ZERO MEASURE AND SINGULAR CONTINUOUS SPECTRA
FOR QUANTUM GRAPHS
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ABSTRACT. We introduce a dynamically defined class of unbounded, con-
nected, equilateral metric graphs on which the Kirchhoff Laplacian has zero
Lebesgue measure spectrum and a nontrivial singular continuous part. A new
local Borg—Marchenko uniqueness result is obtained in order to utilize Kotani
theory for aperiodic subshifts satisfying Boshernitzan’s condition.
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1. INTRODUCTION

1.1. Overview. The spectral theory of Schréodinger operators with irregular po-
tentials has been of great interest in mathematical physics since the 1950’s. A large
number of models have been treated rigorously in the setting of the one-dimensional
Laplacian perturbed by an irregular potential. As far as multidimensional phenom-
ena are concerned, only a small fraction of the expected results has been proved.
In this paper we focus on structures of intermediate dimensionality — continuum
metric graphs. Specifically, we study the Kirchhoff Laplacian on aperiodic infinite
volume graphs and demonstrate that they exhibit nontrivial spectral behavior.
The first example of a quantum graph with “exotic” spectrum is due to Simon,
cf. [S96] where an infinite combinatorial graph with singular continuous spectrum
was constructed. Typically, interesting spectral phenomena (e.g., Anderson local-
ization) occur due to irregular lower order perturbations of a fixed second order
operator, which is often the Laplacian. In the setting of graphs, however, it is
natural to consider another type of perturbation — by geometry. For example, the
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graph in Figure 1 may be viewed as a geometric perturbation, by inserting dia-
mond tiles, of the half line. The latter has purely absolutely continuous spectrum
[0,00), while the former may exhibit all kinds of spectra depending on how the
tiles are inserted. This paper concerns aperiodic geometric perturbations (of more
general graphs) leading to zero Lebesgue measure spectra, a scenario of interest in
the modeling of quasicrystals, [DL06b, LSS].

In the past two decades aperiodic Schrédinger operators on continuum and com-
binatorial graphs have attracted a significant amount of attention. The main inter-
est has been around the relation between the geometry of graphs and their spectra.
Let us mention some relevant results. In [Br] Breuer constructed a sparse combi-
natorial tree graph with singular continuous spectrum. This result was extended
to the continuum setting by Breuer and Frank in [BF], where it was also shown
that the singular continuous spectrum is in fact generic. Next, regular trees pro-
vided some insight into the Anderson model. For instance, delocalization in the
regime of low disorder on the Bethe lattice was established by Klein in [KI]. A
new spectral behavior for the tree Anderson Hamiltonian near spectral edges was
discovered by Aizenman and Warzel, [AW11, AW13]. Dynamical localization for
radial trees with disordered branching numbers and edge lengths was established
by Damanik, Fillman, and Sukhtaiev in [DFS, DS]. Periodicity of radial trees in
the presence of absolutely continuous spectrum was shown by Exner, Seifert, and
Stollmann in [ESS]. Grigorchuk, Lenz, and Nagnibeda recently proved zero mea-
sure spectrum for discrete Laplacians on certain aperiodic graphs, cf. [GLN]. To
the best of our knowledge, continuum Kirchhoff Laplacians on nontrivial' graphs
with zero measure spectrum and nonempty singular continuous part have not yet
been discussed in the literature. Our goal is to address this issue by combining a
recent work of Kostenko and Nicolussi [KN] (see also [BKe, BL]) and the theory of
ergodic Schrodinger operators [CL, D17, DF].

FIGurE 1. Fibonacci sphere numbers, s = {12112121...}

1.2. Setup. Let I' = (V,€) be a connected graph with root o € V. For v € V,
let |v| denote the combinatorial length of the shortest path connecting v and o.
The combinatorial sphere of radius n > 0 is given by S, := {v € V : |v| = n}, the
cardinality of this sphere is denoted by s,, := |S,|. In this paper we focus on graphs
I’ satisfying the following: Two vertices u,v € V are adjacent if and only if

(u,0) € (So x S1) | Sn X (Sn—1U Sps1),

n>1

see, e.g., Figure 1 where s = 1, s; = 2, s3 = 1. We equip I'" with a metric by
assigning each edge e € £ length 1. A natural orientation is determined by the

1n0nc0mpact, connected, and containing cycles
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growth of spheres S,,. The Kirchhoff Laplacian on I' is defined by

H : dom(H) C L*(T') — L*(T), Hu := —u", u € dom(H),
dom(H) = {f € X T)NC(T): > 8of(v) = 0,0 €V}, (1.1)

ecf:wee

where H2(T) := @D.cc H?(e) is the L? based Sobolev space, cf. [BK].

The main goal of this paper is to prove that the spectrum of H is a zero Lebesgue
measure set whenever the sequence of sphere numbers satisfies certain dynamical
conditions. Due to the large number of symmetries of I', the operator H can be
written, see [KN, Theorem 3.5], as the direct sum of self-adjoint realizations of the
following Sturm-Liouville differential expression

e (Z;“(%i) ,

p,(.’l?) = Z SnSnJrlX[n,nJrl)(x)vx € Ry.

n=0

(1.2)

The self-adjoint realizations 7 in question are of two spectrally relevant types. The
operators of the first type have compact resolvent and, hence, only discrete spec-
trum. They do enter the direct sum decomposition of H infinitely many times.
However, there is only a finite collection of mutually non-unitarily equivalent oper-
ators of the first type. Therefore, their total spectral contribution is worth only a
zero Lebesgue measure set (as it is countable). Of course, some points of this set
end up being eigenvalues of H of infinite multiplicity. Since they could be isolated
from the rest of the spectrum of H, we do not claim that o(H) is a (generalized)
Cantor set. The second type of self-adjoint realizations is given by 7 acting in
L?(0,00) subject to the Neumann condition at 0. Showing zero measure spectrum
for this operator is the main technical issue addressed in this work. To that end
we utilize Kotani theory for 7 and the base dynamical system (,T) given by a
subshift over the admissible values of the sphere numbers. Assuming that this
subshift satisfies Boshernitzan’s condition we obtain that the spectrum is given by
the set Z on which the Lyapunov exponent vanishes, see Section 4. This step, in
particular, requires a Sch’nol-type result for 7, see Lemma 4.2, [BMLS]. Then we
argue that |Z] > 0 implies periodicity of the sequence of sphere numbers, contrary
to the construction of 2. This gives that the spectrum of the half-line operator
is a zero measure set, see Theorem 4.5, which in turn yields the main assertion.
A key to this argument is a new version of the celebrated Borg—Marchenko result,
[GL, GS, M, S99], establishing a one-to-one correspondence between the Weyl-
Titchmarsh functions and the potentials. A rather general version of this result
was obtained in [EGNT]; however, the operators of the form (1.2) are notably ex-
cluded from consideration, see [EGNT, Hypothesis 6.1]. In this work, we prove
a local version of Borg—Marchenko result that allows us to recover arbitrary finite
blocks of sphere numbers from the asymptotic behavior of the m-functions for large
non-real values of the spectral parameter, see Theorem 3.5. It is worth mentioning
that Breuer and Frank, [BF, Proposition 12], obtained the Borg-Marchnko result
for a somewhat relevant class of operators. Our method, which itself stems from
Bennewitz’s work [Ben], can easily be adapted to yield [BF, Proposition 12].
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2. MAIN RESULTS

Fix a finite set 7 C N. Let JZ be equipped with the following metric

- 1— 00,5, -
d(w,w) = Z BETTSEACES JE. (2.1)
nez

Let T : J% — J% denote the left shift, i.e., [T(W)]n == wpt1, W € JE A T-
invariant, closed (with respect to d) subset Q C J% is called a subshift over J.
This paper is concerned with a special class (which is yet very general?) of subshifts
satisfying Boshernitzan’s condition (B). Let us recall the relevant definitions. We
say that (Q,7T) is minimal if every orbit {T"w : n € Z} is dense. A minimal subshift
is called aperiodic if one of its elements is not periodic, that is, TPw = w for some
p € Z implies p = 0. It is then easy to see that all elements of () are aperiodic. The
set of words corresponding to €2 is defined by

Wi={wg wgin1:kE€Z neN, weQ}
Each word w € W of length |w| € N determines the cylinder set

Vy = {wEQ:w1~~~w‘w| = w}.
For a T-invariant probability measure v on 2, let us define the following quantity,
Ny (n) := min{r(Vy) : w € W, |w| = n}.

A minimal subshift (Q,T) is said to satisfy Boshernitzan’s condition (B) if there is
an ergodic probability measure v on 2 such that

limsupnn,(n) > 0. (B)

n—o0

In the theorem below we denote Q [z, := {{sn}72 : {sn}nez € Q}.

Theorem 2.1. Suppose that (Q,T) is a minimal aperiodic subshift over a finite set
J CN, |J| > 2 satisfying Boshernitzan’s condition (B). Then for every {s,}5>, €
Q [z, , the spectrum of the Kirchhoff Laplacian H defined in (1.1) is a zero Lebesgue
measure set.

Proof. The Kirchhoff Laplacian H is unitarily equivalent, cf. [KN, Theorem 3.5], to
the following direct sum
HY o @es ol e @aelr Ve Va2, (2.2)
n>1 n>1
where HT, H!, H? are the self-adjoint realizations of (1.2) on Ry = (0,00), J, :=
(n—1,n+1), and I, := (n,n + 1), correspondingly, defined next. The half-line
operator HV is given by
HT :dom(H") € L*(Ry;pu) — LA(Ry; 1), H u := Tu, u € dom(H™),
dom(HT) = {f € L*(Ry,p) : f,uf € AC(Ry),7f € L*(Ry;pu), £/(0) =0
The operators H!, H2, defined on finite intervals, are given by
H} - dom(H}) € L*(Jp; 1) = L*(Jp; 1), Hru := 7u, u € dom(H}), (2.4)

/ T 2 .
oty )

2.3
(23)

9

2the scope of generality is comprehensively discussed in [DLO6b]
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and
H?:dom(H2) C L*(Iy;pu) — L*(In; i), H2u == 7u, u € dom(HZ2), (2.5)

/ . 2 .
vt = {r < 2 T,

Since s,, takes finitely many values, the sequence of operators {H!},cz . contains
only finitely many mutually non-unitarily equivalent operators, each of which has
only discrete spectrum (in fact the eigenvalues are given by the roots of some
trigonometric transcendental equation, see [Ber]). The union ¥; of these spectra
is a countable set. Next, every operator H? is unitarily equivalent to the Dirichlet
Laplacian on (0,1), its spectrum is discrete and denoted by 3. Then employing
(2.2) we get
U(H) = U(H+) UEl UEQ.

Thus, to prove the assertion it is enough to show that |o(HT)| = 0. To that end,
we extend the sequence {s,},>0 to a two-sided sequence belonging to the subshift
Q, and introduce the corresponding self-adjoint operator on R as follows

H :dom(H) C L*(R; ) — L*(R; p), Hu := Tu, u € dom(H),
dom(H) = {f € L*(R,p) : f,nf" € AC(R),7f € L*(R; )},

where the function p is defined for the two-sided sequence as in (1.2). Now, by [T09,
Theorem 9.11], we have 0.ss(H) C 0ess(H)3. By Theorem 4.5, the Lebesgue mea-
sure of oess(H) is equal to zero (in fact, the whole spectrum is a fixed zero measure
generalized Cantor set for every choice of the sequence of the sphere numbers from
Q). Thus, we have |o(H")| < |0ess(HT)| + |odisc(HT)| = 0. Hence, one has

|o(H)| < |o(H )|+ [Z1] + [Z2] =0,
as asserted. |
As pointed out in [DL06a, DL0O6b], many subshifts of interest satisfy condition

(B). In fact, one can construct examples of such subshifts rather explicitly. Let us
provide two examples.

Example 2.2. Let N > 2 and let J = {;1 <k < N} C N be a set containing
at least two distinct elements. Fix a € R\ Q and a rational partition of the unit
circle 0 =ap < a; <..<any =1, ap € Q. Pick any w € [0,1) and define

N
Sn(w) = Z’YkX[ak_l,ak)(na +w),n €Z.
k=1
Then the Kirchhoff Laplacian H given by such a sequence of sphere numbers has
zero measure spectrum. Indeed, in this case the subshift Q := {s(w):w € [0,1)}

satisfies Boshernitzan’s condition (B), see e.g. [DL06b, Theorem 10].

Example 2.3. Assume that the sequence of the sphere numbers s € {1,2}%+ is
invariant under the action of the Fibonacci substitution S(1) = 12, §(2) = 1, e.g.
s = 12112121..., see Figure 1. Then the Kirchhoff Laplacian H given by such a
sequence of sphere numbers has zero measure spectrum. Here,

Q.= {w e J% . every subword of w is a subword of s}

w__»

3in fact, “C” can be replaced by
of (,T), cf., e.g., [DF], [CL]

by standard arguments utilizing ergodicity /minimality
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It satisfies Boshernitzan’s condition (B) by [DL06b, Theorem 4].

The sequences in both examples generate minimal subshifts satisfying (B), see
[D07, D17, DL06a, DLO6b] for details.

Remark 2.4. The assertion of Theorem 2.1 also holds in the discrete setting, i.e.,
when H is given by the combinatorial graph Laplacian. Up to a countable set, the
spectrum of the discrete Hamiltonian is given by the spectrum of a certain Jacobi
matrix, see [BKe]. Of course, the Borg—Marchenko and Sch’nol-type results become
trivial at this level.

3. ELEMENTS OF WEYL—TITCHMARSH THEORY

In this section we discuss Weyl-Titchmarsh theory for 7, cf. (1.2), in order
to prepare the necessary ingredients for Kotani theory. Specifically we prove a
local version of the Borg—Marchenko uniqueness result in Theorem 3.5, cf. [Ben,
Bo, EGNT, GL, GS, M, S99], and utilize it to construct the restriction maps in
Theorem 3.7. In order to simplify the notation, cf. (1.2), we set

p(w) = Z $nX[nn+1) (T), T € Ry,
n=0

where {s,}nez, C J and J C N is a finite set of cardinality at least two. The
differential expression 7 is defined as in (1.2). The Dirichlet and Neumann solutions
of the differential equation

Tu—z2u=0,2z€C, (3.1)

are denoted by ¢(z,-),0(z, ), correspondingly, i.e.,
£(2,0) = u(0)0'(2,0) = 0, u(0)¢(2,0) = 0(2,0) = 1.
Remark 3.1. The conditions f, uf’ € AC),c(R4) imply
Sp1f'(n7) =s,f(nt),neN.

Throughout this paper v/z denotes the branch of the square root corresponding
to Rev/i > 0 and arg(z) € (—m,7]. In particular, Re(v/—z) > 0 whenever z €
C\ [0,00), and Re(y/—2z) =0 if z € [0, 00).

3.1. Borg—-Marchenko Theorem For Sturm-Liouville Operators in
Impedance Form. The following lemma concerns the asymptotic behavior of the
Dirichlet and Neumann solutions of (3.1) for large non-real spectral parameter.

Lemma 3.2. For every z € Ry \ N one has

o) = WD ),
2V~z (3.2)

(p/(z,.%‘) =

oz a) = L0 o),
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as z — 00, z € C\ [0,00), where

if[sk‘f'skl (3.4)
S0

Furthermore, for each j € N one has
1
NE

uniformly for x € [0,7) as z — 00, z € [0, 00).

o(z,zt)=0 ( ) @ (z,2T)=0(1), (3.5)

k—1

Proof of (3.2), (3.3). To simplify the notation we denote oy, := SSk , and declare
that all asymptotic formulas in this proof are for z — oo, z € C\ [0, 00). Without
loss we may assume that sg = 1.
We will prove (3.2) by induction in |z]. If |z] = 0, then 7u — zu = 0 is given
by the free equation —u"(x) — zu(z) =0, x € (0,1) and
3 —zZT
) = sinh(y/—zx) _ eV=7 (1+o(1)),
V—z 2\/—2

—2T

o(z,x

¢'(z,27) = cosh/—zz = ¢ (1+o0(1)),

as asserted.

Suppose that both equations in (3.2) hold for |z] = k, k& € Z;. Our first
objective is to derive asymptotic formulas for ¢(z, (k + 1)) and ¢'(z, (k + 1)T).
Since

b
(cosh V—zx; Sln\/jzzx> (3.6)
is a fundamental system for the differential equation (3.1) considered on (k, k + 1),
and, by Remark 3.1,

oz, (k+1)T) =0z, (k+1)7), ¢'(z (k+1)7) = apn1/ (2, (k+1)7),  (3.7)

the vector (¢,¢')T(z,(k + 1)*) may be recovered using the fundamental matrix
corresponding to (3.6) and the matrix of vertex conditions corresponding to (3.7)
as follows

[<p(z,(k+1)+)} _ cosh ¥=2 sinh 2~ [ o, k+1/2)}
¢'(z (k+1)7) 41y —zsinh Y5 V=z a1 cosh F "(2,k +1/2)

Combining this and the induction hypothesis we get

/=% 1 sinh Y= 1
1)*) = cosh | Y= 5)+—F—=¢ 5
o(z,(k+1)T) = cos < 5 )¢ z,k+2 + = ¥ z,k+2
YE TR (k+1/2) VZE  V=E(k+1/2)
(e = - (1 +o(1)) (3.8)

2 2/ —z + 2/ —z 2
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Likewise,

¢'(2,(k +1)7) = apy1v/—2 sinh <\/2_7) ® <Z, k+ ;)

Vv — 1
+ g1 cosh (2'2) 74 (z, k+ 2)

e oV RkH1/2)  5E VE(k+1/2) ) 1 (3.9)
= Ok+1Ck 9 2\/jz + 9 2 ( +O( ))
vV—z(k+1)
- O‘kﬂckz (1+ o(1)).

Using the fundamental matrix corresponding to (3.6) as before we get
[ﬂ&@}_ coshy/=z(x —k) Rl {w&$ﬂ}
¢’ (2, ) V—zsinhy/—z(x — k) coshy/—z(z — k) @' (2, kM)

for every « € (k+1,k+2). Then combining this and the asymptotic formulas (3.8),
(3.9) we arrive at

¢(z,2) = cosh(v—z(z — k))p (2, k") + sinh \\/ﬁ;(: — k)

V=E(a—k) =Fk N —E(—k) =2k

_ c + ¢ e ck(140(1))
2 2V —z 2V —z 2

V—zx

)ﬂ+vu»:0“w

_ cke‘/j” 1+ apq
2/ —z 2 2/ —=z

¢ (2 k)

(1+0(1)),

and
¢ (z,x) = V—z sinh(vV—z(z — k))p(2, k1) + cosh(v=z(z — k))¢' (2, k")
— VTEa—k) Fk o E(a—k) =k
e V—ze e L e Qpt1€ 1+ o(1))
2 2V —% 2 2
B cpeV " <1 + Qg1 eV—ze

5 : ) (1+0(1)) = 76"“2

(14 0(1)).

Therefore (3.2) holds as asserted. The asymptotic formulas in (3.3) can be shown
similarly. O

Proof of (3.5). All asymptotic formulas in this proof are for z — oo, z € [0,00).
We will prove (3.5) by induction in j. If j = 1, then

at) = SIH(\/\/EMMP'(Z’f) = cos v/za,
and thus (3.5) holds.

Assuming that (3.5) holds for some j € N, we will prove that it also holds for
j+1. Since ¢ satisfies the vertex conditions, cf. (3.7), and since cos(y/zz), %
is a fundamental system for the differential equation (3.1) considered on (j — 1, j),
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we get

[ I i 7

—ayy/zsin 5= @ cos

Using this and the induction hypothesis we obtain

L VE
. z o1 sin %= o1
©(z,j7) = cos <§>w(m> + —=¢ z,J2>

o (o) () o0 00

Combining these asymptotic formulas and

[30(27%)] _ | cosyER@—j) o el {so(z,jf)}
¢’ (2, ) —zsinyz(z —j) cosz(z—j)| [¢(z.07)]
x € (J,7 + 1) one infers (3.5) with j replaced by j + 1 as required. O

Remark 3.3. Choosing s = 1 leads to the free Laplacian in which case (3.2),
(3.3) are consistent with the explicit solutions to the unperturbed problem.

Let us recall the definition of the Weyl-Titchmarsh function m corresponding to
7. First, for z € C\R there exists a unique (up to a scalar multiple) square integrable
solution ¢(z,-) € L*(Ry; i) of (3.1). Since z is non-real, we have p(z, ) & L*(R; i)
(otherwise z would be an eigenvalue of the Dirichlet realization of 7). Thus there
exists a non-zero m(z) € C such that

P(z,x) = 0(z,x) + m(2)e(z, ). (3.10)

The Weyl-Titchmarsh function m is the mapping z — m(z). It is analytic in
C4 :={2z€ C:Imz > 0} and, in fact, it is a Herglotz function, i.e., Imm(z) > 0,
S C+.

Lemma 3.4. For every x € Ry, a € (—7, ) \ {0} one has
e(z,2)P(z,2) = 0, (3.11)
as z — oo along the ray arg(z) = a.

Proof. Our strategy is to view the left-hand side of (3.11) as the diagonal Green
function. In order to show that the latter vanishes asymptotically for high energies
we will employ (3.5) and the following representation of m, see e.g. [T09, Chapter
9,

m(z) = d+ /R <Alz - 1+sz> dv(\),

d = Re(m(i)), /]R ﬁdm) — Tm(m(i)) < oc. (3.12)
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The Green function of HT, cf. (2.3), that is, the integral kernel of (HT — z)~1,
admits two representations,

G(z,:c,:c) :go(z,;z:)d)(z,z),x € Ry, (313)
and ,
A
G(z,x,x) = / Mdu()\),x eRy.
R R — A

Then utilizing (3.5), the second equation in (3.12), the inequality (cf. [T09, (3.114)])

1 1 147

A—2z| = 14|\ Im(2)’
and the dominated convergence theorem, we get G(z,z,x) — 0 as z — oo, arg(z) =
«. Hence by (3.13) we get (3.11). O
The proof of the following theorem is motivated by [Ben|, where the Borg—
Marchenko Theorem is established for Schrédinger operators —% + V(x). The

main ingredients of Bennewitz’s proof are certain asymptotic formulas for the
Dirichlet and Neumann solutions ¢(z,x),0(z,2) and for the Green function
G(z,z,x). In our setting these are given by (3.2), (3.3) and (3.11), respectively.

Theorem 3.5. Let s,5 € J%+ and let m,m be the corresponding Weyl-Titchmarsh
functions. Then

Sj = §j7 0 S] S k’, (314)
if and only if for every o € (—m, ) \ {0}, one has
im(z) —m(z)| = o (exp{—2(k +1/2) RevV=2}), (3.15)
as z — oo along the ray arg(z) = a.

Proof. Let ¢(z,-), @(z,-), 6(z,-), 6(z,-) be the Dirichlet and Neumann solutions
corresponding to s and s respectively. Then for every € Ry \ N the first equation

in (3.2) yields
o(z,2)  o|z))
Bz2) ()

with ¢, ¢ as in (3.4). Using the fact that g% BB is a nonzero constant with respect
to z and (3.11), (3.16) we obtain

Bz, 2)e(z,2) = 0, 9(z,2)i(2,2) = 0,

as z — oo along an arbitrary non-real ray. Therefore for every x € Ry \ N, (3.10)
yields

as z — 00,z € C\ [0, 00), (3.16)

B(z,0)0(z,0) — p(2,2)0(z, ) + (m(2) = W(2))p(z,2)3(z,2) = 0, (3.17)
as z — oo along an arbitrary non-real ray.
We are ready to prove the“if” part. Combining (3.2), (3.15) and (3.17), and
fixing z € [0, k] \ N, we obtain

o(z,2)0(z,x) — cp(zgx)g(z,x) — 0, (3.18)

as z — oo along every non-real ray. Let us introduce

f(Z) = QZ(Za (E)Q(Z,IL') - @(z,x)@(z,x)
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This is an entire function whose growth rate is at most 1/2, cf. (3.2), (3.3), and it
is bounded along every non-real ray. Then, by the Phragmén—Lindelof principle, f
is bounded on C. Thus it is constant and (3.18) gives f(z) =0 for all z € C.

That is, for all z € [0,k] \ N, z € C, one has

0(z,2)  6(zx) )
@(Z,m) o (p(z’x)’ € [Oak] \N

Taking the derivative with respect to x and recalling that the Wronskian is con-
served, we get

_ 1

Iz )2 (z,a%)  p(at)p?(z,2t)
Hence, for each 0 < j < k

5,0 (z,2%) = 5;0%(z,27"), (3.19)
and upon (right-)differentiating with respect to z
5z, a7") = sjp(z,2). (3.20)

Then (3.19) and (3.20) give
~ 2 ~
(S]> ZﬁandngSj, OSJSIC,
Sj Sj
as asserted.
Next, we prove the “only if” part. Using (3.14) we get

p(z,2) = 0(z,2), 0(z,2) = 0(z,2),x € [0,k + 1),z € C.
Then (3.17) with x € [0,k + 1/2] \ N yields
[(m(z) —m(2))e(z,2)@(z,2)| = o(1),
z — oo along every non-real ray. Combining this and the first formula in (3.2) we
get (3.15). O
3.2. Continuity of m-functions With Respect to Jumps.

Lemma 3.6. Fiz a sequence {s(n)}>, C J%. Ifs(n) — s as n — oo with respect
to the metric d, then m,(z) — m(z) as n — oo uniformly on compact subsets of

Cs.
Proof. The proof is based on the fact that the Weyl circles (more precisely their

centers and radii) are continuous with respect to z and eventually constant with
respect to n.
Let m(z,b, &) € C be such that the function
X(z,2) :=0(z,2) + m(z,b,a)p(z,x), € (0,b)

satisfies the following condition at b > 0,

X(z,b) cosa + u(b)x(z,b) sina = 0.
Then

C(z,b) :={m(z,b,a) : « € [0, 7]},
is a circle in C centered at

O(z,b) == —
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with radius

r(z,b) == 17

(W (0(z,-),0(2,-))(0)]
The corresponding disk is denoted by D(z,b). Then D(z,b") C D(z,b) whenever
b > b >0, and m(z) € Np>oD(2,b). Since m,,m are analytic in Cy it is enough
to prove that m,, converges to m pointwise and that m,, are uniformly bounded on
compact subsets of C;. To prove the former, fix ¢ > 0. Then by (3.21) we have
r(z,b) < & for b > b(e) for some b(e) > 0. Next, there exists N(g) > 0 such that

— 0,b — oo. (3.21)

sk(n) = s, 0 < k < |b(e)], (3.22)

for all n > N(e). Denoting the Weyl disk, Dirichlet and Neumann solutions corre-
sponding to s(n) by Dy, pn, 0, respectively, we note that (3.22) yields

on(z,2) = ¢(2,2),0(z,2) = Op(2,2), 2 € (0,b(e)), n > N(e).

Hence, D, (z,b(¢)) = D(z,b(¢)) n > N(eg), and since m,,(z) € D,(z,b(c)), we get

mp(2), m(z) € D(z,b(e)),n > N(e). (3.23)
Therefore,

|mn(2) —m(2)] < 2e,n > N(e).
Next, utilizing (3.23) with € = 1 we get
|mn(2) — m(2)] < 2r(z,b(1)),n > N(1).

Since 7(z,b(1)) and m(z) are uniformly bounded on compacts, we infer that the

sequence {my, }n>1 is uniformly bounded on compact subsets of Cy. O

3.3. Restriction Maps. Throughout this section m4 (s, z), ©+(s,-), 0+(s,-) de-
note the Weyl-Titchmarsh functions, Dirichlet, and Neumann solutions corre-
sponding to the sequence s € J%. Let R4 denote the restriction operators
Rais:= {Sn}nEZi~

For a set Z C R we define

D(Z2):={sc€T*:m_(s,FE+1i0) = —m, (s, E +i0), for Lebesgue a.e. E € Z}.

Theorem 3.7. Suppose that Z has positive Lebesque measure. Then

(i) The mapping
R:R_(D(Z)) > RL(D(Z)), R:R_(s)— Ri(s),s € D(2),

is well-defined (i.e. single valued).
(ii) R is bijective and uniformly continuous.
(i1i) D(Z) is T invariant and closed with respect to the metric d, cf. (2.1).

Proof. The restrictions R (s) uniquely determine the Weyl-Titchmarsh functions
m4 (s, ) by a Borg-Marchenko type result Theorem 3.5. Recalling that every Her-
glotz function is determined by its boundary values on a set of positive Lebesgue
measure, we get that the Weyl-Titchmarsh functions m_(s,-) and m(s,-) are in
one-to-one correspondence since

m_(s, E+1i0) = —my(s,E+10), a.e. E€ Z, |Z] > 0.
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/\

_ S <—> R+ )
ITheorem 3.5 ITheorem 3.5
|Z]>0

m+(55 )

This proves that R is well-defined and bijective. In order to show that it is uniformly
continuous it is enough to check that D(Z) is closed (hence, compact). Indeed, in
this case R4 are bijective, continuous mappings between compact metric spaces,
thus they are homeomorphic and R is uniformly continuous, see the top part of the
diagram. The closedness of D(Z) follows from Lemma 3.6 and [Ko85a, Lemma 5].

The T-invariance of D(Z) can be deduced from the following relation between
my (s, z) and my(T's, 2),

H(Ts, 0 (T, 0%) _ (s, 1) (5, 1%)

me(Ts2) = == T 05) T pals 15

cosh v/=zpu(s, 05)¢ (s, 0F) + %d&(s, 0%)
= /—zsinh v—zpu(s, 0F) ¢/, (s, 0) + cosh vzt (s, 0%)
_ ma(sz)coshy—z+ sk 2
m (s, z)y/—zsinh/—z + coshy/—2

m_(s,-)

4. ERGODIC STURM—LIOUVILLE OPERATORS IN IMPEDANCE FORM

This section concerns the spectral analysis of the full-line version of the operator
(2.3) with a dynamically defined sequence of sphere numbers {s,}nez. First, we
show that the spectrum is given by the zero set of the Lyapunov exponent whenever
the underlying cocycles are uniform, see Lemma 4.3. Further, assuming Bosher-
nitzan’s condition and using Kotani theory we derive the main result of this section
stating that the spectrum is given by a generalized Cantor set of zero Lebesgue
measure.

Let Q be a compact metric space, let T : © — € be a homeomorphism, and
suppose that (€2, 7)* is uniquely ergodic with the unique T—invariant probability
measure v. For a non-constant measurable function f : Q — 7, let

> I W) (T W) X1 (@), @ € Ryw € Q.

Let 7, be defined as in (1.2) with g = p,, and introduce a self-adjoint operator
H, :dom(H,) C L*(R; u,,) — L*(R; pe,), Hou == Tu, u € dom(H,,),
dom(H,) = {u € L*(R, p,) : u, pr,ut’ € AC(R), 7ou € L*(R; ) }-

For v almost every w € 2, the spectrum of H, is given be a deterministic set
¥ C R. Moreover, by [CL, Proposition V.2.4 and Remark V.2.5] there exists 3o C R
such that for v—a.e. w one has

(4.1)

ce(H,) =X, e € {ac, sc, pp, disc}.

4at this point (€2, T) is not assumed to be a minimal subshift satisfying (B)
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A much finer spectral analysis of the ergodic family H,,,w €  is possible through
the dynamical approach on which we focus next. First, notice that

Tt = Eu, u, pyu € AC1.(R4)
holds if and only for every n € Z, one has —u”(z) = Fu(z),z € (n — 1,n) and
|:u(n+):| B [ cosVE L\‘/‘éﬁ 1 [u((n — 1)t

u’(n*) 7f(Tn_1w)\/ESiD\/E f(T"_lw) cos VE
(T w) T+ w)

The latter can be rewritten as follows,

. f(T" T W) cos VE (T w)sinVE | ¢ _
FT o)) _ | T Fae Ve AT w)u((n — 1))
o' (nt) _VEsinVE  fI" lwjeosVE | | u/((n—1)F)

1) )

(I twju((n —1)*)
u'((n—1)%) ’

where the mapping M¥ : Q — SL(2,R) is given by

= MF (1" 1w)

f(T?w)cos VE  f(T?w)sinVE

E — f(w) vE
MF(w) =  JEenVE Fw)eosVE (4.2)
f(T?w) f(T?w)

The spectral properties of H,, will be described using an SL(2,R) cocycle (w,n) —
ME(w) over T given by

ME(Trw) x - x MFP(w), n>1,
MG (w) =< Iy, n=0, (4.3)
(ME(Trw)) ™t x - x ME(T )7L, n<—1.
The Lyapunov exponent of this cocycle is defined by
L(E) := lim l/ log | MEZ(w)]|dv(w) > 0, (4.4)
n—oo 1 Jo

by Kingman’s Subadditive Ergodic Theorem, one has
1 E
L(E) = lim > log [ MP(w)], (45)

for v-almost every w. We say that the function MF is uniform if the limit (4.5)
exists for all w € Q and the convergence is uniform.

4.1. Dynamical Description of the Spectrum. The main goal of this section
is to describe the spectrum of H,, in terms of the cocycle (w,n) — MF(w). To that
end, we first define a set of energies corresponding to uniformly hyperbolic cocycles,

there exist A > 1,C > 0 such that
ME(W)|| = CA" for all w e QneZ]”

We note that UH is open by [DFLY, Corollary 2.2]. With the Lyapunov exponent
L(E) defined in (4.4), denote

Z:={FEe€R:L(E)=0}, NUH:={FE cR:L(E) >0} \UH.

UH = {EER’H
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Then we arrive at the following disjoint partition of the real line
R=ZUNUHUUH.

Proposition 4.1. One has
U o(H.) =R\ uHn. (4.6)
weN

Proof. Assume that Fy € UH and fix w € . Since UH is open there is an open
interval Z C UH containing Ey. For each E € Z any solution of the equation
T.u = Eu grows exponentially fast on at least one half-line. By [BAMS, Theorem
1.1]%, for spectrally almost every A € R there is an L2-subexponentially bounded
solution of 7, f = Af. Since Z contains no such A we conclude that Ey & o(H,)
That is,

U o(H,) c R\ UH.

weR

Next, assume that £ € R\ U#H. Then the cocycle (T, M¥) admits a bounded

orbit, i.e., there exist w € Q and v € {z € R? : ||z|| = 1} such that

M (@)l <1,

for all n € Z, see e.g. [DFLY, Theorem 1.2]. Therefore, the equation 7,u = Eu

admits a bounded solution ug satisfying all vertex conditions. Thus by Lemma 4.2
we have E € o(H,). O

Assuming uniformity of the cocycle, we will show the spectrum of every H,, is
given by the right-hand side of (4.6), which in turn reduces to Z. To that end, we
first prove a Sch’nol-type result in the deterministic setting.

Lemma 4.2. Let T, u be defined as in (1.2) for a two sided sequence {$ptnez C J,
and let H be the corresponding self-adjoint operator in L*(R) (a two sided version
of (2.3)). Suppose that w is a subexponentially bounded solution

7w = FEw,E € R,w, p,w € AC;,.(R),
that is, for every k > 0 there exists C' > 0 such that
|lw(z)| < Ce™ for all x € R. (4.7)
Then E € o(H).

Proof. Our strategy is to construct a Weyl sequence for F. First, we note that the
quadratic form of H (acting in L?(R.,u)) is given by

blu,v] == (u',v") 2=, ), dom(h) = H'(R).

Indeed, for every w € dom(h) and every compactly supported v € dom(H),
supp(v) € (—K, K), we have

(u, HU>L2(R+7M) = —(u, (:u'vl)/>L2(]R+,da:)
K j K J -
= — Z / sjsj—u(z)v” (z) do = Z / sjsj—1ul (x)v' (z)dx
j=—K+177-1 j=—K+173-1

Sour operator is of the form described in [BAMS, Section 3.2], hence, the referenced result is

applicable
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K
+Y 0 sisu(hY () = sisioau(i)'(57)

j=—K+1
K
= (V) Loy + Z (s585410"(5F) — 858510 (G7)u(GT) = (W', 0") L2 ) -
j=—K+1

For every n € N, let ,, € C*°(R) be a mollifier taking values in [0, 1] and satisfying

( ) 1 0<|x|<]l’ H /” <
Pn\T) = and su "2 ) 0.
n 0 | ‘ N 1’ nzltl) nl|L>°(R,dz)

We claim that

_ WP C dom(h)
HwX(*n’”)”Lz(R,u) n>1

is a Weyl sequence for E. First, we note that the L?(IR, ) norm of all elements
of this sequence is at least one. Next, fix u € dom(h), [Jul|z1(r) < 1, and denote
I, := (n,n+ 1)U (—n — 1, —n). Then one has

h[“, Sonw] - E(u, Lpnw>L2(R,u)

= (U, o) 2,y + (U, W) L2 (R 1) — B, 9n0) L2 (R )

— [ @ @nis - B [ a@e@uteds + o, e
— E(u, X1, onw) L2 (m,p) + (U, 90, X1, W) L2 (R, p0) (4.8)

= (u, (Tw — BW)X(—n,n)) 2 (R,p)
 Snn W) (07) = 55 W)W (=) + {1, X1, 9nt) 23
— E{uxt,, onw) L2 R,y + (U X1, 90 W") L2 1) -
Sobolev-type inequalities, see, for example, [Ka, IV.1.2], yield
lu(zo)| < ||U||H1(1,,L),$0 € {—-n,n},
[w'(xo)| S Nwllarr,) S llwll2r, dz)

(4.9)

where we used —w”(z) = Ew(x), x € I, to get the last inequality in (4.9). Com-
bining (4.8), (4.9), and the Cauchy—Schwarz inequality, we get

|bu, ornw] — E(u, Sonw>L2(]R,u)| < ||U||H1(1n)||w||H1(1n)
WX (—nn) | L2 (R, 0) ~ Nwx (—nm)ll L2 ®,de)

< loxmminuEn-1,-nll22@de)

4.10
WX (—n,n) | 22 (R, dz) (4.10)

The right-hand side of (4.10) tends to zero as n — oo, for otherwise the norm
10X (nyn+1)0(=n—1,—n) | L2 (R, de)
would grow exponentially, contradicting (4.7). O

Lemma 4.3. Suppose that MF is uniform for all E € R. Then
o(H,) = Z for all w € Q.
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Proof. By assumption we have NUH = (). Therefore, due to (4.6) it is enough to
show that Z C o(H,) for all w € Q. The latter follows from the fact that every
solution of 7,u = Fu is subexponentially bounded for every E € Z, w €  (since
MPE is uniform) and Lemma 4.2. O

Next, we switch to Kotani’s description of ¥,.. Recall that the essential closure
of a set S C R is given by

S ={Ee€R:|SN(E—¢ E+e¢)| >0 for every € > 0}.

Theorem 4.4. (Ishii-Pastur-Kotani) The almost sure absolutely continuous spec-
trum of H,, is given by the essential closure of the zero set of the Lyapunov exponent,

. €SS
that is, Yoc = Z . Moreover, for v-almost every w, one has

m_(w, E+i0) = —my(w, E 4+ i0), Leb-a.e. E € Z. (4.11)

Kotani’s original proof is formally recorded for Schrodinger operators with er-
godic L} .(R) potentials, see [Ko85b]. However, it extends directly to the ergodic
family H,, defined in (4.1). Let us indicate the only two nontrivial adjustments
to be made in Kotani’s text. First, since we are dealing with Sturm-Liouville op-
erators in impedance form, the derivatives 1}, ¢’ of the Dirichlet and Neumann
solutions (here we use Kotani’s notation, see [Ko85b, §1]) should be replaced by
the quasi-derivatives w1}, twe which are locally absolutely continuous. Sec-
ond, the uniform boundedness of the Weyl-Titchmarsh functions m4 discussed in
[Ko85b, Lemma 1.2] follows (exactly as in [LSS, Lemma 6.2]) from the continuity
of m—functions with respect to w which has been established in Lemma 3.6.

4.2. Cantor Spectrum for the Full Line Model. In this section we specialize
the dynamical system (€2, T) to the class of minimal subshifts over J satisfying the
Boshernitzan condition (B), and f(w) := wy.

Theorem 4.5. Let (Q,T) be an aperiodic, minimal subshift over J satisfying
Boshernitzan’s condition (B). Then there exists a generalized Cantor set ¥ C R of
Lebesgue measure zero such that

o(H,) =% for all w € Q.

Proof. Since (2,T) satisfies (B) and since MF is locally constant we get that it
is uniform for every E € R by [DL06a, Theorem 1]. Therefore, Lemma 4.3 is
applicable in the present setting and one has o(H,,) = Z for all w € Q.

We claim that Z has zero Lebesgue measure. Seeking contradiction let us assume
that |Z| > 0. By Theorem 4.4 the assertion (4.11) holds for w € Q C Q, v(Q) = 1.
In other words, Q C D(Z). Then combining Theorem 3.7 and |Z| > 0, we infer
that the mapping

R A f(T"w) (T W) tnco = {f(T70) f(T"H @) }zo, w € D,

is well-defined and continuous with respect to the discrete metric d, cf. (2.1).
Pick an w € Q and denote s, := f(T"w) for n € Z. By uniform continuity
of R there exists k = k(J) € N (which is w-independent) such that the collec-
tion {S_gS_k+1;..-;S-150} uniquely determines sgs;. Shifting and repeating this
argument, we deduce that {s_pS_ji1;...;$_150} determines the entire sequence
{Sn5n+1}n€Z~ Thus

HT0) FT™ ) ner w € ) < 1T < oo,
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In particular, the sequence {s,,$,+1}nez is periodic with some period p. Then since
J is finite, the sequence {s,}ncz is periodic with period ¢ < 2|J7|?p (in general
p < q, eg.: ..141222 141222 ... here p = 3 and ¢ = 6). This contradicts the fact
the 2 is an aperiodic subshift. Therefore, |X| = |Z| = 0, in particular the closed
set ¥ does not contain intervals, hence, it is nowhere dense. Moreover, v almost
surely, the discrete spectrum spectrum og;s.(H,) is empty, cf. [CL, Proposition
V.2.8], so ¥ does not have isolated points, hence, it is a generalized Cantor set as
asserted. (]

5. SPECTRAL DECOMPOSITION OF THE TwO-SIDED FIBONACCI GRAPH

In this section we focus on the two-sided version of the graph I' corresponding
to an element w of the Fibonacci subshift 2 introduced in Example 2.3, see Figure
2.

FIGURE 2. Two-sided Fibonacci graph, s = {...12112121...}

First, we discuss the spectral properties of Fibonacci hamiltonians. Let us recall
relevant notions and fix notation. Let s € {1,2}%+ be the one-sided sequence
invariant under the Fibonacci substitution S, cf. Example 2.3, and let w(s) € Q
be a two-sided sequence which matches s on Z,. Let F;, be the n-th element of
the Fibonacci sequence with Fy := 1, F} := 2 (note that F,, = |S"™(1)| ). Setting
f(w) :=wp in (4.2) we denote M (n, E) := ME (w(s)), n >0, cf. (4.3). The key to
the spectral analysis of Fibonacci hamiltonians is the following recurrence relation

Mn+1,E)=Mn—-1,E)M(n,E),n > 3. (5.1)

We stress that the transfer matrix (4.2) depends on the window () of
size three. Consequently, M (n, E') depends on the first F}, + 2 elements of s. Thus,

the recurrence relation
S"HH(1) = S§™(1)S™ (1), (5.2)
does not automatically yield (5.1) for all n > 1. However, it does imply that the
extra two elements required in the definition of M (n, F) are n-independent and, in
fact, given by
SF,+1 =1, sp,42 =2, n>2.
Now, this observation together with (5.2) do yield (5.1).

Theorem 5.1. Let Q be the Fibonacci subshift. Then op,(Hy) =0 for allw € Q.
In fact, the spectrum of H,, is purely singular continuous.

Proof. Define
xn(E) = %tr(M(n,E)).
Then (5.1) together with the Cayley—Hamilton theorem yield
Tnt1(E) =22, (E)xn—1(E) — xn_2(E),n > 4. (5.3)
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Let

B:={EcR: sup |z,(E)| < +oo}.
nely
It is enough to prove that ¥ C B (where X is as in Theorem 4.5) and that B contains
no eigenvalues of H, ). Let H,, denote the periodic hamiltonian corresponding to
the sequence of sphere numbers obtained by two-sided periodic extension of the
patch 8™(1). We claim that

»c () eH) CB. (5.4)

n>0k>n

Let us prove the first inclusion in (5.4). Fix n > 0 and suppose that

E¢ | a(Hy),

k>n
then
%= s I(Hx = B) B2y < +o0.

Thus, for every compactly supported 1 € dom(H,,)) we have ¢ € dom(Hy) and

| Hip — B2y > ¢ Yl )

for sufficiently large k. For such k we have || Hxy)— Ev||12r) = || Huws) — EY || L2(r)
and infer
|Hos)% — B r2@) = 2 ¢ L2 (w)- (5.5)

Since the set of compactly supported functions from dom(H,(y)) is a core of Hy, ),
the inequality (5.5) holds for all ¢ € dom(H,)). Furthermore, since H, ) is
self-adjoint we get E ¢ o(H,,s)) = ¥ which proves the first inclusion in (5.4).

As was noted in the proof of [DFG, Proposition 6.3], the assertion [S05, Propo-
sition 12.8.6] together with (5.3) yield the following criterion: E ¢ B if and only if
there exists n such that

|21 (B)] > 1, [en(B)| > 1, |20 g1 (B)zn(E)| > [2n-1(E)], (5.6)

and in this case
|k (E)| > 1,k > n. (5.7)

To prove the second inclusion in (5.4) let us fix E ¢ B. Since z;(E) is continuous
with respect to F, the inequalities in (5.6) hold in a small neighborhood of E.
Thus (5.7) also holds in the same neighborhood (uniformly for & > n!). Then by
Floquet-Bloch theory E & J,.~,, 0(Hg).

The fact that 7,u = Eu has no square integrable solution for E € B follows
form the standard argument invoking Gordon’s lemma and the boundedness of
{zn(E)}, see, for example, [Su, Proposition 2]. O

Our next objective is to obtain the complete spectral decomposition of the Kirch-
hoff Laplacian corresponding to the two-sided Fibonacci Graph I'. To that end, we
first note that the decomposition result of Kostenko and Nicolussi [KN, Theorem
3.5] can be extended to the two-sided setting. Let {s,}ncz C N be an arbitrary
sequence of natural numbers. For each n € Z let S,, denote a set of s, distinct
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vertices. Let I' be the graph with the set of vertices V := U,¢zS, and such that
two vertices u,v € V are adjacent if and only if

S U Sn X (Sn—l U Sn-‘rl))

nezZ
see, e.g., Figure 2.

Proposition 5.2. The Kirchhoff Laplacian H on the graph T' introduced above is
unitarily equivalent to

H @ 6957,71[_11 ® @ EB(Sn_l Sn+1—1)H2
nez neZ

where HL, H? are as in (2.4), (2.5), respectively, and H is the self-adjoint Sturm-—
Liowville operator acting in L?>(R, u) and corresponding to

= (&)

w(z) = Z SnSnt1X[nn+1)(7), T € R.

The proof of this assertion is similar to that of [KN, Theorem 3.5]. Let us high-
light the main ingredient of the proof by example. Let H be the Kirchhoff Laplacian
on the two-side graph I' introduced above and corresponding to an element w of
the Fibonacci subshift 2 C {1,2}%. Such a graph consists of tiles and line segments
as shown on Figure 2. One has

L2(T) = Faym & (Faym) ™ (5.8)

where Fgy, consists of L*(T') functions that are horizontally symmetric on each
tile (for precise definition see [KN, (2.11)] with “n > 0” replaced by “n € Z”, and

€ {1,2}). Then the operator block of H corresponding to Fsym, is unitarily
equivalent to the full line Strum—Liouville operator H. The operator block of H
corresponding to (Fsym)® is unitarily equivalent to

@@sn—lHl @ @ @ Snfl)(5n+171)H2
neZ nez

Proposition 5.3. Let H be as above. Then the singular continuous subspace of
H is Feym, the pure point subspace is .Fsym, and the absolutely continuous part is
trivial.

Proof. The spectra of H} H?2 are discrete as before for every n € Z. By Theo-
rem 5.1 the spectrum of H is purely singular continuous. Then the orthogonal
decomposition (5.8) yields the assertion. O
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