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A fractional corner anomaly reveals
higher-order topology
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Spectral measurements of boundary-localized topological modes are commonly used to identify
topological insulators. For high-order insulators, these modes appear at boundaries of higher
codimension, such as the corners of a two-dimensional material. Unfortunately, this spectroscopic
approach is only viable if the energies of the topological modes lie within the bulk bandgap, which
is not required for many topological crystalline insulators. The key topological feature in these insulators
is instead fractional charge density arising from filled bulk bands, but measurements of such charge
distributions have not been accessible to date. We experimentally measure boundary-localized fractional
charge density in rotationally symmetric two-dimensional metamaterials and find one-fourth and
one-third fractionalization. We then introduce a topological indicator that allows for the unambiguous
identification of higher-order topology, even without in-gap states, and we demonstrate the associated
higher-order bulk-boundary correspondence.

T
opological insulators (TIs) are materials
with a gapped band structure charac-
terized by quantized quantities, called
topological invariants, that are invariant
under deformations that preserve both

the bulk bandgap and any protective symme-
tries (1, 2). At a boundary between two mate-
rials that have different strong topological
invariants—i.e., where a topological invariant
changes in space—the bandgap closes, and ro-
bust boundary-localized gaplessmodes appear.
Detection of these robust gapless boundary
modes is therefore one of the most striking
signatures of topological materials.
We focus on two-dimensional (2D) TIs in

class AI (spinless and time-reversal symmet-
ric) (3). In this class and dimension, no non-
trivial strong topological invariants exist (i.e.,
those protected by particle-hole, chiral, and/or
time-reversal symmetry, such as the ℤ2 in-
variant for a quantum spin Hall insulator in
class AII), but invariants can be defined if
additional spatial symmetries are present.
Materials with invariants protected by spatial
symmetries are known as topological crystal-
line insulators (TCIs) (4, 5). We are specifical-
ly interested in a recently discovered class of
TCIs whosemembers have gapped boundaries
of codimension one but host gapless modes
at boundaries with codimension greater than
one, i.e., at a boundary of a boundary (6–9). Be-
cause these insulators manifest robust gapless
modes at boundaries with higher codimension,
they have been termedhigher-order topological

insulators (HOTIs). We note that spatial sym-
metries are essential for these HOTIs because
they prevent bulk and surface deformations
that hybridize and gap out the set of higher-
order gapless states.
Only a few naturally occurring HOTIs have

been identified (8, 9). Instead, much of the
experimental study of HOTIs (primarily d-th
order TCIs in d dimensions) has been per-
formed in engineered metamaterials, such
as networks of coupled resonators (10–16),
waveguide arrays (17, 18), and photonic or
sonic crystals (19–23). So far, the clearest in-
dicator of higher-order topology in such sys-
tems has been the spectroscopicmeasurement
of robust localized cornermodeswith energies
inside the bulk bandgap of 2D (10–14, 17–23)
and 3D (15, 16) HOTIs.
However, there is a fundamental problem

with using localized in-gap boundarymodes to
identify higher-order topology (or, generally,
topology protected by spatial symmetries). Spa-
tial symmetries essentially divide a material
into symmetric sectors and require that local-
izedmodes in each sector are identical. Hence,
these symmetries protect the degeneracy of
boundary-localized modes but do not restrict
their energy (24). Additional local symme-
tries (e.g., chiral symmetry or particle-hole
symmetry) can pin the boundarymodes to zero
energy (midgap) (24, 25), but these symmetries
are not actually necessary to protect the higher-
order topology, and many lattice models do
not support their implementation at all. This
implies that the energy of localized bound-
ary modes may reside either in the bulk gap
or fully within the bulk bands of a HOTI,
depending on the material’s details. TIs that
fall into the latter case do not host gapless
boundary modes within their bulk bandgap
and, as such, cannot be distinguished from
trivial insulators by their spectrumalone, even
with fully open boundary conditions.

This fundamental principle means that
HOTIs could be misidentified when their
spectra do not exhibit in-gap modes, and it
motivates the search for an experimentally
measurable indicator of higher-order topology
that is protected by only spatial symmetries. It
has previously been established that spatial
symmetries protect boundary-localized, quan-
tized fractional charge in TCIs (6, 24, 26–29).
In this work, we demonstrate that a similar
feature in metamaterials—namely, the mode
density of the spectral bands—can also be
fractionally quantized and can diagnose both
first-order andhigher-order topology in gapped
TCIs. In two dimensions, we term the quantity
indicating second-order topology as a fraction-
al corner anomaly (FCA) in the bulk mode
density.
We define mode density as the local den-

sity of states (DOS) integrated over an entire
band, which is equivalent to the charge den-
sity of a filled band in an electronic insula-
tor. Unlike charge density, usingmode density
enables us to study the topology of bands
without regard for electronic filling or con-
straints imposed by charge neutrality. In 2D
TCIs, first-order nontrivial topology mani-
fests as an edge-localized fractional mode
density s. For TCIs with only first-order to-
pology, the corner-localized fractional mode
density r is the sum of the fractional mode
densities, s1 and s2, that respectively mani-
fest at the edges that intersect to form that
corner, such that r = s1 + s2 mod 1 (modulo
operation 1) (30). A fractional quantized de-
viation from this value definitively indi-
cates higher-order topology, such that 2D
TCIs without this deviation are not higher-
order. To measure this type of higher-order
feature in the bulk mode density, we define
the FCA f, where

f ¼ r ð s1 þ s2Þmod 1 ð1Þ

to capture second-order topology in 2D TCIs.
A detailed motivation for the FCA and a gen-
eralized proof of this definition are provided
in the supplementary materials (30).
Notably, although a nonzero FCA does not

indicate that corner modes lie within the
bulk bandgap, it does indicate the existence of
robust topological corner modes somewhere
in the spectrum—i.e., either within the bulk
bands (or edge bands) or the bandgap. When
topological corner modes are not spectrally
isolated, the corner modes can generally cou-
ple to, and hybridize with, bulk or edgemodes,
although it was recently shown that in some
cases corner modes within a bulk band can
act as bound states in the continuum (31).
However, when spectrally isolated from both
the bulk and edge modes, they form the fa-
miliar exponentially localized 0D in-gap
corner modes (10, 12, 13, 15, 16, 20). In the

RESEARCH

Peterson et al., Science 368, 1114–1118 (2020) 5 June 2020 1 of 5

1Department of Electrical and Computer Engineering,
University of Illinois at Urbana-Champaign, Urbana, IL, USA.
2Department of Physics and Institute for Condensed Matter
Theory, University of Illinois at Urbana-Champaign, Urbana,
IL, USA. 3Department of Physics, The Pennsylvania State
University, University Park, PA, USA. 4Department of
Mechanical Science and Engineering, University of Illinois at
Urbana-Champaign, Urbana, IL, USA.
*Corresponding author. Email: bahl@illinois.edu

on August 3, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


next section, we experimentally measure a
nonzero FCA in insulators where the corner
modes are hybridized with bulk modes. Sim-
ulation results, detailed in the supplemen-
tary materials (30), show that the energy
of topological corner modes can be tuned
into, and even fully across, the bulk band-
gaps (and any edge bandgaps) when a local-
ized potential is applied to only the corner
unit cells. We then demonstrate that these
corner modes can be spectrally isolated and
exponentially localized by deformation of
the corner unit cell.
To observe the FCA experimentally, we con-

structed two rotationally symmetric TI meta-
materials in microwave-frequency coupled
resonator arrays. We chose to test two insu-
lators with different symmetries because the
quantization of the fractional mode density
and FCA depends on the rotation symmetry
group (24). The first insulator, shown in Fig. 1A,
is on a square lattice with C4 symmetry, and
the second insulator, shown in Fig. 1B, is on
a kagome lattice with C3 symmetry. We first
found the spectral DOS of bothmetamaterials
bymeans of reflectionmeasurements; see the
supplementary materials (30) for details of
the measurement technique. The measured
spectrumof theC4-symmetric insulator, shown
in Fig. 1C, has three distinct bands. The mea-
sured spectrum of theC3-symmetric insulator,
shown in Fig. 1D, has two bands. Neither of
these insulators have in-gapmodes, so from the

spectra alone it is not possible to tell whether
eithermetamaterial is topologically nontrivial.
However, as we will show, both are in fact
nontrivial, and the intrinsic chiral symmetry
breaking causes the edge and corner modes
to lie within the bulk bands (30).
Next, we calculate the mode density of the

measured bands by integrating the local DOS
in each unit cell over their respective frequency
ranges, as shown for both insulators in Fig. 2.
The mode density of the C4-symmetric insu-
lator is shown in Fig. 2A and has several im-
portant features onwhich wewill focus. First,
we find that the resonators in the bulk unit
cells are excited in all three bands, which in-
dicates that this insulator nominally has three
bulk bands. We observe that the total mode
density of these bands in each sector is ap-
proximately equal, which demonstrates that
this insulator has approximate C4 rotation
symmetry with a small amount of symmetry-
breaking disorder from fabrication imperfec-
tions. As expected, the mode density in the
bulk unit cells, designated by m(n) (where the
superscript indicates Cn symmetry), is always
an integer. Specifically,mð4Þ1;3 ≈ 1 (where the sub-
script indicates the band number) and mð4Þ2 ≈ 2,
which indicates that band 2 is a twofold
degenerate band whereas bands 1 and 3 are
nondegenerate.
Most importantly, we find a nonzero frac-

tional mode density in the edge and corner
unit cells. Because the bandgaps are relatively

large compared with the width of the bands
(i.e., the system has a very short correlation
length), the entirety of the fractional mode
density is tightly localized within the bound-
ary unit cells. For bands 1 and 3, the frac-
tional mode density in the edge unit cells
is sð4Þ1;3 ≈ 1

2 , and in the corner unit cells it is
rð4Þ1;3 ≈ 1

4 . In the twofold degenerate band 2,
these fractions are doubled. This doubling
occurs because band 2 is equivalent to two
copies of band 1, in the sense that theWannier
representation of the orbitals in band 2 has
two Wannier centers at Wyckoff position b,
whereas band 1 has only one at position b
(30); each Wannier center contributes equal
fractional mode density to the boundary. The
approximate fractions written above are
obtained by rounding to the nearest quarter,
as we anticipate that C4 symmetry quantizes
mode density in fractions of one-fourth (24).
We can now extract the FCA f for each bulk

band using the mode density data in Fig. 2A.
Because the system is near a zero–correlation-
length limit, we find f using the simple for-
mula f ¼ r 2s, where r is the fractional
mode density of the corner unit cell and s is
the fractional mode density of the edge unit
cells (because of C4 symmetry, all edges are
expected to be identical). Here, because there
is a small amount of unavoidable disorder
in the experiment (which slightly breaks C4

symmetry), we average over all the edges to
find s and over all the corners to find r,
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Fig. 1. Fabricated metamaterials and measured spectra. (A) Photograph of the experimental resonator array with C4 symmetry. The schematic on the
right illustrates the coupling between resonators. (B) Photograph of the experimental resonator array with C3 symmetry. The schematic on the right illustrates
the coupling between resonators. (C) Measured DOS spectrum for the resonator array in (A). arb. units, arbitrary units. (D) Measured DOS spectrum
for the resonator array in (B).
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such thatfð4Þ1 —i.e., the FCA for band 1 in the
C4-symmetric metamaterial—is

fð4Þ1 ¼ rð4Þ1 2sð4Þ1 ¼ 0:23 0:98

¼ 0:25 ≈
1

4
ð2Þ

A similar calculation can be carried out for
the other bulk bands, giving fð4Þ2 ¼ 0:55 ≈ 1

2
for band 2 and fð4Þ3 ¼ 0:19 ≈ 1

4 for band 3. The
sum of the FCA over all the bulk bands is al-
ways an integer (here rounding gives fð4Þ1 þ

fð4Þ2 þ fð4Þ3 ¼ 0:99), and fð4Þ2 is twice fð4Þ1 , as
expected.
Next, we move on to the mode density for

the C3-symmetric system, shown in Fig. 2B.
For this material, we again find that the bulk
unit cells have integer mode density, mð3Þ1 ≈ 2
(a twofold degenerate band) andmð3Þ1 ≈ 1. As in
the previous system, the total mode density of
these bands in each sector is approximately
equal. The edge unit cells have a fractional
mode density of sð3Þ1 ≈ 2

3 in band 1 and sð3Þ2 ≈ 1
3

in band 2. Here, the approximate fractions
are obtained by rounding to the nearest third
because this system is C3 symmetric (24).
Notably, although thismaterial does not have
a fractional mode density in the corner unit
cells, the FCA indicator is nonzero, fð3Þ1 ¼
0:70 ≈ 2

3, andf
ð3Þ
2 ¼ 0:30 ≈ 1

3. For comparison,
in the supplementary materials (30) we also
present experimental measurements of the
FCA for a trivial insulator and show that
fð3Þ; triv ≈ 0 for all bands.
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Fig. 2. Spatial distribution of bands. (A) Measured mode density for the C4-symmetric insulator. The mode density for each band is shown separately. Each filled circle
represents a resonator, with the area of the circle corresponding to the measured mode density of that resonator in that band. The total mode density of each unit cell
is shown with black text, and the total mode density of each sector is shown in purple with white text. (B) Same as (A) but for the C3-symmetric insulator.
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The nonzero FCA in both metamaterials
indicates that they are indeed HOTIs, and
we have argued above that they should host
second-order topological modes at their corners.
Because we have not observed these expected
topological modes within the bulk bandgap,
we can estimate their spectral location by find-
ing the band in which the corner resonators
aremost strongly excited. In theC4-symmetric
system, the corner resonators, around which
the second-order topological modes are ex-
pected to exist, are mainly excited in band 3,
which indicates that the corner modes lie in
this band. Moreover, this implies that we can
spectrally localize these modes by slightly
lowering the resonance frequency of the cor-
ner resonators. As illustrated in Fig. 3A, we
applied a small negative potential to the cor-
ner resonators using a capacitor connected to
ground, which decreases the electrical length
(and thus the resonance frequency) of the cor-
ner resonators. When the potential is applied,
we observe topological modesmoving into the
bandgap between bands 2 and 3 and becom-
ing exponentially localized to the corner and
confined to one sublattice.
In theC3-symmetric system, the corner reso-

nators are only excited in band 2, which again
indicates that the energy of the corner modes
is too high and should be lowered to bring the
modes into the bandgap. We pull these modes
into the bandgap by similarly applying a small

negative potential to the corners, as illustrated
in Fig. 3B. The topologicalmodes are observed
to spectrally localize within the bandgap and
spatially localize to the corners with confine-
ment on one sublattice. We also conducted a
similar experiment on a trivial insulator (30)
and found that localized corner modes cannot
be isolated within the bulk bandgap, regard-
less of the applied potential strength.
Thedefinition of theFCAcanalso be extended

beyond two dimensions to identify d-th–order
topology in fully gapped d-dimensional insu-
lators. For example, the FCA for third-order
TCIs in three dimensions is

f ¼
X

i; j

ðd rj siÞmod 1 ð3Þ

where d is corner-localized fractional mode
density, rj is hinge-localized fractional mode
density, and si is surface-localized fractional
mode density. Because this indicator captures
fundamental topological features that are pro-
tected by spatial symmetries, we expect that it
can assist with the experimental identifica-
tion of materials with higher-order topology,
which could otherwise be misidentified by
only searching for in-gap corner modes. From
a practical perspective, focusing on bulk-
derived fractional mode density instead of
localized modes could simplify experimental
confirmations of novel TIs, which often use
ad hoc supplementary boundary elements (e.g.,

auxiliary resonators or loading capacitors) to
spectrally shift topological modes into the
bandgap (22–25, 28, 29, 31).
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