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     ABSTRACT 

In neuromorphic engineering, neural populations are generally modeled in a bottom-up manner, 
   where individual neuron models are connected through synapses to form large-scale spiking 
   networks. Alternatively, a top-down approach treats the process of spike generation and neural 
   representation of excitation in the context of minimizing some measure of network energy. 
   However, these approaches usually define the energy functional in terms of some statistical 
   measure of spiking activity (ex. firing rates), which does not allow independent control and 
   optimization of neurodynamical parameters. In this paper, we introduce a new spiking neuron 

and population model where the dynamical and spiking responses of neurons can be derived 
directly from a network objective or energy functional of continuous-valued neural variables like 
the membrane potential. The key advantage of the model is that it allows for independent control 
over  three neuro-dynamical properties:  (a) control over  the steady-state population dynamics 
that encodes the minimum of an exact network energy functional; (b) control over the shape 
of the action potentials generated by individual neurons in the network without affecting the 
network minimum; and (c) control over spiking statistics and transient population dynamics 
without affecting the network minimum or the shape of action potentials. At the core of the 
proposed model are different variants of Growth Transform dynamical systems that produce 
stable and interpretable population dynamics, irrespective of the network size and the type of 

neuronal connectivity (inhibitory or excitatory). In this paper, we present several examples where 
the proposed model has been configured to produce different types of single-neuron dynamics 
as well as population dynamics. In one such example, the network is shown to adapt such that it 
encodes the steady-state solution using a reduced number of spikes upon convergence to  the 
optimal solution. In this paper we use this network to construct a spiking associative memory that 
uses fewer spikes compared to conventional architectures, while maintaining high recall accuracy 
at high memory loads. 

        Keywords: Spiking neuron model, Growth Transforms, energy-minimization, dynamical system, network model, neural dynamics, 

        associative memory, adaptation 
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1 INTRODUCTION 

Spiking neural networks that emulate neural ensembles have been studied extensively within the context 

of dynamical systems (Izhikevich, 2007), and modeled as a set of differential equations that govern the 

temporal evolution of its state variables. For a single neuron, the state variables are usually its membrane 

potential and the conductances of ion channels that mediate changes in the membrane potential via flux of 

ions across the cell membrane. A vast body of literature, ranging from the classical Hodgkin-Huxley model 

(Hodgkin and Huxley, 1952), FitzHugh-Nagumo model (FitzHugh, 1961), Izhikevich model (Izhikevich, 

2003) to simpler integrate-and-fire models (Abbott, 1999), treats the problem of single-cell excitability at 

various levels of detail and biophysical plausibility. Individual neuron models are then connected through 

synapses, bottom-up, to form large-scale spiking neural networks. 

   An alternative to this bottom-up approach is a top-down approach that treats the process of spike 

generation and neural representation of excitation in the context of minimizing some measure of network 

energy. The rationale for this approach is that physical processes occurring in nature have a tendency 

to self-optimize towards a minimum-energy state. This principle has been used to design neuromorphic 

systems where the state of a neuron in the network is assumed to be either binary in nature (spiking or not 

spiking) (Jonke et al., 2016), or replaced by its average firing rate (Nakano et al., 2015). However, in all 

of these approaches, the energy functionals have been defined with respect to some statistical measure of 

neural activity, for example spike rates, instead of continuous-valued neuronal variables like the membrane 

potential. As a result in these models, it is difficult to independently control different neuro-dynamical 

parameters, for example the shape of the action-potential, bursting activity or adaptation in neural activity, 

without affecting the network solution. 

  In (Gangopadhyay and Chakrabartty, 2018), we proposed a model of a Growth Transform (GT) neuron 

which reconciled the bottom-up and top-down approaches such that the dynamical and spiking responses 

were derived directly from a network objective or an energy functional. Each neuron in the network 

implements an asynchronous mapping based on polynomial Growth Transforms, which is a fixed-point 

algorithm for optimizing polynomial functions under linear and/or bound constraints (Baum and Sell, 1968; 

Gangopadhyay et al., 2017). It was shown in (Gangopadhyay and Chakrabartty, 2018) that a network 

of GT neurons can solve binary classification tasks while producing stable and unique neural dynamics 

(for example, noise-shaping, spiking and bursting) that could be interpreted using a classification margin. 

However, in the previous formulation, all of these neuro-dynamical properties were directly encoded 

into the network energy function. As a result, the formulation did not allow independent control and 

optimization of different neuro-dynamics. In this paper, we address these limitations by proposing a 

novel GT spiking neuron and population model, along with a neuromorphic framework, according to the 
following steps: 

• We first remap the synaptic interactions in a standard spiking neural network in a manner that the 

solution (steady-state attractor) could be encoded as a first-order condition of an optimization problem. 

We show that this network objective function or energy functional can be interpreted as the total 

extrinsic power required by the remapped network to operate, and hence a metric to be minimized. 

• We then introduce a dynamical system model based on Growth Transforms that evolves the network 

towards this steady-state attractor under the specified constraints. The use of Growth Transforms 

ensures that the neuronal states (membrane potentials) involved in the optimization are always bounded 

and that each step in the evolution is guaranteed to reduce the network energy. 

• We then show how gradient discontinuity in the regularization function of the network energy 

functional can be used to incorporate the shape of the action potential while maintaining the local 

convexity of the energy functional and hence the location of the steady-state attractor.

    • Finally, we use the properties of Growth Transforms to generalize the model to a continuous-time 

dynamical system. The formulation will then allow for modulating the spiking and the population 

dynamics across the network without affecting network convergence to the steady-state attractor. 
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We show that the proposed framework can be used to implement a network of coupled neurons that 

can exhibit memory, global adaptation, and other interesting population dynamics under different initial 

conditions and based on different network states. We also illustrate how decoupling transient spiking 

dynamics from the network solution and spike-shapes could be beneficial by using the model to design a 

spiking associative memory network that can recall a large number of patterns with high accuracy while 
using fewer spikes than traditional associative memory networks. This paper is also accompanied by a 

publicly available software implementing the proposed model (Mehta et al., 2019) using MATLAB©. Users 

can experiment with different inputs and network parameters to explore and create other unique dynamics 

than what has been reported in this paper. In the future, we envision that the model could be extended to 

incorporate spike-based learning within an energy-minimization framework similar to the framework used 

in traditional machine learning models (LeCun et al., 2006). This could be instrumental in bridging the gap 

between neuromorphic algorithms and traditional energy-based machine learning models. 
 
 

2 METHODS 

      In this section, we present the network energy functional by remapping the synaptic interactions of a stan- 

      dard spiking neural network and then propose a Growth Transform based dynamical system for minimizing                

      this objective. For the rest of the paper, we will follow the mathematical notations as summarized below. 
 
 

   Notations 

 

 

 𝒙 Real scalar variable 

𝒙 Real-valued vector with 𝑥𝑖 as its i-th element 

X Real-valued matrix with 𝑋𝑖𝑗 as the element at the i-th row and the j-th column 

𝒙𝒊,𝒏 i-th element of real-valued vector 𝒙 where n = 1,2,… denotes a discrete time 

step 

𝒙𝒊(𝒕) i-th element of real-valued vector 𝒙 at time t 

𝒙𝒊[𝒏] a sequence of scalar variables 𝑥𝑖,𝑝, where 𝑝 = 𝑛, 𝑛 − 1, … 

𝔼𝑵(𝒙𝒊[𝒏]) Empirical expectation of a sequence 𝑥𝑖[𝑛] estimated over a window of size N, 

i.e., 
1

𝑁
∑ 𝑥𝑖,𝑝

𝑛
𝑝=𝑛−𝑁+1  

𝒙̅𝒊[𝒏] Empirical expectation estimated over an asymptotically infinite window, i.e., 
lim

𝑁 →∞
(𝔼𝑁(𝑥𝑖[𝑛]))  

𝒙̅𝒏 Real-valued vector with 𝑥̅𝑖[𝑛] as its i-th element 

𝔼𝑻(𝒙𝒊(𝒕)) Empirical expectation of 𝑥𝑖(𝑡) over a time-interval [𝑡 − 𝑇, 𝑡], i.e., 
1

𝑇
∫ 𝑥𝑖(𝑡′)𝑑𝑡′

𝑡

𝑡−𝑇
 

ℝ𝑴 Vector space spanned by M-dimensional real vectors 

| 𝒙| Absolute value of a scalar 

‖𝒙‖𝒑 𝑙𝑝-norm an M-dimensional vector, defined as (∑ |𝑥𝑖|𝑝𝑀
𝑖=1 )1/𝑝 

𝒙𝑻 Transpose of the vector 𝒙 

𝒙. 𝒚 Inner product between the vectors 𝒙 and 𝒚 
𝝏𝓗

𝝏𝒙
 Gradient vector [

𝜕ℋ

𝜕𝑥1
,

𝜕ℋ

𝜕𝑥2
, … ,

𝜕ℋ

𝜕𝑥𝑀
]

𝑇
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Figure 1. (a) Simple but general model of a spiking neural network; (b) Compartmental network model 
obtained after remapping. 

 

2.1 Remapping synaptic interactions in a standard spiking network 

          In generalized threshold models like the Spike Response Model (Gerstner and Kistler, 2002), the 

          membrane voltage is given using response kernels that accurately model the post-synaptic responses due to 

          pre-synaptic input spikes, external driving currents and the shape of the spike - the latter term being also 

          used to model refractoriness. However, in simpler adaptations of spiking neuron models, the spike shape is 

          often disregarded, and the membrane potentials are written as simple linear post-synaptic integrations of 

          input spikes and external currents (Davies et al., 2018; Cassidy et al., 2013). We consider a similar model 

          where 𝑣𝑖 ∈ ℝ represents an inter-cellular membrane potential corresponding to neuron i in a network of 

          M neurons. The i-th neuron receives spikes from the j-th neuron that are modulated by a synapse whose 

          strength or weight is denoted by 𝑊𝑖𝑗 ∈ ℝ. Assuming that the synaptic weights are constant, the following 

          discrete-time temporal equation governs the dynamics when the membrane potential increases (Soula et al., 

          2006; Cessac, 2011) 
 

 

 

 

 
 

   
 

 
 

 

𝑣𝑖,𝑛+1 =  𝛾𝑣𝑖,𝑛 + ∑ 𝑊𝑖𝑗Ψ(𝑣𝑗,𝑛) + 𝑦𝑖,𝑛
𝑀
𝑗=1                               (1) 

 

where vi,n ≡ vi(n∆t) and vi,n+1 ≡ vi (n + 1)∆t , ∆t being the time increment between two time-steps.     

yi,n represents the depolarization due to an external stimulus that can be viewed as yi,n = RmiIi,n, where Ii,n 

∈ ℝ is the current stimulus at the n-th time-step and Rmi ∈ ℝ is the membrane resistance of the i-th  

neuron. Here, 0 ≤ 𝛾 ≤ 1 denotes the leakage factor and Ψ(. ) denotes a simple spiking function that is 

positive only when the voltage vj,n exceeds a threshold and 0 otherwise. Note that in (1), the filter Ψ(. ) 

implicitly depends on the pre-synaptic spike-times through the pre-synaptic membrane voltage vj,n. Such a 

spiking neural network model is shown in Figure 1(a). 

We further enforce that the membrane potentials are bounded by vc as 

|vi,n| ≤ vc, ∀i = 1, ..., M, ∀n. (2) 

Note that in biological neural networks, the membrane potentials are also bounded (Wright, 2004). 

If Ψ(. ) was a smooth function of the membrane potential, vi,n would track the net input at every instant. 

For a non-smooth Ψ(. ), however, we make the additional assumption that the temporal expectation of vi,n 

encodes the net input over a sufficiently large time-window. Considering ȳi[n] to be the empirical 

expectation of the external input estimated at the n-th time-window, and under the bound constraints 
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outlined in (2), we can get the following relation (justification in Appendix A) 

 

                                              (1 − 𝛾)𝑣̅𝑖[𝑛] = ∑ 𝑊𝑖𝑗
𝑀
𝑗=1 Ψ̅𝑗[𝑛] + 𝑦̅𝑖[𝑛],                                                        (3) 

 

            where Ψ̅𝑗[𝑛] =
1

𝑁
lim

𝑁→∞
∑ Ψ(𝑣𝑗,𝑝)𝑛

𝑝=𝑛−𝑁+1 . To reduce notational clutter, we will re-write (3) in a matrix form as 

 

                                                     (1 − 𝛾)𝒗̅[𝑛] = 𝑾𝚿̅[𝑛] +  𝒚̅[𝑛],                                                             (4) 

 

            where 𝒗̅[𝑛] ∈ ℝ𝑀 is the vector of mean membrane potentials for a network of M neurons, 𝑾 ∈ ℝ𝑀 × ℝ𝑀  

            is the synaptic weight matrix for the network, 𝒚̅[𝑛] ∈ ℝ𝑀 is the vector of mean external inputs for the n-th time- 

            window and 𝚿̅[𝑛] = [𝛹̅1[𝑛], 𝛹̅2[𝑛] , … , 𝛹̅𝑀[𝑛]]
𝑇
 is the vector of mean spike currents. As Ψ(. ) is a non-linear     

            function of the membrane potential, it is difficult to derive an exact network energy functional corresponding to 

            (4). However, if we assume that the synaptic weight matrix W is invertible, we can re-write (4) as 

 

                                              𝚿̅[𝑛] = (1 − 𝛾)𝑾−1𝒗̅[𝑛] − 𝑾−1𝒚̅[𝑛], or                                             (5) 

 

                                                      𝚿̅[𝑛] = −𝑸𝒗̅[𝒏] + 𝒃̅[𝒏],                                                               (6) 

 

 

           where 𝑸 =  −(1 − 𝛾)𝑾−1, and 𝒃̅[𝒏] = −𝑾−𝟏𝒚̅[𝒏] is the effective external current stimulus. Note that in case 

           𝑾 is not invertible, 𝑾−𝟏 could represent a pseudo-inverse. For the i-th neuron, (6) is equivalent to 

 

                                                𝛹̅𝑖[𝑛] = − ∑ 𝑄𝑖𝑗
𝑀
𝑗=1 𝑣̅𝑗[𝑛] +  𝑏̅𝑖[𝑛],                                                              (7) 

 

           subject to the  bound constraint |𝑣𝑖,𝑛| ≤ 𝑣𝑐  ∀𝑖, 𝑛. In the subsequent sections, we show that (7) can be viewed 

           as the first-order condition of the following network objective function or energy functional 

 

      𝑚𝑖𝑛
|𝑣𝑖|≤𝑣𝑐∀𝑖

ℋ({𝑣𝑖}) = 𝑚𝑖𝑛
|𝑣𝑖|≤𝑣𝑐∀𝑖

 
1

2
∑ ∑ 𝑄𝑖𝑗𝑣𝑗𝑣𝑖 

𝑀
𝑗=1

𝑀
𝑖=1  −  ∑ 𝑏𝑖𝑣𝑖 𝑀

𝑖=1 +  ∑ ∫ 𝛹(𝑣)𝑑𝑣.  
𝑣𝑖

−∞
                 (8)𝑀

𝑖=1  

 

            The network energy functional ℋ(. ) in (8) also admits a physical interpretation, as shown in Figure 1(b). 

            Each neuron i receives a voltage input from the neuron j through a synapse that can be modeled by a 

            transconductance 𝑄𝑖𝑗 (Koch and Poggio, 1984). The neuron i also receives an electrical current stimulus 𝑏𝑖 

            and exchanges a voltage-dependent ionic-current with its medium, denoted by Ψ(𝑣𝑖). Then, the function 

            ℋ(. ) in (8) represents the extrinsic (or metabolic) power supplied to the network, comprising the 

            following three components: (a) Power dissipation due to coupling between neurons; (b) Power injected 

            to or extracted from the system as a result of external stimulation; and (c) Power dissipated due to neural 

            responses. 
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          2.2. Neuron model using the Growth Transform dynamical system 

 

           In order to solve the energy minimization problem given in (8) under the constraints given in (2), we first 

          propose a dynamical system based on polynomial Growth Transforms. We also show how the dynamical 

          system evolves over time to satisfy (7) as a first-order condition. 

 

            Growth Transforms are multiplicative updates derived from the well-known Baum-Eagon inequality 

          (Baum and Sell, 1968; Chatterjee and Chakrabartty, 2018) that optimize a Lipschitz continuous cost  

          function under linear and/or bound constraints on the optimization variables. Each neuron in the network 

          implements a continuous mapping based on Growth Transforms, ensuring that the network evolves over 

          time to reach an optimal solution of the energy functional within the constraint manifold. The summary of 

          the proposed model is presented in Table 1 and the detailed derivation is provided in Appendix B.     

 

 

  Table 1: Discrete-time Growth Transform  dynamical system (Proof in Appendix B) 

 

          Proposition I. Let ℋ({𝑣𝑖}): ℝ𝑀 → ℝ be a function of 𝑣𝑖 , 𝑖 = 1, … , 𝑀 with bounded partial derivatives, 

          and let 𝜆 > |
𝜕ℋ

𝜕𝑣𝑖,𝑛
|  ∀𝑖, 𝑛, be a parameter. Then for |𝑣𝑖,0| ≤ 𝑣𝑐   ∀𝑖, the discrete-time dynamical system 

 

                                                              𝑣𝑖,𝑛+1 ← 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

,  𝑖 = 1, … , 𝑀,                                                     (9) 

           

          satisfies the following criteria for all time-indices n: 

(a) |𝑣𝑖,𝑛| ≤ 𝑣𝑐   ∀𝑖;                                                                                                                                  (10) 

(b) ℋ({𝑣𝑖,𝑛+1}) ≤ ℋ({𝑣𝑖,𝑛}) in domains where 
𝜕ℋ

𝜕𝑣𝑖,𝑛
 is continuous; and                                             (11) 

(c) lim
𝑁 →∞

(𝔼𝑁(𝑧𝑖[𝑛]))  → 0,   ∀𝑖, 𝑛, where 𝑧𝑖,𝑛 = (𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1)

𝜕ℋ

𝜕𝑣𝑖,𝑛
.                                               (12) 

 

 

 

          2.2.1. Growth Transform spiking neuron model 

       

          Considering the n-th iteration of the update equation in (9) as the n-th time-step for the neuron i, we can 

          rewrite (9) in terms of the objective function for the neuron model presented in (8), as given below 

 

                                        𝑣𝑖,𝑛+1 ← 𝑣𝑐

−
∂ℋ

∂𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
∂ℋ

∂𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

,  𝑖 = 1, … , 𝑀                                                         (13) 

 

          where  

 

 

                                        
𝜕ℋ

𝜕𝑣𝑖,𝑛
= ∑ 𝑄𝑖𝑗𝑣𝑗,𝑛

𝑀
𝑗=1 − 𝑏𝑖,𝑛 +  Ψ(𝑣𝑖,𝑛).                                                          (14)
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            Then asymptotically from (12), and as shown in Appendix B, we have 

                                                      lim
𝑁 →∞

(𝔼𝑁(𝑧𝑖[𝑛]))  → 0,   ∀𝑖, 𝑛,                                                (15) 

           where 𝑧𝑖,𝑛 = (𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1)

𝜕ℋ

𝜕𝑣𝑖,𝑛
. We first show the dynamics resulting from (13) for a trivial barrier 

           function Ψ(. ) = 0. Since ℋ(. ) is a smooth function in this case, the neural variables 𝑣𝑖,𝑛 converge to a 

           local minimum, such that 

 

                                                              lim
𝑛→∞

𝑣𝑖,𝑛 = 𝑣𝑖
∗.                                                                (16) 

 

           Therefore, (15) can be written as 

 

                                                          (𝑣𝑐
2 −  𝑣𝑖

∗2)
𝜕ℋ

𝜕𝑣𝑖,𝑛
|𝑣𝑖

∗ → 0.                                                    (17) 

 

            Thus as long as |𝑣𝑖
∗| < 𝑣𝑐, the gradient term goes to zero, ensuring that the dynamical system converges to 

            the optimal solution within the domain defined by the bound constraints. 

 

             The dynamical system presented in (9) ensures that the steady-state neural responses |𝑣𝑖
∗| ≤ 𝑣𝑐  ∀𝑖. In the 

            absence of the barrier term, the membrane potentials can converge to any value between −𝑣𝑐 and +𝑣𝑐 

            based on the effective inputs to individual neurons. Figure 2(a) illustrates this for 2 different neurons where 

            Q is an identity matrix. For the sake of simplicity, we have considered the membrane potentials to be 

            normalized in all the experiments in this paper (i.e., 𝑣𝑐 = 1 V ), and 0 V as the threshold voltage. Here 

            𝑣1
∗ is hyperpolarized due to a negative stimulus, and 𝑣2

∗ is depolarized beyond the threshold. Figure 2(b) 

            shows the corresponding energy contours, where the steady-state neural responses encode the optimal 

            solution of the energy function. We next show how this framework can be extended to a spiking neuron 

            model when the trans-membrane current in the compartmental model described in (8) is approximated 

            by a discontinuous Ψ(. ). In general, the penalty function 𝑅(𝑣𝑖) =  ∫ Ψ(𝑣)𝑑𝑣
𝑣𝑖

−∞
 is chosen to be convex, 

            where 𝑅(𝑣𝑖 > 0 V ) > 0 W and 𝑅(𝑣𝑖 ≤ 0 V ) = 0 W. Figure 2(c) shows one such form that has a 

            gradient discontinuity at a threshold (𝑣𝑖 = 0 V ) at which the neuron generates an action potential. The 

            corresponding Ψ(. ), also shown in Figure 2(c), is given by 

 

                                                            𝛹(𝑣𝑖,𝑛) = {
𝐼Ψ 𝐴, 𝑣𝑖,𝑛 > 0 𝑉

0 𝐴, 𝑣𝑖,𝑛 ≤ 0 𝑉
.                                                           (18) 

    

             When there is no external stimulus 𝑏𝑖, the neuron response converges to 𝑣𝑖
∗ = 0 𝑉 as in the non-spiking case, 

            as illustrated in Figure 2(d) for a single neuron without any synaptic connections. When a positive 

            stimulus 𝑏𝑖 is applied, the optimal solution for 𝑣𝑖, as indicated by 𝑣𝑖
∗, shifts upward to a level that is a function 

            of the stimulus magnitude, also shown in Figure 2(d). However, a penalty term 𝑅(𝑣𝑖) of the form as 

            described above works as a barrier function, penalizing the energy functional whenever 𝑣𝑖 exceeds the 

            threshold, thereby forcing 𝑣𝑖 to reset below the threshold. The stimulus and the barrier function therefore 

            introduce opposing tendencies, making vi oscillate back and forth around the discontinuity (which, in 

            our case, coincides with the threshold) as long as the stimulus is present. Thus when Ψ(. ) is introduced, 

            the potential 𝑣𝑖,𝑛 switches when 𝛹(𝑣𝑖,𝑛) > 0 𝐴 or only when 𝑣𝑖,𝑛 > 0 𝑉. However, the dynamics of 𝑣𝑖,𝑛 

            remains unaffected for 𝑣𝑖,𝑛 < 0 𝑉. During the brief period when 𝑣𝑖,𝑛 > 0 𝑉, we assume that the neuron 

            enters into a runaway state leading to a voltage spike. The composite spike signal 𝑠𝑖,𝑛, shown in Figure 
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Figure 2. (a) Bounded dynamics in a 2-neuron network in absence of the barrier function; (b) Correspon- 
ding contour plot showing convergence of the membrane potentials in the presence of external stimulus; 
(b) The function Ψ(.)dv and its derivative Ψ(.) used in this paper for the spiking neuron model; (d) 
Time-evolution of the response vi of a single neuron in the spiking model in the absence and presence  
of external stimulus; (e) The composite signal upon addition of spikes when vi crosses the threshold; 
(f) Bounded and spiking dynamics in the same 2-neuron network in presence of barrier function; (g) 
Corresponding contour plot showing steady-state dynamics of the membrane potentials in the presence 
of external stimulus; (h) Plot of composite spike signal si of the spiking neuron model when the external 
current stimulus is increased; (i) Input-output characteristics for the spiking neuron model. 

 

 

         2(e), is then treated as a combination of the sub-threshold and supra-threshold responses and is given by 
 

𝑠𝑖,𝑛 = 𝑣𝑖,𝑛 + 𝐶Ψ(𝑣𝑖,𝑛) (19) 
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 where the trans-impedance parameter C > 0 Ω determines the magnitude of the spike. An expectation 

over the composite signal si,n asymptotically encodes the new optimal solution vi
∗ (dotted line), as shown 

in Figure 2(e) and later in Section 2.2.2. Note that in the current version, the proposed model does not 

explicitly model the runaway process that leads to the spike, unlike other neuron models (Hodgkin and 

Huxley, 1952; FitzHugh, 1961; Izhikevich, 2003). However, it does incorporate the hyperpolarization 

part of the spike as a result of vi oscillating around the gradient discontinuity. Thus a refractory period is 

automatically incorporated in between two spikes. 

 

         In order to show the effect of Ψ(.) on the nature of the solution, we plot the neural responses and contour 

         plots for the 2-neuron network in Figures 2(f) and (g) for the same set of inputs as in Figures 2(a) and (b), 

         when the barrier function is present. The penalty function produces a barrier at the thresholds, which are 

         indicated by red dashed lines, transforming the time-evolution of s2 into a digital, spiking mode, where the 

         firing rate is determined by the extent to which the neuron is depolarized. It can be seen from the neural 

         trajectories in Figure 2(g) and from (8) that Ψ(.) > 0 behaves as a Lagrange parameter corresponding to 

         the spiking threshold constraint vi,n < 0. 

 

         In Appendix C, we outline how, for non-pathological cases, it can be shown from (12) that for spiking 

         neurons, or for neurons whose membrane potentials vi,n > −vc ∀n, 

                                                            𝑙𝑖𝑚
𝑁 →∞

(𝔼𝑁(
𝜕ℋ

𝜕𝑣𝑖,𝑛
[𝑛])) = 0.                                                     (20) 

 

         This implies that asymptotically the network exhibits limit-cycles about a single attractor or a fixed-point 

         such that the time-expectations of its state variables encode this optimal solution. A similar stochastic first- 

         order framework was used in (Gore and Chakrabartty, 2010) to derive a dynamical system corresponding 

         to Σ∆ modulation for tracking low-dimensional manifolds embedded in high-dimensional analog signal 

         spaces. Combining (14) and (20), we have 

 

                                         ∑ 𝑄𝑖𝑗𝑣̅𝑗[𝑛]𝑀
𝑗=1 − 𝑏̅𝑖[𝑛] + Ψ̅𝑖[𝑛] = 0,                                             (21) 

 

          where Ψ̅𝑖[𝑛] = lim
𝑛→∞

1

𝑁
∑ Ψ(𝑣𝑖,𝑝)𝑛

𝑝=𝑛−𝑁+1 . Rearranging the terms in (21), we obtain (7). 

 

          The penalty function 𝑅(𝑣𝑖) =  ∫ Ψ(𝑣)𝑑𝑣
𝑣𝑖

−∞
 in the network energy functional in effect models the power 

          dissipation due to spiking activity. For the form of R(.) chosen in this paper, the power dissipation due 

          to spiking is taken to be zero below the threshold, and increases linearly above threshold. A plot of the 

          composite spike signal for a ramp input for the spiking neuron model is presented in Figure 2(h). As 

          𝑣𝑖,𝑛 exceeds the threshold for a positive stimulus, the neuron enters a spiking regime and the firing rate 

          increases with the input, whereas the sub-threshold response is similar to the non-spiking case. Figure 2(i) 

          shows the tuning curve for the neuron as the input stimulus is increased. It is nearly sigmoidal in shape and 

          shows how the firing rate reaches a saturation level for relatively high inputs. The proposed spiking neuron 

          model based on the discrete-time Growth Transform dynamical system is summarized in Table 2. 
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Table 2: Discrete-time GT spiking neuron model 

 

For a network of M neurons with state variables 𝑣 = {𝑣𝑖} ∈ ℝ𝑀, where the trans-conductance coupling 

Matrix is denoted by 𝑸 = {𝑄𝑖𝑗} ∈ ℝ𝑀 × ℝ𝑀 and the external stimulus vector is denoted by 

 𝑏 = {𝑏𝑖} ∈ ℝ𝑀, the time-evolution of the network under bound constraints on the state variables 

 |𝑣𝑖,𝑛| ≤ 𝑣𝑐 for all time-indices n, is governed by the following discrete-time updates: 

 

                                     𝑣𝑖,𝑛+1 ← 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

, 𝑖 = 1, … , 𝑀,                                                             (22) 

 

              where 

                          
𝜕ℋ

𝜕𝑣𝑖,𝑛
= ∑ 𝑄𝑖𝑗𝑣𝑗,𝑛

𝑀
𝑗=1 − 𝑏𝑖,𝑛 +  Ψ(𝑣𝑖,𝑛); 

                          𝛹(𝑣𝑖,𝑛) = {
𝐼Ψ 𝐴, 𝑣𝑖,𝑛 > 0 𝑉

0 𝐴, 𝑣𝑖,𝑛 ≤ 0 𝑉
; 

                          𝜆 is a fixed current parameter  such that 𝜆 > |
𝜕ℋ

𝜕𝑣𝑖,𝑛
| ∀𝑖, 𝑛. 

               The composite spike response of the i-th neuron at time-step n is given by 

 

𝑠𝑖,𝑛 = 𝑣𝑖,𝑛 + 𝐶Ψ(𝑣𝑖,𝑛), 

 

                where the trans-impedance parameter C > 0 Ω determines the magnitude of each spike. 

 

 

      2.2.2 Encoding stimuli as a combination of sub-threshold and supra-threshold dynamics 

 

      As explained previously, the penalty term 𝑅(𝑣𝑖) of the form presented above works analogous to a 

      barrier function, penalizing the energy functional whenever 𝑣𝑖,𝑛 exceeds the threshold. This transforms the 

      time-evolution of 𝑣𝑖,𝑛 into a spiking mode above the threshold, while keeping the sub-threshold dynamics 

      similar to the non-spiking case. The Growth Transform dynamical system ensures that the membrane 

      potentials are bounded, thereby implementing a squashing (compressive) function on the neural responses 

      so that the network responses are bounded. We now show how the proposed model encodes external 

      stimulus as a combination of spiking and bounded dynamics. In the steady-state, from (21) we can write 

 

                                                𝛹̅𝑖[𝑛] = 𝑏̅𝑖[𝑛] − ∑ 𝑄𝑖𝑗𝑣̅𝑗[𝑛].𝑀
𝑗=1                                                   (23) 

 

      Thus the average spiking activity of the i-th neuron encodes the error between the average input and the 

      weighted sum of membrane potentials. For a single, uncoupled neuron where 

 

                                                       𝑄𝑖𝑗 = {
 𝑄0 𝛺−1,  ∀𝑖 = 𝑗

0 𝛺−1,  ∀𝑖 ≠ 𝑗
,                                                 (24) 

 

      we have 

                                                       𝛹̅𝑖[𝑛] +  𝑄0𝑣̅𝑖[𝑛] = 𝑏̅𝑖[𝑛].                                              (25) 

               

       



Gangopadhyay et al. Spiking neuron model based on Growth Transforms 
 

 

 

        Multiplying (25) on both sides by C Ω, where we have chosen C =
1

𝑄0
, we have 

 

                                                       𝐶Ψ̅𝑖[𝑛] + 𝑣̅𝑖[𝑛] = 𝐶𝑏̅𝑖[𝑛]                                                            (26) 

 

                                                        or,   𝑠̅𝑖[𝑛] = 𝐶𝑏̅𝑖[𝑛],                                                                    (27) 

        where we have used the relation (19). (27) indicates that through a suitable choice of the trans-impedance 

        parameter C, the sum of sub-threshold and supra-threshold responses encodes the external input to the 

        neuron. This is also the rationale behind adding a spike to the sub-threshold response vi,n, as illustrated in 

        Figure 2(e), to yield the composite neural response. If Q0 = 0 Ω−1, we similarly have 

                                                       𝛹̅𝑖[𝑛] = 𝑏̅𝑖[𝑛]                                                                           (28) 

          where the average spiking activity tracks the stimulus. Thus by defining the coupling matrix in various 

        ways, we can obtain different encoding schemes for the network. 

       2.3 From neuron to network: Geometric interpretation of network dynamics 

 
        The remapping from standard coupled conditions of a spiking neural network to the proposed formulation 

        admits a geometric interpretation of neural dynamics. Similar to the network coding framework presented 

        in (Gangopadhyay and Chakrabartty, 2018), we show in this section how the activity of individual neurons 

        in a network can be visualized with respect to a network hyper-plane. This geometric interpretation can 

        then be used to understand network dynamics in response to different stimuli. 

 

        Like a Hessian, if we assume that the matrix Q is positive-definite about a local attractor, there exists a 

        set of vectors 𝒙𝑖 ∈ ℝ𝐷, 𝑖 = 1, … , 𝑀 such that each of the elements 𝑄𝑖𝑗 can be written as an inner product 

        between two vectors as 𝑄𝑖𝑗 = 𝒙𝑖 . 𝑥𝑗 , 1 ≤ 𝑖, 𝑗 ≤ 𝑀. This is similar to kernel methods that compute 

        similarity functions between pairs of vectors in the context of support vector machines (Chakrabartty 

        and Cauwenberghs, 2007). This associates the i-th neuron in the network with a vector 𝒙𝑖, mapping it 

        onto an abstract metric space ℝ𝐷 and essentially providing an alternate geometric representation of the 

        neural network. From (21), the spiking activity of the i-th neuron for the n-th time-window can then be 

        represented as 

 
 

𝛹̅𝑖[𝑛] = − ∑ 𝑄𝑖𝑗𝑣̅𝑗[𝑛]

𝑀

𝑗=1

+  𝑏̅𝑖[𝑛] 

 
                = ∑ −(𝒙𝑖 . 𝒙𝑗)𝑣̅𝑗[𝑛]𝑀

𝑗=1 + 𝑏̅𝑖[𝑛] 

 
                                               = 𝒘𝑛. 𝒙𝑖 + 𝑏̅𝑖[𝑛],                                          (29) 

          where 

 

                                                   𝒘𝑛 = − ∑ 𝒙𝑗
𝑀
𝑗=1 𝑣̅𝑗[𝑛].                                           (30) 

 
        Ψ̅ therefore represents the distance of the vector 𝒙𝑖 from a network hyperplane in the D-dimensional 

          vector space, which is parameterized by the weight vector 𝒘𝑛 and offset 𝑏̅𝑖[𝑛]. When a stimulus 𝑏̅𝑖[𝑛] is 

          applied, the hyperplane shifts, leading to a stimulus-specific value of this distance for each neuron that 
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is also dependent on the network configuration Q. Hence, Ψ̄ (.) is denoted as a ‘network variable’, that 

signifies how the response of each neuron is connected to the rest of the network. Note that we can also 

write the synaptic weight elements in a kernelized form as Qij = K(xi).K(xj), where K(.) is a nonlinear 

transformation function, defining a non-linear boundary for each neuron. This idea of a dynamic and 

stimulus-specific hyperplane can offer intuitive interpretations about several population dynamics reported 

in literature and have been elaborated on in the Results section. 

2.4 Complete continuous-time model of the Growth Transform neuron 

Single neurons show a vast repertoire of response characteristics and dynamical properties that lend 

richness to their computational properties at the network level. Izhikevich in (Izhikevich, 2004) provides an 

extensive review of different spiking neuron models and their ability to produce the different dynamics 

observed in biology. In this section, we extend the proposed model into a continuous-time dynamical 

system, which enables us to reproduce a vast majority of such dynamics and also allows us to explore 

interesting properties in coupled networks. In Appendix D, we derive the continuous-time version of  

the dynamical system using a special property of Growth Transforms. The complete neuron model is 

summarized in Table 3. 

 

Table 3: Complete continuous-time GT spiking neural network (Proof in Appendix D) 

 
 

         For a network of M neurons with state variables 𝑣 = {𝑣𝑖} ∈ ℝ𝑀, where the trans-conductance coupling 

          matrix is denoted by 𝑸 = {𝑄𝑖𝑗} ∈ ℝ𝑀 × ℝ𝑀 and the external stimulus vector is denoted by 

          𝑏 = {𝑏𝑖} ∈ ℝ𝑀, the time-evolution of the network under bound constraints on the state variables 

          |𝑣𝑖(𝑡)| ≤ 𝑣𝑐  ∀𝑡, is governed by the following continuous-time dynamical system: 

 

                                     𝜏𝑖(𝑡)
𝑑𝑣𝑖(𝑡)

𝑑𝑡
+ 𝑣𝑖(𝑡) = 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑐+ 𝜆𝑣𝑖(𝑡)

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑖(𝑡)+ 𝜆𝑣𝑐

,                                                   (31) 

          where 

                   
𝜕ℋ

𝜕𝑣𝑖(𝑡)
= ∑ 𝑄𝑖𝑗𝑣𝑗(𝑡)𝑀

𝑗=1 − 𝑏𝑖(𝑡) +  𝛹(𝑣𝑖(𝑡)); 

     

                  𝛹(𝑣𝑖(𝑡)) = {
𝐼Ψ 𝐴, 𝑣𝑖(𝑡) > 0 𝑉
0 𝐴, 𝑣𝑖(𝑡) ≤ 0 𝑉

; 

                       𝜆 is a fixed current parameter  such that 𝜆 > |
𝜕ℋ

𝜕𝑣𝑖(𝑡)
| ∀𝑖, 𝑡;         

                       0 ≤ 𝜏𝑖(𝑡, 𝑣𝑖 , 𝑣̇𝑖 , ℋ, ℋ) < ∞̇  is a modulation function that can be tuned individually for each 

                       neuron to encode different trajectories and different steady-state spiking dynamics corresponding 

                       to the optimal solution. 

            The composite spike response of the i-th neuron at time-step t is given by 

                                                     𝑠𝑖(𝑡) = 𝑣𝑖(𝑡) + 𝐶Ψ(𝑣𝑖(𝑡)),                                                           (32) 

             where the trans-impedance parameter C > 0 Ω determines the magnitude of each spike. 

 

           The operation of the proposed neuron model is therefore governed by two sets of dynamics: (a) minimization 

           of the network energy functional ℋ; (b) modulation of the trajectory using a time-constant 𝜏𝑖(𝑡), 
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Figure 3. Decoupling of network solution, spike shape and response trajectory using the proposed model. 
Different modulation functions lead to different steady-state spiking dynamics under the same energy 
contour. 

 
 

       also referred to as modulation function in this paper. Fortunately, the evolution of τi(t) can be made as 

       complex as possible without affecting the asymptotic fixed-point solution of the optimization process. It 

       can be a made a function of local variables like vi and v̇ i  or a function of global/network variables like 

       ℋ and ℋ̇. Different choices of the modulation function can lead to different trajectories followed by the neural     

        variables under the same energy contour, as illustrated in Figure 3. In the Results section, we show how different forms 

        of 𝜏𝑖(𝑡) produce different sets of neuronal dynamics consistent with the dynamics that have been reported in 

        neurobiology.    
 

 

3 RESULTS 

 

       The proposed approach enables us to decouple the three following aspects of the spiking neural network: 

       (a) Fixed points of the network energy functional, which depend on the network configuration and 

       external inputs; 

       (b) Nature and shape of neural responses, without affecting the network minimum; and 

       (c) Spiking statistics and transient neural dynamics at the cellular level, without affecting the network 

       minimum or spike shapes. 

 

       This makes it possible to independently control and optimize each of these neuro-dynamical properties 

       without affecting the others. The first two aspects arise directly from an appropriate selection of the energy 

       functional and were demonstrated in Section 2.2.1. In this section, we show how the modulation function, 

       in essence, loosely models cell excitability, and can be varied to tune transient firing statistics based on 

       local and/or global variables. This allows us to encode the same optimal solution using widely different 

       firing patterns across the network, and have unique potential benefits for neuromorphic applications. Codes 

       for the representative examples given in this section are available at (Mehta et al., 2019).
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          Figure 4. (a)-(d) Simulations demonstrating different single-neuron responses obtained using the GT 

          neuron model. 
 

 

      3.1 Single-neuron dynamics 

        We first show how we can reproduce a number of single-neuron response characteristics by changing the 

       modulation function τi(t) in the neuron model. For this, we consider an uncoupled network, where 

 
                                                          

𝑄𝑖𝑗 = {
𝑄0 Ω−1,       ∀𝑖 = 𝑗

  0 Ω−1,   𝑖 ≠ 𝑗
                                      (33)          

         We will subsequently extend these dynamics to build coupled networks with interesting properties like memory 

          and global adaptation for energy-efficient neural representation. The results reported here are              

       representative of the types of dynamical properties the proposed model can exhibit, but are by no means 

       exhaustive. Readers are encouraged to experiment with different inputs and network parameters in the 

       software (MATLAB©) implementation of the Growth Transform neuron model (Mehta et al., 2019). The 

       tool enables users to visualize the effects of different modulation functions and other parameters on the 

       neural dynamics, as well as the time-evolution of population trajectories and the network energy function 

       with different inputs and under different initial conditions. 

 
       3.1.1 Standard tonic-spiking response 

        When stimulated with a constant current stimulus bi, a vast majority of neurons fire single, repetitive 

        action potentials for the duration of the stimulus, with or without adaptation (Agmon and Connors, 1989; 

         McCormick et al., 1985; Gibson et al., 1999). The proposed model shows tonic spiking without adaptation 

        when the modulation function τi(t) = τ , where τ  > 0 s. A simulation of tonic spiking response using the 

        neuron model is given in Figure 4(a). 

 
       3.1.2  Bursting response 

        Bursting neurons fire discrete groups of spikes interspersed with periods of silence in response to a 

        constant stimulus (Agmon and Connors, 1989; McCormick et al., 1985; Gray and McCormick, 1996; 

        Brumberg et al., 2000). Bursting arises from an interplay of fast ionic currents responsible for spiking, 

       and slower intrinsic membrane currents that modulate the spiking activity, causing the neuron to alternate 

       between activity and quiescence. Bursting response can be simulated in the proposed model by modulating 

      τi(t) at a slower rate compared to the generation of action potentials, in the following way 

   
 

  𝜏𝑖(𝑡) = {
𝜏1 𝑠, 𝑐𝑖(𝑡) < 𝐵
𝜏2 𝑠, 𝑐𝑖(𝑡) ≥ 𝐵

                                              (34) 
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        where τ1 > τ2 > 0 s, B is a parameter and the count variable ci(t) is updated according to 

 

                              𝑐𝑖(𝑡) = {
𝑙𝑖𝑚
∆𝑡→0

𝑐𝑖(𝑡 − ∆𝑡) + 𝚤[𝑣𝑖(𝑡) > 0], 𝑙𝑖𝑚
∆𝑡→0

𝑐𝑖(𝑡 − ∆𝑡) < 𝐵

0, 𝑙𝑖𝑚
∆𝑡→0

𝑐𝑖(𝑡 − ∆𝑡) ≥ 𝐵
                           (35) 

 

 

 

 
 

 
 
 
 
 
 

 

 

 

  [.] being an indicator function. Simulation of a bursting neuron in response to a step input is given in 

Figure 4(b). 

3.1.3 Spike-frequency adaptation 

When presented with a prolonged stimulus of constant amplitude, many cortical cells initially respond 

with a high-frequency spiking that decays to a lower steady-state frequency (Connors and Gutnick, 1990). 

This adaptation in the firing rate is caused by a negative feedback to the cell excitability due to the gradual 

inactivation of depolarizing currents or activation of slow hyperpolarizing currents upon depolarization, 

and occur at a time-scale slower than the rate of action potential generation. We modeled spike-frequency 

adaptation by varying the modulation function according to 

τi(t) = τ − 2φ( h(t) ∗ Ψ(vi(t))) (36) 

where h(t) Ψ(vi)(t) is a convolution operation between a continuous-time first-order smoothing filter 

h(t) and the spiking function Ψ(vi(t)), and 

                                                   𝜙(𝑥) = 𝜏 (
1

1+exp (𝑥)
)                                                            (37) 

 

is a compressive function that ensures 0 ≤ 𝜏𝑖(𝑡) ≤ 𝜏 s. The parameter τ determines the steady-state 

firing  rate for a particular stimulus. A tonic-spiking response with spike-frequency adaptation is shown in 

Figure 4(c). 

3.1.4 Integrator response 

When the baseline input is set slightly negative so that the fixed point is below the threshold, the 

neuron works like a leaky integrator as shown in Figure 4(d), preferentially spiking to high-frequency or 

closely-spaced input pulses that are more likely to make vi cross the threshold. 

3.2 Coupled spiking network with pre-synaptic adaptation 

We can extend the proposed framework to a network model where the neurons, apart from external stimuli, 

receive inputs from other neurons in the network. We begin by considering Q to be a positive-definite 

matrix, which gives a unique solution of (8). Although elements of the coupling matrix Q already capture 

the interactions among neurons in a coupled network, we can further define the modulation function as 

follows to make the proposed model behave as a standard spiking network 

                                            𝜏𝑖(𝑡) = 𝜙(ℎ(𝑡) ∗ ∑ 𝑄𝑖𝑗𝛹(𝑣𝑗(𝑡))𝑀
𝑗=1 )                                                           (38)

          with the compressive-function φ(.) given by (37). (38) ensures that Qij > 0 corresponds to an excitatory 

        coupling from the pre-synaptic neuron j, and Qij < 0 corresponds to an inhibitory coupling, as demon- 

        strated in Figure 5(a). Note that irrespective of whether such a pre-synaptic adaptation is implemented or 
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Figure 5. (a) Results from a 2-neuron network with excitatory and inhibitory couplings; (b) Energy 
optimization process under different conditions lead to different limit cycles within the same energy 
landscape. (c)-(d) Mean spiking energy Ψ(.)dv and firing patterns in response to a step input without and 
with global adaptation respectively. 

 

        not, the neurons under the same energy landscape would converge to the same sub-domain, albeit with 

        different response trajectories and steady-state limit-cycles. This is illustrated in Figure 5(b) which plots 

        the energy contours for a two-neuron network corresponding to a Q matrix with excitatory and inhibitory 

        connections and a fixed stimulus vector b. Figure 5(b) also shows the responses of the two neurons starting 

        from the same initial conditions, with and without pre-synaptic adaptation (where the latter corresponds 

        to the case where the only coupling between the two neurons is through the coupling matrix Q, but there 

        is no pre-synaptic spike-time dependent adaptation). Because the energy landscape is the same in both 

        cases, the neurons converge to the same sub-domain, but with widely varying trajectories and steady-state 

        response patterns. 

       3.3 Coupled network with pre-synaptic and global adaptation 

        Apart from the pre-synaptic adaptation that changes individual firing rates based on the input spikes 

        received by each neuron, neurons in the coupled network can be made to adapt according to the global 

        dynamics by changing the modulation function as follows 
 

                                     𝜏𝑖(𝑡) = ∅ (ℎ(𝑡) ∗ (∑ 𝑄𝑖𝑗Ψ(𝑣𝑗(𝑡))𝑀
𝑗=1 − ℱ(ℋ, ℋ̇)))                                     (39) 

 

        with the compressive-function φ(.) given by (37). The new function (.) is used to capture the dynamics 

        of the network cost-function. As the network starts to stabilize and converge to a fixed-point, the function 

      τi(.) adapts to reduce the spiking rate of the neuron without affecting the steady-state solution. Figures 

        5(c) and (d) shows the time-evolution of the spiking energy Ψ(.)dv  and the spike-trains for a two-neuron 
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Figure 6. (a) Contour plot of spiking activity corresponding to a particular stimulus vector. Neurons are 
colored according to their mean firing rate (normalized w.r.t. the maximum firing rate) during the stimulus 

period. The white dashed line is the contour corresponding to Ψ̄ = 0. (b) Spike raster for all neurons for 
the input in (a). (c) The mean firing rate and (d) time-to-first spike as a function of the distance d for each 
neuron in the network. 

 

        network without global adaptation and with global adaptation respectively, using the following form for 

        the adaptation term 

                                               ℱ(ℋ, ℋ̇) = { 
ℱ0,  𝔼𝑇(ℋ̇) ≈ 0
0,  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                              (40)

          where ℱ0 > 0 is a tunable parameter. This feature is important in designing energy-efficient spiking 

        networks where energy is only dissipated during transients. 

       3.4 Network response and network trajectories 

        In order to outline the premises of the next few experiments on population dynamics using the geometric 

        interpretation outlined in Section 2.3, we consider a small network of neurons on a two-dimensional 

        co-ordinate space, and assign arbitrary inputs to the neurons. A Gaussian kernel is chosen for the coupling 
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 matrix Q as follows 

Qij = exp(−γ||xi − xj||2). (41) 

         This essentially clusters neurons with stronger couplings between them closer to each other on the co- 

ordinate space, while placing neurons with weaker couplings far away from each other.  A network 

consisting of 20 neurons is shown in Figure 6(a), which also shows how the spiking activity changes as a 

function of the location for the particular network configuration and input stimulus vector. Each neuron is 

color coded based on the mean firing rate (normalized w.r.t. the maximum mean firing rate) with which it 

responds when the stimulus is on. Figure 6(b) shows the spike raster for the entire network. We see that the 

responsiveness of the neurons to a particular stimulus increases with the distance at which it is located from 

the hypothetical hyperplane in the high-dimensional space to which the neurons are mapped through kernel 

transformation. We show below how this geometric representation can provide insights on population-level 

dynamics in the network considered. 

3.4.1 Rate and temporal coding 

The Growth Transform neural network inherently shows a number of encoding properties that are 

commonly observed in biological neural networks (Gerstner and Kistler, 2002; Rieke et al., 1999). For 

example, the firing rate averaged over a time window is a popular rate coding technique that claims that the 

spiking frequency or rate increases with stimulus intensity (Adrian and Zotterman, 1926). A temporal code 

like the time-to-first-spike posits that a stronger stimulus brings a neuron to the spiking threshold faster, 

generating a spike, and hence relative spike arrival times contain critical information about the stimulus 

(Thorpe, 1990). 

These coding schemes can be interpreted under the umbrella of network coding using the same geometric 

representation as considered above. Here, the responsiveness of a neuron is closely related to its proximity 

to the hyperplane. The neurons which exhibit more spiking are located at a greater distance from the 

hyperplane. We see from Figures 6(c) and (d) that as this value increases, the average firing rate of a 

neuron (number of spikes in a fixed number of time-steps or iterations) increases, and the time-to-first 

spike becomes progressively smaller. Neurons with a distance value below a certain threshold do not spike 

at all during the stimulus period, and therefore have a mean firing rate of zero and time-to-spike at infinity. 

Therefore, based on how the network is configured in terms of synaptic inputs and connection strengths, the 

spiking pattern of individual neurons conveys critical information about the boundary and their placement 

with respect to it. 

3.4.2  Network coding and neural population trajectories 

The encoding of a stimulus in the spatiotemporal evolution of activity in a large population of neurons is 

often represented in neurobiological literature by a unique trajectory in a high-dimensional space, where 

each dimension accounts for the time-binned spiking activity of a single neuron. Projection of the high- 

dimensional activity to two or three critical dimensions using dimensionality reduction techniques like 

Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) have been widely used 

across organisms and brain regions to shed light on how neural population response evolves when a stimulus 

is delivered (Friedrich and Laurent, 2001; Stopfer et al., 2003). For example in identity coding, trajectories 

corresponding to different stimuli evolve towards different regions in the reduced neural subspace, that 

often become more discriminable with time and are stable over repeated presentations of a particular 

stimulus (Friedrich and Laurent, 2001; Stopfer et al., 2003; Galán et al., 2004). We show how this can be 

explained in the context of the geometric interpretation. 
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Figure 7. (a) and (b) Perturbation of the stimulus vector in different directions for the same network 
produces two different contours. (c) Corresponding population activities trace different trajectories in the 
neural subspace. 

 

For the same network as above, we start with the simplest possible experiment, starting from the same 

baseline, and perturbing the stimulus vector in two different directions. This pushes the boundary in two 

different directions, exciting different subsets of neurons, as illustrated in Figures 7(a) and (b). A similar 

dimensionality reduction to three principal components in Figure 7(c) shows the neural activity unfolding 

in distinct stimulus-specific areas of the neural subspace. The two contour plots also show that some 

neurons may spike for both the inputs, while some spike selectively for one of them. Yet  others may not 

show any spiking for either stimulus, but may spike for some other stimulus vector and the corresponding 

stimulus-specific boundary. 

        3.5 Coupled spiking network with non-positive definite Q 

As illustrated in Figure 8, a coupled spiking network can function as a memory element, when Q is a 

non-positive definite matrix and 

 

 

                                             𝜏𝑖(𝑡) = ∅(ℎ(𝑡) ∗ ∑ 𝑄𝑖𝑗𝛹(𝑣𝑗(𝑡))𝑀
𝑗=1 )                                                          (42)

  
 

due to the presence of more than one attractor state. We demonstrate this by considering two different 

stimulus histories in a network of four neurons, where a stimulus ‘Stim 1a’ precedes another stimulus 

‘Stim 2’ in Figures 8(a), (c) and (e), and a different stimulus ‘Stim 1b’ precedes ‘Stim 2’ in Figures 8(b), 

(d) and (f). Here, each ‘stimulus’ essentially corresponds to a different input vector b. For an uncoupled 

network, where neurons do not receive any inputs from other neurons, the network energy increases when 

the first stimulus is applied and returns to zero afterwards, and the network begins from the same state 

again for the second stimulus as for the first, leading to the same firing pattern for the second stimulus, 

as shown in Figures 8(a) and (b), independent of the history. For a coupled network with a positive 

definite coupling matrix Q, reinforcing loops of spiking activity in the network may not allow the network 

energy to go to zero after the first stimulus is removed, and the residual energy may cause the network 

to exhibit a baseline activity that depends on stimulus history, as long as there is no dissipation. When 

the second stimulus is applied, the initial conditions for the network are different for the two stimulus 

histories, leading to two different transients until the network settles down into the same steady-state 

firing patterns, as shown in Figures 8(c) and (d). For a non-positive definite coupling matrix Q however, 

depending on the initial condition, the network may settle down to different solutions for the same second 
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Figure 8. Stimulus response for a 4-neuron network with different stimulus histories for: (a)-(b) an 
uncoupled network; (c)-(d) a coupled network with a positive definite coupling matrix Q; (e)-(f) a coupled 
network with a non-positive definite coupling matrix Q. 

 

stimulus, due to the possible presence of more than one local minimum. This leads to completely different 

transients as well as steady-state responses for the second stimulus, as shown in Figure 8(e) and (f). This 

history-dependent stimulus response could serve as a short-term memory, where residual network energy 

from a previous external input subserves synaptic interactions among a population of neurons to set specific 

initial conditions for a future stimulus based on the stimulus history, forcing the network to settle down in a 

particular attractor state. 

3.6 Associative memory network using Growth Transform neuron models 

Associative memories are neural networks which can store memory patterns in the activity of neurons 

in a network through a Hebbian modification of their synaptic weights; and recall a stored pattern when 

stimulated with a partial fragment or a noisy version of the pattern (Cutsuridis et al., 2010). Various works 

have studied associative memories using networks of spiking neuron models having different degrees 

of abstraction and architectural complexities (Lansner, 2009; Palm, 2013). Here, we demonstrate using 

an associative memory network of Growth Transform neurons how we can use network trajectories to 
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Figure 9. (a)-(b) Spike rasters for the 10 stored patterns without and with global adaptation respectively; 
(c)-(d) Spike rasters for the 10 recall cases without and with global adaptation respectively. 

 

recall stored patterns, and moreover, use global adaptation to do so using very few spikes and high recall 

accuracy. 

Our network comprises M = 100 neurons, out of which a randomly selected subset m = 10 are active 

for any stored memory pattern. The elements of the transconductance coupling matrix are set according to 

the following standard Hebbian learning rule 

 

                                                                𝑄𝑖𝑗 =  
1

𝑘
∑ 𝑡𝑖

𝑠𝑡𝑗
𝑠 𝑆

𝑠=1                                                             (43) 

 

           where 𝑘 is a scaling factor and 𝒕𝑠 ∈ [0,1]𝑀, 𝑠 = 1, … , 𝑆, are the binary patterns stored in the network. 

           During the recall phase, only half of the cells active in the original memory are stimulated with a steady 

           depolarizing input, and the spiking pattern across the network is recorded. Instead of determining the 

           active neurons during recall through thresholding and directly comparing with the stored binary pattern, we 

           quantitatively measure the recall performance of the network by computing the mean distance between 
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Figure 10. (a)-(b) Similarity matrices between storage and recall with a rate-based decoding metric; (c)-(d) 
Similarity matrices with a decoding metric that also includes spike-times and changes in mean firing rate. 

 

 

each pair of original-recall spiking dynamics as they unfold over time. This ensures that we not only take 

into account the firing of the neurons that belong to the pattern albeit are not directly stimulated, but also 

enables us to exploit any contributions from the rest of the neurons in making the spiking dynamics more 

dissimilar in comparison to recalls for other patterns. 
 

When the network is made to globally adapt according to the system dynamics, the steady-state traje- 

ctories can be encoded using very few spikes. Figures 9 (a) and (b) show the raster plots for the stored 

patterns without and with global adaptation respectively when S  = 10; and Figures 9 (c) and (d) are the 

corresponding plots during recall. For each recall pattern, spike patterns for the directly stimulated neurons 

are plotted first, followed by the other 5 neurons that are not directly stimulated but belong to the pattern; 

and finally the rest of the neurons in random order. The ordering of neurons is kept the same for plotting 

spike rasters for the stored patterns. During decoding, a straightforward metric using the average distance 

between time-binned mean firing rates for the original and recall trajectories produces similarity matrices 

presented in Figures 10(a) and (b), where we see that global adaptation does not perform as well. However, 

the information in this case also lies in the spike-times and changes in firing rate over time for each neuron. 

Including these features in the decoding vectors for stored and recalled patterns, we get clean recalls in 

both cases as shown in Figures 10(c) and (d). The decoding vector for the n-th time-bin in this case is given 

by 

                                                                    𝒅𝑛 = [

𝒓𝑛

Δ𝒕Ψ𝑛

Δ𝑟𝑛

]                                                        (44) 
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Figure 11. Ensemble plots showing (a) mean recall accuracy and (b) mean number of spikes as memory 
load increases for the network, in the absence as well as presence of global adaptation. The range of values 
across the ensemble is shown by the shaded area. 

 

where rn, ∆tΨn and ∆rn are the vectors of mean firing rates, mean inter-spike intervals and changes in 

the mean firing rates for the n-th bin for the entire network respectively. The mean inter-spike interval is set 

equal to the bin length if there is a single spike over the entire bin length, and equal to twice the bin length 

if there are none. Note that the inter-spike interval computed for one time-bin may be different from (1/r), 

particularly for low firing rates, and hence encodes useful information. The similarity metric between the 

u-th stored pattern and the v-th recall pattern is given by 

su,v = 1 − distu,v, (45) 

where distu,v is the mean Euclidean distance between the two decoding vectors over the total number of 

time-bins, normalized between [0, 1]. 

To estimate the capacity of the network, we calculate the mean recall accuracy over 10 trials for varying 

number of stored patterns, both with and without global adaptation. Figure 11(a) plots the mean recall 

accuracy for different number of patterns stored for the two cases, and Figure 11(b) plots the mean number 

of spikes for each storage. For each plot, the shaded region indicates the range of values across trials. As 

expected, the accuracy is 100% for lesser storage, but degrades with higher loading. However with global 

adaptation, the degradation is seen to be more graceful for a large range of storage with the decoding used 

in Figures 10(c) and (d), allowing the network to recall patterns more accurately using much fewer spikes. 

Hence by exploiting suitable decoding techniques, we can implement highly energy-efficient spiking 

associative memory networks with high storage capacity. 

    Note that the recall accuracy using global adaptation deteriorates faster for >175 patterns. The proposed 

    decoding algorithm, which determines the recall accuracy, takes into account the mean spiking rates,  

    inter-spike intervals and changes in spike rates. It is possible that as the number of spikes is reduced 

    through the use of global adaptation, the information encoded in first-order differences (inter-spike intervals 

    or spike rates) may not be sufficient to encode information at high fidelity, resulting in the degradation in 

    

Without global adaptation With global adaptation 

R
ec

al
l 

ac
cu

ra
cy

 (
%

) 

N
u
m

b
er

 o
f 

sp
ik

es
 



Gangopadhyay et al. Spiking neuron model based on Growth Transforms 
 

 

 

(a) 20 dB SNR (b) 10 dB SNR (c) 0 dB SNR 
 

   
 

(d)  
100 

 

80 

 
60 

 

40 

 
20 

(e) × 103 
5 

 

4 

 

3 

 

2 

 

1 
 

0 
0 dB 

 
10 dB 

Signal-to-noise ratio 

 
20 dB 

0 

0 dB 

 
10 dB 

Signal-to-noise ratio 

 
20 dB 

 

 
 

Figure 12. (a), (b) and (c) An example of a test image corrupted with additive white Gaussian noise at 
20 dB, 10 dB and 0 dB SNR respectively; (d) and (e) Test accuracy and mean spike count/test image for 
different noise levels. 

 

recall accuracy when the number of patterns increased. However, augmenting the decoding features with 

higher-order differences in inter-spike intervals or spike rates may lead to an improved performance for 

higher storage. 

3.6.1 Classification of noisy MNIST images 

Aside from pattern completion, associative networks are also commonly used for identifying patterns 

from their noisy counterparts. We use a similar associative memory network as above to classify images 

from the MNIST dataset which were corrupted with additive white Gaussian noise at different signal- 

to-noise ratios (SNRs),  and which were,  unlike in the previous case,  unseen by the network before  the 

recall phase. The network size in this case was M = 784, the number of pixels in each image, and the 

connectivity matrix was set using a separate, randomly selected subset of 5000 binary, thresholded images 

from the training dataset according to (43). Unseen images from the test dataset were corrupted at different 

SNRs and fed to the network after binary thresholding. Figures 12(a)-(c) shows an example of a test image 

at different SNRs after binary thresholding. As before, the non-zero pixels got a steady depolarizing input. 

A noisy test image was assigned to the class corresponding to the closest training image according to the 

similarity metric in (45). 
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The test accuracies and mean spike counts for a test image are plotted in Figures 12(d) and (e) respectively 

for different noise levels. We see that even for relatively high noise levels, the network has a robust 

classification performance. As before, a global adaptation based on the state of convergence of the network 

produces a slightly better performance with fewer spikes per test image. 
 

4 CONCLUSIONS 

This paper introduces the theory behind a new spiking neuron and population model based on the Growth 

Transform dynamical system. The system minimizes an appropriate energy functional under realistic 

physical constraints to produce emergent spiking activity in a population of neurons. The proposed work is 

the first of its kind to treat the spike generation and transmission processes in a spiking network as an energy- 

minimization problem involving continuous-valued neural state variables like the membrane potential. 

The neuron model and its response are tightly coupled to the network objective, and is flexible enough to 

incorporate different neural dynamics that have been observed at the cellular level in electrophysiological 

recordings. 

The paper is accompanied by a software tool (Mehta et al., 2019) that enables readers to visualize the 

effects of different model parameters on the neural dynamics. Many more neural dynamics can be simulated 

using the model and readers are encouraged to experiment with different network parameters. The paper 

and the  tool illustrate how  dynamical and spiking  responses  of neurons can  be derived directly from a 

network objective or energy functional of continuous-values neural variables. The general approach offers 

an elegant way to design neuromorphic machine learning algorithms by bridging the gap that currently 

exists between bottom-up models that can simulate biologically realistic neural dynamics but do not have a 

network-level representation, and top-down machine learning models that start with a network loss function, 

but reduce the problem to the model of a non-spiking neuron with static nonlinearities. 

In this regard, machine learning models are primarily developed with the objective of minimizing the error 

in inference by designing a loss function that captures dependencies among variables, for example, features 

and class labels. Learning in this case, as pointed out in (LeCun et al., 2006), consists of adapting weights 

in order to associate low energies (losses) to observed configurations of variables, and high energies (losses) 

to unobserved ones. The non-differentiable nature of spiking dynamics makes it difficult to formulate loss 

functions involving neural variables. Neuromorphic algorithms currently work around this problem in 

different ways, including mapping deep neural nets to spiking networks through rate-based techniques 

(O’Connor et al., 2013; Rueckauer et al., 2016), formulating loss functions that penalize the difference 

between actual and desired spike-times (Bohte et al., 2002; Xin and Embrechts, 2001), or approximating 

the derivatives of spike signals through various means (Lee et al., 2016; Zenke and Ganguli, 2018; Shrestha 

and Orchard, 2018). Formulating the spiking dynamics of the entire network using an energy function 

involving neural state variables across the network would enable us to directly use the energy function itself 

for learning weight parameters; and forms the basis for our future work. Since the proposed energy function 

encompasses all the neurons in the network, and not just the ‘visible neurons’ as in most neuromorphic 

machine learning algorithms, it can potentially enable easier and more effective training of hidden neurons 

in deep networks. Moreover, it would allow us to incorporate and experiment with biologically  relevant 

neural dynamics that could have significant performance and energy benefits. 

4.1 Relation with other neural networks and spiking neuron models 

The network energy functional bears similarity with the Ising Hamiltonians used in Hop- 

field networks (Hopfield, 1982), Boltzmann machines (Hinton et al., 1986) or spin-glass models 
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(Gardner and Derrida, 1988), but contains an additional integral term Ψ(.)dv as in continuous-time Hopfield 

networks with graded neurons (Šı́ma and Orponen, 2003). However, unlike in continuous-time Hopfield 

networks where Ψ−1(.) is assumed to be a saturation/squashing function of a rate-based representation, the role 

of Ψ(.) in the proposed model is to implement a barrier or a penalty, such that the neural responses can produce 

spiking dynamics. This enables us to obtain neural responses at the level  of individual spikes instead of average 

rate-based responses; and allows for a more fine-grained control over the spiking responses of the network. The 

saturation (squashing) function, on the other hand, is implemented by the bound constraints on the Growth 

Transform updates, and hence the network is not limited to choosing a specific form of saturation non-linearity 

(e.g. sigmoid). 

The energy-based formulation described in section 2.1 could also admit other novel interpretations. For 

instance, for the form of  Ψ(. ) considered in (18), the barrier function can be rewritten as    ∫ Ψ(𝑣)𝑑𝑣 
𝑣𝑖

−∞
=

 Ψ𝑖𝑣𝑖, where  Ψ𝑖 = 0 A if   𝑣𝑖 ≤ 0 V and  Ψ𝑖 = 𝐼Ψ A if  𝑣𝑖 > 0 V. For a continuous-time implementation 

(discrete-time  step that is sufficiently small), 𝑣𝑖(𝑡) will be reset as soon as it reaches the threshold (0 V), and 

will not exceed the threshold. In this case, we can write Ψ𝑖(𝑡) ≥ 0 and  Ψ𝑖(𝑡)𝑣𝑖(𝑡) = 0 ∀𝑡.  This is equivalent 

to Karush-Kuhn-Tucker (KKT) conditions. Thus the spike events Ψ𝑖(𝑡), 𝑖 = 1, … , 𝑀, act as the KKT multipliers 

corresponding to the M inequality constraints  𝑣𝑖(𝑡) ≤ 0, 𝑖 = 1, … , 𝑀, (Tucker and Kuhn, 1951), encoding the 

sensitivity of the i-th neuron to the constraint.

              Also, if we consider the spike response as a displacement current, we can write 
 

(46) 
 

              where 𝐶𝑜𝑢𝑡 is the membrane capacitance. Note that 𝑜𝑖 is the analog spike response current output and is different 

            from  Ψ(𝑣𝑖), which is the binary spike event. Then the membrane potential for the continuous-time Growth  

            Transform neuron model in Table 3 can be rewritten as                      
 

                                                                                   𝑣𝑖(𝑡) =  
1

𝐶𝑜𝑢𝑡
∫ 𝑜𝑖(𝑡′)𝑑𝑡′.

𝑡

−∞
                                                       (47) 

 

 

Thus according to this interpretation, the communication between neurons takes place using current waveforms, 

similar to integrate-and-fire models, and the current waveforms can be integrated at the post-synaptic neuron to 

recover the membrane potential. Note that the remapping between W and Q (described in section 2.1) would 

still hold, since we are transmitting analog spike current waveforms, and not post-synaptic current waveforms 

such as exponentially decaying functions, α-functions or simplified current pulses (digital bits) used in 

integrate-and-fire models (Traub and Miles, 1991; Mar et al., 1999). 

 

4.2 Implication of remapping on neuromorphic architectures 

 In the proposed neuron model, we abstracted out the essential aspects of spike generation and transmission 

 that can replicate neural dynamics, and remapped synaptic interactions to an energy-based framework. As 

 a result of the remapping procedure, the coupling matrix Q in our proposed model is proportional to the 

 inverse of the synaptic weight matrix W. This paves the way for developing novel neuromorphic learning 

 algorithms in the Q-domain that involves sparse local analog connectivity, but which actually translates to 
 

dvi 
oi = Cout 

dt 
, 
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fully-connected non-sparse global connectivity in the W-domain. Thus, adapting one synaptic connection 

in the Q-domain, in this case, will be equivalent to adapting multiple synapses in the W-domain. 

Learning in the Q-domain will be a topic for future research. 

 

4.3 Benefits of decoupling neurodynamical parameters 

 

A key advantage of the proposed framework is that it enables the decoupling of the three neurodynamical 

Parameters – network solution,  spike-shapes and transient dynamics.  Thus while the solution to the energy 

functional  is determined by the coupling matrix Q and  the stimulus vector b, independent control of the 

modulation function allows users to program the trajectory to the solution, which could be determined by an 

optimization process that is different from optimizing the energy functional. Some examples of these alternate 

objectives could be: 

 

• A hybrid spiking network comprising neurons of different types (tonic spiking, bursting, non-spiking, etc.), as 

illustrated in section 3.1. The network would still converge to the same solution, but the spiking dynamics 

across the network could be exploited to influence factors such as speed, energy efficiency and noise-sensitivity 

of information processing. 

• Optimization of some auxiliary network parameter, e.g., the total spiking activity. A related example (although 

not optimized w.r.t. any objective function) was illustrated in section 3.6 for a simple associative network. In 

this example, the network recalled the same set of patterns and classified MNIST images using two different 

time-evolutions of the modulation function corresponding to the presence and absence of global adaptation. In 

this case, it had the benefit of using fewer spikes to achieve better recall when a modified decoding metric was 

used. 

• Modeling the effect of neurotransmitters and metabolic factors that have been known to affect the properties, 

activity and functional connectivity of populations of neurons. These factors endow the same network with the 

flexibility to generate different output patterns and produce different behaviors for the same stimulus 

(Hasselmo, 2002; McCormick and Nusbaum, 2014). 

• Modeling the effect of diffusion processes or glial processes, that have been known to modulate response 

properties and synaptic transmission in neurons, influencing information processing and learning in the brain 

(Clarke and Barres, 2013; Fields et al., 2014).
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APPENDIX A 

We can rewrite (1) for a sequence
 
vi,n−N+1, vi,n−N+2, ..., vi,n

 
of size N to obtain 

𝑣𝑖,𝑛−𝑁+2 =  𝑣𝑖,𝑛−𝑁+1 + (𝛾 − 1)𝑣𝑖,𝑛−𝑁+1 +  ∑ 𝑊𝑖𝑗Ψ(𝑣𝑗,𝑛−𝑁+1)

𝑀

𝑗=1

+  𝑦𝑖,𝑛−𝑁+1  

 

𝑣𝑖,𝑛−𝑁+3 =  𝑣𝑖,𝑛−𝑁+2 + (𝛾 − 1)𝑣𝑖,𝑛−𝑁+2 +  ∑ 𝑊𝑖𝑗Ψ(𝑣𝑗,𝑛−𝑁+2)

𝑀

𝑗=1

+  𝑦𝑖,𝑛−𝑁+2  

 

. 

. 

𝑣𝑖,𝑛+1 =  𝑣𝑖,𝑛 + (𝛾 − 1)𝑣𝑖,𝑛 + ∑ 𝑊𝑖𝑗Ψ(𝑣𝑗,𝑛)

𝑀

𝑗=1

+  𝑦𝑖,𝑛  

 

 

Summing over the time-steps and dividing by the total number of time-steps, we get 

 

(1 − 𝛾)𝔼𝑁(𝑣𝑖[𝑛]) +  
1

𝑁
(𝑣𝑖,𝑛+1  −  𝑣𝑖,𝑛−𝑁+1) =  ∑ 𝑊𝑖𝑗𝔼𝑁(Ψ𝑗[𝑛]) +  𝔼𝑁(y𝑖[𝑛])𝑀

𝑗=1         (A.1) 

 

 

where 𝔼𝑁(Ψ𝑗[𝑛]) =  
1

𝑁
∑ Ψ(𝑣𝑗,𝑝)𝑛

𝑝=𝑛−𝑁+1 . Since the neural responses are assumed to be bounded at all times, as 

𝑁 → ∞, the second term in (A.1) approaches zero, so that we can rewrite (A.1) as 

 

                                                (1 − 𝛾)𝑣̅𝑖[𝑛] =  ∑ 𝑊𝑖𝑗Ψ̅𝑗[𝑛] +  𝑦̅𝑖[𝑛]𝑀
𝑗=1                                              (A.2) 

 

       APPENDIX B 
 

        Proof of Proposition I: We can decompose the scalar variable 𝑣𝑖,𝑛 as 𝑣𝑖,𝑛 =  𝑣𝑖,𝑛
+ −  𝑣𝑖,𝑛

− , where 𝑣𝑖,𝑛
+ , 𝑣𝑖,𝑛

−  ≥ 0. The                          

        following additional constraint 

 

                                              𝑣𝑖,𝑛
+ + 𝑣𝑖,𝑛

− =  𝑣𝑐 , 𝑖 = 1, … , 𝑀,                                                    (B.1) 

        imposed on the variables 𝑣𝑖,𝑛
+  and 𝑣𝑖,𝑛

−  would then always ensure that (10) is satisfied. Then we can write 

 

                   arg 𝑚𝑖𝑛|𝑣𝑖|≤𝑣𝑐
ℋ({𝑣𝑖}) =  arg 𝑚𝑖𝑛𝑣𝑖

++𝑣𝑖
−=𝑣𝑐; 𝑣𝑖

+,𝑣𝑖
−≥0  ℋ({𝑣𝑖

+ −  𝑣𝑖
−}),                  (B.2) 

 

        We can solve the equivalent optimization problem under the linear constraint specified by (B.1) and the non-        

        negativity constraints, using an iterative multiplicative update called Growth Transforms – a fixed point algorithm    

        for optimizing a Lipschitz continuous objective function under similar equality constraints (Gopalakrishnan et 

        al., 1989; Chatterjee and Chakrabartty, 2018).    
 

       Baum-Eagon Growth Transformations: Baum-Eagon Growth Transforms (Chatterjee and Chakrabartty, 2018) are 

       a class of fixed-point algorithms for iteratively optimizing a Lipschitz continuous objective function  
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           ℋ({𝑣𝑖𝑘}) that is constrained over a domain 𝒟 defined by 

 

                                                              𝒟 = {𝑣𝑖𝑘: 𝑣𝑖𝑘 ≥ 0 𝑎𝑛𝑑 ∑ 𝑣𝑖𝑘 =  𝑣𝑐
𝑞𝑖
𝑘=1 },                                           (B.3) 

 

           where 𝑞1, 𝑞2, … , 𝑞𝑀 is a set of non-negative integers and M is a positive integer which denotes the number  

           of linear constraints in 𝒟. For a Lipschitz continuous cost function ℋ({𝑣𝑖𝑘}) where 𝑣𝑖𝑘 ∈ 𝒟, 𝑖 = 1, … , 𝑀, 

           there exists a growth transformation 𝜎(. ) such that 

 

                                                                     ℋ({𝜎(𝑣𝑖𝑘)}) ≤ ℋ({𝑣𝑖𝑘}) ∀𝑣𝑖𝑘 𝜖 𝒟.                                                 (B.4)  
 
           This transformation takes the following form 

 

                                                𝜎(𝑣𝑖𝑘,𝑛) = 𝑣𝑖𝑘,𝑛+1 ← 𝑣𝑐
𝐺𝑖𝑘(𝑣𝑛,𝜆)

𝐺𝑖(𝑣𝑛,𝜆)
, 𝑖 = 1, … 𝑀,                                       (𝐵. 5) 

 

          where  

                                                   𝐺𝑖𝑘(𝑣𝑛, 𝜆) =  𝑣𝑖𝑘,𝑛 (−
𝜕ℋ

𝜕𝑣𝑖𝑘,𝑛
+ 𝜆) , 𝑎𝑛𝑑                                               (𝐵. 6) 

 

                                                    𝐺𝑖(𝑣𝑛, 𝜆) = ∑ 𝐺𝑖𝑘(𝑣𝑛, 𝜆)𝑞𝑖
𝑘=1 .                                                               (𝐵. 7) 

 

          An admissible value for the constant 𝜆 is such that for any 𝑣𝑖𝑘,𝑛 ∈ 𝒟, 𝐺𝑖𝑘(𝑣𝑛, 𝜆) ≥ 0 and 𝐺𝑖(𝑣𝑛, 𝜆) > 0  

          (Gopalakrishnan et al., 1989). 

 

 

          Growth Transform neuron model updates. Assuming that the partial derivatives for the network energy 

          functional in (8) are bounded, the optimization problem for the proposed model is equivalent to the 

          one in (B.2), being constrained on a domain equivalent to 𝒟, where 𝑞1 = 𝑞2 = ⋯ = 𝑞𝑀 = 2, and 

          𝑣𝑖
+ + 𝑣𝑖

− = 𝑣𝑐 , 𝑖 = 1, … , 𝑀 are the M linear constraints. Considering 𝑣𝑖
+ = 𝑣𝑖1 and 𝑣𝑖

− = 𝑣𝑖2, we can 

          rewrite the update equations in (B.5) in terms of the new optimization variables corresponding to (B.2) to 

          obtain the following discrete-time updates 

 

                                                       𝑣𝑖,𝑛+1
+ = 𝑣𝑐

𝑣𝑖,𝑛
+

𝜇𝑖,𝑛
(−

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ + 𝜆)                                                            (𝐵. 8) 

 

                                                       𝑣𝑖,𝑛+1
− = 𝑣𝑐

𝑣𝑖,𝑛
−

𝜇𝑖,𝑛
(−

𝜕ℋ

𝜕𝑣𝑖,𝑛
− + 𝜆)                                                            (𝐵. 9) 

 

          where  

                                                    𝜇𝑖,𝑛 = 𝑣𝑖,𝑛
+ (−

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ + 𝜆) + 𝑣𝑖,𝑛

− (−
𝜕ℋ

𝜕𝑣𝑖,𝑛
− + 𝜆)                                    (𝐵. 10) 

 

          is a normalization factor that ensures 𝑣𝑖,𝑛+1
+ + 𝑣𝑖,𝑛+1

− = 𝑣𝑐. Here, 𝜆 (which has the unit of current) is 

          admissible if 𝜆 >
𝜕ℋ

𝜕𝑣𝑖,𝑛
 ∀𝑖, 𝑛, which will ensure 𝐺𝑖

+(𝑣𝑛, 𝜆) > 0 𝑊 and 𝐺𝑖
−(𝑣𝑛, 𝜆) > 0 𝑊 ∀𝑖. From (B.8) and 

          (B.9), using 𝑣𝑖,𝑛 =  𝑣𝑖,𝑛
+ −  𝑣𝑖,𝑛

−  and (B.1), we can easily show 

 

                                                                               𝑣𝑖,𝑛+1 = 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

,                                                        (𝐵. 11) 
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          where we have used the relation 
𝜕ℋ

𝜕𝑣𝑖
=

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ = −

𝜕ℋ

𝜕𝑣𝑖,𝑛
− . This dynamical system model, derived from the 

          Growth Transform updates outlined in (B.8) and (B.9), ensures that (11) holds, with equality being satisfied 

          iff 𝑣𝑖,𝑛 is a critical point of ℋ. 

 

          Rearranging the terms in (B.11) we get 

 

                                                (𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1)

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ 𝜆𝑣𝑐(𝑣𝑖,𝑛+1 − 𝑣𝑖,𝑛) = 0.                                      (𝐵. 12) 

 

          Rewriting (B.12) for a sequence of time-indices 𝑝 = 𝑛 − 𝑁 + 1, 𝑛 − 𝑁 + 2, … , 𝑛, of size N, we get 

 

(𝑣𝑐
2 − 𝑣𝑖,𝑛−𝑁+1𝑣𝑖,𝑛−𝑁+2)

𝜕ℋ

𝜕𝑣𝑖,𝑛−𝑁+1
+ 𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+2 − 𝑣𝑖,𝑛−𝑁+1) = 0 

 

(𝑣𝑐
2 − 𝑣𝑖,𝑛−𝑁+2𝑣𝑖,𝑛−𝑁+3)

𝜕ℋ

𝜕𝑣𝑖,𝑛−𝑁+2
+ 𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+3 − 𝑣𝑖,𝑛−𝑁+2) = 0 

. 

. 

(𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1)

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ 𝜆𝑣𝑐(𝑣𝑖,𝑛+1 − 𝑣𝑖,𝑛) = 0 

 

          Summing over the time-steps and dividing by the total number of time-steps, we get 

 

                                                𝔼𝑁(𝑧𝑖[𝑛]) +
1

𝑁
𝜆𝑣𝑐(𝑣𝑖,𝑛+1 − 𝑣𝑖,𝑛−𝑁+1) = 0                                               (𝐵. 13) 

 

          where 𝑧𝑖,𝑛 = (𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1)

𝜕ℋ

𝜕𝑣𝑖,𝑛
. As 𝑁 → ∞, since 𝑣𝑖,𝑛 are bounded ∀𝑖, 𝑛, we have for the n-th time  

          window 

                                                           lim
𝑁 →∞

(𝔼𝑁(𝑧𝑖[𝑛])) → 0.                                                             (B.14) 

 

 

          APPENDIX C 

 

          Asymptotic encoding for non-saturating GT neurons: For neurons with responses 𝑣𝑖,𝑛 > −𝑣𝑐  ∀𝑛 (which 

          includes spiking neurons as well as non-spiking neurons that do not cross the threshold), we define 

          𝛼𝑖,𝑛 = (𝑣𝑐
2 − 𝑣𝑖,𝑛𝑣𝑖,𝑛+1). Since |𝑣𝑖,𝑛| < 𝑣𝑐  ∀𝑛, 𝛼𝑖,𝑛 > 0 ∀𝑛. We can sum the criterion (B.12) for time-steps 

          𝑝 = 𝑛 − 𝑁 + 1, 𝑛 − 𝑁 + 2, … , 𝑛, to write 

 

                                           ∑ 𝛼𝑖,𝑝𝑔𝑖,𝑝
𝑛
𝑝=𝑛−𝑁+1 = 𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+1 − 𝑣𝑖,𝑛+1),                                            (𝐶. 1) 

 

          where 𝑔𝑖,𝑝 =
𝜕ℋ

𝜕𝑣𝑖,𝑝
. For 𝑝 = 𝑛 − 𝑁 + 1, 𝑛 − 𝑁 + 2, … , 𝑛, we can decompose the instantaneous gradient 

          term 𝑔𝑖,𝑝 as follows 

 

                                                        𝑔𝑖,𝑝 = 𝔼𝑁(𝑔𝑖[𝑛]) + Δ𝑔𝑖,𝑝,                                                               (𝐶. 2) 

 

          where Δ𝑔𝑖,𝑝 is a zero-mean sequence such that 𝔼𝑁(Δ𝑔𝑖[𝑛]) = 0. Then combining (C.1) and (C.2), 
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∑ 𝛼𝑖,𝑝𝔼𝑁(𝑔𝑖[𝑛])

𝑛

𝑝=𝑛−𝑁+1

+ ∑ 𝛼𝑖,𝑝Δ𝑔𝑖,𝑝

𝑛

𝑝=𝑛−𝑁+1

= 𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+1 − 𝑣𝑖,𝑛+1) 

 

𝔼𝑁(𝑔𝑖[𝑛]) ∑ 𝛼𝑖,𝑝

𝑛

𝑝=𝑛−𝑁+1

= − ∑ 𝛼𝑖,𝑝𝛥𝑔𝑖,𝑝

𝑛

𝑝=𝑛−𝑁+1

+ 𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+1 − 𝑣𝑖,𝑛+1) 

 

𝔼𝑁(𝑔𝑖[𝑛]) = −
∑ 𝛼𝑖,𝑝𝛥𝑔𝑖,𝑝

𝑛
𝑝=𝑛−𝑁+1

∑ 𝛼𝑖,𝑝
𝑛
𝑝=𝑛−𝑁+1

+  
𝜆𝑣𝑐(𝑣𝑖,𝑛−𝑁+1 − 𝑣𝑖,𝑛+1)

∑ 𝛼𝑖,𝑝
𝑛
𝑝=𝑛−𝑁+1

 

 

          Since , 𝛼𝑖,𝑛 > 0 ∀𝑛, ∑ 𝛼𝑖,𝑝
𝑛
𝑝=𝑛−𝑁+1 → ∞ as 𝑁 → ∞. Also, |𝑣𝑖,𝑛| < 𝑣𝑐  ∀𝑛 leads to 

 

                                         lim
𝑁 →∞

(𝔼𝑁(𝑔𝑖[𝑛])) = lim
𝑁→∞

(−
∑ 𝛼𝑖,𝑝𝛥𝑔𝑖,𝑝

𝑛
𝑝=𝑛−𝑁+1

∑ 𝛼𝑖,𝑝
𝑛
𝑝=𝑛−𝑁+1

) = 0.                                                 (𝐶. 3) 

 

          The last result uses the non-pathological case that due to the bounded property of 𝛥𝑔𝑖,𝑝, the sequence 

          𝛼𝑖,𝑝𝛥𝑔𝑖,𝑝 does not grow as fast as the denominator sequence 𝛼𝑖,𝑝. 

 

 

 

          APPENDIX D 

 

          Continuous-time Growth Transform dynamical system: In order to derive the complete dynamical system 

          model for the Growth Transform neuron, we apply a useful property of Growth Transforms. The Growth 

          Transform mapping 𝜎(. ) homotopically minimizes the value of the cost function ℋ (Baum and Sell, 1968) 

          as shown below 

 

                                                 ℋ ({(1 − 𝑓𝑖,𝑛)𝑣𝑖,𝑛
𝜉

+ 𝑓𝑖,𝑛𝜎(𝑣𝑖,𝑛
𝜉

)}) ≤ ℋ ({𝑣𝑖,𝑛
𝜉

}) ,     𝜉 = +, −,                     (𝐷. 1) 

 

          where 0 < 𝑓𝑖,𝑛 ≤ 1. This leads to the updated discrete-time equations for the new optimization variables 

          for minimizing ℋ(. ) 

 

                                 𝑣𝑖,𝑛+1
+ = (1 − 𝑓𝑖,𝑛)𝑣𝑖,𝑛

+ + 𝑓𝑖,𝑛𝑣𝑐
𝑣𝑖,𝑛

+

𝜇𝑖,𝑛
(−

𝜕ℋ

𝜕𝑣𝑖,𝑛
+ + 𝜆)                                           (𝐷. 2) 

 

                                𝑣𝑖,𝑛+1
− = (1 − 𝑓𝑖,𝑛)𝑣𝑖,𝑛

− + 𝑓𝑖,𝑛𝑣𝑐
𝑣𝑖,𝑛

−

𝜇𝑖,𝑛
(−

𝜕ℋ

𝜕𝑣𝑖,𝑛
− + 𝜆)                                           (𝐷. 3) 

 

          From (B.11), (D.2) and (D.3), we have 

 

                                 𝑣𝑖,𝑛+1 = (1 − 𝑓𝑖,𝑛)𝑣𝑖,𝑛 + 𝑓𝑖,𝑛𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

.                                                 (𝐷. 4) 

 

          We define 𝜏𝑖,𝑛 = Δ𝑡(1/𝑓𝑖,𝑛 − 1), where Δ𝑡 is the time-increment in seconds between two time-steps as 

          defined previously in (1). Then since 0 < 𝑓𝑖,𝑛 ≤ 1, we have 𝜏𝑖,𝑛 ∈ [0, ∞) s. 𝜏𝑖,𝑛 can be considered to be 

          the time-constant for the i-th neuron at the n-th time-step, and the discrete-time dynamical systems model 
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          in (D.4) can be written as 

 

                                      (𝜏𝑖,𝑛 + 𝛥𝑡) (
𝑣𝑖,𝑛+1−𝑣𝑖,𝑛

𝛥𝑡
) + 𝑣𝑖,𝑛 = 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑐+ 𝜆𝑣𝑖,𝑛

−
𝜕ℋ

𝜕𝑣𝑖,𝑛
𝑣𝑖,𝑛+ 𝜆𝑣𝑐

.                                  (D.5) 

 

          Since the n-th time-step corresponds to time 𝑡 = 𝑛𝛥𝑡, 𝑣𝑖,𝑛 ≡ 𝑣𝑖(𝑛𝛥𝑡) and (D.5) can be rewritten as 

 

                           (𝜏𝑖(𝑡) + 𝛥𝑡) (
𝑣𝑖(𝑡+𝛥𝑡)−𝑣𝑖(𝑡)

𝛥𝑡
) + 𝑣𝑖(𝑡) = 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑐+ 𝜆𝑣𝑖(𝑡)

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑖(𝑡)+ 𝜆𝑣𝑐

                                 (D.6) 

 

          In the limiting case when 𝛥𝑡 → 0 s, this reduces to the following continuous-time dynamical system model 

          (Chatterjee and Chakrabartty, 2018) 

 

                                              𝜏𝑖(𝑡)
𝑑𝑣𝑖(𝑡)

𝑑𝑡
+ 𝑣𝑖(𝑡) = 𝑣𝑐

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑐+ 𝜆𝑣𝑖(𝑡)

−
𝜕ℋ

𝜕𝑣𝑖(𝑡)
𝑣𝑖(𝑡)+ 𝜆𝑣𝑐

.                                         (D.7) 

 

 

 

 

 

      

 


