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Abstract. We introduce a dynamically defined class of unbounded, con-
nected, equilateral metric graphs on which the Kirchhoff Laplacian has zero
Lebesgue measure spectrum and a nontrivial singular continuous part. A new
local Borg–Marchenko uniqueness result is obtained in order to utilize Kotani
theory for aperiodic subshifts satisfying Boshernitzan’s condition.
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1. Introduction

1.1. Overview. The spectral theory of Schrödinger operators with irregular po-
tentials has been of great interest in mathematical physics since the 1950’s. A large
number of models have been treated rigorously in the setting of the one-dimensional
Laplacian perturbed by an irregular potential. As far as multidimensional phenom-
ena are concerned, only a small fraction of the expected results has been proved.
In this paper we focus on structures of intermediate dimensionality – continuum
metric graphs. Specifically, we study the Kirchhoff Laplacian on aperiodic infinite
volume graphs and demonstrate that they exhibit nontrivial spectral behavior.

The first example of a quantum graph with “exotic” spectrum is due to Simon,
cf. [S96] where an infinite combinatorial graph with singular continuous spectrum
was constructed. Typically, interesting spectral phenomena (e.g., Anderson local-
ization) occur due to irregular lower order perturbations of a fixed second order
operator, which is often the Laplacian. In the setting of graphs, however, it is
natural to consider another type of perturbation – by geometry. For example, the
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graph in Figure 1 may be viewed as a geometric perturbation, by inserting dia-
mond tiles, of the half line. The latter has purely absolutely continuous spectrum
[0,∞), while the former may exhibit all kinds of spectra depending on how the
tiles are inserted. This paper concerns aperiodic geometric perturbations (of more
general graphs) leading to zero Lebesgue measure spectra, a scenario of interest in
the modeling of quasicrystals, [DL06b, LSS].

In the past two decades aperiodic Schrödinger operators on continuum and com-
binatorial graphs have attracted a significant amount of attention. The main inter-
est has been around the relation between the geometry of graphs and their spectra.
Let us mention some relevant results. In [Br] Breuer constructed a sparse combi-
natorial tree graph with singular continuous spectrum. This result was extended
to the continuum setting by Breuer and Frank in [BF], where it was also shown
that the singular continuous spectrum is in fact generic. Next, regular trees pro-
vided some insight into the Anderson model. For instance, delocalization in the
regime of low disorder on the Bethe lattice was established by Klein in [Kl]. A
new spectral behavior for the tree Anderson Hamiltonian near spectral edges was
discovered by Aizenman and Warzel, [AW11, AW13]. Dynamical localization for
radial trees with disordered branching numbers and edge lengths was established
by Damanik, Fillman, and Sukhtaiev in [DFS, DS]. Periodicity of radial trees in
the presence of absolutely continuous spectrum was shown by Exner, Seifert, and
Stollmann in [ESS]. Grigorchuk, Lenz, and Nagnibeda recently proved zero mea-
sure spectrum for discrete Laplacians on certain aperiodic graphs, cf. [GLN]. To
the best of our knowledge, continuum Kirchhoff Laplacians on nontrivial1 graphs
with zero measure spectrum and nonempty singular continuous part have not yet
been discussed in the literature. Our goal is to address this issue by combining a
recent work of Kostenko and Nicolussi [KN] (see also [BKe, BL]) and the theory of
ergodic Schrödinger operators [CL, D17, DF].

Figure 1. Fibonacci sphere numbers, s = {12112121...}

1.2. Setup. Let Γ = (V, E) be a connected graph with root o ∈ V. For v ∈ V,
let |v| denote the combinatorial length of the shortest path connecting v and o.
The combinatorial sphere of radius n ≥ 0 is given by Sn := {v ∈ V : |v| = n}, the
cardinality of this sphere is denoted by sn := |Sn|. In this paper we focus on graphs
Γ satisfying the following: Two vertices u, v ∈ V are adjacent if and only if

(u, v) ∈ (S0 × S1)
⋃

n≥1

Sn × (Sn−1 ∪ Sn+1),

see, e.g., Figure 1 where s0 = 1, s1 = 2, s3 = 1. We equip Γ with a metric by
assigning each edge e ∈ E length 1. A natural orientation is determined by the

1noncompact, connected, and containing cycles
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growth of spheres Sn. The Kirchhoff Laplacian on Γ is defined by

H : dom(H) ⊂ L2(Γ) → L2(Γ),Hu := −u′′, u ∈ dom(H),

dom(H) = {f ∈ Ĥ2(Γ) ∩ C(Γ) :
∑

e∈E:v∈e

∂eνf(v) = 0, v ∈ V}, (1.1)

where Ĥ2(Γ) :=
⊕

e∈E H
2(e) is the L2 based Sobolev space, cf. [BK].

The main goal of this paper is to prove that the spectrum of H is a zero Lebesgue
measure set whenever the sequence of sphere numbers satisfies certain dynamical
conditions. Due to the large number of symmetries of Γ, the operator H can be
written, see [KN, Theorem 3.5], as the direct sum of self-adjoint realizations of the
following Sturm-Liouville differential expression

τ = − 1

µ(x)

(
d

dx
µ(x)

d

dx

)
,

µ(x) :=

∞∑

n=0

snsn+1χ[n,n+1)(x), x ∈ R+.

(1.2)

The self-adjoint realizations τ in question are of two spectrally relevant types. The
operators of the first type have compact resolvent and, hence, only discrete spec-
trum. They do enter the direct sum decomposition of H infinitely many times.
However, there is only a finite collection of mutually non-unitarily equivalent oper-
ators of the first type. Therefore, their total spectral contribution is worth only a
zero Lebesgue measure set (as it is countable). Of course, some points of this set
end up being eigenvalues of H of infinite multiplicity. Since they could be isolated
from the rest of the spectrum of H, we do not claim that σ(H) is a (generalized)
Cantor set. The second type of self-adjoint realizations is given by τ acting in
L2(0,∞) subject to the Neumann condition at 0. Showing zero measure spectrum
for this operator is the main technical issue addressed in this work. To that end
we utilize Kotani theory for τ and the base dynamical system (Ω, T ) given by a
subshift over the admissible values of the sphere numbers. Assuming that this
subshift satisfies Boshernitzan’s condition we obtain that the spectrum is given by
the set Z on which the Lyapunov exponent vanishes, see Section 4. This step, in
particular, requires a Sch’nol-type result for τ , see Lemma 4.2, [BMLS]. Then we
argue that |Z| > 0 implies periodicity of the sequence of sphere numbers, contrary
to the construction of Ω. This gives that the spectrum of the half-line operator
is a zero measure set, see Theorem 4.5, which in turn yields the main assertion.
A key to this argument is a new version of the celebrated Borg–Marchenko result,
[GL, GS, M, S99], establishing a one-to-one correspondence between the Weyl–
Titchmarsh functions and the potentials. A rather general version of this result
was obtained in [EGNT]; however, the operators of the form (1.2) are notably ex-
cluded from consideration, see [EGNT, Hypothesis 6.1]. In this work, we prove
a local version of Borg–Marchenko result that allows us to recover arbitrary finite
blocks of sphere numbers from the asymptotic behavior of the m-functions for large
non-real values of the spectral parameter, see Theorem 3.5. It is worth mentioning
that Breuer and Frank, [BF, Proposition 12], obtained the Borg–Marchnko result
for a somewhat relevant class of operators. Our method, which itself stems from
Bennewitz’s work [Ben], can easily be adapted to yield [BF, Proposition 12].
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2. Main Results

Fix a finite set J ⊂ N. Let J Z be equipped with the following metric

d(ω, ω̃) :=
∑

n∈Z

1− δωn,ω̃n

2|n|+1
, ω, ω̃ ∈ J Z. (2.1)

Let T : J Z → J Z denote the left shift, i.e., [T (ω)]n := ωn+1, ω ∈ J Z. A T -
invariant, closed (with respect to d) subset Ω ⊂ J Z is called a subshift over J .
This paper is concerned with a special class (which is yet very general2) of subshifts
satisfying Boshernitzan’s condition (B). Let us recall the relevant definitions. We
say that (Ω, T ) is minimal if every orbit {Tnω : n ∈ Z} is dense. A minimal subshift
is called aperiodic if one of its elements is not periodic, that is, T pω = ω for some
p ∈ Z implies p = 0. It is then easy to see that all elements of Ω are aperiodic. The
set of words corresponding to Ω is defined by

W := {ωk · · ·ωk+n−1 : k ∈ Z, n ∈ N, ω ∈ Ω}.
Each word w ∈ W of length |w| ∈ N determines the cylinder set

Vw := {ω ∈ Ω : ω1 · · ·ω|w| = w}.
For a T -invariant probability measure ν on Ω, let us define the following quantity,

ην(n) := min{ν(Vw) : w ∈ W, |w| = n}.
A minimal subshift (Ω, T ) is said to satisfy Boshernitzan’s condition (B) if there is
an ergodic probability measure ν on Ω such that

lim sup
n→∞

n ην(n) > 0. (B)

In the theorem below we denote Ω �Z+
:= {{sn}∞n=0 : {sn}n∈Z ∈ Ω}.

Theorem 2.1. Suppose that (Ω, T ) is a minimal aperiodic subshift over a finite set
J ⊂ N, |J | ≥ 2 satisfying Boshernitzan’s condition (B). Then for every {sn}∞n=0 ∈
Ω �Z+

, the spectrum of the Kirchhoff Laplacian H defined in (1.1) is a zero Lebesgue
measure set.

Proof. The Kirchhoff Laplacian H is unitarily equivalent, cf. [KN, Theorem 3.5], to
the following direct sum

H+ ⊕
⊕

n≥1

⊕sn−1
j=1 H1

n ⊕
⊕

n≥1

⊕(sn−1)(sn+1−1)
j=1 H2

n, (2.2)

where H+, H1
n, H

2
n are the self-adjoint realizations of (1.2) on R+ = (0,∞), Jn :=

(n − 1, n + 1), and In := (n, n + 1), correspondingly, defined next. The half-line
operator H+ is given by

H+ : dom(H+) ⊂ L2(R+;µ) → L2(R+;µ), H
+u := τu, u ∈ dom(H+),

dom(H+) = {f ∈ L2(R+, µ) : f, µf
′ ∈ AC(R+), τf ∈ L2(R+;µ), f

′(0) = 0}.
(2.3)

The operators H1
n, H

2
n, defined on finite intervals, are given by

H1
n : dom(H1

n) ⊂ L2(Jn;µ) → L2(Jn;µ), H
1
nu := τu, u ∈ dom(H1

n), (2.4)

dom(H1
n) =

{
f ∈ L2(Jn, µ)

∣∣∣f, µf
′ ∈ AC(Jn), τf ∈ L2(Jn;µ),
f(n− 1) = f(n+ 1) = 0

}
,

2the scope of generality is comprehensively discussed in [DL06b]
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and

H2
n : dom(H2

n) ⊂ L2(In;µ) → L2(In;µ), H
2
nu := τu, u ∈ dom(H2

n), (2.5)

dom(H2
n) =

{
f ∈ L2(In, µ)

∣∣∣f, µf
′ ∈ AC(In), τf ∈ L2(In;µ),
f(n) = f(n+ 1) = 0

}
.

Since sn takes finitely many values, the sequence of operators {H1
n}n∈Z+

contains
only finitely many mutually non-unitarily equivalent operators, each of which has
only discrete spectrum (in fact the eigenvalues are given by the roots of some
trigonometric transcendental equation, see [Ber]). The union Σ1 of these spectra
is a countable set. Next, every operator H2

n is unitarily equivalent to the Dirichlet
Laplacian on (0, 1), its spectrum is discrete and denoted by Σ2. Then employing
(2.2) we get

σ(H) = σ(H+) ∪ Σ1 ∪ Σ2.

Thus, to prove the assertion it is enough to show that |σ(H+)| = 0. To that end,
we extend the sequence {sn}n≥0 to a two-sided sequence belonging to the subshift
Ω, and introduce the corresponding self-adjoint operator on R as follows

H : dom(H) ⊂ L2(R;µ) → L2(R;µ), Hu := τu, u ∈ dom(H),

dom(H) = {f ∈ L2(R, µ) : f, µf ′ ∈ AC(R), τf ∈ L2(R;µ)},
where the function µ is defined for the two-sided sequence as in (1.2). Now, by [T09,
Theorem 9.11], we have σess(H

+) ⊂ σess(H)3. By Theorem 4.5, the Lebesgue mea-
sure of σess(H) is equal to zero (in fact, the whole spectrum is a fixed zero measure
generalized Cantor set for every choice of the sequence of the sphere numbers from
Ω). Thus, we have |σ(H+)| ≤ |σess(H+)|+ |σdisc(H+)| = 0. Hence, one has

|σ(H)| ≤ |σ(H+)|+ |Σ1|+ |Σ2| = 0,

as asserted. �

As pointed out in [DL06a, DL06b], many subshifts of interest satisfy condition
(B). In fact, one can construct examples of such subshifts rather explicitly. Let us
provide two examples.

Example 2.2. Let N ≥ 2 and let J = {γk; 1 ≤ k ≤ N} ⊂ N be a set containing
at least two distinct elements. Fix α ∈ R \ Q and a rational partition of the unit
circle 0 = a0 < a1 < ... < aN = 1, ak ∈ Q. Pick any ω ∈ [0, 1) and define

sn(ω) :=

N∑

k=1

γkχ[ak−1,ak)(nα+ ω), n ∈ Z.

Then the Kirchhoff Laplacian H given by such a sequence of sphere numbers has
zero measure spectrum. Indeed, in this case the subshift Ω := {s(ω) : ω ∈ [0, 1)}
satisfies Boshernitzan’s condition (B), see e.g. [DL06b, Theorem 10].

Example 2.3. Assume that the sequence of the sphere numbers s ∈ {1, 2}Z+ is
invariant under the action of the Fibonacci substitution S(1) = 12, S(2) = 1, e.g.
s = 12112121..., see Figure 1. Then the Kirchhoff Laplacian H given by such a
sequence of sphere numbers has zero measure spectrum. Here,

Ω :=
{
ω ∈ J Z : every subword of ω is a subword of s

}
.

3in fact, “⊂” can be replaced by “=” by standard arguments utilizing ergodicity/minimality
of (Ω, T ), cf., e.g., [DF], [CL]
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It satisfies Boshernitzan’s condition (B) by [DL06b, Theorem 4].

The sequences in both examples generate minimal subshifts satisfying (B), see
[D07, D17, DL06a, DL06b] for details.

Remark 2.4. The assertion of Theorem 2.1 also holds in the discrete setting, i.e.,
when H is given by the combinatorial graph Laplacian. Up to a countable set, the
spectrum of the discrete Hamiltonian is given by the spectrum of a certain Jacobi
matrix, see [BKe]. Of course, the Borg–Marchenko and Sch’nol-type results become
trivial at this level.

3. Elements of Weyl–Titchmarsh Theory

In this section we discuss Weyl–Titchmarsh theory for τ , cf. (1.2), in order
to prepare the necessary ingredients for Kotani theory. Specifically we prove a
local version of the Borg–Marchenko uniqueness result in Theorem 3.5, cf. [Ben,
Bo, EGNT, GL, GS, M, S99], and utilize it to construct the restriction maps in
Theorem 3.7. In order to simplify the notation, cf. (1.2), we set

µ(x) :=

∞∑

n=0

snχ[n,n+1)(x), x ∈ R+,

where {sn}n∈Z+
⊂ J and J ⊂ N is a finite set of cardinality at least two. The

differential expression τ is defined as in (1.2). The Dirichlet and Neumann solutions
of the differential equation

τu− zu = 0, z ∈ C, (3.1)

are denoted by ϕ(z, ·), θ(z, ·), correspondingly, i.e.,
ϕ(z, 0) = µ(0)θ′(z, 0) = 0, µ(0)ϕ′(z, 0) = θ(z, 0) = 1.

Remark 3.1. The conditions f, µf ′ ∈ ACloc(R+) imply

sn−1f
′(n−) = snf(n

+), n ∈ N.

Throughout this paper
√
z denotes the branch of the square root corresponding

to Re
√
i > 0 and arg(z) ∈ (−π, π]. In particular, Re(

√−z) > 0 whenever z ∈
C \ [0,∞), and Re(

√−z) = 0 if z ∈ [0,∞).

3.1. Borg–Marchenko Theorem For Sturm–Liouville Operators in

Impedance Form. The following lemma concerns the asymptotic behavior of the
Dirichlet and Neumann solutions of (3.1) for large non-real spectral parameter.

Lemma 3.2. For every x ∈ R+ \ N one has

ϕ(z, x) =
c(bxc)e

√
−zx

2
√−z (1 + o(1)),

ϕ′(z, x) =
c(bxc)e

√
−zx

2
(1 + o(1)),

(3.2)

θ(z, x) =
c(bxc)e

√
−zx

2
(1 + o(1)),

θ′(z, x) =
c(bxc)√−ze

√
−zx

2
(1 + o(1)),

(3.3)
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as z → ∞, z ∈ C \ [0,∞), where

c(bxc) := 1

s0

bxc∏

k=1

sk + sk−1

2sk
(3.4)

Furthermore, for each j ∈ N one has

ϕ(z, x+) = O
(

1√
z

)
, ϕ′(z, x+) = O (1) , (3.5)

uniformly for x ∈ [0, j) as z → ∞, z ∈ [0,∞).

Proof of (3.2), (3.3). To simplify the notation we denote αk := sk−1

sk
, and declare

that all asymptotic formulas in this proof are for z → ∞, z ∈ C \ [0,∞). Without
loss we may assume that s0 = 1.

We will prove (3.2) by induction in bxc. If bxc = 0, then τu − zu = 0 is given
by the free equation −u′′(x)− zu(x) = 0, x ∈ (0, 1) and

ϕ(z, x+) =
sinh(

√−zx)√−z =
e
√
−zx

2
√−z (1 + o(1)),

ϕ′(z, x+) = cosh
√
−zx =

e
√
−zx

2
(1 + o(1)),

as asserted.
Suppose that both equations in (3.2) hold for bxc = k, k ∈ Z+. Our first

objective is to derive asymptotic formulas for ϕ(z, (k + 1)+) and ϕ′(z, (k + 1)+).
Since (

cosh
√
−zx; sinh

√−zx√−z

)
(3.6)

is a fundamental system for the differential equation (3.1) considered on (k, k+1),
and, by Remark 3.1,

ϕ(z, (k + 1)+) = ϕ(z, (k + 1)−), ϕ′(z, (k + 1)+) = αk+1ϕ
′(z, (k + 1)−), (3.7)

the vector (ϕ,ϕ′)>(z, (k + 1)+) may be recovered using the fundamental matrix
corresponding to (3.6) and the matrix of vertex conditions corresponding to (3.7)
as follows

[
ϕ(z, (k + 1)+)
ϕ′(z, (k + 1)+)

]
=

[
cosh

√
−z
2

sinh
√−z

2√
−z

αk+1

√−z sinh
√
−z
2 αk+1 cosh

√
−z
2

] [
ϕ(z, k + 1/2)
ϕ′(z, k + 1/2)

]
.

Combining this and the induction hypothesis we get

ϕ(z, (k + 1)+) = cosh

(√−z
2

)
ϕ

(
z, k +

1

2

)
+

sinh
√
−z
2√−z ϕ′

(
z, k +

1

2

)

=

(
e

√−z

2

2

e
√
−z(k+1/2)

2
√−z +

e
√−z

2

2
√−z

e
√
−z(k+1/2)

2

)
ck(1 + o(1))

=
cke

√
−z(k+1)

2
√−z (1 + o(1)).

(3.8)
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Likewise,

ϕ′(z, (k + 1)+) = αk+1

√
−z sinh

(√−z
2

)
ϕ

(
z, k +

1

2

)

+ αk+1 cosh

(√−z
2

)
ϕ′
(
z, k +

1

2

)

= αk+1ck

(√−ze
√−z

2

2

e
√
−z(k+1/2)

2
√−z +

e
√−z

2

2

e
√
−z(k+1/2)

2

)
(1 + o(1))

=
αk+1cke

√
−z(k+1)

2
(1 + o(1)).

(3.9)

Using the fundamental matrix corresponding to (3.6) as before we get

[
ϕ(z, x)
ϕ′(z, x)

]
=

[
cosh

√−z(x− k) sinh
√
−z(x−k)√
−z√−z sinh√−z(x− k) cosh

√−z(x− k)

] [
ϕ(z, k+)
ϕ′(z, k+)

]
,

for every x ∈ (k+1, k+2). Then combining this and the asymptotic formulas (3.8),
(3.9) we arrive at

ϕ(z, x) = cosh(
√
−z(x− k))ϕ

(
z, k+

)
+

sinh
√−z(x− k)√−z ϕ′ (z, k+

)

=

(
e
√
−z(x−k)

2

e
√
−zk

2
√−z +

e
√
−z(x−k)

2
√−z

αk+1e
√
−zk

2

)
ck(1 + o(1))

=
cke

√
−zx

2
√−z

(
1 + αk+1

2

)
(1 + o(1)) =

ck+1e
√
−zx

2
√−z (1 + o(1)),

and

ϕ′(z, x) =
√
−z sinh(

√
−z(x− k))ϕ(z, k+) + cosh(

√
−z(x− k))ϕ′ (z, k+

)

= ck

(√−ze
√
−z(x−k)

2

e
√
−zk

2
√−z +

e
√
−z(x−k)

2

αk+1e
√
−zk

2

)
(1 + o(1))

=
cke

√
−zx

2

(
1 + αk+1

2

)
(1 + o(1)) =

ck+1e
√
−zx

2
(1 + o(1)).

Therefore (3.2) holds as asserted. The asymptotic formulas in (3.3) can be shown
similarly. �

Proof of (3.5). All asymptotic formulas in this proof are for z → ∞, z ∈ [0,∞).
We will prove (3.5) by induction in j. If j = 1, then

ϕ(z, x+) =
sin(

√
zx)√
z

, ϕ′(z, x+) = cos
√
zx,

and thus (3.5) holds.
Assuming that (3.5) holds for some j ∈ N, we will prove that it also holds for

j+1. Since ϕ satisfies the vertex conditions, cf. (3.7), and since cos(
√
zx), sin(

√
zx)√
z

is a fundamental system for the differential equation (3.1) considered on (j − 1, j),
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we get
[
ϕ(z, j+)
ϕ′(z, j+)

]
=

[
cos

√
z
2

sin
√

z

2√
z

−αj
√
z sin

√
z
2 αj cos

√
z
2

] [
ϕ(z, j − 1/2)
ϕ′(z, j − 1/2)

]
.

Using this and the induction hypothesis we obtain

ϕ(z, j+) = cos

(√
z

2

)
ϕ

(
z, j − 1

2

)
+

sin
√
z
2√
z

ϕ′
(
z, j − 1

2

)

= cos

√
z

2
O
(

1√
z

)
+

sin
√
z
2√
z

O (1) = O
(

1√
z

)

and

ϕ′(z, j+) = −αj

√
z sin

(√
z

2

)
ϕ

(
z, j − 1

2

)
+ αj cos

(√
z

2

)
ϕ′
(
z, j − 1

2

)

= −αj

√
z sin

(√
z

2

)
O
(

1√
z

)
+ αj cos

(√
z

2

)
O (1) = O (1) .

Combining these asymptotic formulas and
[
ϕ(z, x)
ϕ′(z, x)

]
=

[
cos

√
z(x− j) sin

√
z(x−j)√
z

−√
z sin

√
z(x− j) cos

√
z(x− j)

] [
ϕ(z, j+)
ϕ′(z, j+)

]
,

x ∈ (j, j + 1) one infers (3.5) with j replaced by j + 1 as required. �

Remark 3.3. Choosing sk ≡ 1 leads to the free Laplacian in which case (3.2),
(3.3) are consistent with the explicit solutions to the unperturbed problem.

Let us recall the definition of the Weyl–Titchmarsh function m corresponding to
τ . First, for z ∈ C\R there exists a unique (up to a scalar multiple) square integrable
solution ψ(z, ·) ∈ L2(R+;µ) of (3.1). Since z is non-real, we have ϕ(z, ·) 6∈ L2(R+;µ)
(otherwise z would be an eigenvalue of the Dirichlet realization of τ). Thus there
exists a non-zero m(z) ∈ C such that

ψ(z, x) = θ(z, x) +m(z)ϕ(z, x). (3.10)

The Weyl–Titchmarsh function m is the mapping z 7→ m(z). It is analytic in
C+ := {z ∈ C : Im z > 0} and, in fact, it is a Herglotz function, i.e., Imm(z) > 0,
z ∈ C+.

Lemma 3.4. For every x ∈ R+, α ∈ (−π, π) \ {0} one has

ϕ(z, x)ψ(z, x) → 0, (3.11)

as z → ∞ along the ray arg(z) = α.

Proof. Our strategy is to view the left-hand side of (3.11) as the diagonal Green
function. In order to show that the latter vanishes asymptotically for high energies
we will employ (3.5) and the following representation of m, see e.g. [T09, Chapter
9],

m(z) = d+

∫

R

(
1

λ− z
− λ

1 + λ2

)
dν(λ),

d = Re(m(i)),

∫

R

1

1 + λ2
dν(λ) = Im(m(i)) <∞. (3.12)
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The Green function of H+, cf. (2.3), that is, the integral kernel of (H+ − z)−1,
admits two representations,

G(z, x, x) = ϕ(z, x)ψ(z, x), x ∈ R+, (3.13)

and

G(z, x, x) =

∫

R

ϕ2(λ, x)

z − λ
dν(λ), x ∈ R+.

Then utilizing (3.5), the second equation in (3.12), the inequality (cf. [T09, (3.114)])
∣∣∣∣

1

λ− z

∣∣∣∣ ≤
1

1 + |λ|
1 + |z|
Im(z)

,

and the dominated convergence theorem, we get G(z, x, x) → 0 as z → ∞, arg(z) =
α. Hence by (3.13) we get (3.11). �

The proof of the following theorem is motivated by [Ben], where the Borg–

Marchenko Theorem is established for Schrödinger operators − d2

dx2 + V (x). The
main ingredients of Bennewitz’s proof are certain asymptotic formulas for the
Dirichlet and Neumann solutions ϕ(z, x), θ(z, x) and for the Green function
G(z, x, x). In our setting these are given by (3.2), (3.3) and (3.11), respectively.

Theorem 3.5. Let s, s̃ ∈ J Z+ and let m, m̃ be the corresponding Weyl–Titchmarsh
functions. Then

sj = s̃j , 0 ≤ j ≤ k, (3.14)

if and only if for every α ∈ (−π, π) \ {0}, one has

|m(z)− m̃(z)| = o
(
exp{−2 (k + 1/2)Re

√
−z}

)
, (3.15)

as z → ∞ along the ray arg(z) = α.

Proof. Let ϕ(z, ·), ϕ̃(z, ·), θ(z, ·), θ̃(z, ·) be the Dirichlet and Neumann solutions
corresponding to s and s̃ respectively. Then for every x ∈ R+ \N the first equation
in (3.2) yields

ϕ(z, x)

ϕ̃(z, x)
→ c(bxc)

c̃(bxc) , as z → ∞, z ∈ C \ [0,∞), (3.16)

with c, c̃ as in (3.4). Using the fact that c(bxc)
c̃(bxc) is a nonzero constant with respect

to z and (3.11), (3.16) we obtain

ϕ̃(z, x)ψ(z, x) → 0, ϕ(z, x)ψ̃(z, x) → 0,

as z → ∞ along an arbitrary non-real ray. Therefore for every x ∈ R+ \ N, (3.10)
yields

ϕ̃(z, x)θ(z, x)− ϕ(z, x)θ̃(z, x) + (m(z)− m̃(z))ϕ(z, x)ϕ̃(z, x) → 0, (3.17)

as z → ∞ along an arbitrary non-real ray.
We are ready to prove the“if” part. Combining (3.2), (3.15) and (3.17), and

fixing x ∈ [0, k] \ N, we obtain

ϕ̃(z, x)θ(z, x)− ϕ(z, x)θ̃(z, x) → 0, (3.18)

as z → ∞ along every non-real ray. Let us introduce

f(z) := ϕ̃(z, x)θ(z, x)− ϕ(z, x)θ̃(z, x).
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This is an entire function whose growth rate is at most 1/2, cf. (3.2), (3.3), and it
is bounded along every non-real ray. Then, by the Phragmén–Lindelöf principle, f
is bounded on C. Thus it is constant and (3.18) gives f(z) = 0 for all z ∈ C.

That is, for all x ∈ [0, k] \ N, z ∈ C, one has

θ̃(z, x)

ϕ̃(z, x)
=
θ(z, x)

ϕ(z, x)
, x ∈ [0, k] \ N.

Taking the derivative with respect to x and recalling that the Wronskian is con-
served, we get

1

µ̃(x+)ϕ̃2(z, x+)
=

1

µ(x+)ϕ2(z, x+)
.

Hence, for each 0 ≤ j ≤ k

s̃jϕ̃
2(z, x+) = sjϕ

2(z, x+), (3.19)

and upon (right-)differentiating with respect to x

s̃jϕ̃(z, x
+) = sjϕ(z, x

+). (3.20)

Then (3.19) and (3.20) give
(
s̃j
sj

)2

=
s̃j
sj

and s̃j = sj , 0 ≤ j ≤ k,

as asserted.
Next, we prove the “only if” part. Using (3.14) we get

ϕ(z, x) = ϕ̃(z, x), θ(z, x) = θ̃(z, x), x ∈ [0, k + 1), z ∈ C.

Then (3.17) with x ∈ [0, k + 1/2] \ N yields

|(m(z)− m̃(z))ϕ(z, x)ϕ̃(z, x)| = o(1),

z → ∞ along every non-real ray. Combining this and the first formula in (3.2) we
get (3.15). �

3.2. Continuity of m-functions With Respect to Jumps.

Lemma 3.6. Fix a sequence {s(n)}∞n=1 ⊂ J Z+ . If s(n) → s as n→ ∞ with respect
to the metric d, then mn(z) → m(z) as n → ∞ uniformly on compact subsets of
C+.

Proof. The proof is based on the fact that the Weyl circles (more precisely their
centers and radii) are continuous with respect to z and eventually constant with
respect to n.

Let m(z, b, α) ∈ C be such that the function

χ(z, x) := θ(z, x) +m(z, b, α)ϕ(z, x), x ∈ (0, b)

satisfies the following condition at b > 0,

χ(z, b) cosα+ µ(b)χ(z, b) sinα = 0.

Then
C(z, b) := {m(z, b, α) : α ∈ [0, π]},

is a circle in C centered at

O(z, b) := −W (ϕ(z, ·), θ(z, ·))(b)
W (θ(z, ·), θ(z, ·))(b)

,
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with radius

r(z, b) :=
1

|W (θ(z, ·), θ(z, ·))(b)|
→ 0, b→ ∞. (3.21)

The corresponding disk is denoted by D(z, b). Then D(z, b′) ⊂ D(z, b) whenever
b′ > b > 0, and m(z) ∈ ∩b>0D(z, b). Since mn,m are analytic in C+ it is enough
to prove that mn converges to m pointwise and that mn are uniformly bounded on
compact subsets of C+. To prove the former, fix ε > 0. Then by (3.21) we have
r(z, b) < ε for b ≥ b(ε) for some b(ε) > 0. Next, there exists N(ε) > 0 such that

sk(n) = sk, 0 ≤ k ≤ bb(ε)c, (3.22)

for all n ≥ N(ε). Denoting the Weyl disk, Dirichlet and Neumann solutions corre-
sponding to s(n) by Dn, ϕn, θn respectively, we note that (3.22) yields

ϕn(z, x) = φ(z, x), θ(z, x) = θn(z, x), x ∈ (0, b(ε)), n ≥ N(ε).

Hence, Dn(z, b(ε)) = D(z, b(ε)) n ≥ N(ε), and since mn(z) ∈ Dn(z, b(ε)), we get

mn(z),m(z) ∈ D(z, b(ε)), n ≥ N(ε). (3.23)

Therefore,

|mn(z)−m(z)| ≤ 2ε, n ≥ N(ε).

Next, utilizing (3.23) with ε = 1 we get

|mn(z)−m(z)| ≤ 2r(z, b(1)), n ≥ N(1).

Since r(z, b(1)) and m(z) are uniformly bounded on compacts, we infer that the
sequence {mn}n≥1 is uniformly bounded on compact subsets of C+. �

3.3. Restriction Maps. Throughout this section m±(s, z), ϕ±(s, ·), θ±(s, ·) de-
note the Weyl–Titchmarsh functions, Dirichlet, and Neumann solutions corre-
sponding to the sequence s ∈ J Z. Let R± denote the restriction operators
R±s := {sn}n∈Z± .

For a set Z ⊂ R we define

D(Z) := {s ∈ J Z : m−(s, E + i0) = −m+(s, E + i0), for Lebesgue a.e.E ∈ Z}.

Theorem 3.7. Suppose that Z has positive Lebesgue measure. Then

(i) The mapping

R : R−(D(Z)) → R+(D(Z)), R : R−(s) 7→ R+(s), s ∈ D(Z),

is well-defined (i.e. single valued).
(ii) R is bijective and uniformly continuous.
(iii) D(Z) is T invariant and closed with respect to the metric d, cf. (2.1).

Proof. The restrictions R±(s) uniquely determine the Weyl–Titchmarsh functions
m±(s, ·) by a Borg–Marchenko type result Theorem 3.5. Recalling that every Her-
glotz function is determined by its boundary values on a set of positive Lebesgue
measure, we get that the Weyl–Titchmarsh functions m−(s, ·) and m+(s, ·) are in
one-to-one correspondence since

m−(s, E + i0) = −m+(s, E + i0), a.e. E ∈ Z, |Z| > 0.
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s

R−(s) R+(s)

m−(s, ·) m+(s, ·)

R

Theorem 3.5 Theorem 3.5

|Z|>0

This proves thatR is well-defined and bijective. In order to show that it is uniformly
continuous it is enough to check that D(Z) is closed (hence, compact). Indeed, in
this case R± are bijective, continuous mappings between compact metric spaces,
thus they are homeomorphic and R is uniformly continuous, see the top part of the
diagram. The closedness of D(Z) follows from Lemma 3.6 and [Ko85a, Lemma 5].

The T -invariance of D(Z) can be deduced from the following relation between
m±(s, z) and m±(Ts, z),

m±(Ts, z) =
µ(Ts, 0±)ψ′

±(Ts, 0
±)

ψ±(Ts, 0±)
=
µ(s, 1±)ψ′

±(s, 1
±)

ψ±(s, 1±)

=
cosh

√−zµ(s, 0±)ψ′
±(s, 0

±) + sinh
√
−z√

−z
ψ±(s, 0±)√−z sinh√−zµ(s, 0±)ψ′

±(s, 0
±) + cosh

√−zψ±(s, 0±)

=
m±(s, z) cosh

√−z + sinh
√
−z√

−z

m±(s, z)
√−z sinh√−z + cosh

√−z .

�

4. Ergodic Sturm–Liouville Operators in Impedance Form

This section concerns the spectral analysis of the full-line version of the operator
(2.3) with a dynamically defined sequence of sphere numbers {sn}n∈Z. First, we
show that the spectrum is given by the zero set of the Lyapunov exponent whenever
the underlying cocycles are uniform, see Lemma 4.3. Further, assuming Bosher-
nitzan’s condition and using Kotani theory we derive the main result of this section
stating that the spectrum is given by a generalized Cantor set of zero Lebesgue
measure.

Let Ω be a compact metric space, let T : Ω → Ω be a homeomorphism, and
suppose that (Ω, T )4 is uniquely ergodic with the unique T−invariant probability
measure ν. For a non-constant measurable function f : Ω → J , let

µω(x) :=

∞∑

n=−∞
f(Tnω)f(Tn+1ω)χ[n,n+1)(x), x ∈ R, ω ∈ Ω.

Let τω be defined as in (1.2) with µ = µω and introduce a self-adjoint operator

Hω : dom(Hω) ⊂ L2(R;µω) → L2(R;µω), Hωu := τωu, u ∈ dom(Hω),

dom(Hω) = {u ∈ L2(R, µω) : u, µωu
′ ∈ AC(R), τωu ∈ L2(R;µω)}.

(4.1)

For ν almost every ω ∈ Ω, the spectrum of Hω is given be a deterministic set
Σ ⊂ R. Moreover, by [CL, Proposition V.2.4 and Remark V.2.5] there exists Σ• ⊂ R

such that for ν−a.e. ω one has

σ•(Hω) = Σ•, • ∈ {ac, sc, pp, disc}.
4at this point (Ω, T ) is not assumed to be a minimal subshift satisfying (B)
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A much finer spectral analysis of the ergodic family Hω, ω ∈ Ω is possible through
the dynamical approach on which we focus next. First, notice that

τωu = Eu, u, µωu ∈ ACloc(R+)

holds if and only for every n ∈ Z, one has −u′′(x) = Eu(x), x ∈ (n− 1, n) and

[
u(n+)
u′(n+)

]
=

[
cos

√
E sin

√
E√

E

− f(Tn−1ω)
√
E sin

√
E

f(Tn+1ω)
f(Tn−1ω) cos

√
E

f(Tn+1ω)

] [
u((n− 1)+)
u′((n− 1)+)

]
.

The latter can be rewritten as follows,

[
f(Tn+1ω)u(n+)

u′(n+)

]
=




f(Tn+1ω) cos
√
E

f(Tn−1ω)
f(Tn+1ω) sin

√
E√

E

−
√
E sin

√
E

f(Tn+1ω)
f(Tn−1ω) cos

√
E

f(Tn+1ω)



[
f(Tn−1ω)u((n− 1)+)

u′((n− 1)+)

]

= ME(Tn−1ω)

[
f(Tn−1ω)u((n− 1)+)

u′((n− 1)+)

]
,

where the mapping ME : Ω → SL(2,R) is given by

ME(ω) :=




f(T 2ω) cos
√
E

f(ω)
f(T 2ω) sin

√
E√

E

−
√
E sin

√
E

f(T 2ω)
f(ω) cos

√
E

f(T 2ω)


 . (4.2)

The spectral properties of Hω will be described using an SL(2,R) cocycle (ω, n) 7→
ME

n (ω) over T given by

ME
n (ω) =





ME
(
Tn−1ω

)
× · · · ×ME(ω), n ≥ 1,

I2, n = 0,

(ME (Tnω))−1 × · · · ×ME(T−1ω)−1, n ≤ −1.

(4.3)

The Lyapunov exponent of this cocycle is defined by

L(E) := lim
n→∞

1

n

∫

Ω

log ‖ME
n (ω)‖dν(ω) ≥ 0, (4.4)

by Kingman’s Subadditive Ergodic Theorem, one has

L(E) = lim
n→∞

1

n
log ‖ME

n (ω)‖, (4.5)

for ν-almost every ω. We say that the function ME is uniform if the limit (4.5)
exists for all ω ∈ Ω and the convergence is uniform.

4.1. Dynamical Description of the Spectrum. The main goal of this section
is to describe the spectrum of Hω in terms of the cocycle (ω, n) 7→ME

n (ω). To that
end, we first define a set of energies corresponding to uniformly hyperbolic cocycles,

UH =

{
E ∈ R

∣∣∣ there exist λ > 1, C > 0 such that∥∥ME
n (ω)

∥∥ ≥ Cλ|n| for all ω ∈ Ω, n ∈ Z

}
.

We note that UH is open by [DFLY, Corollary 2.2]. With the Lyapunov exponent
L(E) defined in (4.4), denote

Z := {E ∈ R : L(E) = 0} , NUH := {E ∈ R : L(E) > 0} \UH.
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Then we arrive at the following disjoint partition of the real line

R = Z tNUH t UH.
Proposition 4.1. One has

⋃

ω∈Ω

σ(Hω) = R \ UH. (4.6)

Proof. Assume that E0 ∈ UH and fix ω ∈ Ω. Since UH is open there is an open
interval I ⊂ UH containing E0. For each E ∈ I any solution of the equation
τωu = Eu grows exponentially fast on at least one half-line. By [BdMS, Theorem
1.1]5, for spectrally almost every λ ∈ R there is an L2-subexponentially bounded
solution of τωf = λf . Since I contains no such λ we conclude that E0 6∈ σ(Hω)
That is, ⋃

ω∈Ω

σ(Hω) ⊂ R \ UH.

Next, assume that E ∈ R \ UH. Then the cocycle (T,ME) admits a bounded
orbit, i.e., there exist ω ∈ Ω and v ∈ {x ∈ R2 : ‖x‖ = 1} such that

‖ME
n (ω)v‖ ≤ 1,

for all n ∈ Z, see e.g. [DFLY, Theorem 1.2]. Therefore, the equation τωu = Eu
admits a bounded solution u0 satisfying all vertex conditions. Thus by Lemma 4.2
we have E ∈ σ(Hω). �

Assuming uniformity of the cocycle, we will show the spectrum of every Hω is
given by the right-hand side of (4.6), which in turn reduces to Z. To that end, we
first prove a Sch’nol-type result in the deterministic setting.

Lemma 4.2. Let τ, µ be defined as in (1.2) for a two sided sequence {sn}n∈Z ⊂ J ,
and let H be the corresponding self-adjoint operator in L2(R) (a two sided version
of (2.3)). Suppose that w is a subexponentially bounded solution

τw = Ew,E ∈ R, w, µωw ∈ ACloc(R),

that is, for every κ > 0 there exists C > 0 such that

|w(x)| ≤ Ceκx for all x ∈ R. (4.7)

Then E ∈ σ(H).

Proof. Our strategy is to construct a Weyl sequence for E. First, we note that the
quadratic form of H (acting in L2(R+, µ)) is given by

h[u, v] := 〈u′, v′〉L2(R+,µ), dom(h) = H1(R).

Indeed, for every u ∈ dom(h) and every compactly supported v ∈ dom(H),
supp(v) ∈ (−K,K), we have

〈u,Hv〉L2(R+,µ) = −〈u, (µv′)′〉L2(R+,dx)

= −
K∑

j=−K+1

∫ j

j−1

sjsj−1u(x)v
′′(x) dx =

K∑

j=−K+1

∫ j

j−1

sjsj−1u′(x)v
′(x)dx

5our operator is of the form described in [BdMS, Section 3.2], hence, the referenced result is
applicable
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+
K∑

j=−K+1

sjsj+1u(j+)v
′(j+)− sjsj−1u(j−)v

′(j−)

= 〈u′, v′〉L2(R,µ) +

K∑

j=−K+1

(sjsj+1v
′(j+)− sjsj−1v

′(j−))u(j+) = 〈u′, v′〉L2(R,µ).

For every n ∈ N, let ϕn ∈ C∞(R) be a mollifier taking values in [0, 1] and satisfying

ϕn(x) :=

{
1 0 ≤ |x| ≤ n,

0 |x| ≥ n+ 1;
and sup

n≥1
‖ϕ′

n‖L∞(R,dx) <∞.

We claim that {
wϕn

‖wχ(−n,n)‖L2(R,µ)

}

n≥1

⊂ dom(h)

is a Weyl sequence for E. First, we note that the L2(R, µ) norm of all elements
of this sequence is at least one. Next, fix u ∈ dom(h), ‖u‖H1(R) ≤ 1, and denote
In := (n, n+ 1) ∪ (−n− 1,−n). Then one has

h[u, ϕnw]− E〈u, ϕnw〉L2(R,µ)

= 〈u′, ϕnw
′〉L2(R,µ) + 〈u, ϕ′

nw〉L2(R,µ) − E〈u, ϕnw〉L2(R,µ)

=

∫ n

−n

u′(x)w′(x)µ(x)dx− E

∫ n

−n

u(x)w(x)µ(x)dx+ 〈u′, χInϕnw
′〉L2(R,µ)

− E〈u, χInϕnw〉L2(R,µ) + 〈u, ϕ′
nχInw〉L2(R,µ)

= 〈u, (τw − Ew)χ(−n,n)〉L2(R,µ)

+ snsn−1u(n−)w′(n−)− s−ns−n+1u(−n+)w′(−n+) + 〈u′, χInϕnw
′〉L2(R,µ)

− E〈uχIn , ϕnw〉L2(R,µ) + 〈u, χInϕ
′
nw

′〉L2(R,µ).

(4.8)

Sobolev–type inequalities, see, for example, [Ka, IV.1.2], yield

|u(x0)| . ‖u‖H1(In), x0 ∈ {−n, n},
|w′(x0)| . ‖w‖H1(In) . ‖w‖L2(In,dx),

(4.9)

where we used −w′′(x) = Ew(x), x ∈ In to get the last inequality in (4.9). Com-
bining (4.8), (4.9), and the Cauchy–Schwarz inequality, we get

|h[u, ϕnw]− E〈u, ϕnw〉L2(R,µ)|
‖wχ(−n,n)‖L2(R,µ)

.
‖u‖H1(In)‖w‖H1(In)

‖wχ(−n,n)‖L2(R,dx)

.
‖wχ(n,n+1)∪(−n−1,−n)‖L2(R,dx)

‖wχ(−n,n)‖L2(R,dx)
. (4.10)

The right-hand side of (4.10) tends to zero as n→ ∞, for otherwise the norm

‖wχ(n,n+1)∪(−n−1,−n)‖L2(R,dx)

would grow exponentially, contradicting (4.7). �

Lemma 4.3. Suppose that ME is uniform for all E ∈ R. Then

σ(Hω) = Z for all ω ∈ Ω.
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Proof. By assumption we have NUH = ∅. Therefore, due to (4.6) it is enough to
show that Z ⊂ σ(Hω) for all ω ∈ Ω. The latter follows from the fact that every
solution of τωu = Eu is subexponentially bounded for every E ∈ Z, ω ∈ Ω (since
ME is uniform) and Lemma 4.2. �

Next, we switch to Kotani’s description of Σac. Recall that the essential closure
of a set S ⊂ R is given by

S
ess

:= {E ∈ R : |S ∩ (E − ε, E + ε)| > 0 for every ε > 0}.
Theorem 4.4. (Ishii–Pastur–Kotani) The almost sure absolutely continuous spec-
trum of Hω is given by the essential closure of the zero set of the Lyapunov exponent,
that is, Σac = Zess

. Moreover, for ν-almost every ω, one has

m−(ω,E + i0) = −m+(ω,E + i0), Leb-a.e. E ∈ Z. (4.11)

Kotani’s original proof is formally recorded for Schrödinger operators with er-
godic L1

loc(R) potentials, see [Ko85b]. However, it extends directly to the ergodic
family Hω defined in (4.1). Let us indicate the only two nontrivial adjustments
to be made in Kotani’s text. First, since we are dealing with Sturm–Liouville op-
erators in impedance form, the derivatives ψ′

λ, ϕ
′
λ of the Dirichlet and Neumann

solutions (here we use Kotani’s notation, see [Ko85b, §1]) should be replaced by
the quasi-derivatives µωψ

′
λ, µωϕ

′
λ which are locally absolutely continuous. Sec-

ond, the uniform boundedness of the Weyl–Titchmarsh functions m± discussed in
[Ko85b, Lemma 1.2] follows (exactly as in [LSS, Lemma 6.2]) from the continuity
of m−functions with respect to ω which has been established in Lemma 3.6.

4.2. Cantor Spectrum for the Full Line Model. In this section we specialize
the dynamical system (Ω, T ) to the class of minimal subshifts over J satisfying the
Boshernitzan condition (B), and f(ω) := ω0.

Theorem 4.5. Let (Ω, T ) be an aperiodic, minimal subshift over J satisfying
Boshernitzan’s condition (B). Then there exists a generalized Cantor set Σ ⊂ R of
Lebesgue measure zero such that

σ(Hω) = Σ for all ω ∈ Ω.

Proof. Since (Ω, T ) satisfies (B) and since ME is locally constant we get that it
is uniform for every E ∈ R by [DL06a, Theorem 1]. Therefore, Lemma 4.3 is
applicable in the present setting and one has σ(Hω) = Z for all ω ∈ Ω.

We claim that Z has zero Lebesgue measure. Seeking contradiction let us assume

that |Z| > 0. By Theorem 4.4 the assertion (4.11) holds for ω ∈ Ω̃ ⊂ Ω, ν(Ω̃) = 1.

In other words, Ω̃ ⊂ D(Z). Then combining Theorem 3.7 and |Z| > 0, we infer
that the mapping

R : {f(Tnω)f(Tn+1ω)}n<0 7→ {f(Tnω)f(Tn+1ω)}n≥0, ω ∈ Ω̃,

is well-defined and continuous with respect to the discrete metric d, cf. (2.1).

Pick an ω ∈ Ω̃ and denote sn := f(Tnω) for n ∈ Z. By uniform continuity
of R there exists k = k(J ) ∈ N (which is ω-independent) such that the collec-
tion {s−ks−k+1; ...; s−1s0} uniquely determines s0s1. Shifting and repeating this
argument, we deduce that {s−ks−k+1; ...; s−1s0} determines the entire sequence
{snsn+1}n∈Z. Thus

#{{f(Tnω)f(Tn+1ω)}n∈Z : ω ∈ Ω} ≤ |J |k+1 <∞.
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In particular, the sequence {snsn+1}n∈Z is periodic with some period p. Then since
J is finite, the sequence {sn}n∈Z is periodic with period q ≤ 2|J |2p (in general
p < q, e.g.: ...141222 141222 ... here p = 3 and q = 6). This contradicts the fact
the Ω is an aperiodic subshift. Therefore, |Σ| = |Z| = 0, in particular the closed
set Σ does not contain intervals, hence, it is nowhere dense. Moreover, ν almost
surely, the discrete spectrum spectrum σdisc(Hω) is empty, cf. [CL, Proposition
V.2.8], so Σ does not have isolated points, hence, it is a generalized Cantor set as
asserted. �

5. Spectral Decomposition of the Two-sided Fibonacci Graph

In this section we focus on the two-sided version of the graph Γ corresponding
to an element ω of the Fibonacci subshift Ω introduced in Example 2.3, see Figure
2.

Figure 2. Two-sided Fibonacci graph, s = {...12112121...}

First, we discuss the spectral properties of Fibonacci hamiltonians. Let us recall
relevant notions and fix notation. Let s ∈ {1, 2}Z+ be the one-sided sequence
invariant under the Fibonacci substitution S, cf. Example 2.3, and let ω(s) ∈ Ω
be a two-sided sequence which matches s on Z+. Let Fn be the n-th element of
the Fibonacci sequence with F0 := 1, F1 := 2 (note that Fn = |Sn(1)| ). Setting
f(ω) := ω0 in (4.2) we denote M(n,E) := ME

Fn
(ω(s)), n ≥ 0, cf. (4.3). The key to

the spectral analysis of Fibonacci hamiltonians is the following recurrence relation

M(n+ 1, E) =M(n− 1, E)M(n,E), n ≥ 3. (5.1)

We stress that the transfer matrix (4.2) depends on the window ( ω0, ω1, ω2 ...) of

size three. Consequently, M(n,E) depends on the first Fn +2 elements of s. Thus,
the recurrence relation

Sn+1(1) = Sn(1)Sn−1(1), (5.2)

does not automatically yield (5.1) for all n ≥ 1. However, it does imply that the
extra two elements required in the definition of M(n,E) are n-independent and, in
fact, given by

sFn+1 = 1, sFn+2 = 2, n ≥ 2.

Now, this observation together with (5.2) do yield (5.1).

Theorem 5.1. Let Ω be the Fibonacci subshift. Then σpp(Hω) = ∅ for all ω ∈ Ω.
In fact, the spectrum of Hω is purely singular continuous.

Proof. Define

xn(E) :=
1

2
tr(M(n,E)).

Then (5.1) together with the Cayley–Hamilton theorem yield

xn+1(E) = 2xn(E)xn−1(E)− xn−2(E), n ≥ 4. (5.3)
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Let

B :=
{
E ∈ R : sup

n∈Z+

|xn(E)| < +∞
}
.

It is enough to prove that Σ ⊂ B (where Σ is as in Theorem 4.5) and that B contains
no eigenvalues of Hω(s). Let Hn denote the periodic hamiltonian corresponding to
the sequence of sphere numbers obtained by two-sided periodic extension of the
patch Sn(1). We claim that

Σ ⊂
⋂

n≥0

⋃

k≥n

σ(Hk) ⊂ B. (5.4)

Let us prove the first inclusion in (5.4). Fix n ≥ 0 and suppose that

E 6∈
⋃

k≥n

σ(Hk),

then

κ := sup
k≥n

‖(Hk − E)−1‖B(L2(R)) < +∞.

Thus, for every compactly supported ψ ∈ dom(Hω(s)) we have ψ ∈ dom(Hk) and

‖Hkψ − Eψ‖L2(R) ≥ κ−1‖ψ‖L2(R),

for sufficiently large k. For such k we have ‖Hkψ−Eψ‖L2(R) = ‖Hω(s)ψ−Eψ‖L2(R),
and infer

‖Hω(s)ψ − Eψ‖L2(R) ≥ κ−1‖ψ‖L2(R). (5.5)

Since the set of compactly supported functions from dom(Hω(s)) is a core of Hω(s),
the inequality (5.5) holds for all ψ ∈ dom(Hω(s)). Furthermore, since Hω(s) is
self-adjoint we get E 6∈ σ(Hω(s)) = Σ which proves the first inclusion in (5.4).

As was noted in the proof of [DFG, Proposition 6.3], the assertion [S05, Propo-
sition 12.8.6] together with (5.3) yield the following criterion: E 6∈ B if and only if
there exists n such that

|xn+1(E)| > 1, |xn(E)| > 1, |xn+1(E)xn(E)| > |xn−1(E)|, (5.6)

and in this case

|xk(E)| > 1, k ≥ n. (5.7)

To prove the second inclusion in (5.4) let us fix E 6∈ B. Since xj(E) is continuous
with respect to E, the inequalities in (5.6) hold in a small neighborhood of E.
Thus (5.7) also holds in the same neighborhood (uniformly for k ≥ n!). Then by

Floquet–Bloch theory E 6∈ ⋃k≥n σ(Hk).
The fact that τω(s)u = Eu has no square integrable solution for E ∈ B follows

form the standard argument invoking Gordon’s lemma and the boundedness of
{xn(E)}, see, for example, [Su, Proposition 2]. �

Our next objective is to obtain the complete spectral decomposition of the Kirch-
hoff Laplacian corresponding to the two-sided Fibonacci Graph Γ. To that end, we
first note that the decomposition result of Kostenko and Nicolussi [KN, Theorem
3.5] can be extended to the two-sided setting. Let {sn}n∈Z ⊂ N be an arbitrary
sequence of natural numbers. For each n ∈ Z let Sn denote a set of sn distinct
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vertices. Let Γ be the graph with the set of vertices V := ∪n∈ZSn and such that
two vertices u, v ∈ V are adjacent if and only if

(u, v) ∈
⋃

n∈Z

Sn × (Sn−1 ∪ Sn+1),

see, e.g., Figure 2.

Proposition 5.2. The Kirchhoff Laplacian H on the graph Γ introduced above is
unitarily equivalent to

H
⊕

n∈Z

⊕sn−1
j=1 H1

n ⊕
⊕

n∈Z

⊕(sn−1)(sn+1−1)
j=1 H2

n,

where H1
n, H

2
n are as in (2.4), (2.5), respectively, and H is the self-adjoint Sturm–

Liouville operator acting in L2(R, µ) and corresponding to

τ = − 1

µ(x)

(
d

dx
µ(x)

d

dx

)
,

µ(x) :=
∞∑

n=−∞
snsn+1χ[n,n+1)(x), x ∈ R.

The proof of this assertion is similar to that of [KN, Theorem 3.5]. Let us high-
light the main ingredient of the proof by example. Let H be the Kirchhoff Laplacian
on the two-side graph Γ introduced above and corresponding to an element ω of
the Fibonacci subshift Ω ⊂ {1, 2}Z. Such a graph consists of tiles and line segments
as shown on Figure 2. One has

L2(Γ) = Fsym ⊕ (Fsym)⊥, (5.8)

where Fsym consists of L2(Γ) functions that are horizontally symmetric on each
tile (for precise definition see [KN, (2.11)] with “n ≥ 0” replaced by “n ∈ Z”, and
sn ∈ {1, 2}). Then the operator block of H corresponding to Fsym is unitarily
equivalent to the full line Strum–Liouville operator H. The operator block of H
corresponding to (Fsym)⊥ is unitarily equivalent to

⊕

n∈Z

⊕sn−1
j=1 H1

n ⊕
⊕

n∈Z

⊕(sn−1)(sn+1−1)
j=1 H2

n.

Proposition 5.3. Let H be as above. Then the singular continuous subspace of
H is Fsym, the pure point subspace is F⊥

sym, and the absolutely continuous part is
trivial.

Proof. The spectra of H1
n, H

2
n are discrete as before for every n ∈ Z. By Theo-

rem 5.1 the spectrum of H is purely singular continuous. Then the orthogonal
decomposition (5.8) yields the assertion. �
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