
Scalable Explanation of Inferences on Large Graphs

Chao Chen
Lehigh University

Bethlehem, PA, USA
chc517@lehigh.edu

Yifei Liu and Xi Zhang
Key Laboratory of Trustworthy Distributed Computing and Service

Ministry of Education, BUPT, Beijing, China
{liuyifei, zhangx}@bupt.edu.cn

Sihong Xie
Lehigh University

Bethlehem, PA, USA
six316@lehigh.edu

Abstract—Probabilistic inferences distill knowledge from
graphs to aid human make important decisions. Due to the
inherent uncertainty in the model and the complexity of the
knowledge, it is desirable to help the end-users understand the
inference outcomes. Different from deep or high-dimensional
parametric models, the lack of interpretability in graphical
models is due to the cyclic and long-range dependencies and
the byzantine inference procedures. Prior works did not tackle
cycles and make the inferences interpretable. We formulate
the explaination of probabilistic inferences as a constrained
cross-entropy minimization problem to find simple subgraphs
that faithfully approximate the inferences. We prove that the
optimization is NP-hard, while the objective is not monotonic
and submodular to guarantee efficient greedy approximation.
We propose a beam search algorithm to find trees to enhance
the explanation interpretability and diversity. To allow efficient
search on large and dense graphs without hurting faithfulness,
we further propose parallelization and a pruning strategy.
We demonstrate superior performance on four networks from
distinct applications, comparing favorably to other explanation
methods, including LIME.

Keywords-interpretability, graphical model

I. INTRODUCTION

Distilling knowledge from graphs is an important task
found ubiquitously in applications, such as fraud detection
in social networks and drug discovery in bioinformatics. The
knowledge helps humans make high-stake decisions, such as
whether to trust a business or an account on Yelp, or to con-
duct expensive experiments on a promising protein in drug
discovery. The state-of-the-art approaches model the graphs
as directed or undirected graphical models, such as Markov
Random Fields (MRF). Different from predictive models
on i.i.d. vectors, graphical models capture the dependencies
among random variables. However, the inferences involve
iterative and recursive computations, and are cognitively
difficult to understand, verify, and ratify, locking away more
applications of graphical models. We focus on belief prop-
agation (BP) inferences that compute marginal distributions
on MRFs, aiming to make the inference outcomes more
interpretable and cognitively easier for humans. Figure 1
depicts the problem definition and the proposed solution.

Several challenges are due. First, simple but faithful
explanations are desired [10] but have not been defined
for inferences on MRFs. It is less known what’s the best
graph explanation complexity and faithfulness trade-off for

W

ZY

X ?

W

ZY

X?

BP on Zachary karate club network

class 1

class 2

The variable X to

be explained;

contained in a cycle

A variable 3 hops away

Figure 1. A cyclic graphical model G for the Zachary karate club network,
with BP inference outcomes shown in two colors. We focus on explaining
how BP calculates the belief on X , highlighted in the subgraph G̃(1). Due
to the cycles and long-range dependencies on G, a complete explanation is
recursive and long. GraphExp extracts a limited-size tree G̃(2), on which
X has a marginal similar to that on G.

the end-users. Second, algorithmically, an MRF can be large,
densely connected, and cyclic, while a simple, faithful and
no-cyclic explanations need to be found efficiently.

We propose a new approach called “GraphExp” to address
the above challenges. Given the full graphical model G and
any target variable X on G, GraphExp finds an “explanans”
graphical model G̃ consisting of a smaller number of random
variables and dependencies. The goal of GraphExp is to
minimize the loss in faithfulness measured by the symmetric
KL-divergence between the marginals of X inferred on G̃
and G [19]. Starting from the graph G̃(1) consisting of X
only, GraphExp greedily includes the next best variable into
the previous subgraph. Theoretically, we prove that: (1) an
exhaustive search for the optimal G̃ with highest faithfulness
is NP-hard, and furthermore, the objective function is neither
monotonic nor submodular, leading to the lack of a perfor-
mance guarantee of any greedy approximation (Theorem 1);
(2) GraphExp only generates acyclic graphs that are more
explainable (Theorem 2).

There can exist multiple sensible explanations for the
same inference outcome, and end-users can find the one
that best fits their mental model. We equip GraphExp with
beam search [1] to discover a set of distinct, simple, and
faithful explanations for a target variable. Regarding scala-
bility, when looking for G̃ on densely connected graphs, the
branching factor in the search tree can be too large for fast
search. While the search is parallelizable, we propose a safe

Table I
Comparing GraphExp with prior explanation methods: FS (Feature
Selection), LIME, GSparse (graph sparsification), and GDiff (graph
differentiation). (∗: “surely yes”; ◦: “partially”; emptiness: “no”).

FS
[7

]

L
IM

E
[1

7]

G
Sp

ar
se

[6
]

G
D

iff
[2

]

G
ra

ph
E

xp

Cycles handling ∗ ∗ ∗
Completeness ◦ ∗ ∗
Interpretability ◦ ∗ ◦ ◦ ∗

Diversity ◦ ◦ ∗
Scalability ◦ ◦ ∗
Flexibility ◦ ◦ ∗

pruning strategy that retains the desirable candidates while
cutting the search space down significantly (Figure 2).

II. PROBLEM DEFINITION

Notation definitions are summarized in Table II. Given a
set of n random variables V = {X1, . . . , Xn}, each taking
values in {1, . . . , c} where c is the number of classes, BP
inference computes messages mi→j(xj) from Xi to Xj :

1

Zj

∑
xi

ψij(xi, xj)φi(xi)
∏

k∈N (Xi)\{j}

mk→i(xi)

 , (1)

where Zj is a normalization factor, φi is the prior distri-
bution matrix of Xi without considering other variables.
The compatibility ψij(xi, xj) encodes how likely the pair
(Xi, Xj) will take the value (xi, xj) jointly. The messages
on all edges (i, j) ∈ E are updated until convergence. The
belief bX is

bi(xi) ∝ φi(xi)
∏

Xj∈N (Xi)

mj→i(xi), (2)

where N (Xi) is the neighbors of X on G. We aim to
explain how the marginal is inferred by BP. For any X ∈ V ,
bX depends on messages over all edges reachable from
X . To completely explain how bX is computed, one has
to trace down each message in Eq. (1) and Eq. (2). Such
a complete explanation is hardly interpretable due to two
factors: 1) on large graphs with long-range dependencies,
messages and variables far away from X will contribute to
bX indirectly through many steps; 2) when there is a cycle,
BP needs multiple iterations to converge and a message can
be recursively defined by itself. However, the graph easily
becomes too large for humans to interpret or analyze. Rather,
bX should be approximated using short-range dependencies
without iterative and recursive computations. The question
is, without completely following the original BP computa-
tions, how will the approximation affected? To answer this
question, we formulate the following optimization problem:

Definition 1. Given an MRF G, and a target node X ∈ V ,
extract another MRF G̃ ⊂ G such that X ∈ G̃ and G̃
containing no more than C variables and no cycle, so that

Table II
Notation Definitions

Notation Definition
G = (V,E) Undirected graphical model (MRF)

V,E Random varaibles and their connections
Xi, X (xi, x) Random variables (and their values)

φX(x) (or φi(xi)) Prior probability distribution of X (or Xi)
ψij(xi, yj) Compatibility matrix between xi and xj
mj→i(xi) Message passed from xj to xi

bX(x) , P (X = x) Marginal distribution (belief) of X
KL(p||q) KL Divergence between p and q
∂G′ Variables in G \G′ connected to G′

N (Xi) Neighbors of Xi on G

BP computes similar marginals bX and b̃X on G and G̃,
respectively. Formally, solve the following

min
G̃

d(bX , b̃X) = KL(bX ||b̃X) + KL(b̃X ||bX)

s.t. G̃ ⊂ G, |G̃|≤ C, X ∈ G̃, G̃ acyclic.
(3)

The objective captures the faithfulness of G̃, mea-
sured by the symmetric KL-divergence d between marginal
distributions of X on G and G̃, where KL(P ||Q) =∑c

x=1 P (x) log[P (x)/Q(x)]. The choice of d as a faithful-
ness measured can be justified: KL(bX ||b̃X) measures the
loss when the “true” distribution is bX while the explaining
distribution is b̃X [19]. Symmetrically, a user can regard
b̃X as the “true” marginal, which can be explained by the
bX . The simplicity of G̃ can be measured by the number of
variables on G̃, and for G̃ to be interpretable, we control the
size of G̃ to be no more than C. Since a graphical model
encodes a joint distribution of a set of variables, searching
G̃ is equivalent to searching a joint distribution of a smaller
number of variables with fewer dependencies, so that the
two joint distributions lead to similar marginals of X .

If the negation of the above objective function is submod-
ular and monotonically increasing, then a greedy algorithm
can generate a solution whose value is within (1− 1/e) of
the optimum [14]. The greedy algorithm iteratively builds
G̃ by adding one variable at a time to increase the negation
of objective function (namely, to decrease d(bX , b̃X)).

Definition 1 (Submodularity). Let V be a set and 2V be the
power set of V . A set function f : 2V → R is submodular
if ∀A ⊂ A′ ⊂ V and any Y 6∈ A′, f(A ∪ {Y }) − f(A) ≥
f(A′ ∪ {Y })− f(A′).

Definition 2. A set function f : 2V → R is monotonically
increasing if ∀A ⊂ A′ ⊂ V , implies f(A) ≤ f(A′).

Theorem 1. The objective function in Eq. (3) is not sub-
modular nor monotonically increasing.

Proof: See [4] for the detailed proof.

III. METHODOLOGIES

Due to the iteration of BP, the explanation subgraph
should be acyclic to avoid the target node being explained
by itself. The optimization problem Eq. (3) can be solved
by exhaustive search in the space of all possible trees under
the specified constraints and it is thus a combinatorial subset
maximization problem and NP-hard. Greedy algorithms are
a common solution to approximately solve NP-hard prob-
lems. Since finding multiple alternative sensible explanations
is one of our goals, we adopt beam search in the greedy
search [1], maintaining in a beam several top candidates
ranked by faithfulness and succinctness through the search.

Algorithm 1 GraphExp (the general search framework)
Input:a graphical model G = (V,E); a target random
variable X ∈ V to be explained;
prior φi and belief bi, ∀Xi ∈ V ; messages mi→j for
∀(Xi, Xj) ∈ E;
maximum subgraph complexity C; beam size k.
Output: Multiple explaining subgraphs G̃ for X , along
with approximated computations of bX .
Init: G̃(1) = (Ṽ , Ẽ), Ṽ = {X}, Ẽ = ∅.
Beam[1]={G̃(1)}
for t = 2→ C do
Beam[t]= ∅.
for each subgraph G̃(t−1) in Beam[t-1] do

Find and add the top k extensions of G̃(t−1) to
Beam[t].

end for
Retain the top k candidates in Beam[t].

end for
Run BP on each candidate graph in Beam[C] and obtain
converged messages and beliefs as an approximation of
computation of bX on G.

Theorem 2. The output G̃ from Algorithm 1 is a tree.

A general greedy beam search framework is presented in
Algorithm 1. The algorithm finds multiple explaining trees
G̃(C) of size C in C−1 iterations, where C is the maximum
subgraph size. Here, we explicitly illustrate how a single
G̃(C) is constructed. Starting from the initial G̃(1) = {X}, at
each step t, the graph G̃(t−1) is extended to G̃(t) by adding
one more explaining node and edge to optimize a certain
objective function without forming a loop. After all G̃(C)

are found and right before the algorithm exits, BP will be
run again on each G̃(C) in Beam[C] to compute b̃X so that
we can use the converged messages on G̃(C) to explain to
an end-user how bX is approximated on G̃(C). Since ˜G(C) is
small and contains no cycle, the explanation is significantly
simpler than the original computations on G. We substantiate
the general framework with two alternative ways to rank
candidate extensions of the trees during the beam search.

A. GraphExp-Global (GE-G): search explanations via eval-
uating entire subgraphs

We propose GE-G, an instantiation of Algorithm 1. At
iteration t (t = 2, . . . , C), the algorithm evaluates the can-
didate extensions of G̃(t−1) using Eq. (3). Define ∂G̃(t−1)

be the set of nodes in G \ G̃(t−1) that are connected to
G̃(t−1). A candidate G̃(t) is generated by adding a variable
Y ∈ ∂G̃(t−1) through the edge (Y,W) to G̃(t−1), where
W is a random variable in G̃(t−1). A new BP procedure is
run on G̃(t) to infer b̃X , and d(bX , b̃X) is calculated as the
quality of the candidate G̃(t). After exhausting all possible
candidates, GE-G adds the k candidates with the smallest
d(bX , b̃X) to Beam[t].

On the high-level, GE-G is similar to forward wrapper-
style feature selection algorithms, where each feature is
evaluated by including it to the set of selected features and
running a target classification model on the new feature
sets. The key difference here is that GE-G can’t select any
variable on G, but has to restrict itself to those that will
result in an acyclic graph (guaranteed by Theorem 2).

One of the advantages of GE-G is that the objective
function in the optimization problem Eq. (3) is minimized
directly at each greedy step. However, as each candidate at
each step requires a separate BP, it can be time-consuming.
We analyze the time complexity below. To generate a
subgraph of maximum size C for a variable, C−1 iterations
are needed. At iteration t = 2, . . . , C, one has to run BP
for as many times as the number of neighboring nodes of
the current explanation G̃(t−1). The number of candidates
that need to be evaluated for one of the k candidates in
Beam[t-1] equals the size of the number of neighboring
nodes in ∂G̃(t−1). On graphs with a small diameter, this size
grows quickly to the number of nodes in G. On the other
extreme, if G is a linear chain, this size is no more than 2.
For each BP run, it is known that BP will converge in the
number of iterations same as the diameter of the graph that
BP is operated on, which is upper-bounded by the size of
the candidate subgraph G̃(t). During each BP iteration, O(t)
messages have to be computed. The overall time complexity
of GE-G is O(|V |k

∑C
t=2|∂G̃(t−1)|t2), where k is the beam

size. Since the number of classes on the variables are fixed
and usually small (relative to the graph size), here we ignore
the factor O(c2), which is the time complexity to compute
one message using Eq. (1).

B. Speeding up GE-G on large graphs

Graphical models in real-world applications are usually
gigantic containing thousands of nodes. We propose paral-
lelized search and a pruning strategy to speed up GE-G.
Parallel search The general GraphExp algorithm can be par-
allelized on two levels. First, the generation of explanations
over multiple target variables can be executed on multiple
cores. Second, in the evaluation of the next extensions of

G̃(t−1) during beam search, multiple candidates G̃(t) can be
tried out at the same time on multiple cores.
Pruning candidate variables In Algorithm 1, all candidates
in Q = (G̃(t), ∂G̃(t)) have to be evaluated at step t, and
we have to run BP as many times as |Q|. As we aim at
explaining how BP infers the marginal of the target X ,
adding any variable that causes a larger d(bX , b̃X) is not
helpful but confusing. Since most candidates in ∂G̃(t−1)

remains in future steps, removing confusing candidates from
all future steps would speed up the algorithm. Thus, we run
BP on |Q| candidates and abandon the bottom (100 − p)
percent of the candidates ranked by d(bX , b̃X) in ascending.

C. GraphExp-Local (GE-L): search explanations via local
message back-tracing

Sometimes one may want to trade explanation faithfulness
for speed during subgraph search. For example, in the
exploratory phase, a user wants to identify mistakes caused
by glitches on the graph before digging deeper into finer-
grained explanations. We propose GE-L for this purpose
to complement GE-G, which generates more faithful and
detailed explanations using larger search space (with the
expense of more searching time). GE-L is based on message
back-tracing that follows the general beam search but with
more constraints on the search space. At step t, the search
adds an edge between G̃(t−1) and ∂G̃(t−1) that best explains
a message or a belief in G̃(t−1). There are two cases.
• For a message mW→X on an edge (W,X) already

included in G̃(t−1), the search attempts to find a mes-
sage mY→W , where Y ∈ ∂G̃(t−1), so that the message
mY→W contributes most to the message mW→X . We
use the distance d defined in Eq. (3) to measure the
contribution of mY→W to mW→X : the smaller the
distance, the more similar two messages are and thus
more contribution from mY→W to mW→X .

• For the belief bX of the target node X , the search
attempts to find a message mW→X that best explains
bX , using the distance between mW→X and bX .

In GE-L, we define the end point of G̃(t) as either the target
node in G̃(1) or the node last added to the subgraph in G̃(t)

(t ≥ 2). In the example in Figure 1, the end point in G̃(1) is
X , and it is W in G̃(2). If the prior of the target node (φX)
best explains its belief (bX) in ˜G(1), or the prior of the non-
target end point (φW) best explains the message emitting
from the end point (e.g., mW→X) in G̃(t) (t ≥ 2), the search
of GE-L will stop at the end point and no extension at this
branch: the priors are fixed input to BP and the priors at the
end points best explain the previous message or the belief.

Variants of GE-L To further speed up GE-L (see Fig-
ure 2), especially on graphs that a user has prior knowledge
about the topology of the explaining subgraphs, its search
space can be further constrained. On the one hand, we
can only extend a candidate on the end-point that is added
most recently, creating a chain of variables so that one is

Table III
Ten networks from four application domains.

Datasets Classes Nodes Edges edge/node

YelpZip 2 873,919 2434,392 2.79
PubMed 3 1,9717 44,324 2.25

BlogCatalog 39 10,312 333,983 32.39
Bioinformatics 144 13,682 287,916 21.04

explaining the other. This aligns with the conclusion that
causal explanations are easier to be understood by the end-
users [10], and our explanations of the inference are indeed
causal: how b̃X is computed by a smaller subgraph will be
presented to the end-users. On the other hand, when a target
variable has many incoming messages (which is the case
on social and scientific networks), it is best to spend the
explaining capacity on direct neighbors. In the experiments,
we adopt these two constraints over GE-L on all networks,
respectively. [4] shows more details for GE-G and GE-L.

IV. EXPERIMENTS

We examine the explanation faithfulness, interpretability
and scalability of GE-L, GE-G, and the state-of-the-art
baselines, LIME, in four domains. More experiments can be
found in [4], including sensitivity analysis, and case-study.

A. Datasets

We drew datasets from four applications. First, we adopt
the Yelp review networks from [16] for spam detection tasks.
We represent reviewers, reviews, and products and their
relationships by an MRF. BP can infer the labels (suspicious
or normal) of reviews. Second, in collective classification,
we construct an MRF for the citation network (PubMed)
that contain papers as nodes and undirected edges as paper
citation relationships [13]. BP can infer the distributions of
paper topics of an unlabeled paper. Third, we represent blogs
(BlogCatalog) as nodes and behaviors, including subscrip-
tion and tagging, as edges [20]. BP infers the preferences of
users. Lastly, in biological networks, we adopt the networks
analyzed in [21], which denotes nodes as protein-protein
pairs and the subordination relations of protein pair as the
class. Explaining BP inference is important in all these
applications: the MRFs are in general large and cyclic for
a user to thoroughly inspect why a review is suspicious, or
why a blog is under a specific topic. The statistics of the
datasets are shown in Table III.

B. Experimental setting

On Yelp review network, a review has two and only
two neighbors (a reviewer posts the review and the product
receives the review), while a reviewer and a product can be
connected to multiple reviews. On the remaining networks,
nodes are connected to other nodes without constraints over
the number of neighbors and the type of nodes. We apply
the two variants of GE-L on Yelp and other networks, re-
spectively. Psychology study shows that human can process

about seven items at a time [12]. To balance the faithfulness
and interpretability, both GE-L and GE-G search trees that
are of maximum size of five starting from the target node.

On all networks, we assume homophily relationships
between any pair of nodes. For example, a paper is more
likely to be on the same topic of the neighboring paper.
On Yelp, we set node priors and compatibility matrices
according to [16]. On other networks, we assign 0.9 to the
diagonal and 0.1

c−1 to the rest of the compatibility metrics. As
for priors, we assign 0.9 to the true class of a labeled node,
and 0.1

c−1 to the remaining classes, where c is the number
of classes in data. For unlabeled nodes, we set uniform
distribution over classes. We set the ratio of labeled data
as 50%. With consideration the size of the large networks,
we sample 20% of unlabeled nodes as target nodes on
BlogCatalog and Bioinformatics networks.

C. Baselines

Random It ignores outcomes from BP and selects a
node in ∂G̃(t−1) randomly when extending G̃(t−1). For
fair comparison, Random searches subgraphs of the same
structures as those found by GE-L and GE-G, respectively.

Embedding It constructs subgraphs with the same size as
those found by GE-G. However, it utilizes DeepWalk[15]
to obtain node embeddings, based on which it selects top
similar candidate nodes to explain the target variable.

LIME [17] It is the state-of-the-art black-box explanation
method that works for classification models when input are
vectors rather than graphs. We randomly select 200 neigh-
bors of each target node in the node feature vector space,
with sampling probability weighted by the cosine similarity
between the neighbors and the target. A binary/multiclass
logistic regression model is then fitted on the sample and
used to approximate the decision boundary around the target.
It cannot explain nodes without feature vectors.

Comb It aggregates all trees from Beam[C] into a single
graph as an explanation. This method can aggregate at most
k trees and have at most kC variables. Here, we set k=3
and report the performance of the combined subgraph. The
performances of the top candidate in Beam[C] with k=1
and k=3 are reported as GE-G (k=1) and GE-G (k=3).

D. Explanation Accuracy

Overall Performance For each method, we run BP on the
extracted subgraph G̃ for each target variable X to obtain
a new belief b̃X (except for LIME that does not construct
subgraphs). Explanation faithfulness is measured by Eq. (3).
In Table IV, we report the mean of the performance metric
over all target variables, and the best methods are boldfaced.
We also report the average size of explaining subgraphs in
the square brackets after individual means.

From Table IV, we can conclude that: 1) Comb always
constructs the largest subgraph and performs best, due to
multiple alternative high-quality explanations from the beam

2 4 6 8 10 12 14
Number of CPU cores

2

4

6

8

10

R
el

at
iv

e
R

un
ni

ng
 ti

m
e

YelpChi (X2) [1.6%]
YelpNYC(X16) [1.9%]
YelpZip (X32) [1.7%]

0 20 40 60 80 100
Pruning Ratio

0.0
0.2
0.4
0.6
0.8
1.0
1.2

YelpChi (X2)
YelpNYC(X16)
YelpZip (X32)

Figure 2. Left the computing time reduces as the number of cores increases
from 1 to 14. The parentheses enclose the number of hour(s) per unit. The
square brackets enclose the running time of GE-L. For example, GE-G
takes about 192 hours using one core on YelpZip, while GE-L costs 3
hours. Right Effect of pruning: as we increase the pruning rate to 99%,
the subgraph explanation faithfulness is not degraded (shown by the 3 lines
with solid markers), while the running time is reduced by 1/3.

branches. 2) GE-G (k=3) is the runner up and better than
GE-G (k=1), because the search space of GE-G (k=3) is
larger than GE-G(k=1)’s. 3) The performance of Embed-
ding is not very good, but still better than LIME. LIME
has the worst performance, as it is not designed for graphs
and cannot take the network connections into account.
Spam Detection On Yelp review network, GE-L generates
chain-like subgraphs. The average subgraph size is around
four, though the maximum capacity is five. This is because
GE-L focuses on local information only and stops early
when the prior of the last added node best explains the
previously added message. Both GE-G (k=1) and GE-G
(k=3) extend the subgraph to the maximum size to produce
a better explanation. Notice that Random performs better
when imitating GE-G (k=1) than when imitating GE-L. The
reason is that there are only two types of neighboring nodes
of the target node and Random imitating GE-G has a higher
chance to include the better neighbor.
Collective Classification In these tasks, GE-L constructs
star-like subgraphs centered at the target node. Interestingly,
compared with the Yelp review network, Random imitating
GE-G generates larger subgraphs but performs worse than
Random imitating GE-L. The reason is that Random can
add nodes far away from the target node as GE-G. However,
without the principled guidance in GE-G, Random can add
nodes that are likely in the other classes than the same class
of the target node.

E. Scalability

We run GE-G (k=1) on the Yelp review network. The
scalability of the algorithm is demonstrated in two aspects
in Figure 2. First, the search can be parallelized on multiple
cores. The running time goes down super-linearly as the
number of cores increases from 1 to 14. Second, candidate
pruning plays a role in speeding up the search. We use 14
cores and increase the pruning ratio from 0 to 99% and ob-
tain ×1.7 speedup. Importantly, the explanation faithfulness
is not affected by the pruning, shown by the three lines at
the bottom of the right figure (200 × mean of d(bX , b̃X)).

Table IV
Overall performance: in general Comb is the best method that significantly outperforms all other methods on all networks. We use • to indicate whether
statistically GE-L significantly (pairwise t-test at 5% significance level) outperforms Random and whether Comb outperforms GE-G (k=3), respectively.

Method Embedding LIME Random GE-L Random GE-G (k=1) GE-G (k=3) Comb

YelpZip 0.084[5.0] 6.036 0.040[4.2]• 0.025[4.2] 0.010[5.0] 0.0014[5.0] 0.0013[5.0]• 0.0008[6.1]
PubMed 0.842[5.0] 0.910 0.718[3.1] 0.577[3.1] 0.893[5.0] 0.188[5.0] 0.185[5.0]• 0.098[7.1]

BlogCatalog 7.887[5.0] - 7.899[4.8] 8.054[4.8] 7.867[5.0] 6.621[5.0] 6.702[5.0] 6.343[7.9]
Bioinformatics 2.065[5.0] - 2.085[4.9] 1.893[4.9] 2.116[5.0] 1.423[5.0] 1.508[5.0] 1.356[5.6]

V. RELATED WORK

To explain differentiable parametric predictive models,
such as deep networks [8] and linear models [11], the
gradients of the output with respect to the parameters and
input data [18] can signify key factors that explain the
output. However, graphical models aim to model long range
and more complicated types of interaction among variables.
In [17], parametric or non-parametric models are fitted
to approximate a more complex model locally, while a
parametric model does not deliver good explanations to the
inference outcomes on a graphical model. In [9], HMM is
trained to approximate an RNN model. However, both HMM
and RNN are linear while GraphExp focuses on graphs with
more general topology, including cycles.

Explainable bayesian networks were studied in the 1980’s
and 1990’s [19], driven by the needs to verify and communi-
cate the inference outcomes of Bayesian networks in expert
systems. More recently, Bayesian networks were formulated
as a multi-linear function so that explanations can be fa-
cilitated by differentiation [5]. The fundamental difference
between GraphExp and these prior works is that we handle
MRFs with cycles while they handled Bayesian networks
without cycles. The differentiation-based explanation of
MRFs in [2] finds a set of important netowrk parameters
(potentials) to explain changes in the marginal distribution
of a target variable without explaining any inference pro-
cedure. GraphExp generates graphical models consisting of
prominent variables for reproducing the inference of BP on
larger graphs. Interpretable graphical models are also studied
under the hood of topic models [3].

VI. CONCLUSION

We propose a general framework to explain the inference
outcome of the target node from a MRF by searching smaller
trees. Specifically, we substantiate the framework with GE-
G and GE-L to demonstrate the faithfulness and simplicity
of the generated trees in the experiment. Besides, we provide
parallelization and a safe pruning strategy to speed up the
search. Further work will explore how a model learns to
generate the subgraphs with limited domain knowledge.

Acknowledgement
Chao Chen and Sihong Xie are supported by Lehigh young faculty

startup. Yifei Liu and Xi Zhang are supported by NSFC (No.
61976026).

REFERENCES

[1] Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera, and Gre-
gory Shakhnarovich. Diverse M-Best Solutions in Markov Random
Fields. In ECCV, 2012.

[2] Hei Chan and Adnan Darwiche. Sensitivity Analysis in Markov
Networks. In IJCAI, 2005.

[3] Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-graber,
and David M Blei. Reading Tea Leaves: How Humans Interpret Topic
Models. In NIPS. 2009.

[4] Chao Chen, Yifei Liu, Xi Zhang, and Sihong Xie. Scalable explana-
tion of inferences on large graphs. arXiv:1908.06482, 2019.

[5] Adnan Darwiche. A Differential Approach to Inference in Bayesian
Networks. J. ACM, 2003.

[6] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse
inverse covariance estimation with the graphical lasso. Biostatistics,
9:432–441, 2008.

[7] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. JMLR, 3, March 2003.

[8] Pang Wei Koh and Percy Liang. Understanding Black-box Predictions
via Influence Functions. In ICML, 2017.

[9] Viktoriya Krakovna and Finale Doshi-Velez. Increasing the In-
terpretability of Recurrent Neural Networks Using Hidden Markov
Models. In ICML Workshop on Human Interpretability in Machine
Learning, 2016.

[10] Tania Lombrozo. The structure and function of explanations. Trends
in Cognitive Sciences, 10(10):464–470, 2006.

[11] Yin Lou, Rich Caruana, and Johannes Gehrke. Intelligible Models
for Classification and Regression. In KDD, 2012.

[12] George A Miller. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psychological
review, 63(2):81, 1956.

[13] Galileo Mark Namata, Ben London, and Lise Getoor. Collective
Graph Identification. ACM Trans. Knowl. Discov. Data, 2016.

[14] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of ap-
proximations for maximizing submodular set functions. Mathematical
Programming, 14(1):265–294, Dec 1978.

[15] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online
learning of social representations. ACM, 2014.

[16] Shebuti Rayana and Leman Akoglu. Collective Opinion Spam
Detection: Bridging Review Networks and Metadata. KDD, 2015.

[17] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why
Should I Trust You?”: Explaining the Predictions of Any Classifier.
KDD, 2016.

[18] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep In-
side Convolutional Networks: Visualising Image Classification Mod-
els and Saliency Maps. CoRR, 2013.

[19] Henri Jacques Suermondt. Explanation in Bayesian Belief Networks.
PhD thesis, 1992.

[20] Lei Tang and Huan Liu. Relational learning via latent social
dimensions. KDD, 2009.

[21] Marinka Zitnik and Jure Leskovec. Predicting multicellular function
through multi-layer tissue networks. Bioinformatics, 33(14):i190–
i198, 2017.

