𝑗→𝑖 (𝑋𝑖 ) . (3)

It can be seen that 𝑏 (𝑋𝑖 ) is not only related to 𝜙 (𝑋𝑖 ), but also
related to the incoming messages that recursively depend on other
priors, edge potentials, and messages. This makes graph inference
less transparent to a human end-users and calls for intuitive (and
not necessarily exact) explanations. Prior MRF explanation methods
focused on the sensitivity of the MRF parameters rather than the
structures [4], or simulating the inference process using simpler



models [5]. We propose another form of explanations that answers
the question of “what makes important probabilistic and topologi-
cal contributions to the inference outcomes on the original MRF”,
rather than providing a simplified mechanics for simulating the BP
inference (“simulatability” [23]).

Consider the generation of beliefs using BP as a game and all vari-
ables fromV as players in a coalition that collectively contributes to
the belief 𝑏 (𝑋 ) of a variable𝑋 ∈ V. We propose to compute Shapley
values of the players to fairly attribute 𝑏 (𝑋 ) to the variables in the
coalitionV. The top few variables receiving the most attributions
can be regarded as a succinct explanation of the belief 𝑏 (𝑋 ).

The Shapley value SV(𝑋𝑖 ;𝑋,𝐺) of 𝑋𝑖 ∈ V when contributing to
𝑏 (𝑋 ) on𝐺 is the average of 𝑋𝑖 ’s contributions to 𝑏 (𝑋 ) in all possible
subgraphs 𝑆 ⊂ 𝐺 where 𝑋 and 𝑋𝑖 are connected. Each subgraph
is a new MRF where BP can compute a new belief 𝑏 (𝑋 ) of 𝑋 . We
define the characteristic function 𝜈 : S → R to evaluate the quality
of a coalition 𝑆 ∈ S in approximating 𝑏 (𝑋 ). As KL-divergence
is a well-established measurement of approximating a probability
distribution [5, 39], the symmetric KL-divergence between the two
beliefs 𝑏 (𝑋 ) and 𝑏 (𝑋 ), KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )) + KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )), will
measure the distance between 𝑏 (𝑋 ) and 𝑏 (𝑋 ). In particular,

𝜈 (𝑆 ;𝑋 ) = −(KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )) + KL(𝑏 (𝑋 ) | |𝑏 (𝑋 ))) (4)

= −
∑
𝑥

𝑏 (𝑥) log[𝑏 (𝑥)/𝑏 (𝑥)] −
∑
𝑥

𝑏 (𝑥) log[𝑏 (𝑥)/𝑏 (𝑥)]

= 𝐻 (𝑏) + 𝐻 (𝑏) − NLL(𝑏, 𝑏) − NLL(𝑏, 𝑏),

where 𝐻 (𝑏) = −∑𝑥 𝑏 (𝑥) log𝑏 (𝑥) is the entropy of the distribu-
tion 𝑏 (𝑋 ) and NLL(𝑏, 𝑏) = −∑𝑥 𝑏 (𝑥) log𝑏 (𝑥) is the negative log-
likelihood loss when using 𝑏 (𝑋 ) to predict 𝑏 (𝑋 ), and likewise for
𝐻 (𝑏) and NLL(𝑏,𝑏). A higher 𝜈 indicates that 𝑏 (𝑋 ) can approximate
𝑏 (𝑋 ) better without over-committing to a particular class, similar
to the maximum entropy classifier [20]. The characteristic function
in [6] is just −NLL(𝑏, 𝑏), which is not symmetric and is a lower-
bound of −KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )). We directly evaluate the approximation
quality of 𝑆 without further resorting to the lower-bound.

Note: each coalition 𝑆 does not aim to approximate the original
belief 𝑏 (𝑋 ) well. The role of the coalition/subgraph 𝑆 is different
from that in prior work [5, 6] where a subgraph works as an “expla-
nation” of the larger MRF𝐺 and needs to approximate the MRF well.
𝜈 (𝑆 ;𝑋 ) is used to find the contribution to 𝑋 . We define the marginal
contribution of 𝑋𝑖 to 𝑏 (𝑋 ) when 𝑋𝑖 works within the coalition 𝑆 , as
the difference in the approximation quality with and without 𝑋𝑖 :

𝜇 (𝑋𝑖 ;𝑋, 𝑆) = 𝜈 (𝑆, 𝑋 ) − 𝜈 (𝑆 \ {𝑋𝑖 }, 𝑋 ) . (5)

𝜇 (𝑋𝑖 ;𝑋, 𝑆) can be positive or negative, and if the magnitude of
𝜇 (𝑋𝑖 ;𝑋, 𝑆) is large, then 𝑋𝑖 makes a big difference in approximat-
ing 𝑏 (𝑋 ) when it presents in the coalition 𝑆 and when it does not.
The Shapley value of 𝑋𝑖 when contributing to 𝑏 (𝑋 ) on 𝐺 is then
obtained by averaging the marginal contributions over all coalitions
in S(𝑋𝑖 ;𝑋,𝐺):

SV(𝑋𝑖 ;𝑋,𝐺) :=
1

|S(𝑋𝑖 ;𝑋,𝐺) |
∑

𝑆 ∈S(𝑋𝑖 ;𝑋,𝐺)
𝜇 (𝑋𝑖 ;𝑋, 𝑆) . (6)
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Original MRF

Final Shapley value

Figure 2: An example of calculating Shapley value SV(𝑋1;𝑋,𝐺)
on 𝐺 with subgraph enumeration and incremental evaluation.

Note that Eq. (6) is not an approximation but an exact definition
of Shapley values. The steps for evaluating SV(𝑋1;𝑋,𝐺) is demon-
strated in Figure 2 over a simple MRF.

The definition of SV(𝑋𝑖 ;𝑋,𝐺) can be extended to include the
Shapley value of a subgraph 𝐺𝑠 so that SV(𝑋𝑖 ;𝑋,𝐺) is just a special
case of SV(𝐺𝑠 ;𝑋,𝐺), where 𝐺𝑠 is a subgraph of 𝐺 and does not
contain variable 𝑋 . This definition is useful to evaluate the contri-
bution of subgraphs. For example, a user may want to know how
important the connection between a reviewer and a review is to the
classification of the reviewer as a spamming account [31]. We let
SV(∅;𝑋,𝐺) = 0 for an empty subgraph.
Computation challenges. On larger MRFs in real-world applica-
tions, computing SV(𝑋𝑖 ;𝑋,𝐺) is challenging since: 1) the whole set
S(𝑋𝑖 ;𝑋,𝐺) is exponentially large, 2) the enumeration all coalitions
needs a carefully designed search algorithm, and 3) the evaluation of
the characteristic function 𝜈 on each coalition require running BP to
estimate 𝑏 (𝑋 ). Prior work [6, 36] computes Eq. (6) in a combinatoric
manner by enumerating all possible subsets of the random variables.
Variable subset enumeration does not apply to computing Eq. (6)
since the same set of variables can be connected in multiple ways,
depending on what edges are included in the subgraph to connect the
variables. To compute SV(𝑋1;𝑋,𝐺), we need a connected subgraph
enumeration algorithm.

3 METHOD
To address the above challenges, we propose GraphShapley (Algo-
rithm 1), for efficient computation of SV(𝑋𝑖 ;𝑋,𝐺). GraphShapley
restricts the maximum search distance to approximate Shapley value



Algorithm 1: GraphShapley
Input :Graph 𝐺 = (V, E) , a target variable 𝑋 ∈ V to be

explained with its belief 𝑏 (𝑋 ) , maximum search distance
𝐷 , maximum subgraph complexity 𝐶

Output :Shapley Value SV(𝑋𝑖 ;𝑋,𝐺) for each explaining variable
𝑋𝑖 for target variable 𝑋

1 Function GraphShapley():
2 Sort N(𝑋𝑖 ) by degree for each 𝑋𝑖 ∈ 𝐺
3 𝑆 (𝑋,𝐺) = DFSEnumerate(𝐺, {𝑋 }, 𝑋, ∅)
4 foreach 𝑆 ∈ 𝑆 (𝑋,𝐺) do
5 foreach 𝑋𝑖 ∈ 𝑆 do
6 Evaluate 𝜇 (𝑋𝑖 ;𝑋, 𝑆) = 𝜈 (𝑆,𝑋 ) − 𝜈 (\{𝑋𝑖 }, 𝑋 ) .
7 end
8 end
9 SV(𝑋𝑖 ;𝑋,𝐺) = 1

|S (𝑋𝑖 ;𝑋,𝐺 ) |
∑

𝑆∈S(𝑋𝑖 ;𝑋,𝐺 ) 𝜇 (𝑋𝑖 ;𝑋, 𝑆)
10 End Function
11 Function DFSEnumerate(G, Sub, v, Forbidden):
12 // 𝑆𝑢𝑏: current subgraph; 𝑣: current node to explore.
13 foreach u ∈ N(𝑣) do
14 if (𝑣,𝑢) ∉ Fobidden ∧ u ∉ Sub ∧ 𝑙𝑒𝑛 (𝑆𝑢𝑏) < 𝐶 ∧

𝑑 (𝑢,𝑋 ) < 𝐷 then
15 Record 𝑏 (𝑋 ) =AdaptiveBP(𝑆𝑢𝑏, (𝑣,𝑢), 𝑋 )
16 DFSEnumerate(𝐺, 𝑆𝑢𝑏 ∪ {(𝑣,𝑢) },𝑢, 𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛)
17 𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 ←− 𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 ∪ {(𝑣,𝑢) }
18 end
19 foreach m ∈ 𝑆𝑢𝑏 \ {𝑣 } do
20 // expand from other variables.

DFSEnumerate(𝐺, 𝑆𝑢𝑏,𝑚, 𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛)
21 end
22 Return 𝑆𝑢𝑏

23 End Function
24 Function AdaptiveBP(S, (v, u), X):
25 // 𝑆 : current MRF with converged messages.
26 // 𝑣: variable in 𝑆 ; 𝑢: a new variable to be added to 𝑆 .
27 // Refer to [9] for more details.
28 𝑆 ← 𝑆 ∪ (𝑣,𝑢)
29 Use Adaptive BP to compute the new belief 𝑏 (𝑋 ) .
30 Return 𝑏 (𝑋 )
31 End Function

Eq. (6) and only taking into account the variables that contribute
more significantly. The algorithm has a systematic subgraph search
to avoid duplicated enumeration and to ensure complete enumeration
of the desired subgraphs. To further reduce the cost, GraphShapley
re-uses existing BP inference results on the processed subgraphs for
incremental BP inference on a larger subgraph.
DFS Subgraph Enumeration. Depth-first search makes use of the
topology of graphical models to explore the desired subgraphs recur-
sively. Due to the high cost of enumerating all subgraphs on a large
graph, we consider a maximum search distance 𝐷 from the target
variable, beyond which the variables will not be included. Besides
the distance restriction, a maximum subgraph complexity 𝐶 is used
to limit the size of the enumerated subgraph. This limitation on sub-
graph size concerns about enumeration cost rather than the simplicity
in the explanations, since we don’t use subgraphs as explanations as
in [5]. The length of the shortest path between two nodes 𝑋 and 𝐴 is
computed using a breadth-first search and is denoted as 𝑑 (𝑋,𝐴) in

Algorithm 1. The approximation errors due to the limitations by 𝐷

and 𝐶 will be studied in the experiments (Figure 7).
Given an MRF𝐺 , a target variable 𝑋 on𝐺 , and search parameters

𝐷 and 𝐶, a divide-and-conquer technique is applied to enumerate
connected acyclic subgraphs (trees). The enumeration has two parts.
First, starting from the variable 𝑋 , we explore the subgraphs contain-
ing further edges through depth-first search (line 13-18). Second, we
expand a subgraph from other variables on the subgraph recursively
(line 19-21). Forbidden edges are those that DFS has completed
and will be flagged so that the DFS will not visit them in the future
search. A newly explored edge will not be added to the subgraph if:
1) the edge has been flagged as forbidden, or 2) its addition will lead
to a cycle in the subgraph, or 3) its addition will make the subgraph
larger than the capacity 𝐶, or 4) the node to be added is 𝐷 hops
away from 𝑋 on 𝐺 . The first rule is to ensure the completeness and
avoid redundancy in the enumeration, and the last two rules aim to
reduce the enumeration cost. We do not process another edge until
the previous edge is fully-processed, and the enumeration will be
completed when all edges have been processed, The whole enumera-
tion subgraphs 𝑆 (𝑋,𝐺) of 𝑋 on𝐺 within the limits of the parameters
𝐷 and 𝐶 will be obtained for further computation.

A canonical ordering of the edges is determined by a breadth-
first-search (BFS) on the MRF graph before running our algorithm
and there are no duplicated subgraphs enumerated. The BFS also
canonically numbers the nodes to avoid isomorphism test during
graph lookup: the same graph will be represented by a unique array
of edges with canonical node numbering. A hash table is used to
record BP inference results of enumerated existing MRFs (line 15),
while the new belief based on the retrieved subgraph is computed by
Adaptive BP (line 24).

Figure 2 demonstrates the calculation of SV(𝑋1;𝑋,𝐺). Starting
from the subgraph containing only the target variable {𝑋 }, 𝑆1 is
obtained through adding 𝑋1. Exploration stops at 𝑋1, so the algo-
rithm returns from the recursive call at line 16 and adds (𝑋,𝑋1) to
forbidden edges (line 17). When the enumeration of all subgraphs is
complete, the 𝜇 (𝑋1;𝑋, 𝑆𝑖 ) concerning every subgraph 𝑆𝑖 containing
𝑋1 and Shapley value SV(𝑋1;𝑋,𝐺) can be computed based on Eq.
(5) and Eq. (6), respectively. The algorithm finds a subgraph contain-
ing 𝑋 and 𝑋2, which is not shown as 𝑋1 is not in the subgraph and is
not relevant to SV(𝑋1;𝑋,𝐺).
Adaptive Belief Propagation. The contribution 𝜇 (𝑋𝑖 ;𝑋 ; 𝑆) from
the enumerated subgraph 𝑆 needs to find 𝜈 (𝑆 ;𝑋 ) and 𝜈 (𝑆 \ {𝑋𝑖 };𝑋 ),
which require running BP on two subgraphs 𝑆 and 𝑆 \ {𝑋𝑖 }. Since
the subgraph enumeration builds larger subgraphs upon smaller
subgraphs, the constituent smaller subgraphs may have their BP
inference done. We adopt adaptive belief propagation [9] to recycle
existing inference results to speed up BP on a larger subgraph (line
28-30). For example, considering two MRFs 𝑆1 and 𝑆2 in Figure
2, where 𝑆2 is enumerated after 𝑆1. The belief 𝑏 (2) (𝑋 ) on 𝑆2 can
be computed on 𝑆2, starting from the messages converged on the
edge (𝑋,𝑋1) in 𝑆1. Experiments show that the adaptive BP reduces
running time significantly (Figure 9, left).
Shapley Values Calculation. Rather than calling GraphShapley for
each explaining variable, the enumeration is done only once for a
single target 𝑋 to find the Shapley values of all explaining variables.
When the subgraph enumeration on 𝐺 is completed, 𝜇 (𝑋𝑖 ;𝑋, 𝑆)
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<latexit sha1_base64="UaIDs++4an4dBk/nIKa1YdCqTUY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VbDHohePFeyHbJeSTbNtaJJdkqxQSn+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF6WcaeN5305hbX1jc6u4XdrZ3ds/KB8etXSSKUKbJOGJ6kRYU84kbRpmOO2kimIRcdqORrczv/1ElWaJfDDjlIYCDySLGcHGSo+B51YvPLcW9soVz/XmQKvEz0kFcjR65a9uPyGZoNIQjrUOfC814QQrwwin01I30zTFZIQHNLBUYkF1OJkfPEVnVumjOFG2pEFz9ffEBAutxyKynQKboV72ZuJ/XpCZuBZOmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMSjYEf/nlVdKquv6lW72/qtRv8jiKcAKncA4+XEMd7qABTSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gB4bY7i</latexit>

[0.3, 0.7]
<latexit sha1_base64="d3512Raz7xZk4WuT1Sv32Zztja4=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc6uXnlsLe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4cY7i</latexit>

[0.7, 0.3]
<latexit sha1_base64="gxvDWipaIeHk2FZCppU21Ou46YI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc2uXnlsNe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4gY7i</latexit>

[0.7, 0.3]
<latexit sha1_base64="gxvDWipaIeHk2FZCppU21Ou46YI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc2uXnlsNe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4gY7i</latexit>

Star

BA

X

C D E

F G H I

[0.5, 0.5]
<latexit sha1_base64="thp+npvvfJqt77OiZH2yiGlHsDA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VdFj0YvHCvZDtkvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMixLOtPG8b6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtSOsKWeSNgwznLYTRbGIOG1Fo9up33qiSrNYPphxQkOBB5L1GcHGSo+B516e2Qq75YrnejOgZeLnpAI56t3yV6cXk1RQaQjHWge+l5gww8owwumk1Ek1TTAZ4QENLJVYUB1ms4Mn6MQqPdSPlS1p0Ez9PZFhofVYRLZTYDPUi95U/M8LUtO/DjMmk9RQSeaL+ilHJkbT71GPKUoMH1uCiWL2VkSGWGFibEYlG4K/+PIyaVZd/9yt3l9Uajd5HEU4gmM4BR+uoAZ3UIcGEBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/AHh5juI=</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.2, 0.8]
<latexit sha1_base64="UaIDs++4an4dBk/nIKa1YdCqTUY=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VbDHohePFeyHbJeSTbNtaJJdkqxQSn+FFw+KePXnePPfmLZ70NYHA4/3ZpiZF6WcaeN5305hbX1jc6u4XdrZ3ds/KB8etXSSKUKbJOGJ6kRYU84kbRpmOO2kimIRcdqORrczv/1ElWaJfDDjlIYCDySLGcHGSo+B51YvPLcW9soVz/XmQKvEz0kFcjR65a9uPyGZoNIQjrUOfC814QQrwwin01I30zTFZIQHNLBUYkF1OJkfPEVnVumjOFG2pEFz9ffEBAutxyKynQKboV72ZuJ/XpCZuBZOmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMSjYEf/nlVdKquv6lW72/qtRv8jiKcAKncA4+XEMd7qABTSAg4Ble4c1Rzovz7nwsWgtOPnMMf+B8/gB4bY7i</latexit>

[0.3, 0.7]
<latexit sha1_base64="d3512Raz7xZk4WuT1Sv32Zztja4=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc6uXnlsLe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4cY7i</latexit>

[0.7, 0.3]
<latexit sha1_base64="gxvDWipaIeHk2FZCppU21Ou46YI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc2uXnlsNe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4gY7i</latexit>

[0.7, 0.3]
<latexit sha1_base64="gxvDWipaIeHk2FZCppU21Ou46YI=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc2uXnlsNe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4gY7i</latexit>

[0.3, 0.7]
<latexit sha1_base64="d3512Raz7xZk4WuT1Sv32Zztja4=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc6uXnlsLe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4cY7i</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.3, 0.7]
<latexit sha1_base64="d3512Raz7xZk4WuT1Sv32Zztja4=">AAAB8HicbVBNSwMxEJ31s9avqkcvwSJ4kGW3Feqx6MVjBfsh26Vk02wbmmSXJCuU0l/hxYMiXv053vw3pu0etPXBwOO9GWbmRSln2njet7O2vrG5tV3YKe7u7R8clo6OWzrJFKFNkvBEdSKsKWeSNg0znHZSRbGIOG1Ho9uZ336iSrNEPphxSkOBB5LFjGBjpcfAc6uXnlsLe6Wy53pzoFXi56QMORq90le3n5BMUGkIx1oHvpeacIKVYYTTabGbaZpiMsIDGlgqsaA6nMwPnqJzq/RRnChb0qC5+ntigoXWYxHZToHNUC97M/E/L8hMfB1OmEwzQyVZLIozjkyCZt+jPlOUGD62BBPF7K2IDLHCxNiMijYEf/nlVdKquH7Vrdxfles3eRwFOIUzuAAfalCHO2hAEwgIeIZXeHOU8+K8Ox+L1jUnnzmBP3A+fwB4cY7i</latexit>

Tree

BAX C
[0.5, 0.5]

<latexit sha1_base64="thp+npvvfJqt77OiZH2yiGlHsDA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VdFj0YvHCvZDtkvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMixLOtPG8b6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtSOsKWeSNgwznLYTRbGIOG1Fo9up33qiSrNYPphxQkOBB5L1GcHGSo+B516e2Qq75YrnejOgZeLnpAI56t3yV6cXk1RQaQjHWge+l5gww8owwumk1Ek1TTAZ4QENLJVYUB1ms4Mn6MQqPdSPlS1p0Ez9PZFhofVYRLZTYDPUi95U/M8LUtO/DjMmk9RQSeaL+ilHJkbT71GPKUoMH1uCiWL2VkSGWGFibEYlG4K/+PIyaVZd/9yt3l9Uajd5HEU4gmM4BR+uoAZ3UIcGEBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/AHh5juI=</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.5, 0.5]
<latexit sha1_base64="thp+npvvfJqt77OiZH2yiGlHsDA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VdFj0YvHCvZDtkvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMixLOtPG8b6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtSOsKWeSNgwznLYTRbGIOG1Fo9up33qiSrNYPphxQkOBB5L1GcHGSo+B516e2Qq75YrnejOgZeLnpAI56t3yV6cXk1RQaQjHWge+l5gww8owwumk1Ek1TTAZ4QENLJVYUB1ms4Mn6MQqPdSPlS1p0Ez9PZFhofVYRLZTYDPUi95U/M8LUtO/DjMmk9RQSeaL+ilHJkbT71GPKUoMH1uCiWL2VkSGWGFibEYlG4K/+PIyaVZd/9yt3l9Uajd5HEU4gmM4BR+uoAZ3UIcGEBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/AHh5juI=</latexit>

[0.5, 0.5]
<latexit sha1_base64="thp+npvvfJqt77OiZH2yiGlHsDA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VdFj0YvHCvZDtkvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMixLOtPG8b6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtSOsKWeSNgwznLYTRbGIOG1Fo9up33qiSrNYPphxQkOBB5L1GcHGSo+B516e2Qq75YrnejOgZeLnpAI56t3yV6cXk1RQaQjHWge+l5gww8owwumk1Ek1TTAZ4QENLJVYUB1ms4Mn6MQqPdSPlS1p0Ez9PZFhofVYRLZTYDPUi95U/M8LUtO/DjMmk9RQSeaL+ilHJkbT71GPKUoMH1uCiWL2VkSGWGFibEYlG4K/+PIyaVZd/9yt3l9Uajd5HEU4gmM4BR+uoAZ3UIcGEBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/AHh5juI=</latexit>

Linear chain
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[0.5, 0.5]
<latexit sha1_base64="thp+npvvfJqt77OiZH2yiGlHsDA=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VdFj0YvHCvZDtkvJpmkbmmSXJCuUpb/CiwdFvPpzvPlvTNs9aOuDgcd7M8zMixLOtPG8b6ewsrq2vlHcLG1t7+zulfcPmjpOFaENEvNYtSOsKWeSNgwznLYTRbGIOG1Fo9up33qiSrNYPphxQkOBB5L1GcHGSo+B516e2Qq75YrnejOgZeLnpAI56t3yV6cXk1RQaQjHWge+l5gww8owwumk1Ek1TTAZ4QENLJVYUB1ms4Mn6MQqPdSPlS1p0Ez9PZFhofVYRLZTYDPUi95U/M8LUtO/DjMmk9RQSeaL+ilHJkbT71GPKUoMH1uCiWL2VkSGWGFibEYlG4K/+PIyaVZd/9yt3l9Uajd5HEU4gmM4BR+uoAZ3UIcGEBDwDK/w5ijnxXl3PuatBSefOYQ/cD5/AHh5juI=</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.1, 0.9]
<latexit sha1_base64="fI2PUuUKdqLpd7+7QU8xL1w8mag=">AAAB8HicbVBNSwMxEJ2tX7V+VT16CRbBgyy7VVBvRS8eK9gP2S4lm6ZtaJJdkqxQlv4KLx4U8erP8ea/MW33oK0PBh7vzTAzL0o408bzvp3Cyura+kZxs7S1vbO7V94/aOo4VYQ2SMxj1Y6wppxJ2jDMcNpOFMUi4rQVjW6nfuuJKs1i+WDGCQ0FHkjWZwQbKz0Gnuufee512C1XPNebAS0TPycVyFHvlr86vZikgkpDONY68L3EhBlWhhFOJ6VOqmmCyQgPaGCpxILqMJsdPEEnVumhfqxsSYNm6u+JDAutxyKynQKboV70puJ/XpCa/lWYMZmkhkoyX9RPOTIxmn6PekxRYvjYEkwUs7ciMsQKE2MzKtkQ/MWXl0mz6vrnbvX+olK7yeMowhEcwyn4cAk1uIM6NICAgGd4hTdHOS/Ou/Mxby04+cwh/IHz+QN4aY7i</latexit>

[0.1, 0.9]
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Cycle

Figure 3: In the four synthetic MRFs, the variable 𝑋 is the target with
a uniform prior. The compatibility matrices are two-by-two, which have
0.9 on the diagonal, and have 0.1 elsewhere. The belief 𝑏 (𝑋 ) needs to
be explained by GraphShapley. The remaining variables contribute to
𝑏 (𝑋 ) through their pre-set priors and/or their specific locations in the
graphs. The Shapley values are displayed in Table 1, along with the
meta-explanations.

for each explaining variable 𝑋𝑖 will be calculated. Shapley value
SV(𝑋𝑖 ;𝑋,𝐺) will be obtained by averaging all 𝜇 (𝑋𝑖 ;𝑋, 𝑆) over
𝑆 ∈ S(𝑋𝑖 ;𝑋,𝐺) (line 9 in Algorithm 1). For example, SV(𝑋1;𝑋,𝐺)
is the average marginal contribution of 𝑋1 to 𝑋 over the two enumer-
ated subgraphs in Figure 2.
Shapley values of general subgraphs. When computing the Shap-
ley values SV(𝐺𝑠 ;𝑋,𝐺) of a subgraph 𝐺𝑠 containing more than one
variable, Algorithm 1 remains the same but the participating sub-
graphs in the summation of Eq. (6) will be changed to include those
subgraphs where 𝐺𝑠 and 𝑋 are connected.

4 META-EXPLANATION: EXPLAINING
GRAPHSHAPLEY

We view explanations of a machine learning model as communica-
tions between the model and its human users. Like other effective
communication, the explanations must be transparent and trustwor-
thy. First, the computation of Shapley values must be clear to the
users to understand the meaning and the composition of the com-
puted values. Second, the computed Shapley values must reflect
what it intends to mean, rather than something else.

4.1 Why questions for meta-explanations
To convince human users to trust and adopt the proposed Shapley val-
ues for decision making, it is important to explain the Shapley values.
We term such explanations of explanations as “meta-explanations.”
For this quest, we rephrase some of the why questions in [42] and
aim at answering the questions as meta-explanations:

Table 1: Shapley values and the meta-explanations for the variables in
the MRFs in Figure 3. The settings of priors, compatibility matrices are
mentioned in Figure 3.

MRF Var SV Meta-Explanations

Star
(𝑏 (𝑋 ) =
[0.2, 0.8])

A 0.236
𝜙 (𝐴) has a more positive influence over
𝑏 (𝑋 ) than 𝜙 (𝐷) .

D 0.124 𝜙 (𝐷) has a positive influence over 𝑏 (𝑋 ) .
F -0.14 𝜙 (𝐹 ) has a negative influence over 𝑏 (𝑋 ) .

Tree
(𝑏 (𝑋 ) =
[0.21, 0.79])

A 0.226
𝜙 (𝐴) has more a positive influence over
𝑏 (𝑋 ) than 𝜙 (𝐵) since 𝐴 has children with
more influence over 𝑏 (𝑋 ) .

B 0.189 𝜙 (𝐵) has a positive influence over 𝑏 (𝑋 ) .
E -0.01 𝜙 (𝐸) has a negative influence over 𝑏 (𝑋 ) .

Chain
(𝑏 (𝑋 ) =
[0.48, 0.52])

A 0.007
The contribution of 𝐴 to 𝑏 (𝑋 ) is to intro-
duce 𝐶.

B 0.01
The contribution of 𝐵 to 𝑏 (𝑋 ) is to intro-
duce 𝐶.

C 0.02 𝜙 (𝐶) has a positive influence over 𝑏 (𝑋 ) .

Cycle
(𝑏 (𝑋 ) =
[0.2, 0.8])

A 0.174
𝜙 (𝐴) has the most positive influence over
𝑏 (𝑋 ) .

B 0.02
𝜙 (𝐵) has a less positive influence over
𝑏 (𝑋 ) than 𝐴 due to the longer distance
from 𝑋 .

• Plain Fact: “Why does variable 𝑋 have this Shapley value.” An-
swering this question helps the users know how a Shapley value
is produced and be assured about the correctness of the value.
• P-Contrast: “Why does variable 𝑋 have a [positive/negative/zero]

rather than [non-positive/non-negative/non-zero] Shapley value.”
This is a counterfactual or what-if question and can be answered
in a similar way as the Plain Fact question.
• O-Contrast: “Why does variable 𝐴 have a [positive/negative/zero]

Shapley value while variable 𝐵 have a [non-positive/non-negative/
non-zero] Shapley value.” By accentuating the difference in the
Shapley values of two distinct explaining variables, a user can
more clearly see what contributes most to the two Shapley values.
• T-Contrast: “Why variable 𝐴 had that Shapley value and has

this Shapley value now.” Answering this question will help users
understand how the change of the MRF results in the change in
the Shapley values and evaluate the robustness and sensitivity of
the computed Shapley values.

4.2 Answers to the why questions: a case study
There is no agreement in how the why questions can be answered, as
each can be answered in many different ways [22]. We demonstrate
meta-explanations using the following small synthetic MRFs, shown
in Figure 3. In all models, 𝑋 is the target variable whose belief 𝑏 (𝑋 )
is to be explained. We assume there are only two classes {0, 1} on all
nodes so that all distributions are vectors of length two. The target
node 𝑋 has prior 𝜙 (𝑋 = 𝑥) = 0.5 for 𝑥 ∈ {0, 1}, and the priors of the
explaining nodes are annotated in Figure 3.
• Star: all explaining variables {𝐴, . . . , 𝐹 } directly connect to the

target variable 𝑋 and there is no incoming message into these
explaining variables except that from 𝑋 , so the contribution to
𝑏 (𝑋 ) should be just the explaining variables’ priors.
• Tree: the target variable 𝑋 is a root of the tree, and variables 𝐴

and 𝐵 directly connect to 𝑋 so that 𝐴 and 𝐵 contribute their priors
𝜙 (𝐴) and 𝜙 (𝐵) to 𝑏 (𝑋 ) by Eq. (2). The other explaining variables
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Figure 4: Meta-explanation for the Plain Fact, P-Contrast, and O-
Contrast questions using the compositions of the Shapley values of all
explaining variables in the MRFs in Figure 3. 𝑦-axes represent Eq. (5).

{𝐶, . . . , 𝐼 } are at least 2-hop away from 𝑋 and messages pointing
from these variables towards 𝑋 will eventually be part of 𝑏 (𝑋 ),
with 𝐴 and 𝐵 passing messages𝑚𝐶→𝐴,𝑚𝐷→𝐴, and𝑚𝐸→𝐵 to 𝑋 .
• Chain: variables 𝐴 and 𝐵 have uniform prior distribution so their

contributions to 𝑏 (𝑋 ) are only from passing the message𝑚𝐶→𝐵 to
𝑏 (𝑋 ). This case differs from the Star case, where all the explaining
variables contribute to their priors only.
• Cycles: variables {𝐴, . . . , 𝐷} are in a cycle with𝑋 so that messages

can enter 𝑋 following two paths. BP on a cycle is called “Loopy
BP” and may not be accurate [19]. Nonetheless, the Shapley values
can still accurately reflect the contributions to the inaccurate 𝑏 (𝑋 ).

4.2.1 Answering the Plain Fact, P-Contrast, and O-Contrast
questions. We decompose a Shapley value into the terms that add
up to the Shapley value. A visualization of the decomposition of the
Shapley values for the four small MRFs is shown in four plots in
Figure 4. Each variable occupies a position on an x-axis and has the
contribution to its Shapley value as circles along the y-axes. A user
can easily find the answer to the question “Why 𝐴 has this Shapley
value” by averaging the values along the y-axis for variable 𝐴, or by
tracking the means of the circles represented by the middle bars in
the box plots. The P-Contrast question “Why does variable E have
a negative rather than positive Shapley value in the star MRF” can
be answered using the same plots. The O-contrast question “Why
does variable A have a positive Shapley value while variable D has
the same Shapley value in the cycle MRF” can be answered by the
subfigure at the lower right: 𝐴 and 𝐷 have the same terms adding up
to their respective Shapley values.

Explaining the Shapley Values using “ground truth”. The an-
swers may seem over-simplified but the meta-explanation details
need to be considered against information overloading [29], which
can lead to less user adoption of the explanations (“algorithm aver-
sion” [45]). In Table 1, we provide more detailed meta-explanations
for the more technical readers. For example, on the star MRF, the
question “Why variable A has a positive Shapley value” can be an-
swered as: because 𝐴’s prior distribution is closer to the belief of
𝑋 inferred on the full MRF, and regardless of what other variables
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Figure 5: Meta-explanation for T-Contrast Questions on the four
synthetic MRFs. Left: by varying the prior 𝜙 (𝐴) towards the target
variable’s ground truth class, the Shapley values of 𝐴 (SV(𝐴;𝑋,𝐺))
steadily go up. Right: by varying the values of the diagonal elements
of the compatibility matrix 𝜓 (𝑋,𝐴) , we can see the Shapley value
of 𝐴 (SV(𝐴;𝑋,𝐺)) are maximized on the two extremes (highest anti-
homophily or homophily dependency) and minimized at zero (no de-
pendency between 𝐴 and 𝑋 ).

are present, the belief of 𝑋 will be much more different from the
original belief (measured by KL-div), when 𝐴 does not present and
when it does present.

4.2.2 Answering the T-Contrast questions. For questions like
“Why does variable A had a zero Shapley value then and now is
having a negative Shapley value in the star MRF?”, we vary the
priors of variable 𝐴 in all four MRFs over time and track the changes
in SV(𝐴;𝑋,𝐺𝑖 ). A user can attribute the changes in the Shapley
values to the changes in their prior distributions (Figure 5, left).
Similarly, we vary the compatibility matrices𝜓 (𝐴,𝑋 ) in the MRFs
and one can attribute the changes in SV(𝐴;𝑋,𝐺𝑖 ) to the varying
𝜓 (𝐴,𝑋 ) (Figure 5, right).

Robustness of GraphShapley with respect to input perturba-
tions. The above answer to the T-Contrast questions can be used
to study the robustness of Shapley values when the input MRF is
(adversarially) perturbed, a situation that has been studied for other
explanations in [1, 10, 30, 44, 48]. From Figure 5, a user can be
assured that Shapley values will vary smoothly along with small
perturbations (possibly out of adversarial purpose) in the input MRF
parameters, such as variable priors and compatibility matrices, and
the salient contributing variables can still be identified. See the cap-
tion of the figure for more details.

5 THEORETICAL ANALYSIS
We first confirm that GraphShapley conforms with the independence
between the target and explaining variables.

THEOREM 5.1. (Independence) If 𝑋 and 𝑋𝑖 are disconnected in
𝐺 so that 𝑋 ⫫ 𝑋𝑖 , then SV(𝑋𝑖 ;𝑋,𝐺) = 0. Further, if 𝑋𝑖 is connected
to 𝑋 but blocked by the Markov Blanket 𝐵 ⊂ V of 𝑋 so that 𝑋 ⫫
𝑋𝑖 |𝐵, then SV(𝑋𝑖 ;𝑋,𝐺) = 0.

The first statement in the theorem is obvious based on the defi-
nition of SV(𝑋𝑖 ;𝑋,𝐺): since 𝑋 and 𝑋𝑖 are disconnected in all sub-
graph 𝑆 , so whether 𝑋𝑖 presents or not in 𝑆 , the belief of 𝑋 remains
the same. The second statement can be proved using the definition
of SV(𝑋𝑖 ;𝑋,𝐺) and the definition of Markov Blanket [19]. More
specifically, the Markov Blanket of 𝑋 (MB(𝑋 )) is the set of immedi-
ate neighbors of 𝑋 on 𝐺 . Any nodes in 𝐺 − {𝑋 } −MB(𝑋 ) must be
connected to 𝑋 through some nodes in MB(𝑋 ). Since the nodes in
MB(𝑋 ) is considered as observed (rather than a random variable),
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Figure 6: This star MRF is taken from Figure 3. The right-most sub-
figure shows a counterexample of the submodularity of Shapley values:
SV( {𝐸𝐹 }) − SV(𝐸) ≥ SV(𝐸) − SV( ∅) . That is, adding the same vari-
able 𝐸 to the existing explaining variable {𝐹 } will have a larger increase
in Shapley value than adding the same 𝐸 to ∅ ⊂ {𝐹 }. We simplify the
notation SV(𝐴;𝑋,𝐺) to SV(𝐴) to avoid clutter.

any messages from any nodes in 𝐺 − {𝑋 } −MB(𝑋 ) to 𝑋 will be
blocked by the node in MB(𝑋 ) and have no contribution to the be-
lief of 𝑋 in any subgraph. As an example, in Figure 1 (II), if 𝑋1 is
observed, 𝑋2 will have zero contribution of 𝑏 (𝑋 ). On the other hand,
in the MRF 𝐺 in Figure 2, even if 𝑋1 is in the Markov blanket of 𝑋 ,
𝑋2 can still contribute to 𝑏 (𝑋 ) through the path (𝑋,𝑋2) (that is, 𝑋2
is not blocked by MB(𝑋 )).

THEOREM 5.2. (Equal contribution) Given any two variables
𝑋𝑖 and 𝑋 𝑗 , if 𝜈 (𝑆 ∪ {𝑋𝑖 };𝑋 ) = 𝜈 (𝑆 ∪ {𝑋 𝑗 };𝑋 ) for any coalition 𝑆 ,
then SV(𝑋𝑖 ;𝑋,𝐺) =SV(𝑋 𝑗 ;𝑋,𝐺).

This theorem is easy to prove using the definition of SV(𝑋𝑖 ;𝑋,𝐺).
A few examples are given in Figures 3 and 4.

THEOREM 5.3. (Dummy contributors) If 𝜈 (𝑆 ∪ {𝑋𝑖 };𝑋 ) =

𝜈 (𝑆 ;𝑋 ) for any coalition 𝑆 , then SV(𝑋𝑖 ;𝑋 ;𝐺) = 0.

This can be proved mechanically, but its implications are more
far-reaching on PGM. What kind of variables are dummy contribu-
tors? A random variable with non-uniform prior distribution is not
a dummy contributor: according to Eq. (3), the prior will modulate
the distribution in an out-going message emitting from that variable.
A random variable with uniform prior distribution may not be a
dummy contributor since it can pass messages from farther away
variables to 𝑋 so 𝜈 (𝑆 ∪ {𝑋𝑖 };𝑋 ) ≠ 𝜈 (𝑆 ;𝑋 ) for some coalition 𝑆 .

THEOREM 5.4. (No Additivity) There exists an MRF𝐺 = (V, E)
and a random variable𝑋 ∈ V, such that

∑
𝑖 SV(𝑋𝑖 ;𝑋,𝐺) ≠ 𝜈 (V)−

𝜈 (∅)

The lack of additivity is due to the nonlinearity of the contribution
of 𝑋𝑖 to 𝑋 , where the nonlinearity comes from the nonlinearity of
the inference algorithm and the discreteness of the graph topology.
In the experiment, we will demonstrate such nonlinearity. Additiv-
ity is satisfied by the Shapley values in [6], as they don’t alter the
MRF topology. Additivity is also satisfied by the axiomatic defi-
nition of Shapley values on a simple linear model [38], due to the
lack of interactions among the variables/players. Additivity of the
Shapley value in [37] is postulated as an axiom: while providing a
rigorous theoretical framework, the definition limits the applicability
of Shapley values to situations where the variables/players are not
independently contributing to the outcome of the game [38]. It is
future work to show whether additivity and topological importance
measurement are compatible.
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Figure 7: The influence of subgraph complexity on the approxima-
tion of Shapley values of the explaining variables A in the four small
MRFs in Figure 3. Also plotted are the correlation coefficients of the
two rankings of explaining variables ordered by the approximated and
exact Shapley values. The correlation coefficients are almost 1, indicat-
ing maximal agreement between the two rankings.

THEOREM 5.5. (No Submodularity) There exists an MRF 𝐺 =

(V, E), a target variable 𝑋 ∈ V, and variables 𝐸, 𝐹 ∈ V, such that
SV({𝐸𝐹 };𝑋,𝐺) − SV(𝐹 ;𝑋,𝐺) ≥ SV(𝐸;𝑋,𝐺) − SV(∅;𝑋,𝐺).

An example of the lack of submodularity is given in the right-
most subfigure of Figure 6, where we found SV({𝐸𝐹 };𝑋,𝐺) −
SV(𝐹 ;𝑋,𝐺) ≥ SV(𝐸;𝑋,𝐺) − SV(∅;𝑋,𝐺). The lack of submodular-
ity indicates that it is computationally difficult to find a subgraph 𝐺 ′𝑠
so that SV(𝐺 ′𝑠 ;𝑋,𝐺) well-approximates the maximal SV(𝐺𝑠 ;𝑋,𝐺) [25].

6 EXPERIMENTS
We evaluate GraphShapley in terms of approximation quality to the
exact Shapley value and the accuracy in finding important contribu-
tors to BP inference outcomes.

6.1 Evaluation on synthetic datasets
6.1.1 Datasets and MRF setups. We evaluate GraphShapley
on the small synthetic MRFs in Figure 3. These MRFs are providing
“ground truth” of the variable importance, in the sense that the true
Shapley values as defined in Eq. (6) can be evaluated exactly.

6.1.2 Results. In Figure 7, we compare the approximated and
exact Shapley values with different subgraph sizes (𝐶). The approx-
imated values can be quite different from the exact values, and
whether they agree with each other depends on the diameter of
the MRF (the tree needs a larger 𝐶 and the linear chain needs the
smallest 𝐶).

The above data seem worrisome. We further compute Kendall-𝜏
and Spearman correlation coefficients of the two rankings of explain-
ing variables ordered by the approximated and the exact Shapley
values. From the same figure, we can see that the correlation co-
efficients are mostly close to 1, confirming that the two rankings



Table 2: Left: Statistic of the networks. Right: Overall symmetric KL performances (◦ indicates the runner-up methods and • indicates the best
method certified by statistically significant 𝑡 -tests). LIME does not apply to the last three networks since there are no node features.

Datasets Network Statistics Performances
Classes Nodes Edges edge/node Random Embedding PageRank Sensitivity LIME MC-sampling GraphShapley

Cora 7 2,708 10,556 3.90 0.831 0.344 0.891 0.729 1.401 0.173 ± 0.03 ◦ 0.104 •
Citeseer 6 3,321 9,196 2.78 0.495 0.301 0.589 0.512 0.921 0.179 ± 0.03 ◦ 0.124 •
PubMed 3 19,717 44,324 2.25 1.043 0.706 1.118 0.941 1.519 0.431 ± 0.14 ◦ 0.092 •

YelpChi 2 105,659 269,580 2.55 0.296 0.058 0.035 0.011 ◦ 0.691 0.038 ± 0.01 0.001 •
YelpNYC 2 520,200 1,436,208 2.76 0.297 0.058 0.043 0.018 ◦ 0.692 0.042 ± 0.01 0.001 •
YelpZip 2 873,919 2,434,392 2.79 0.204 0.084 0.031 0.012 ◦ 0.693 0.027 ± 0.01 0.001 •

Blogcatalog 39 10,312 333,983 32.39 6.673 6.285 3.903 5.944 - 3.323 ± 1.17 ◦ 2.212 •
Flickr 195 80,513 5,899,882 73.28 3.695 3.082 2.789 2.650 ◦ - 2.833 ± 0.31 1.432 •

Youtube 47 31,703 96,361 3.04 0.077 0.061 0.074 0.070 - 0.044 ± 0.01 ◦ 0.031 •

are mostly the same and the approximated values are still useful for
identifying salient explaining variables.

6.2 Evaluation on real-world datasets
6.2.1 Datasets and MRF setups. We drew real-word datasets
from three applications of MRF. The statistics of the datasets are
shown in Table 2. First, in collective classification, the goal is to
classify a paper in a citation network into one of the many research
areas. We construct an MRF for each of the three citation networks
(Citeseer, Cora, PubMed), with the research area of a paper as a
random variable (node) 𝑋𝑖 . An undirected edge (𝑋𝑖 , 𝑋 𝑗 ) is added
if 𝑋𝑖 cites paper 𝑋 𝑗 . We assume a homophily relationship over the
edges, so that two papers are likely to be in the same area if they
are connected [24]. The compatibility matrix 𝜓 (𝑋𝑖 , 𝑋 𝑗 ) has value
0.9 on the diagonal, and has 0.1

𝑐−1 elsewhere (𝑐 is the number of
classes). We assign probability 0.9 to the true class and 0.1

𝑐−1 to the
other classes to the prior 𝜙 (𝑋 ) of each labeled node 𝑋 (80% of the
total nodes). The uniform distribution is used as the priors of the
unlabeled nodes (20% of the total nodes). The explanations of the
inferred beliefs are computed on the unlabeled nodes. Second, we
adopt the Yelp review networks for spam detection. We represent
reviewers, reviews, and products and their relationships by an MRF
and set node priors and compatibility matrix following the state-
of-the-art MRF spam detector [31]. Lastly, we represent users as
nodes and behaviors including subscription and tagging as edges on
three networks (Blogcatalog, Flickr and Youtube) [41]. The MRF
setups are the same as for the citation networks and BP infers the
preferences of users.

6.2.2 Baselines.
Random generates an importance score of each explaining variable
for each target variable randomly, ignoring the BP inference results.
Embedding uses DeepWalk [28] to embed the variables on as MRF
graph, and calculates the importance of an explaining variable to a
target node based on the similarity between the two nodes.
PageRank [26] is a global ranking of the importance of the variables,
regardless of the target node to be explained. It also fails to consider
the inference outcomes made by BP.
Sensitivity Analysis [4, 40] is a family of gradient-based approaches
that measure how the output changes w.r.t. input changes. The most
related work is [4], which derived a closed-form solution for the sen-
sitivity analysis for graphical models. We approximate the gradient

of a target belief with respect to the prior of an explaining variable
by comparing the beliefs before and after setting the priors to the
uniform distribution. Sensitivity analysis relies on gradients and thus
can’t consider the topological changes which are not continuous.
GraphShapley handles the discontinuity by subgraph enumeration.
LIME [32] uses node features to fit a logistic regression model for
each target node to predict the beliefs of the target node (see [5] for
more details).
MC-sampling [3, 38] uses Monte Carlo simulation to approximate
the Shapley values defined in Eq. (6). The calculation is similar to
GraphShapley, except that the DFS subgraph enumeration is replaced
by a random sampling of spanning trees rooted at a target node.

We do not compare GraphShapley with GraphEXP [5], since the
form of explanation is different (a ranking of explaining variables vs.
a subgraph for each target). GraphShapley is not comparable to [14,
46] either, as they focused on explaining graph neural networks
rather than MRF with BP inference.

6.2.3 Quantitative Results. Unlike classification tasks, due to
the lack of ground truth variable contributions, explanations are hard
to evaluate quantitatively. Indeed, there exist multiple explanations of
the same phenomenon that are valid along different dimensions [33].
We demonstrate that GraphShapley can identify explaining variables
that are influential on the target node beliefs. For each target node,
after obtaining the Shapley values of the explaining nodes (can be
labeled or unlabeled), the priors of all nodes on the MRF are set to
uniform and the priors of the top important explaining variables up
to 25% are reinstated. Then the belief of the target node 𝑏 (𝑋 ) on the
reinstated MRF is calculated, whose quality is measured by the sym-
metric KL-divergence KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )) + KL(𝑏 (𝑋 ) | |𝑏 (𝑋 )). If the
ranking makes sense, then the top-ranked explaining nodes should
well approximate the original MRF, as reflected by the symmetric
KL-divergence. All baselines except LIME can rank the explaining
variables and can be evaluated similarly. LIME is trained to approx-
imate 𝑏 (𝑋 ) and we report the symmetric KL-divergence between
𝑏 (𝑋 ) and the belief approximated by LIME. The mean symmet-
ric KL-divergences are shown in Table 2, with 𝑡-tests conducted
between GraphShapley and the runner-ups.

We can conclude that 1) GraphShapley performs best overall, due
to the consideration of probabilistic and topological contributions;
2) MC-sampling is frequently the runner-up in the means but with
higher variance due to random sampling. 3) LIME has the worst



0.0 0.2 0.4 0.6 0.8 1.0
Percent of Top Explaining Variables (Cora)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

S
ym

m
et

ric
 K

L-
di

ve
rg

en
ce

GraphShapley
MC-sampling
Embedding

Random
PageRank
SA

0.0 0.2 0.4 0.6 0.8 1.0
Percent of Top Explaining Variables (Citeseer)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

S
ym

m
et

ric
 K

L-
di

ve
rg

en
ce

GraphShapley
MC-sampling
Embedding

Random
PageRank
SA

Figure 8: Symmetric KL-divergence (the smaller the better) on Cora
(left) and Citeseer (right) as more and more explaining variables’ priors
are reinstated.
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Figure 9: Left: Speed-up by Adaptive BP when DFS reaches different
numbers of explaining nodes on Cora. Center: Parameters sensitivity of
maximum search distance𝐷 . Right: Parameters sensitivity of maximum
subgraph complexity 𝐶.

performance, as it is not designed for graphs and cannot take into
account the many pieces of information on graphical models and the
BP inference outcomes.

We also reinstate one variable’s prior at a time in the ranking order.
Figure 8 shows that as more and more priors are reinstated, the sym-
metric KL-divergences of all methods go down, with GraphShapley
having the sharpest decrease. This indicates that GraphShapley ranks
the more salient explaining variables before the less relevant ones.
Speed-up by Adaptive BP. In Figure 9 (left panel), we compare the
average running time without and with adaptive BP as the number of
explaining nodes visited by the DFS search varies on the Cora dataset.
It can be clearly seen that the running time increases exponentially
without Adaptive BP and only near-linearly with Adaptive BP.
Parameters Sensitivity. On the Citeseer, Cora, and PubMed datasets,
Figure 9 (center and right) shows the symmetric KL-divergences
against different 𝐷 (the maximum distance of the explaining vari-
ables from the target variable) and 𝐶 (the maximum complexity of
the enumerated subgraph) values, respectively. The two parameters
can affect the quality of the Shapley values, when these two param-
eters are too small (≤ 2). Larger 𝐷 and 𝐶 values seem beneficial
but can increase the subgraph search time complexity. Fortunately,
when these parameters are ≥ 3, the approximation quality is not too
sensitive to these parameters.

6.2.4 Qualitative Results. In Figure 10, we extract two sub-
graphs from the MRF for the Citeseer network and show the Shapley
values on the nodes. For the details, see the caption. The general
conclusion is that GraphShapley can capture both the probabilistic
contributions due to variable prior distribution and the topological
contributions due to connectivities. The left panel also demonstrates
the Equal contribution property (Theorem 5.3).
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Figure 10: Blank nodes are explaining variables and the red solid
nodes (𝑋 and 𝑌 ) are target nodes. The ground truth labels and the com-
puted Shapley values are attached to each explaining node. The ground
truth classes of the target nodes are also annotated. Left: node 1 and
node 2 have the same labels as node 𝑋 and are the direct neighbor of 𝑋 ,
thus they have positive higher Shapley values. Node 3 has the same label
but negative Shapley value, since many of its connected neighbors are
of classes “IR” and “HCI.” Four nodes labeled as 4 have equal Shap-
ley values, and the two nodes labeled as 5 have equal Shapley values,
showcasing the Equal Contribution proof. Nodes 4 and 6 have different
contributions due to their different priors (Nodes 6 has a uniform prior
and makes no contribution). Right: node 9 has a positive contribution to
the target node, though being from a different class. The reason is that
the node serves as a bridge transporting the “DB” probabilities from
distance to the target node.

7 RELATED WORK
Interpretability and Explanation of Models. [32] explains the
predictions of a classifier by approximating it locally with an in-
terpretable model. [46] explains arbitrary graph neural networks
using explainer models but do not consider PGMs. [47] uses graph
neural networks to learn the message-passing process in belief prop-
agation while explanations for target nodes are not provided. The
more relevant methods are proposed in [4, 5, 7], which use gradients
or greedy subgraph search to find salient variables or subgraphs to
explain the inference. The prominent feature of GraphShapley is that
it can quantify both probabilistic and topological contributions.
Shapley Values as explanations. Shapley values have been applied
to the interpretability of machine learning models. In [35], they
provide a prediction explanation framework based on Shapley values
which encompasses LIME as a special case. Efficient calculation
methods of Shapley value have been studied, such as in [17, 21]. Two
algorithms with linear complexity for feature importance scoring are
developed in [6]. In [11] and [2], they approximate Shapley values
for deep networks via sampling.
Explanation Explainability and Robustness. Explanations gener-
ated by an algorithm can be as difficult to understand as machine
learning predictions. Explaining explanations [12, 23] has been stud-
ied for other models but not for Shapley value explanations. The
robustness of explanations is studied in [1, 10, 30, 44, 48], but none
of them is for Shapley values on MRF.
Subgraph Enumeration. Subgraph enumeration algorithms have
been researched for multiple decades [43]. The most relevant one
is proposed in [36] where they essentially enumerate all subset of
vertices that constitute a connected subgraph for computing Shapley
values for a graph-restricted game rather than for explaining BP.
However, in an MRF, the same subset of nodes can be connected
in different ways and our enumeration algorithm can address the
enumeration of different ways of connection.



8 CONCLUSION
We propose GraphShapley to provide a novel form of explanations
for graphical model inference. The probabilistic and topological con-
tributions of explaining variables can be measured by GraphShapley.
Theoretically, we prove theorems to characterize the Shapley values
defined for BP inference on MRFs. Explanation of the Shapley ex-
planations is provided to make the Shapley values more accessible
to human users. In terms of explanation faithfulness and speed, we
empirically show the superior performance of the GraphShapley
over other baselines, such as the gradient-based explanations.
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